Jonathan Rohleder

Associate Professor
Department of Mathematics

Campus Albano, house 1 (Albanovägen 28), Room E1349
jonathan.rohleder[at]math.su.se

Postal address:
Matematiska institutionen
Stockholms universitet
106 91 Stockholm
Sweden


Events
Teaching Spring Term 2025
  • MM2001 Matematik I: analys del 2
Current externally funded research projects
  • A new tool in spectral geometry, funded by the Swedish Research Council (VR), 2023-2026
Research Topics
  • Spectral theory
  • Elliptic differential operators
  • Quantum graphs
  • Inverse problems
  • Schrödinger operators with singular interactions
Publications
Refereed publications
  1. Pavel Exner and Jonathan Rohleder
    Optimization of quantum graph eigenvalues with preferred orientation vertex conditions
    Ann. Henri Poincaré, accepted for publication; arXiv

  2. Nausica Aldeghi and Jonathan Rohleder
    On the first eigenvalue and eigenfunction of the Laplacian with mixed boundary conditions
    J. Differential Equations 427 (2025), 689-718; arXiv

  3. Corentin Léna and Jonathan Rohleder
    Estimates for the lowest Neumann eigenvalues of parallelograms and domains of constant width
    Anal. Math. Phys. 14 (2024), Paper No. 42; arXiv

  4. Jonathan Rohleder and Christian Seifert
    Spectral theory for Schrödinger operators on compact metric graphs with δ and δ' couplings: a survey
    Systems theory and PDEs, Trends Math. 2024; arXiv

  5. Nausica Aldeghi and Jonathan Rohleder
    Inequalities between the lowest eigenvalues of Laplacians with mixed boundary conditions
    J. Math. Anal. Appl. 524 (2023), no. 1, Paper No. 127078; arXiv

  6. Hannes Gernandt and Jonathan Rohleder
    A Calderón type inverse problem for tree graphs
    Linear Algebra Appl. 646 (2022), 29-42; arXiv

  7. Jonathan Rohleder
    Quantum trees which maximize higher eigenvalues are unbalanced
    Proc. Amer. Math. Soc. Ser. B 9 (2022), 50–59; arXiv

  8. James B. Kennedy and Jonathan Rohleder
    On the hot spots of quantum graphs
    Commun. Pure Appl. Anal. 20 (2021), no. 9, 3029-3063; arXiv

  9. Jacob Muller and Jonathan Rohleder
    The Krein-von Neumann extension for Schrödinger operators on metric graphs
    Complex Anal. Oper. Theory 15 (2021), no. 2, 27; arXiv

  10. Jonathan Rohleder
    Inequalities between Neumann and Dirichlet eigenvalues of Schrödinger operators
    J. Spectr. Theory 11 (2021), 915-933; arXiv

  11. Pavel Kurasov and Jonathan Rohleder
    Laplacians on bipartite metric graphs
    Oper. Matrices 14 (2020), 535-553; arXiv

  12. Jussi Behrndt and Jonathan Rohleder
    Inverse problems with partial data for elliptic operators on unbounded Lipschitz domains
    Inverse Problems 36 (2020) 035009 (18pp); arXiv

  13. Jonathan Rohleder and Christian Seifert
    Spectral monotonicity for Schrödinger operators on metric graphs
    Oper. Theory Adv. Appl. 281 (2020), 291-310; arXiv

  14. Jonathan Rohleder
    A remark on the order of mixed Dirichlet-Neumann eigenvalues of polygons
    Oper. Theory Adv. Appl. 276 (2020), 570-575; arXiv

  15. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Spectral enclosures for non-self-adjoint extensions of symmetric operators
    J. Funct. Anal. 275 (2018), 1808–1888; arXiv

  16. Jussi Behrndt, Jonathan Rohleder, and Simon Stadler
    Eigenvalue inequalities for Schrödinger operators on unbounded Lipschitz domains
    J. Spectr. Theory 8 (2018), 493-508; arXiv

  17. Christian Kühn and Jonathan Rohleder
    Visibility of quantum graph spectrum from the vertices
    J. Phys. A: Math. Theor. 51 (2018), 095204 (11pp); arXiv

  18. Jonathan Rohleder and Christian Seifert
    Absolutely continuous spectrum for Laplacians on radial metric trees and periodicity
    Integral Equations Operator Theory 89 (2017), 439-453; arXiv

  19. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
    Quasi boundary triples and semibounded self-adjoint extensions
    Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 895-916; arXiv

  20. Vladimir Lotoreichik and Jonathan Rohleder
    Eigenvalue inequalities for the Laplacian with mixed boundary conditions
    J. Differential Equations 263 (2017), 491-508; arXiv

  21. Jussi Behrndt, Rupert L. Frank, Christian Kühn, Vladimir Lotoreichik, and Jonathan Rohleder
    Spectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³
    Ann. Henri Poincaré 18 (2017), 1305-1347; arXiv

  22. Jonathan Rohleder
    Eigenvalue estimates for the Laplacian on a metric tree
    Proc. Amer. Math. Soc. 145 (2017), 2119-2129; arXiv

  23. Pavel Exner and Jonathan Rohleder
    Generalized interactions supported on hypersurfaces
    J. Math. Phys. 57 (2016), 041507 (23pp); arXiv

  24. Jussi Behrndt and Jonathan Rohleder
    Titchmarsh-Weyl theory for Schrödinger operators on unbounded domains
    J. Spectr. Theory 6 (2016), 67-87; arXiv

  25. Jussi Behrndt and Jonathan Rohleder
    Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions
    Adv. Math. 285 (2015), 1301-1338; arXiv

  26. Vladimir Lotoreichik and Jonathan Rohleder
    An eigenvalue inequality for Schrödinger operators with δ and δ'-interactions supported on hypersurfaces
    Oper. Theory Adv. Appl. 247 (2015), 173-184; arXiv

  27. Jonathan Rohleder
    Recovering a quantum graph spectrum from vertex data
    J. Phys. A: Math. Theor. 48 (2015), 165202 (20pp); arXiv; Publisher's pick

  28. Jonathan Rohleder
    Strict inequality of Robin eigenvalues for elliptic differential operators on Lipschitz domains
    J. Math. Anal. Appl. 418 (2014), 978–984; arXiv

  29. Jussi Behrndt and Jonathan Rohleder
    An inverse problem of Calderón type with partial data
    Comm. Partial Differential Equations 37 (2012), 1141–1159; arXiv

  30. Vladimir Lotoreichik and Jonathan Rohleder
    Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space
    Oper. Theory Adv. Appl. 221 (2012), 453–468; arXiv
Submitted papers
  1. Vladimir Lotoreichik and Jonathan Rohleder
    A note on optimization of the second positive Neumann eigenvalue for parallelograms; arXiv

  2. James B. Kennedy and Jonathan Rohleder
    On the hot spots conjecture in higher dimensions; arXiv

  3. Jonathan Rohleder
    Curl curl versus Dirichlet Laplacian eigenvalues; arXiv

  4. Jonathan Rohleder
    Inequalities between Neumann and Dirichlet Laplacian eigenvalues on planar domains; arXiv

  5. Jonathan Rohleder
    A new approach to the hot spots conjecture; arXiv
Conference proceedings
  1. Jonathan Rohleder
    A variational approach to the hot spots conjecture
    Extended Abstracts 2021/2022, Methusalem Lectures, Trends Math. 2024; arXiv

  2. James Kennedy and Jonathan Rohleder
    On the hot spots of quantum trees
    Proc. Appl. Math. Mech. 18 (2018); arXiv

  3. Jussi Behrndt, Christian Kühn, and Jonathan Rohleder
    Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps
    Proc. Appl. Math. Mech. 13 (2013), 517–518

  4. Jonathan Rohleder
    Spectral properties of selfadjoint Schrödinger operators and Dirichlet-to-Neumann maps
    Oberwolfach Rep. 02 (2012), 26–28

  5. Jussi Behrndt, Christian Kühn, and Jonathan Rohleder
    Selfadjoint Schrödinger operators on the half-space with compactly supported Robin boundary conditions
    Proc. Appl. Math. Mech. 11 (2011), 885–886

  6. Jussi Behrndt and Jonathan Rohleder
    A characterization of the eigenvalues of Schrödinger operators with Dirichlet and Neumann boundary conditions
    Proc. Appl. Math. Mech. 10 (2010), 657–658

  7. Jussi Behrndt and Jonathan Rohleder
    An L² model for selfadjoint elliptic differential operators with constant coefficients on bounded domains
    Proc. Appl. Math. Mech. 9 (2009), 673–674
Theses
  1. Jonathan Rohleder
    Titchmarsh-Weyl Theory and Inverse Problems for Elliptic Differential Operators, Dissertation, TU Graz, 2013 University Press TU Graz

  2. Jonathan Rohleder
    Ein Multiplikationsoperator-Modell für selbstadjungierte Realisierungen elliptischer Differentialausdrücke auf beschränkten Gebieten, Diploma Thesis, TU Berlin, 2009