Jonathan Rohleder

Associate Professor
Department of Mathematics

Campus Albano, house 1 (Albanovägen 28), Room E1349
jonathan.rohleder[at]math.su.se
+46 08-16 45 46

Postal address:
Matematiska institutionen
Stockholms universitet
106 91 Stockholm
Sweden


Events
Teaching Spring Term 2023
  • MM4001 Matematik för naturvetenskaper II
Current externally funded research projects
  • A new tool in spectral geometry, funded by the Swedish Research Council (VR), 2023-2026
  • New Spectral Inequalities for Domains and Graphs, funded by the Swedish Research Council (VR), 2019-2022
Research Topics
  • Spectral theory
  • Elliptic differential operators
  • Quantum graphs (see this little Interview)
  • Inverse problems
  • Schrödinger operators with singular interactions
Publications
Refereed publications
  1. Nausica Aldeghi and Jonathan Rohleder,
    Inequalities between the lowest eigenvalues of Laplacians with mixed boundary conditions,
    J. Math. Anal. Appl., accepted for publication; arXiv

  2. Hannes Gernandt and Jonathan Rohleder,
    A Calderón type inverse problem for tree graphs,
    Linear Algebra Appl. 646 (2022), 29-42; arXiv

  3. Jonathan Rohleder,
    Quantum trees which maximize higher eigenvalues are unbalanced,
    Proc. Amer. Math. Soc. Ser. B 9 (2022), 50–59; arXiv

  4. James B. Kennedy and Jonathan Rohleder,
    On the hot spots of quantum graphs,
    Commun. Pure Appl. Anal. 20 (2021), no. 9, 3029-3063; arXiv

  5. Jacob Muller and Jonathan Rohleder,
    The Krein-von Neumann extension for Schrödinger operators on metric graphs,
    Complex Anal. Oper. Theory 15 (2021), no. 2, 27; arXiv

  6. Jonathan Rohleder,
    Inequalities between Neumann and Dirichlet eigenvalues of Schrödinger operators,
    J. Spectr. Theory 11 (2021), 915-933; arXiv

  7. Pavel Kurasov and Jonathan Rohleder,
    Laplacians on bipartite metric graphs,
    Oper. Matrices 14 (2020), 535-553; arXiv

  8. Jussi Behrndt and Jonathan Rohleder,
    Inverse problems with partial data for elliptic operators on unbounded Lipschitz domains,
    Inverse Problems 36 (2020) 035009 (18pp); arXiv

  9. Jonathan Rohleder and Christian Seifert,
    Spectral monotonicity for Schrödinger operators on metric graphs,
    Oper. Theory Adv. Appl. 281 (2020), 291-310; arXiv

  10. Jonathan Rohleder,
    A remark on the order of mixed Dirichlet-Neumann eigenvalues of polygons,
    Oper. Theory Adv. Appl. 276 (2020), 570-575; arXiv

  11. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder,
    Spectral enclosures for non-self-adjoint extensions of symmetric operators,
    J. Funct. Anal. 275 (2018), 1808–1888; arXiv

  12. Jussi Behrndt, Jonathan Rohleder, and Simon Stadler,
    Eigenvalue inequalities for Schrödinger operators on unbounded Lipschitz domains,
    J. Spectr. Theory 8 (2018), 493-508; arXiv

  13. Christian Kühn and Jonathan Rohleder,
    Visibility of quantum graph spectrum from the vertices,
    J. Phys. A: Math. Theor. 51 (2018), 095204 (11pp); arXiv

  14. Jonathan Rohleder and Christian Seifert,
    Absolutely continuous spectrum for Laplacians on radial metric trees and periodicity,
    Integral Equations Operator Theory 89 (2017), 439-453; arXiv

  15. Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder,
    Quasi boundary triples and semibounded self-adjoint extensions,
    Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 895-916; arXiv

  16. Vladimir Lotoreichik and Jonathan Rohleder,
    Eigenvalue inequalities for the Laplacian with mixed boundary conditions,
    J. Differential Equations 263 (2017), 491-508; arXiv

  17. Jussi Behrndt, Rupert L. Frank, Christian Kühn, Vladimir Lotoreichik, and Jonathan Rohleder,
    Spectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³,
    Ann. Henri Poincaré 18 (2017), 1305-1347; arXiv

  18. Jonathan Rohleder,
    Eigenvalue estimates for the Laplacian on a metric tree,
    Proc. Amer. Math. Soc. 145 (2017), 2119-2129; arXiv

  19. Pavel Exner and Jonathan Rohleder,
    Generalized interactions supported on hypersurfaces,
    J. Math. Phys. 57 (2016), 041507 (23pp); arXiv

  20. Jussi Behrndt and Jonathan Rohleder,
    Titchmarsh-Weyl theory for Schrödinger operators on unbounded domains,
    J. Spectr. Theory 6 (2016), 67-87; arXiv

  21. Jussi Behrndt and Jonathan Rohleder,
    Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions,
    Adv. Math. 285 (2015), 1301-1338; arXiv

  22. Vladimir Lotoreichik and Jonathan Rohleder,
    An eigenvalue inequality for Schrödinger operators with δ and δ'-interactions supported on hypersurfaces,
    Oper. Theory Adv. Appl. 247 (2015), 173-184; arXiv

  23. Jonathan Rohleder,
    Recovering a quantum graph spectrum from vertex data,
    J. Phys. A: Math. Theor. 48 (2015), 165202 (20pp); arXiv; Publisher's pick

  24. Jonathan Rohleder,
    Strict inequality of Robin eigenvalues for elliptic differential operators on Lipschitz domains,
    J. Math. Anal. Appl. 418 (2014), 978–984; arXiv

  25. Jussi Behrndt and Jonathan Rohleder,
    An inverse problem of Calderón type with partial data,
    Comm. Partial Differential Equations 37 (2012), 1141–1159; arXiv

  26. Vladimir Lotoreichik and Jonathan Rohleder,
    Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space,
    Oper. Theory Adv. Appl. 221 (2012), 453–468; arXiv
Submitted papers
  1. Jonathan Rohleder,
    A new approach to the hot spots conjecture; arXiv
Conference proceedings
  1. James Kennedy and Jonathan Rohleder,
    On the hot spots of quantum trees,
    Proc. Appl. Math. Mech. 18 (2018); arXiv

  2. Jussi Behrndt, Christian Kühn, and Jonathan Rohleder,
    Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps,
    Proc. Appl. Math. Mech. 13 (2013), 517–518

  3. Jonathan Rohleder,
    Spectral properties of selfadjoint Schrödinger operators and Dirichlet-to-Neumann maps,
    Oberwolfach Rep. 02 (2012), 26–28

  4. Jussi Behrndt, Christian Kühn, and Jonathan Rohleder,
    Selfadjoint Schrödinger operators on the half-space with compactly supported Robin boundary conditions,
    Proc. Appl. Math. Mech. 11 (2011), 885–886

  5. Jussi Behrndt and Jonathan Rohleder,
    A characterization of the eigenvalues of Schrödinger operators with Dirichlet and Neumann boundary conditions,
    Proc. Appl. Math. Mech. 10 (2010), 657–658

  6. Jussi Behrndt and Jonathan Rohleder,
    An L² model for selfadjoint elliptic differential operators with constant coefficients on bounded domains,
    Proc. Appl. Math. Mech. 9 (2009), 673–674
Theses
  1. Jonathan Rohleder,
    Titchmarsh-Weyl Theory and Inverse Problems for Elliptic Differential Operators, Dissertation, TU Graz, 2013. University Press TU Graz

  2. Jonathan Rohleder,
    Ein Multiplikationsoperator-Modell für selbstadjungierte Realisierungen elliptischer Differentialausdrücke auf beschränkten Gebieten, Diploma Thesis, TU Berlin, 2009.