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SUMMARY

The traditional way to measure e�cacy of a vaccine, with respect to reduced susceptibility and reduced
infectivity once infected, is to look at relative attack rates. Although straightforward to apply, such
measures do not take disease transmission into account, with the consequence that they can depend
strongly on the community setting, the duration of the study period, the way participants are recruited
into the study and the virulence of the infection. Sometimes they give a very misleading assessment of
the vaccine, as we illustrate by examples. Here measures of vaccine e�cacy are considered that avoid
these defects, and estimation procedures are presented for studies based on outbreaks in household
pairs. Such studies enable estimation of vaccine e�ects on susceptibility, infectivity and transmission.
We propose that the vaccine e�cacy measures be estimated, without making any assumptions about
the nature of the vaccine response, by consistent estimates of bounds for the measures. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vaccination is frequently an e�ective way to control infectious diseases. However, vaccines
generally do not achieve the ideal of providing full protection against infection, making it
necessary to assess the e�ectiveness of each vaccine. Two major purposes of such an assess-
ment are to judge (i) the degree of protection it o�ers an individual against infection, and
(ii) its suitability for use in mass vaccination schedules to protect the entire population. The
latter requires consideration of the e�ect of a vaccine on both the susceptibility of vaccinees
and the infectivity of vaccinated individuals who happen to get infected.
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Measures of vaccine e�cacy are made from vaccine trials, where vaccines are stored and
administered under optimal conditions, while studies in the �eld measure vaccine e�ectiveness;
see Clements et al. [1]. Here we use the term vaccine e�cacy although our discussion has
relevance to both concepts.
Many studies estimate vaccine e�cacy by 1−(relative attack rate); see for example

Ornstein et al. [2], Chen and Ornstein [3], Halloran et al. [4, 5]. We demonstrate, by ex-
amples, that estimates of vaccine e�cacy based on relative risk can be very misleading,
because they do not account for the fact that cases arise as a result of transmission.
These problems motivate us to consider measures of vaccine e�cacy that both acknowl-

edge transmission and allow individuals to have a wide range of responses to vaccination.
Some progress in this direction was made in Reference [6], which focused on Markov chain
Monte Carlo methods to estimate certain e�cacy measures associated with the all-partial-
none vaccine response model (de�ned below). The methods are applicable to outbreak data
from households of arbitrary size. In contrast, in the present paper we consider a more gen-
eral vaccine response framework, de�ne a new measure of vaccine e�ect on infectivity, and
restrict attention to methods of inference using data on outbreak size in a sample of house-
hold pairs. The attractions of studies based on pairs are that (i) they provide information
about the vaccine e�ect on infectivity and (ii) parameter estimation is more tractable for
these studies than they are for studies with larger households. The latter point enables us
to make theoretical progress, for example by deriving estimable bounds on vaccine e�cacy.
Koopman and Little [7], Longini et al. [8], Rida [9] and Datta et al. [10, 11] also note that
studies based on pairs are well suited for the analysis of vaccine e�cacy. The present ap-
proach di�ers from previous work by describing the vaccine response di�erently. We permit
a wide range of vaccine responses that leads to concepts of vaccine e�cacy having an in-
terpretation that is consistent over study designs. The challenge of estimability within this
large family of vaccine responses is overcome by deriving estimable bounds for the e�cacy
concepts.
The paper is organized as follows. Section 2 describes our models for disease transmission

and vaccine response, and proposes e�cacy measures. Section 3 shows, via examples, that
measures of vaccine e�cacy based on relative attack rates can give very misleading assess-
ments of vaccines in settings that arise in practice. Section 4 contains details of estimation
methods for our e�cacy measures, followed by conclusions and suggestions for further work
in Section 5.

2. MODELS FOR OUTBREAKS IN PAIRS AND VACCINE EFFECTS

Consider the person-to-person transmission of infection in a community of households, over
a speci�c observation period. A study consists of observing outbreaks in households with
two susceptible individuals, where one or both may be vaccinated. It is assumed that the
study period is long, relative to the duration of a household outbreak, and that the size
of a household outbreak is observed even when its primary case occurs towards the end
of the observation period. Larger households may be included provided other house-
hold members are fully immune, typically as a result of previous exposure to the
infection.
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2.1. Outbreaks in unvaccinated pairs

We begin with assumptions similar to those made in Reference [12]. Consider �rst a household
pair in which neither partner is vaccinated. Every individual is exposed to a global force of
infection over the study period and may be exposed to a force of infection from an infected
partner. Each individual avoids infection from global contacts, independently, with probability
qg. The probability of avoiding infection from an infected household partner is qh. In each
household pair the possible number infected during the observation period is 0, 1 or 2, with
probabilities

p0(0)= q2g; p0(1)=2qg(1− qg)qh and p0(2)=2qg(1− qg)(1− qh) + (1− qg)2

respectively, where the subscript in p0 indicates that neither individual in the pair is
vaccinated.

2.2. Vaccine response and e�cacy measures

We now recall a framework for vaccine response described by Becker and Starczak [13].
For an individual who is vaccinated we describe the vaccine response by a realization of the
random vector (A; B). The random variable A describes the relative susceptibility compared to
an unvaccinated individual, and B the relative infectivity, should the vaccinee become infected.
Vaccine responses are independently and identically distributed for di�erent individuals, but
A and B of the same individual may be correlated. To make this more precise, consider a
vaccinated individual with realized vaccine response (a; b) and an unvaccinated household
partner. As a result of vaccination, the force of infection acting on that individual at time t is
changed from �t to a�t . It follows that the probability of avoiding infection from outside the
household becomes qag and the probability of avoiding infection from an infected unvaccinated
household partner is changed to qah. If this vaccinated individual does become infected, from
a global source, then this vaccinee infects the unvaccinated partner with probability 1 − qbh.
Unconditionally, these probabilities are E(qAg ), E(q

A
h ) and E(1− qBh ), respectively.

The full vaccine response is described by the probability distribution of (A; B). Three sum-
mary measures of the vaccine response, with regard to susceptibility and infectivity, are of
particular interest. One is the average reduction in susceptibility, per contact, given by

VES =1− E(A)

and called the protective vaccine e�cacy. Note that VES =0 corresponds to no protective
e�ect and VES =1 to complete protection. Measures of a vaccine’s e�ect on infectivity and
transmissibility requires more care because infectivity is only relevant if the individual gets
infected. For example, the value of B is irrelevant in the extreme case when A=0, since
then the individual is never infected. Similarly, the value of B has a minor impact when A is
positive, but very small, because the individual is rarely infected. On the other hand, when
the value of A is large, near 1, then a small value for B can reduce community transmission
substantially. A measure which can re�ect this is E(A)− E(AB). Rescaling, so that 0 means
no reduction in infectivity and 1 corresponds to no infectivity remains, gives

VEI =1− E(AB)=E(A)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:1079–1093
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The fact that VEI is not de�ned when E(A)=0 is not of concern, because this generally
means that Pr(A=0)=1, so that no vaccinated individuals become infected. The third sum-
mary measure of interest is

VESI =1− E(AB)
which measures the dual e�ect of changes in susceptibility and infectivity on transmission of
infection. Note that

1−VESI = (1−VES)(1−VEI)
so that estimation of two of these summary measures determines the third.
A desirable property of these measures of vaccine e�cacy, in contrast to measures based on

relative risk, is that an estimate obtained in the setting considered here can be meaningfully
interpreted for use of the vaccine in a di�erent settings. In other words, they are primarily
characteristics of the vaccine and do not depend on characteristics, such as community setting
and duration of study period, which are speci�c to the conducted study.
Some of the discussion below refers to the speci�c vaccine response model described by

Pr(A=0)= c; Pr(A= a; B= b)=d and Pr(A=1; B=1)=f (1)

where 0¡a; b¡1 and c+d+f=1. This all-partial-none vaccine response model was previ-
ously used in Reference [6]. Its parameters capture important features of a vaccine response,
namely the proportion of individuals that become completely immune (c), the proportion of
vaccinations that fail (f) and, for individuals who become partially protected, it captures the
vaccine e�ects on susceptibility (a) and infectivity (b).
Two particular responses contained in model (1) are mentioned below, namely the partial

response model obtained when d=1 and the all-none response model obtained when d=0.
In the partial response all individuals have the same response (a; b). It is sometimes referred
to as a ‘leaky’ response; see Reference [14].

2.3. Outbreaks in vaccinated pairs

In household pairs with both individuals vaccinated prior to the observation period the number
infected can be 0, 1 or 2, with probabilities

p2(0) = [E(qAg )]
2

p2(1) = 2E[(1− qA1g )qA2g qB1A2h ] and

p2(2) = 2E[(1− qA1g )qA2g (1− qB1A2h )] + [E(1− qAg )]2

respectively, where (A1; B1) and (A2; B2) are assumed to be independent random vectors. The
possibility of dependent vaccine responses within households, perhaps because pair members
are genetically similar, is not allowed for.
There are four outcomes for a pair in which one individual is vaccinated and the other is not,

namely neither is infected, only the unvaccinated individual is infected, only the vaccinated
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individual is infected or both are infected. The probabilities of these events, respectively, are

p1(0; 0) = qgE(qAg )

p1(1; 0) = (1− qg)E(qAgqAh )

p1(0; 1) = qgE[(1− qAg )qBh ] and

p1(1; 1) = (1− qg)E(1− qAgqAh ) + qgE[(1− qAg )(1− qBh )]

where the subscript in p1 indicates that one individual of the pair is vaccinated.
Koopman and Little [7], Longini et al. [8] and Datta et al. [10, 11] also study partially

protective vaccine e�ects, but in their models vaccination acts linearly on infection probabil-
ities. The present vaccine response model a�ects the avoidance probability by a factor in the
exponent. In other words, vaccination acts linearly on the logarithm of the avoidance proba-
bility. It has the advantage that the interpretations of vaccine e�ects described by this model
do not depend on the duration of the study.

3. EFFICACY MEASURES BASED ON RELATIVE ATTACK RATES

Before considering estimation of the above measures of vaccine e�cacy we present examples,
to show that estimates of the form

V̂E=1− relative attack rate=1− proportion of vaccinated individuals infected
proportion of unvaccinated individuals infected

can seriously mislead us about vaccine e�cacy. The examples serve two related purposes.
Firstly, they provide an important alert to the many researchers who use and promote this
type of estimate; see for example References [2, 5, 7, 15]. The reason for the popularity of
V̂E lies in its easy computation and its apparent simple interpretation, although the latter is
a misguided impression. The second purpose of these examples is to provide a compelling
argument for the need to develop alternative methods of estimation, and associated vaccine
trial designs, such as those proposed in this paper. Some guidance on settings for which V̂E
is appropriate, and alternative measures when it is not, is given by Hern�andez and Castillo
[16] and Hern�andez [17].
Smith et al. [15] point out that the estimate V̂E depends on the type of vaccine response,

which in itself is a concern. In particular, they point out that the cumulative force of infection
acting over the observation period has a substantial e�ect on the value obtained for V̂E when
the vaccine response includes a partial component, e.g. when d¿0 in equation (1). The
discussion by Smith et al. does not focus on transmission, so it is worth pointing out that
for infectious diseases the cumulative force of infection depends substantially on transmission
characteristics of the disease and the community setting. It follows that the value of V̂E
depends substantially on transmission characteristics of the disease and the community setting.
The following two examples highlight this.
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Example 1 (Outbreaks in household pairs)
For a large number of household pairs, each with one vaccinated and one unvaccinated
individual, we can deduce that V̂E estimates

VE=1− p1(0; 1) + p1(1; 1)
p1(1; 0) + p1(1; 1)

where the probabilities p1(i; j) are as in Section 2.3.

For the all-none vaccine response Pr(A=1; B=1)=f=1 − Pr(A=0) and a sensible
measure of protective vaccine e�cacy is 1− f. However,

VE=
1− f

1 + qg(1− qh)f

and as VE61 − f, we see that V̂E generally underestimates the desired quantity 1 − f and
can estimate a quantity as low as one half of this value, when qg ≈ 1, qh ≈ 0 and f ≈ 1. In
other words, V̂E may seriously mislead us even for an all-none vaccine response when the
community consists of households and households are recruited into the study on the basis
of the vaccination status of its members. Note, however, that results in Hern�andez-Su�arez
[17] imply that V̂E gives a satisfactory estimate of vaccine e�cacy for the all-none vaccine
response when the vaccination status is determined independently for each member of the
recruited households.
For the partial vaccine response, described by Pr(A= a; B= b)=1, we �nd

VE=1− qagq
a
h(1− qg)− qgqbh(1− qag)
1− qa+1g − qgqbh(1− qag)

As an illustration let qg = 0:9, qh = 0:1 and a=0:9, so that the probability of being infected
from a global source is small, the within-household transmission rate is high when there is an
infective in the household and the vaccine o�ers a modest level of protection. If b is su�ciently
small, corresponding to substantial infectivity reduction for the vaccinee, it follows that the
smaller global force of infection exerted on vaccinated individuals (due to the protective e�ect
of the vaccine) is more than compensated for by the possible high force of infection from an
infected unvaccinated partner. In other words, the average cumulative force of infection exerted
on unvaccinated individuals is smaller than that exerted on vaccinated individuals. Indeed,
calculations show that VE increases with b, from −0:70 when b=0 (vaccination removes all
infectivity) to 0:019 when b=1 (vaccination does not a�ect infectivity). Therefore, a vaccine
that reduces susceptibility and infectivity can expect to return a value of V̂E that is negative,
suggesting that vaccination makes individuals more vulnerable to infection when it clearly
does not. This illustrates again that V̂E can seriously mislead us, and it occurs because V̂E
does not take transmission into account.
The next example presents a di�erent kind of concern.

Example 2 (A sample of a�ected households)
A change in infectivity is di�cult to estimate, because the source of an infection is generally
unknown. To overcome this dilemma, investigators sometimes sample infected households in
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which the vaccination status of primary cases can be established. Then an estimate of the
form V̂E is applied to data on �rst-generation secondary cases. Speci�cally,

V̂E
′
=1− pv=pu

is used to estimate the reduction in infectivity, where pv is the observed proportion of cases
among unvaccinated household members exposed to a vaccinated primary household case and
pu is the observed proportion of cases among unvaccinated household members exposed to
an unvaccinated primary household case. Halloran et al. [5] analyse data from a study of this
type.

A serious concern arises with such studies when the vaccine response may give partial
immunity, as for the all-partial-none response models with d¿0, as is now explained. Partial
immunity generally implies some reduction in both susceptibility and infectivity. In other
words, a vaccinated individual has A and B values in (0; 1), and A and B are typically
positively correlated. The problem is that vaccinated primary cases of the sampled households
are not representative of vaccinees. They are infected vaccinees, so they are likely to include
a larger proportion with high susceptibility and infectivity than a group of randomly selected
vaccinees.
To show that this kind of study can give a misleading assessment of the e�ect of vaccination

on infectivity, consider a household pair with one member vaccinated, who had the speci�c
vaccine response (A; B)= (a; b). Being interested in primary cases, we consider global forces
of infection �t and a�t acting on the unvaccinated and vaccinated individuals, respectively, at
time t during the recruitment period. Given that both members of a household pair remain
uninfected at time t and one in the pair is infected during the time increment (t; t + dt), the
probability that it is the vaccinated individual is a�t dt=(a�t dt + �t dt)= a=(a+ 1).
Now assume a partial-none response to vaccination described by

Pr(A=1; B=1)=1− Pr(A= a; B= b)=f where 0¡a; b¡1

Then, among all household pairs with one vaccinee, a fraction f have a vaccinee at the
higher susceptible level. However, among household pairs with one vaccinee who is a primary
household case, the fraction

1
2f

1
2f + [a=(a+ 1)](1− f) =

f + af
f + 2a− af

has a vaccinee at the higher susceptible level. To illustrate suppose that the probability of
a vaccine failure is f=0:2 and a=0:1, which means that successful vaccination reduces
the chance of infection during a contact with an infective to one-tenth of the chance for
an unvaccinated individual. Overall, 20 per cent of vaccinated individuals have a vaccine
failure, whereas 57.9 per cent of vaccinated primary cases had a vaccine failure. Estimating
VEI by treating vaccinated primary cases as typical vaccinees is clearly going to severely
underestimate the reduction in infectivity induced by vaccination.
These examples clearly demonstrate that a fair assessment of vaccine e�ects requires a

method of estimation that acknowledges that outbreak data are the result of disease transmis-
sion between individuals.
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4. ESTIMATING VACCINE EFFECTS FROM HOUSEHOLD PAIRS DATA

Suppose the study has nj household pairs with j individuals vaccinated, ( j=0; 1; 2). Let n0(i)
denote the number of households having no vaccinated individuals in which i individuals
became infected (i=0; 1; 2), and similarly de�ne n2(i) for households with two vaccinated
individuals. Also, let n1(i; j) denote the number of households with one vaccinated individual
in which the outbreak consists of i unvaccinated cases and j vaccinated cases (i; j=0; 1).
Treating households as independent, the log-likelihood for these data is

‘(qg; qh; �)=
2∑
i=0
n0(i) ln[p0(i)] +

1∑
i=0

1∑
j=0
n1(i; j) ln[p1(i; j)] +

2∑
i=0
n2(i) ln[p2(i)] (2)

where � is the vector of parameters of the vaccine response distribution. This is the log-
likelihood function for data from three multinomial distributions, and we can clearly estimate
{p0(i)}, {p1(i; j)} and {p2(i)}. Our interest, however, lies in expressing these cell probabilities
in terms of parameters that describe transmission and vaccine e�ects, namely (qg; qh; �), and
making inferences about certain characteristics of the distribution of (A; B). We now present
some inference results that do not require us to specify a form for the random vaccine response
distribution.

4.1. Distribution-free inferences about vaccine e�ects

The outcome probabilities, given in Sections 2.1 and 2.3, and the log-likelihood function (2)
indicate that outbreak data from household pairs with 0, 1 and 2 vaccinated members enable
the estimation of qg, qh and

�=

⎛⎜⎜⎜⎜⎜⎜⎝
�1

�2

�3

�4

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝

E(qAg )

E(qAgq
A
h )

E[(1− qAg )qBh ]
E[(1− qA1g )qA2g qB1A2h ]

⎞⎟⎟⎟⎟⎟⎟⎠
as well as functions of these. The dimension of (qg; qh; �) is one less than the number of
degrees of freedom for these three multinomial distributions, because p2(0)= [p1(0; 0)]2=p0(0)
holds without any assumptions about the vaccine response distribution.
Maximum likelihood estimates can be obtained by substituting

p0(0)= q2g; p0(1)=2qg(1− qg)qh; p0(2)=2qg(1− qg)(1− qh) + (1− qg)2

p1(0; 0)= qg�1; p1(1; 0)= (1−qg)�2; p1(0; 1)= qg�3; p1(1; 1)=1−�2−qg(�1−�2+�3)
p2(0)= �21; p2(1)=2�4 and p2(2)=1− �21 − 2�4

into the log-likelihood (2) and maximizing with respect to (qg; qh; �). Under the assump-
tion A61 and B61, so that vaccination does not increase susceptibility or infectivity, the
constraints �1¿�2 and �3¿�4 need to be imposed when maximizing the log-likelihood
function.
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Consistent estimates of VES, VEI and VESI are generally not available, because these mea-
sures cannot be expressed as functions of (qg; qh; �) without making the vaccine response
model more speci�c. The outbreak data are nevertheless informative about VES, VEI and
VESI, because each of them can be bounded by estimable quantities. Below we give bounds
that can be estimated by substituting maximum likelihood estimates for (qg; qh; �).

4.1.1. Reduction in susceptibility. Using convexity arguments as in Reference [18] and the
assumptions A61 and B61, it can be shown that

log[E(qAg )]
log(qg)

6E(A)6
1− E(qAg )
1− qg

Translating these bounds to VES =1− E(A) gives the estimable bounds
�1 − qg
1− qg 6VES6

log(qg=�1)
log(qg)

(3)

The bounds are sharp, with the lower bound attained for the all-none response and the upper
bound attained for the partial response. The two bounds are extremes in the sense that, for a
given E(A), the upper bound is attained when Var(A)=0 while the lower bound is attained
when Var(A) has its maximum value of E(A)[1 − E(A)]. It is interesting that corresponding
bounds for VES based on infection data from a uniformly-mixing community of homogeneous
individuals, see Becker and Utev [18], are attained by precisely the same vaccine responses.
There are two important applications of the inequalities (3). One is to obtain an interval

estimate for VES that does not depend upon a particular vaccine response model for (A; B).
For this we estimate each of the bounds. The second is robust testing of the hypothesis
that the vaccine has a protective e�ect, by testing H0: ’=0 against H0: ’¿0, where
’=(�1 − qg)=(1 − qg). When the number of pairs is large, this test can be conducted us-
ing the large sample normality of the maximum likelihood estimate ’̂, with the standard
deviation given below.
To illustrate that the bounds in (3) provide estimates of practical value we compute, in

Table I, the lower and upper bounds of VES for some plausible parameter values under the
protective vaccine response described by Pr(A=1)=f=1− Pr(A= a). The small di�erence
between these bounds indicates that estimation of these bounds is informative about VES.
Indeed the di�erence is likely to be substantially smaller than the width of the con�dence
interval for the bound.
We now argue that the bounds on VES have practical value even when no speci�c protective

vaccine e�ect is assumed. Denote the di�erence between the upper and lower bounds by
f(q; �) when qg = q and �1 = �. Then

f(q; �)=
1− �
1− q − log �

log q

Suppose that qg is not smaller than some �xed value qL. For qL6q6�61, f is maximized
at qmax = qL and �max = (qL − 1)= log qL. Figure 1 illustrates f(qmax; �max), i.e. the maximum
possible di�erence between the bounds, for a range of values of qL. Note that this di�erence
is small for all values of qL greater than about 0.2. The bounds are therefore of practical
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Table I. Bounds for VES given by (3), for partial-none vaccine protection and qg = 0:9.

a
0.1 0.3 0.5

0.05 (0.850, 0.857) (0.654, 0.666) (0.462, 0.476)
f 0.15 (0.761, 0.770) (0.586, 0.598) (0.414, 0.427)

0.25 (0.671, 0.683) (0.517, 0.530) (0.365, 0.377)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

qL

f

Figure 1. Maximum possible di�erence, f, between upper and lower bounds for VES, as
qL varies. Note that f ↑ 1 as qL ↓ 0.

value whenever less than 80 per cent of susceptible individuals become infected during the
observation period.
An approximate assessment of the precision of maximum likelihood estimates of the bounds

is possible by noting that the bounds depend only on qg and �1. Inspection of the expres-
sions for the p0(i), the p1(i; j) and the p2(i) reveals that the information about qg and �1
is essentially contained in the cell frequencies n0(0), n1(0; 0) and n2(0). They are observa-
tions on independent Binomial(n0; q2g), Binomial(n1; qg�1) and Binomial(n2; �

2
1) distributions,

respectively. Suppose that our data consists only of observing n0(0), n1(0; 0) and n2(0) unin-
fected households out of n0, n1 and n2, respectively. Let n= n0 + n1 + n2 and for i=0; 1; 2 let
�i := limn→∞ ni=n¿0, the large-sample proportion of pairs with i vaccinated partners. Then
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the large-sample variance–covariance matrix is

�2(q̂g; �̂1) ≈ 1
�n

⎛⎜⎜⎜⎝
4�2
1− �21

+
�1qg

�1(1− qg�1)
−�1

1− qg�1
−�1

1− qg�1
4�0
1− q2g

+
�1�1

qg(1− qg�1)

⎞⎟⎟⎟⎠
where

�=
16�0�2

(1− q2g)(1− �21)
+

4�1�2�1
qg(1− qg�1)(1− �21)

+
4�0�1qg

�1(1− qg�1)(1− q2g)
The delta method now gives the large-sample standard deviations

s:d:(’̂)=SD

(
�̂1 − q̂g
1− q̂g

)
≈
[
(�1 − 1)2
(1− qg)4 �

2
11 + 2

(�1 − 1)
(1− qg)3 �

2
12 +

1
(1− qg)2 �

2
22

]1=2
and

SD

(
log(q̂g=�̂1)
log(q̂g)

)
≈
[
(log �1)2

q2g(log qg)4
�211 − 2 log �1

qg�1(log qg)3
�212 +

1
�21(log qg)2

�222

]1=2

for the estimated lower and upper bounds for VES, respectively.
From these standard deviations it can be shown that studies involving a few hundred pairs

of individuals can be large enough to give estimates of reasonable precision. For example,
with n0 = n1 = n2 = 100, �1 = 0:9 and setting qg = 0:8; 0:7 and 0:6, the standard deviation of
the lower bound is 0.103, 0.064 and 0.045, respectively, and for the upper bound we obtain
0.106, 0.062 and 0.041. This suggests that our estimation method is useful for data obtained
from studies of a size that are feasible in practice.

4.1.2. Reduction in infectivity. Bounds for E(AB) can be obtained as follows. Fix 0¡q¡1
and 06z61. Then for 06x61, simple geometry shows that

(qz log q)x + qz(1− z log g)6qx6− (1− q)x + 1
Applying these inequalities with x replaced by A or B, and q replaced by qg or qh, respectively,
yields bounds for A and B. Multiplying these bounds and taking expectations (with z=0, for
example), gives

E[(1− qAg )(1− qBh )]
log qg log qh

6E(AB)6
E[(1− qAg )(1− qBh )]
(1− qg)(1− qh) (4)

In principle, other bounds can be obtained by taking a di�erent value for z, although cal-
culations are then complicated by the fact that the bounds can become negative, and hence
redundant. Note that since E[(1− qAg )(1− qBh )]=1− �1 − �3, the bounds in (4) are estimable
quantities. The upper bound is attained by the all-none vaccine response, but the lower bound
is not attained for any explicit response model. The two bounds coincide as qg; qh → 1, and
are reasonably close to each other when qg and qh are not too small.
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Table II. Bounds for VESI and VEI given by (5) and (6), for partial-none vaccine
response with qg = 0:9, qh = 0:7 and f=0:15.

a
0.1 0.3 0.5

VESI
0.1 (0.840, 0.872) (0.819, 0.856) (0.799, 0.840)

b 0.3 (0.820, 0.856) (0.761, 0.809) (0.702, 0.762)
0.5 (0.801, 0.841) (0.706, 0.765) (0.613, 0.691)

VEI
0.1 (0.302, 0.464) (0.550, 0.652) (0.650, 0.726)

b 0.3 (0.216, 0.399) (0.404, 0.539) (0.481, 0.595)
0.5 (0.136, 0.337) (0.268, 0.434) (0.324, 0.472)

Translating these bounds to VESI =1− E(AB) gives

1− 1− �1 − �3
(1− qg)(1− qh)6VESI61− 1− �1 − �3

log qg log qh
(5)

Finally, combining the bounds for E(A) and E(AB) we �nd

1− (1− �1 − �3) log qg
(1− qg)(1− qh) log �16VEI61− (1− qg)(1− �1 − �3)

(1− �1) log qg log qh (6)

The bounds for VEI =1−E(AB)=E(A) are not sharp because they consist of combinations of
two bounds that are attained for di�erent vaccine responses.
Table II gives upper and lower bounds for VEI and VESI, for some typical parameter values.

In most cases the bounds are tight enough to be of practical value, especially so for VESI.

4.2. Inferences for all-partial-none vaccine responses

The choice of parameter � was made primarily for reasons of convenience after inspecting
expressions for the cell probabilities of our transmission models. It is worthwhile considering
a change of parameter that directly re�ects vaccine response characteristics of interest. This
is achieved by adopting the all-partial-none vaccine response model given by (1). Adopting
this model corresponds to a re-parameterization from (qg; qh; �) to (qg; qh; a; b; c; f), so the
dimension of the parameter has not changed.
Maximum likelihood estimates of (qg; qh; a; b; c; f) can, in principle, be obtained by writing

the p0(i), p1(i; j) and p2(i) in terms of (qg; qh; a; b; c; f) and maximizing the log-likelihood
for the observed data with respect to these parameters. Con�dence intervals can be ob-
tained by bootstrap methods. In practice such calculations are not entirely trivial, due to
the large number of parameters and the relatively complicated way these probabilities depend
on (qg; qh; a; b; c; f). Maximum likelihood estimation becomes a little easier when we are pre-
pared to make more speci�c assumptions about the vaccine response. For example, with an
all-none vaccine response, given by d=0, it can be shown that

VES = 1− 1− �1
1− qg
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VEI = 1− 1− �1 − �3
(1− �1)(1− qh) and

VESI = 1− 1− �1 − �3
(1− qg)(1− qh)

This makes maximum likelihood estimation of these measures a little easier, because the
p0(i), p1(i; j) and p2(i) have relatively simple expressions in terms of (qg; qh; �). The same
approach works for the partial vaccine response, given by setting d=1, because then the
vaccine measures are given by

VES = 1− log �1
log qg

VEI = 1− log �3 − log(1− �1)
log qh

and

VESI = 1− log �1[log �3 − log(1− �1)]
log qg log qh

For these more speci�c vaccine response models one can also write down some explicit
expressions for consistent, although not fully e�cient, estimates of interest. Suppose we are
prepared to adopt the all-none response. Then a consistent estimate of E(A)=f is given by

f̂=
[n1(0; 1) + n1(1; 1)]=n1
[n0(1) + 2n0(2)]=n0

Suppose, instead, that we are prepared to assume that the partial response applies. Then one
consistent estimate of E(A)= a is given by

â=
log[n2(0)=n2]
log[n0(0)=n0]

although this is easily improved upon by adding the information that n1(0; 0)=n1 contains
about a.
In practice it seems best to retain the all-partial-none vaccine response model (1), for

which we recommend either using the distribution-free bounds of the previous subsection
(they apply to an arbitrary vaccine response) or making Bayesian inferences implemented by
Markov chain Monte Carlo methods.
Estimation methods for the all-partial-none response model in a Bayesian framework, using

MCMC methods, are described in detail in Reference [6]. One �nding of particular relevance
here is that both E(A) and E(AB) (and hence VES and VESI) are usually estimable with preci-
sion, meaning that their posterior densities typically have small standard deviation. The meth-
ods also allow exploration of the posterior density of the ratio E(AB)=E(A), and this is also
found to be estimable with reasonable precision. For example, setting a=0:4; b=0:5; c=0:45;
f=0:15; qg = 0:8, qh = 0:7, n0 = n1 = n2 = 100 and using data consisting of the expected fre-
quency for each outcome, we found parameter posterior modes in close agreement with
the known true values. Moreover, posterior modes for E(A)=0:31, E(AB)=0:23 and
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E(AB)=E(A)=0:74 were, respectively, 0:32; 0:26 and 0.82, with corresponding standard
deviations 0:074; 0:089 and 0.19.

5. DISCUSSION

In contrast to measures based on relative attack rates, the measures VES, VEI and VESI con-
sidered here indicate the same e�cacy irrespective of the community setting and the duration
of the study period. This is achieved by de�ning them solely in terms of characteristics of
the distribution of vaccine responses, and viewing infectious disease data with reference to a
model that captures transmission together with the e�ect that vaccine responses have on trans-
mission. A challenge associated with these e�cacy measures is that an estimation procedure
needs to be developed for each speci�c study setting.
Here we have considered estimation of these vaccine e�cacy measures from a study based

on outbreaks in household pairs. This study design provides two advantages. Firstly, it enables
estimation of the vaccine e�ect on infectivity, because such outbreaks contain some informa-
tion about the possible source of infection. Secondly, transmission models for pairs are not
encumbered by the complexity present in outbreaks in larger households.
Becker and Utev [18] provide a way of estimating VES by use of estimable bounds for

a study in which every individual is exposed to the same force of infections throughout the
study period. This approach estimates VES in a way that is robust with respect to the nature
of the vaccine response. Here we provide similar estimable bounds for VES corresponding to
a household pairs study design, and extend the approach to estimation of VEI and VESI for
that setting.
A further potential attraction of the household pairs study design is that individuals of the

same pair are matched with regard to geographic location. This can be important when there
are many pairs in the study, because the global force of infection may di�er appreciably
between locations of residence. It suggests the need to permit heterogeneity in the global
infection probability qg. A natural way to incorporate heterogeneity is to allow each pair’s
qg value to be a realization from some probability distribution, whose parameters we then
seek to estimate. For certain choices of distribution it turns out that an MCMC approach to
estimation can be applied in a convenient way, and moreover this approach is also feasible for
data on households of arbitrary size. The details of this will be presented elsewhere. Similar
comments apply to heterogeneity in qh, which may arise from susceptibility or infectivity
varying among individuals or between households.
Another area for further work is that of model choice. In the present paper, we describe

inference methods for both distribution-free and parametric vaccine response models. If it is
desired to use a parametric model, which is the most appropriate? For example, is there an
appreciable gain, when estimating VES, VEI and VESI, by using the all-partial-none vaccine
response model rather than the partial-none model (c=0)? There are various ways to answer
this question, and these will be addressed elsewhere.
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