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Abstract.— Using a four-taxon example under a simple model of evolution, we show that the methods of maximum likelihood
and maximum posterior probability (which is a Bayesian method of inference) may not arrive at the same optimal tree
topology. Some patterns that are separately uninformative under the maximum likelihood method are separately informative
under the Bayesian method. We also show that this difference has impact on the bootstrap frequencies and the posterior
probabilities of topologies, which therefore are not necessarily approximately equal. Efron et al. (Proc. Natl. Acad. Sci.
USA 93:13429–13434, 1996) stated that bootstrap frequencies can, under certain circumstances, be interpreted as posterior
probabilities. This is true only if one includes a noninformative prior distribution of the possible data patterns, and most
often the prior distributions are instead specified in terms of topology and branch lengths. [Bayesian inference; maximum
likelihood method; Phylogeny; support.]

Phylogenetic methods based on likelihood aim to find
the best topology by maximizing the likelihood function
with respect to topology and branch lengths (maximum
likelihood method, e.g., Felsenstein, 1981) or by com-
paring posterior probabilities for the different possible
topologies (Bayesian inference, e.g., Rannala and Yang,
1996). Regardless of the method of inference, a measure
of confidence, or support, is often desired for the esti-
mated topology. Felsenstein (1985) suggested a nonpara-
metric bootstrap procedure to obtain such a measure, a
procedure that is commonly used with the maximum
likelihood method. In Bayesian inference, the posterior
probabilities are the support values.

Efron et al. (1996) noted that bootstrap frequencies can
be interpreted as posterior probabilities under certain cir-
cumstances. Those sentences have been frequently cited
(e.g., Larget and Simon, 1999; Cummings et al., 2003;
Simmons et al., 2004), claiming bootstrap support val-
ues and Bayesian posterior probabilities to be approx-
imately equal. Other authors have noticed empirically
that Bayesian posterior probabilities for the best sup-
ported clades are significantly higher than correspond-
ing nonparametric bootstrap frequencies, (e.g., Suzuki
et al., 2002; Wilcox et al., 2002; Alfaro et al., 2003; Douady
et al., 2003; Erixon et al., 2003). We will, in Appendix 1,
show that the statement of Efron et al. (1996) is true under
the conditions therein given. In this paper, however, we
will show that those conditions are violated in general
phylogenetic inference.

METHODOLOGY FOR ESTIMATING PHYLOGENETIC TREES

We are interested in finding the phylogenetic tree, τ ,
of s species from aligned DNA sequences of length N.
That is, we have an s × N data matrix, x, where each row
represents the DNA sequence for one of the species.

The columns in x are assumed to be independent and
identically distributed (iid) where each column is one

of k = 4s possible ones. Denote the possible columns
by X1, X2, . . . , Xk where, e.g., X′

1 = {A, A, ..., A}, X′
2 =

{C, C, ..., C} etc. The proportions of X1, X2, ..., Xk , gen-
erated from the true phylogeny τ with branch lengths
b(τ ) are p = (p1, p2, ..., pk), where

∑
pi = 1. Each {τ, b(τ )}

induces a different p vector. The p-space is a continu-
ous space that can be divided into different subspaces
corresponding to the different topologies.

The data matrix x is a sample from the true phy-
logeny. When assuming sites to be iid, the data matrix x
can instead be represented by a vector n = (n1, n2, . . . nk),
where

∑
ni = N and each ni is the number of columns in

x that equals Xi . The vector p can then be estimated by
p̂ = ( p̂1, p̂2, . . . p̂k), which depends on n. Depending on
the method used for phylogenetic inference and choice
of model of evolution, each n vector gives an estimate of
the topology. The discrete n space is therefore divided in
different regions, Ri , giving τ̂ = τi and there might also
be regions where the estimate is not unique.

In likelihood based methods the information in data is
contained in the likelihood function, L(τi , b(τi ), θ|n). The
likelihood is the probability of data, n, f (n|τi , b(τi ), θ),
given the topology, τi , corresponding branch lengths, b(τi )

and model of evolution (with parameters θ), but seen as
a function of τi , b(τi ) and θ.

In the maximum likelihood approach, L(τi , b(τi ), θ|n)
is maximized for each τi with respect to b(τi ) and θ. The
estimated topology τ̂ML is the topology τi with the largest
maximized likelihood.

In the Bayesian approach, prior distributions for τi ,
b(τi ), and θ have to be specified. The posterior proba-
bility can then be calculated by Bayes’ theorem. In the
method of maximum posterior probability the estimate
of the topology, τ̂MPP, is the topology τi with the largest
posterior probability, π (τi |n) (not the majority-rule con-
sensus tree as given by, e.g., Huelsenbeck and Ronquist,
2001). To summarize, the estimate of the true phylogeny
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is, depending on the method of inference,

τ̂ =
{

τ̂ML = argmaxi {maxb,θ L(τi , b(τi ), θ|n)}
τ̂MPP = argmaxi {π (τi |n)} (1)

DIFFERENCES BETWEEN MAXIMUM LIKELIHOOD
AND MAXIMUM POSTERIOR PROBABILITY

Efron et al. (1996) stated that, ”The bootstrap prob-
ability that τ̂ ∗ = τ̂ is almost the same as the aposteri-
ori probability that τ = τ̂ starting from an uninformative
prior density on p”, where τ̂ ∗ is the estimate of the topol-
ogy for a bootstrap replicate. In Appendix 1 this statment
is proven. Note, however, that the parameter used is the
4s-dimensional vector p, where s is the number of taxa.
As explained earlier, the method of maximum posterior
probability does not use the p vector as a parameter. The
parameters used with this method are the topology τi ,
corresponding branch lengths b(τi ), and the parameters
of the model of evolution used, θ. The posterior proba-
bility for the topology is

π (τi |n) =
∫ · · · ∫ π

(
n|τi , b(τi ), θ

)
π

(
τi , b(τi ), θ

)
db(τi )dθ

π (n)
,

(2)
whereπ (τi , b(τi ), θ) is the prior for those parameters. Even
though flat priors for topology and branch lengths are
used, that is not equivalent to a flat prior for p, which
simply is not considered in current implementations of
Bayesian phylogenetic inference.

Denote the regions in the n-space where the method of
maximum likelihood gives estimates τ̂ = τi with Ri (see
Appendix 1). Denote the corresponding regions where
the method of maximum posterior probability gives es-
timates τ̂ = τi with R′

i . In Efron et al. (1996), a distance-
based method was used to obtain the regions Ri . When
stated that bootstrap support values could be interpreted
as posterior probabilities, those regions remained un-
changed. Hence, in their example, Ri � R′

i . When com-
paring the maximum likelihood method and the method
of maximum posterior probability, this means that it
must hold that τ̂ML should be equal to τ̂MPP for almost
all n vectors with

∑
ni = N.

To examine whether τ̂ML = τ̂MPP, a situation as simple
as possible but where more than one topology is possi-
ble has been used; i.e., a four-taxon case under the Jukes-
Cantor model (Jukes and Cantor, 1969). Many of the 256
possible columns contribute to the likelihood for τ and
b(τ ) in exactly the same way, so we say they have the same
“pattern.” For example, AACC contributes to the likeli-
hood in the same way as CCTT (under the Jukes-Cantor
model), whereas ACAC is another pattern contributing
differently. For the Jukes-Cantor model and four taxa,
there are 15 different patterns. The possible different pat-
terns of data at a site for four taxa are summarized in
Table 1. If a specific pattern on its own gives a unique es-
timate of the topology we say it is separately informative.

TABLE 1. With Jukes-Cantor model of evolution and with four taxa
there are 15 different patterns contributing to the likelihood in different
ways.

Pattern no. Pattern Description

1 XXYY Groups of two nucleotides equal
2 XYXY within the group but not equal
3 XYYX between groups.
4 XXXY One nucleotide differs from the
5 XXYX rest.
6 XYXX
7 YXXX
8 XXYZ One group with two equal
9 YZXX nucleotides, the other two differ

10 XYXZ from the group and from each
11 XYZX other.
12 YXXZ
13 YXZX
14 XYZU All nucleotides different.
15 XXXX All nucleotides equal.

Assume data for taxa {a, b, c, d} consists of one single
column of pattern 8, XXYZ. In Appendix 2 it is shown
analytically that for this pattern the maximized likeli-
hoods for τ1 = {(a, b), (c, d)}, τ2 = {(a, c), (b, d)}, and τ3 =
{(a, d), (b, c)} are indistinguishable.

Now consider the method of maximum posterior
probability for pattern XXYZ. The priors for topology
and branch lengths are considered independent; that is,

π
(
τi , b(τi )

) = π (τi )
5∏

j=1

π
(
b(τi )

j

)
.

Assume flat priors for topology, π (τi ) = 1/3, as well as
for branch lengths, π (b(τi )

j ) = 1/M, that is the prior for a
branch length is uniform on the interval [0, M] with ex-
pected value M/2. The priors will then only be scaling
factors and the main contribution to the posterior distri-
bution is the integral of the likelihood. Those integrals
can be calculated analytically:

I1 =
∫ M

0
· · ·

∫ M

0
L
(
τ1, b(τ1)|n)

db(τ1)

= [M5 + 2M3(1 − e−M)2 − 4M2(1 − e−M)3

− 3M(1 − e−M)4 + 4(1 − e−M)5]/44 (3)

I2 =
∫ M

0
· · ·

∫ M

0
L(τ2, b(τ2)|n)db(τ2)

= [M5 − 2M3(1 − e−M)2 + M(1 − e−M)4]/44. (4)

For M > 0 the difference between Equations (3) and
(4) is

[4M3(1 − e−M)2 − 4M2(1 − e−M)3 − 4M(1 − e−M)4

+ 4(1 − e−M)5]/44 = [(1 − e−M)2

× (M − (1 − e−M))2(M + (1 − e−M))]/43.

(5)
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All the factors of (5) are strictly positive, and hence the
difference is strictly positive and I1 > I2.

The posterior probability of τi , π (τi |n), is obtained from
(2). To calculate the denominator π (n) in (2) one has to in-
tegrate over the branch lengths b and the parameter(s) θ
for all possible topologies and sum those, a complicated
numerical task. However, if it is possible to calculate the
numerator in (2) for all possible topologies, the posterior
probability for τi can be obtained by dividing the nu-
merator in (2) for τi with the sum of the numerators for
all topologies. Then π (τi |n) can be calculated analytically
from (3) and (4) as

π (τi |n) = Ii

I1 + I2 + I3
,

where I3 = I2. Because I1 > I2, the posterior probability
for τ1 will be larger than for τ2 and τ3 and hence, using
flat priors, τ̂MPP = τ1 for pattern XXYZ. The posterior
probability will tend to 1/3 as M, the length of the in-
terval of the prior for branch lengths, increases. For any
finite M though, τ1 will be the unique estimate. Using an
exponential distribution with mean 1

λ
as prior for branch

lengths but still using uniform distribution as prior for
topology, the posterior probabilities can be written as
π (τi |n) = Ai/(A1 + A2 + A3) where

A1 = 1
λ5 + 2

λ3 y2 − 4
λ2 y3 − 3

λy4 + 4
y5 ,

A2 = A3 = 1
λ5 − 2

λ3 y2 + 1
λy4 ,

where y = (λ + 1). Pattern XXYZ is separately informa-
tive for the maximum posterior probability method with
those priors too, because A1 > A2 for all λ > 0.

Analogous to the analysis of pattern XXYZ it can be
shown that the two methods of inference differ for many
of the 15 patterns. For the maximum likelihood method
only patterns 1, 2, and 3 are separately informative. These
are separately informative for the maximum posterior
probability method also, but so are patterns 8 to 13 (see
Table 2).

Even though a site is separately uninformative, it con-
tributes to the likelihood function and therefore cannot
be ignored. The fundamental differences between the
two methods of inference, summarized in Table 2, have
impact on the regions Ri and R′

i , as the next example will
show.

TABLE 2. Separately informative patterns favoring topologies τ1 =
{(a, b), (c, d)}, τ2 = {(a, c), (b, d)} and τ3 = {(a, d), (b, c)} for the methods
of maximum likelihood and maximum posterior probability, respec-
tively. The enumeration of the patterns follows Table 1.

Estimate of topology

Method τ1 τ2 τ3

ML 1 2 3
MPP 1, 8, 9 2, 10, 13 3, 11, 12

FIGURE 1. Regions Ri , where τ̂ = τi for the maximum likelihood
method (a) and Bayesian inference (b) with n1 + n2 + n8 = 100. The
number of columns in data matrix that are equal to pattern 1 is on the
x-axis, number of pattern 2 on the y-axis, and for each dot in the triangle
bounded by the axes and n1 + n2 = 100 we have n8 = 100 − n1 − n2.

Example

Suppose N = 100 and data only consists of patterns
1, 2, and 8 (e.g., n1 = 45, n2 = 35, n8 = 20, ni = 0 for
i = 3, . . . , 7, 9, . . . , 15). For this data set τ̂ML = τ̂MPP = τ1.
From Table 2 we see that patterns 1 and 2 are separately
informative, favoring topologies τ1 and τ2, respectively,
for both methods of inference. Pattern 8 is, as we have
shown analytically, separately informative for the max-
imum posterior probability method, favoring topology
τ1, but not for the maximum likelihood method. Columns
of this pattern still contribute to the likelihood and are
therefore taken into account even in the maximum like-
lihood method. A consequence of this is the region R0
in Figure 1, where no unique estimate of topology can
be found. The regions in Figure 1 have been determined
by using PAUP*v4.0b10 (Swofford, 2002) for all possi-
ble n-vectors with ni = 0 for all i except n1 ≥ 0, n2 ≥ 0
and n8 ≥ 0 with

∑
ni = 100 for the maximum likelihood

method. For the Bayesian inference, R′
i was determined

by using MrBayes3.04 (Huelsenbeck and Ronquist, 2001)
with an exponential prior with intensity 10 (mean 1/10)
for branch lengths and uniform prior for topology. Fig-
ure 1 shows that Ri �= R′

i and the bootstrap support value
for τ̂ML is smaller (0.8715 when approximated by boot-
strap frequencies from PAUP*) than the posterior prob-
ability for τ̂MPP (which is approximated by MrBayes to
1.0).

With an original data set far away from the borders be-
tween different regions {Ri } and {R′

i }, respectively (e.g.,
n1 = 70, n2 = 10, and n8 = 20 in Figure 1), the bootstrap
support value and the posterior probabilities will both
be high, tending to 1, even though Ri �= R′

i . This is due
to the fact that the probability of a bootstrap replicate
ending up in a region other than Ri is then very small.

CONCLUDING REMARKS

We have shown that the often cited statement of Efron
et al. (1996) about approximate equivalence between
bootstrap support values and posterior probabilities is
true when the only parameter of interest is p and a nonin-
formative prior is used. This parameter is not considered
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in the current implementations of Bayesian inference of
phylogenies where the parameters topology, τ , branch
lengths b(τ ), and model parameters θ are considered, nor
in the maximum likelihood method.

For the four-taxon case with Jukes-Cantor model of
evolution, the 256 different possible data columns can
be reduced to 15 different patterns contributing to the
likelihood function in different ways. We have shown
analytically that some of those patterns are separately
informative for the method of maximum posterior prob-
ability but not for the method of maximum likelihood.

The differences between the methods remain when
more taxa are considered. In the five-taxon case,
{a, b, c, d, e}, there are 45 = 1024 different possible data
columns that can, under the Jukes-Cantor model, be re-
duced to 51 different data patterns. For example, for pat-
tern XXYYZ, seven topologies have the same maximized
likelihood, all of them obtained on a border where at least
one internal branch is of length 0; i.e., the tree collapse
(see Appendix 2 for an analogous case with four taxa).
Some of the topologies collapse to the same, not fully re-
solved, tree. For this specific pattern, four different col-
lapsed trees are obtained. The groups {a, b} and {c, d}
exist in three of them, respectively. The tree where the
group is absent does not contradict the group. Hence,
with the method of maximum likelihood, this pattern
is not informative for topology but is informative for
some groups. The method of maximum posterior prob-
ability, on the other hand, gives a unique estimate of
the topology, (a, b, (d, (e, f ))), and hence also of groups.
Numerically, by using PAUP*v40b10 and MrBayes3.04
we have found that none of the 51 patterns gives a
unique estimate of the topology with maximum likeli-
hood but 15 patterns give fully resolved trees with max-
imum posterior probability. This is also the case for the
187 different data patterns of the six-taxon case. The
posterior probabilities of groups are, for six taxa and
more, also strongly influenced by unequal priors for
groups that follow a flat prior for topologies (Pickett and
Randle, 2005), which may further explain the observed
disparities between bootstrap values and posterior
probabilities.

The fundamental differences between the methods of
maximum likelihood and maximum posterior probabil-
ities that we have demonstrated influence the regions of
the n space where the estimates equal a specific topology.
Those regions influence the bootstrap support values and
posterior probabilities differently, and they should there-
fore not be expected to be approximately equal. How
much of the observed differences between maximum
likelihood bootstrap values and posterior probabilities
that can be attributed to this factor is not clear but need
to be further studied.
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APPENDIX 1
In Efron et al. (1996), an example where the data x are a two-

dimensional normal vector with expectation vector µ = (µ1, µ2) and
with identity covariance matrix is used. It is noted that if µ a priori
could be anywhere in the plane with equal probability, the a posteri-
ori distribution of µ, given µ̂ = x, is also normally distributed with
expectation vector µ̂ and identity covariance matrix, exactly the same
as the bootstrap distribution of µ̂�, using parametric bootstrap. Refer-
ring to this example it is further stated that “The bootstrap probability
that τ̂ ∗ = τ̂ is almost the same as the aposteriori probability that τ = τ̂

starting from an uninformative prior density on p”, where τ̂ ∗ is the es-
timate of the topology for a bootstrap replicate and p is the vector of
proportions of the possible data patterns X1, X2, . . . , X4s , where s is the
number of taxa and, e.g., X′

1 = {A, A, . . . , A}, X′
2 = {C, C, . . . , C}, etc.

We will now show that the statement is true if a noninformative prior
is used for p under the assumption that the method of inference gives
the correct tree.

The data, x, is an s × N data matrix of aligned DNA sequences.
This data matrix is equivalent with drawing N columns from the true
phylogeny where each possible column X1, X2, . . . , Xk has probability
p1, p2, . . . , pk of being drawn, where k = 4s . The data matrix x can then
be represented by a vector n = (n1, . . . nk ) where

∑
ni = N and each

ni is the number of columns in x that equals Xi . The probability of
data or, equivalently, the probability of n, the likelihood, then follows
a multinomial distribution.

In the nonparametric bootstrap method used in phylogenetic infer-
ence (Felsenstein, 1985), a bootstrap sample of the same size as the
original data is obtained by drawing columns from the matrix x with
replacement. The bootstrap replicate n∗ = (n∗

1 , n∗
2 , . . . , n∗

k ) follows, re-
gardless of the method of inference used, a multinomial distribution
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with probability function f defined by

f (n∗
1 , n∗

2 , . . . n∗
k ) =

(
N

n∗
1 n∗

2 · · · n∗
k

)
p̂

n∗
1

1 p̂
n∗

2
2 · · · p̂n∗

k
k , (6)

where p̂i = ni /N, with means E(n∗
i ) = Np̂i = ni , variances V(n∗

i ) =
Np̂i (1 − p̂i ) = (ni (N − ni ))/N and covariances C(n∗

i , n∗
j ) = −Np̂i p̂ j =

−(ni nj )/N.
Now consider the Bayesian framework. The prior for p should,

according to Efron et al. (1996), be noninformative. This term is not
uniquely defined in the literature. For example, Berger (1980) says
“a non-informative prior, by which is meant a prior which contains no in-
formation about the parameter (or more crudely which favors no possible
values of the parameter over others).” Bernardo and Smith (1994) de-
scribe the idea of a non-informative prior as representing ignorance.
Jeffreys’ rule for multiparameter problems, described, e.g., in Box and
Tiao (1973), states that the prior distribution for a set of parameters is
approximately noninformative if “the prior distribution for a set of pa-
rameters is taken to be proportional to the square root of the determinant
of the information matrix,” which relies on invariance under parameter
transformation.

The three different “definitions” of non-informative priors for
p given above can all be represented by a symmetric Dirichlet
distribution

D(p|θ) = �(
∑

j θ j )∏
j �(θ j )

pθ1−1
1 pθ2−1

2 · · · pθk −1
k , (7)

where θ = (1, . . . 1) represents a flat (uniform) prior, θ = ( 1
2 , . . . 1

2 ) rep-
resents Jeffery’s prior, and letting θ → (0, . . . , 0), as in Efron (1982),
represents “prior ignorance.” Because the Dirichlet distribution is a
conjugate prior to the multinomial distribution, the posterior distribu-
tion of p is D(p|θ + n) with

means E(pi ) = ni + θ

N + θk
, (8)

variances V(pi ) = (ni + θ )(N − ni + θ (k − 1))
(N + θk)2(1 + N + θk)

, (9)

covariances C(pi , p j ) = − (ni + θ )(nj + θ )
(N + θk)2(1 + N + θk)

. (10)

From the means, variances, and covariances following (6) it is seen
that for the bootstrap replicate, where p̂∗

i = n∗
i /N,

E( p̂∗
i ) = E(n∗

i /N) = ni /N, (11)

V( p̂∗
i ) = V(n∗

i /N) = ni (N − ni )/N3, (12)

C( p̂∗
i , p̂∗

j ) = C(n∗
i /N, n∗

j /N) = −ni nj /N3. (13)

For very large N and k small, that is for a lot of data on only a few taxa,
(8) � (11), (9) � (12), and (10) � (13) for each of the priors suggested.
As we assume N to be large, the multivariate central limit theorem
makes the bootstrap distribution and the posterior distribution for p
approximately equal.

Recall that for the data, n,
∑

ni = N. Each possible n-vector satisfy-
ing

∑
ni = N, gives an estimate of the topology. The discrete n-space

is therefore divided into different regions Ri , with τ̂ = τi . There might
also be regions where the estimate is not unique. Denote these regions
with R0. The bootstrap support value α is the probability that the boot-
strap replicate n∗ ends up in the same region as n. That is, the probability
that the bootstrap replicate gives the same estimate of the topology as
the original data set. If the division of the n-space in regions Ri (giving
estimate τ̂ = τi ) would be known explicitly, then the bootstrap support

FIGURE 2. The continous p-space is k-dimensional where k = 4s

and s is the number of taxa. Here this is illustrated to the left in two di-
mensions with a hypothetical division of the p-space giving subspaces
R′

i , where τ = τi . To the right the corresponding p̂-space is illustrated
where each dot represents a possible p̂-vector. The regions Ri and R′

i
may differ as R′

i is the true division of the p space, whereas Ri is the
region where the estimate is equal to τi . In the region R0 there is no
unique estimate.

value α could be calculated exactly by (6) as

α =
∑

n∗∈Ri

f (n∗
1 , n∗

2 , . . . n∗
k ). (14)

Usually, the n-space is very complex and the division of it is there-
fore practically impossible to determine. The bootstrap support value
is then estimated by the fraction of bootstrap replicates giving the same
estimate of topology as the original data when drawing bootstrap repli-
cates many times (Fig. 2).

We have seen that theoretically the posterior distribution and the
bootstrap distribution are approximately equal. Let the continuous re-
gion where τ = τi be denoted R′

i . To get the posterior distribution of
τi , the posterior distribution of p is integrated over the region R′

i . If
Ri � R′

i and N is large, an integral can be approximated by a sum; i.e.,
∫

p∈R′
i

π (p|n)d p �
∑
n�∈Ri

f (n�|n) = α. (15)

Assuming that the method of inference gives the correct tree, (15)
makes the bootstrap support value and the Bayesian posterior proba-
bility for a given topology theoretically approximately equal.

APPENDIX 2
In this section we show that there is no unique estimate for topology

for the maximum likelihood method when data consists of one column
of pattern 8, XXYZ, and the Jukes-Cantor model of evolution is used.
The three possible topologies are then τ1, τ2, and τ3 (see Fig. 3) with
branch lengths t, b, and v, respectively.

Assume the Jukes-Cantor model of evolution, with α = 0.25. The
likelihood functions for τ2 and τ3 will be identical (for τ3 replace bi with
vi in the likelihood function for τ2). Denote the likelihood function for
τ1 with L1 and for τ2 (and τ3) with L2.

L1(t) = 1
44

[1 + 3e−(t1+t2) − e−(t1+t3+t5) − e−(t1+t4+t5)

− 3e−(t1+t2+t3+t4) − 2e−(t1+t2+t3+t5) + 2e−(t1+t3+t4+t5)

− 2e−(t1+t2+t4+t5) − e−(t3+t4) − e−(t2+t3+t5)

− e−(t2+t4+t5) + 2e−(t2+t3+t4+t5) + 4e−(t1+t2+t3+t4+t5)].

We want, in the semiclosed five-dimensional continuous space
bounded by 0 ≤ t1, 0 ≤ t2, . . . , 0 ≤ t5, to find a point t such that L1(t)
is maximized. If we would have a closed five-dimensional space,
such that 0 ≤ ti ≤ M, i = 1, . . . , 5 for some positive M, there would
be four possibilities for a maximum point t (shown in Fig. 4 for a three-
dimensional case):

1. t is in the interior of the closed space,
2. t is in a boundary region of the space,
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FIGURE 3. The possible topologies τ1, τ2, and τ3 with branches t, b, and v, respectively, when data consist of one site: {XXYZ}.

3. t is on a border between the different boundary regions,
4. t is in a corner of the closed space.

To find the maximum value of L1 in a closed space, find, to begin
with, possible extreme points in the interior of the closed space (case 1).
There is no need to further investigate the kind of possible extreme
points but evaluate L1 in those points. Then investigate the boundary
regions (case 2) and evaluate L1 in the possible extreme points of these
regions. Continue in the same way with case 3 and finally evaluate L1

in the corners of the closed space (case 4). The maximum value of L1

in the closed continuous space is the maximum value of the evaluated
points.

If, in the five-dimensional closed space, t is an interior point, the tree
will be fully resolved. If t is a boundary point with some ti = 0, the tree
will collapse.

If there exists an interior t that is extreme, i.e., maximizes or
minimizes L1 or is a so-called saddlepoint, the gradient ∇L1 =
(L ′

1t1
, . . . , L ′

1t5
) = (0, . . . , 0). From L ′

1t1
− L ′

1t2
= 0 and L ′

1t3
− L ′

1t4
= 0 it

is found that t1 = t2 and t3 = t4. From L ′
1t1

− L ′
1t5

= 0, and by using t1 =
t2 and t3 = t4, it also follows that e−t5 = (−3e−t1 (1 + e−t3 ))/(2e−t3 ) < 0,
which is impossible because 0 < e−t5 < 1 in the interior of the compact
space. Therefore, τ1 has no interior extreme point (case 1).

Continue with cases 2 and 3. In the closed five-dimensional space
the boundary regions to be investigated are obtained by letting combi-
nations of variables be fixed, 0 or M. At least one variable must not be
fixed as otherwise a corner is investigated (case 4). When a variable is
fixed to 0, or M, the likelihood function looks slightly different and an
extreme point is searched for in the usual way. In the five-dimensional
space there are 210 boundary regions and borders to be investigated. By
investigating all of them it is found that only three of the regions have
a possible interior extreme point, no matter how large M is. Evaluating
L1 at those possible extreme points gives L1 ≤ 4−4 for all three of them.

The last possibility for a maximum point is at the corners of the
closed space (case 4); i.e., where ti is equal to 0 or M. For 14 of the 32

FIGURE 4. The possible locations of a maximum point {x, y, z} in
a closed three-dimensional space: 1 an interior point, 2 a point on a
boundary region, 3 a point on the border between different boundary
regions, and 4 a corner, where each variable is either 0 or M.

possible corners, L1 = 0, for the others, L1 < 4−3. As long as we consider
finite M, the maximum point for τ1 is in the corner (0, 0, M, M, M) for
which L1 = [1 − 3e−2M + 2e−3M]/43. As M increases, the value of L1 in
that corner tends to 4−3, but there are other corners with the same limit
value. Hence the maximum value of the likelihood will not be a unique
point in the space of branch lengths. The fact that this can happen was
pointed out by Steel (1994).

Now, consider topologies τ2 (and τ3). The likelihood L2 is

L2(b) = 1
44

[1 − e−(b3+b4) + 3e−(b1+b3+b5) − e−(b1+b4+b5)

− 2e−(b1+b3+b4+b5) − e−(b2+b3+b5) − e−(b2+b4+b5)

− e−(b1+b2) − 2e−(b1+b2+b3+b5) + e−(b1+b2+b3+b4)

+ 2e−(b1+b2+b4+b5) + 2e−(b2+b3+b4+b5)].

Analyzing L2 in the same way as L1 gives a unique maximum at
the corner b = (0, M, 0, M, 0), where L2 = (1 − 2e−M + e−2M)/43, giving
max L2(b) = 4−3 as M → ∞, which is the same as the maximum value
of L1. Hence, pattern XXYZ is not separately informative for the max-
imum likelihood method.

In Figure 5 the maximized likelihoods for τ1 and τ2 are shown as a
function of M. As can be seen, the maximized likelihoods are indistin-
guishable for large but finite M.

FIGURE 5. The maximized likelihood for topology τ1 and τ2 (which
has the same likelihood function as τ3) for pattern XXYZ. The likeli-
hood for τ1 is maximized for branch lengths (0, 0, M, M, M) whereas
the likelihood for τ2 is maximized for branch lengths (0, M, 0, M, 0).


