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Abstract

We model a sexually transmitted infection in a network population where individuals have different numbers of partners, separated

into steady and casual partnerships, where the risk of transmission is higher in steady partnerships. An individual’s number of partners of

the two types defines its degree, and the degrees in the community specify the degree distribution. For this structured network population

a simple model for disease transmission is defined and the basic reproduction number R0 is derived, R0 being a size-biased (i.e. biasing

individuals with many partners) average number of new infections caused by individuals during the early stages of the epidemic. First a

homosexual population is considered and then a heterosexual population. The heterosexual model is fitted to data from a census survey

on sexual activity from the Swedish island of Gotland. The main empirical finding is that, for relevant transmission rates, the effect that

so-called superspreaders have on R0 is over-estimated when not admitting for different types of partnerships.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper we investigate, by means of
mathematical modelling, the potential spread of a sexually
transmitted infection (STI) in a community of interest, with
particular focus on heterogeneities in terms of number of
sex partners and sexual activity within partnerships.

Similar questions have been addressed elsewhere in the
literature using various approaches. A complete survey is
beyond the scope of the present paper, but here are some
examples. Inspired by Hethcote and Yorke (1984), May
and Anderson (1987) acknowledge variations in sexual
activity by dividing the community into subgroups, where
the subgroup an individual belongs to is defined by the
average number of new sex partners per unit of time s/he
has. By approximating the initial stages of the outbreak by
a set of differential equations they derive an expression for

the basic reproduction number, an expression containing
the variance of the number of new sex partners. In
Diekmann et al. (1991) the forming and separation of
partnerships is modelled dynamically in time—partner-
ships break up and new partnerships are formed with
specified intensities. This leads to a Markov-type model
and the number of partners during the infectious period
will typically follow the Poisson distribution (or a sum of
Poisson variables when there is more than one disease
state). The initial phase of the disease outbreak is
approximated by a suitable branching process assuming a
large population and an expression for the basic reproduc-
tion number R0 is obtained. A similar model, but where
variation in sexual activity within partnerships is acknowl-
edged by distinguishing between ‘‘steady’’ and ‘‘casual’’
partnerships, is analysed by Kretzschmar et al. (1994) and
R0 is derived. A somewhat different approach is taken by
Diekmann et al. (1998) where each individual has k fixed
‘‘acquaintances’’ chosen uniformly within the community,
and contacts between each pair of acquaintances occur
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independently and randomly in time. For such a model
they derive expressions for R0 but also the final size of the
epidemic in case a major outbreak occurs. Eames and
Keeling (2004) study a model in which each individual has
at most one active partnership among a set of fixed
potential partnerships but these active partnerships may
change over time. The number of sexual partners over a
given period can thus be fitted to empirical data. The
spread of the disease in the dynamic network of active
partnerships is approximated by differential equations
relying on a large population and the moment closure
method. Newman (2002) studies a general model for
infectious diseases where the focus is in modelling social
relationships by means of static network models (an
approach used also in the present paper). A model for a
heterosexually transmitted disease is also presented and
briefly analysed. Nordvik and Liljeros (2006) look at an
STI-model where the transmission probability depends on
the number of sex acts, fits the model to the data
reanalysed in the present paper, and derives an expression
for the expected number of new infections caused by a
randomly selected individual in the community.

In the present paper we study a model which takes into
account both individual variation of number of sex
partners and variation in sexual activity between partner-
ships. Empirical evidence shows that the distribution of the
number of sexual partners, the degree distribution, is
usually heavy-tailed (Colgate et al., 1989; Liljeros et al.,
2001). For this reason our model allows an arbitrary degree
distribution. Further, in the model we incorporate two
types of partnerships, ‘‘steady’’ and ‘‘casual’’ (cf. Kretzsch-
mar et al., 1994), having distinct transmission probabilities.
This distinction refers to the number of sex acts over a
period corresponding to the length of the infectious period.
We distinguish between steady and casual (or high and low
transmission risk) partnerships for two reasons. First, the
number of sex acts affects the probability of disease
transmission in such a way that the more sex acts the
higher over-all probability of disease transmission (e.g.
Rottingen and Garnett, 2002). Secondly, individuals
having many sex partners tend to have fewer sex acts per
partner compared to individuals with one or few partners
(e.g. Giesecke et al., 1992; Blower and Boe, 1993; Nordvik
and Liljeros, 2006).

Assuming a large population we approximate the initial
phase of the epidemic by a suitable multitype branching
process and derive an expression for the basic reproduction
number R0 which determines whether a major outbreak is
possible or not. We then neglect the fact that there are
steady and casual partnerships, simply treating all partner-
ships identically, and derive R0 under this assumption. By
calibrating parameters in the two models we can compare
R0 under the different assumptions. These questions are
first addressed for a homosexual community (Section 2)
and thereafter for a heterosexual community in which the
degree distributions as well as transmission probabilities
may differ between sexes (Section 3).

We model the sexual partnerships in the community by a
static random network. It would of course be more realistic
to allow new partnerships to be formed and old to break
up, as is done in some of the papers cited above. However,
if in reality new partnerships are formed and old break up
in a time-stationary way, then the fixed set of partners of a
given individual in the present model can be interpreted as
the partners of that individual during a time period
corresponding to the typical length of the infectious period
in a dynamic network model. With this interpretation the
present model can approximate a time-dynamic network
model.
In Section 4 the heterosexual model is applied to data on

sexual activity collected in the island of Gotland, Sweden
(Giesecke et al., 1992, recently reanalysed in Nordvik and
Liljeros, 2006). The data are from a representative
community sample and contain the number of sex partners
of the individuals and also information about the sexual
activity in each partnership. R0 is then computed numeri-
cally in terms of transmission parameters for two distinc-
tions between steady and casual partnerships, as well as for
the case when not distinguishing between partnerships. A
comparison is made between the three partnership defini-
tions. The comparison is ‘‘fair’’ because the transmission
probabilities of the different partnership definitions are
calibrated by computing them as means, within the
specified partnership, of a simple per-sex-act transmission
model. The main empirical finding from the analysis is
that, for relevant transmission probabilities, R0 is higher
(and hence over-estimated) when neglecting differences in
partnerships as compared to the case when partnerships are
separated into steady and casual. The paper is concluded
with a discussion on limitations of the present work and
important future problems.

2. An STI model for a homosexual population

Consider a homosexual community of size n where we
assume n to be large.

2.1. Distinguishing between steady and casual partnerships

Assume that there are two types of partnerships, steady
and casual partnerships, and that the probability of
transmission between an infectious and a susceptible
individual in a steady partnership is pS and pC in a casual
partnership (pSXpC). (This model can also be used for
non-STI diseases. The important feature is that there is a
social network structure having two types of relationships
with different transmission probabilities.)
Different individuals have different number of steady

and casual partners. Let pi;j denote the proportion of
individuals having i steady and j casual partners (during a
time period corresponding to the typical length of the
infectious period), and categorise an individual as an ði; jÞ-
type accordingly. Assume further that steady (casual)
partners are chosen randomly among the steady (casual)

ARTICLE IN PRESS
T. Britton et al. / Theoretical Population Biology 72 (2007) 389–399390



Author's personal copy

partnerships available in the community. This implies that
the probability that a steady partnership is with an ði; jÞ-
individual (i.e. having i steady and j casual partners) is

~pi;j;S ¼
ipi;jP

k;l kpk;l
.

Similarly, a casual partner is an ði; jÞ-individual with
probability

~pi;j;C ¼
jpi;jP
k;l lpk;l

.

These probabilities are said to be size-biased reflecting the
fact that individuals with many steady (casual) partners are
more likely to be selected as a steady (casual) partner.

The transmission of infection is modelled by simply
assuming that an infectious individual infects his/her
susceptible partners independently, and with probability
pS for steady partners and pC for casual partners. An
individual can only become infected (and infectious) once,
after which s/he recovers and becomes immune.

For most stochastic epidemic models the early stages of
the epidemic outbreak can be approximated by a suitable
multitype branching process, and the approximation
becomes better the larger n is (e.g. Andersson and Britton,
2000). This should be true also in the present model,
although a formal proof requires a more detailed descrip-
tion/construction of the random sexual network (cf.
Britton et al., 2006) and extensive model analysis (cf.
Bollobás et al., 2007).

A multitype branching process (e.g. Jagers, 1975) studies
the number of individuals of different types as time evolves,
and the crucial assumption for branching processes is that
individuals ‘‘give birth’’ (i.e. infects in our application)
independently of each other—and the distribution of the
number of individuals of different types an individual
infects is type-specific.

During the early stages of an outbreak in the present
model, all partners of a newly infected individual, except
the partner by whom the individual was infected by, will be
susceptible with large probability, and the chance that two
individuals will contact the same individual is negligible.
Individuals therefore infect approximately independently,
justifying the branching process approximation.

The number of individuals an infectious will infect
depends not only on the number of steady and casual
partners s/he has, but also on whom s/he was infected by.
For this reason, the types in the approximating branching
process are specified not only by the number of partners the
individual has but also by whom the individual was
infected by. Consequently, we say that an individual is of
type ði; j;SÞ if s/he has i steady partners, j casual partners
and if s/he was infected by a steady partner (of course iX1
for this to make sense). Similarly, an individual is of type
ði; j;CÞ if s/he has the same partner structure but was
infected by a casual partner.

In branching process theory the mean offspring matrix
plays an important role. To this end, let lði;j;SÞðk;l;SÞ denote

the expected number of ðk; lÞ-individuals an infectious ði; jÞ-
individual, who him-/herself was infected by a steady
partner, infects through its steady partnerships. Let
lði;j;SÞðk;l;CÞ be the same, but here the transmission is
through a casual partner. The corresponding lði;j;CÞðk;l;SÞ
and lði;j;CÞðk;l;CÞ are when the infectious ði; jÞ-individual was
him-/herself infected by casual partner. These quantities
can be derived from the model and shown to equal:

lði;j;SÞðk;l;SÞ ¼ ði � 1Þ ~pk;l;SpS,

lði;j;SÞðk;l;CÞ ¼ j ~pk;l;CpC ,

lði;j;CÞðk;l;SÞ ¼ i ~pk;l;SpS,

lði;j;CÞðk;l;CÞ ¼ ðj � 1Þ ~pk;l;CpC .

For example, in the expression for lði;j;SÞðk;l;SÞ the ði; j;SÞ-
individual has i steady partners, but s/he was infected by
one of them, so there are i � 1 remaining susceptible steady
partners, and each of them is with a ðk; lÞ-individual with
probability ~pk;l;S, and any such partnership results in
infection with probability pS. The matrix L having these l’s
as elements for the different ði; j;X Þðk; l;Y Þ combinations
present in the community, the first triplet specifying the
row and the second the column, defines the mean offspring
matrix. The largest eigenvalue r of L is an important
parameter. In particular, depending on whether r is smaller
than, equal to, or larger than 1, specifies whether the
branching process is sub-critical, critical or super-critical,
and only super-critical branching processes have positive
probability to grow beyond all limits.
When applied to epidemic modelling the notation r is

often replaced by R0 (or R) and denoted the basic
reproduction number. In epidemic terminology we have
the result that a major outbreak (infecting a positive
fraction) can occur if and only if R041, where R0 is, as
previously mentioned, the largest eigenvalue to the matrix
L having elements lði;j;X Þðk;l;Y Þ specified above.
For the general case it is hard to say any qualitative

results concerning R0 as a function of model parameters.
However, if the community structure, i.e. degree distribu-
tions, is kept fixed and pS and pC are varied such that
pS=pC ¼ a is kept fixed, then R0 increases linearly with pS

and pC ¼ pS=a since all components of L then are linear pS.

2.2. No distinction between steady and casual partnerships

If we neglect that there are different types of partnerships
having different transmission probabilities, then the
corresponding eigenvalue is easier to compute as we now
illustrate. To this end, let p denote the probability of
transmission in a partnership where one partner is
infectious and the other susceptible, and let fpkg denote
the population distribution of number of partners (within
the time horizon corresponding to the length of an
infectious period). Further, let K denote a random variable
having distribution fpkg (i.e. the number of partners of a
randomly selected individual), and let ~K denote a random
variable with distribution f ~pkg, where ~pk ¼ kpk=

P
iipi (the
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size-biased distribution reflecting that individuals with
many partners are more likely to be selected). It is worth
pointing out that this model does not coincide with the
special case of the previous model having pS ¼ pC ¼ p. The
reason for this is that even when the transmission
probabilities are identical partners are selected differently
in the two models.

This model has been studied previously (Andersson,
1999) where it was shown that the basic reproduction
number equals

R0 ¼ pEð ~K � 1Þ ¼ p EðKÞ þ
V ðKÞ � EðKÞ

EðKÞ

� �

¼ p
EðK2Þ

EðKÞ
� 1

� �
, ð1Þ

where Eð�Þ and V ð�Þ denote expected value and variance,
respectively. When each individual has exactly k acquain-
tances (so K � k) we have R0 ¼ pðk � 1Þ which agrees with
Diekmann et al. (1998) treating this particular model. In
Eq. (1) it is seen that for fixed average number of partners
EðKÞ and fixed transmission probability p, R0 increases
with the variance of the number of partners V ðKÞ, and if
the variance is infinite, so is R0 (Pastor-Satorras and
Vespignani, 2002). In a finite community the variance can
of course not be infinite but empirical evidence show that
the number of partners (the degree distribution) is heavy
tailed (Colgate et al., 1989; Liljeros et al., 2001). The fact
that R0 increases with the variance of the number of
partners in a dynamic partnership model was already
discovered by May and Anderson (1987).

In order to compare this new R0 (neglecting differences
in partnerships) with the previous where we acknowledge
steady and casual partnerships, the partnership distribu-
tions fpijg vs. fpkg, as well as the transmission parameters
pL and pS vs. p must be calibrated. Clearly, the calibration
of partnership distributions should be pk ¼

P
i pi;k�i, so the

number of partners equals the number of casual plus the
number of steady partners. The most natural calibration
for the transmission parameters is to assume that the new p

is a weighted average of pL and pS, where the relative
weights correspond to the population proportions of the
two contacts, i.e. to let p satisfy

p ¼
pS

P
i;j ipi;j þ pC

P
i;j jpi;jP

i;jði þ jÞpi;j
.

This choice of fpkg and p makes the two models as similar
as possible thus justifying a comparison of R0. It seems
hard to make any general conclusions when comparing R0

for the two calibrated models. We have found simple
examples for which the model acknowledging steady and
casual partnerships gives a larger R0 (half of the commu-
nity has 3 steady and 3 casual partners and the other half
has 1 steady and 1 casual partners) and simple examples
going in the opposite direction (half of the community has
1 steady and 3 casual partners and the other half has 3
steady and 1 casual partner).

3. An STI model for a heterosexual population

Consider now a population consisting of males and females
and assume that all sexual contacts are heterosexual.

3.1. Distinguishing between steady and casual partnerships

We still assume that there are two types of partnerships,
steady and casual, but the probability of transmission also
depends on who is infectious and who is susceptible: p

ðmf Þ
S is

the probability of transmission in a steady partnership in
which the male is infectious and the female is susceptible,
and similarly for p

ðfmÞ
S , p

ðmf Þ
C and p

ðfmÞ
C . Further, let pðmÞij

denote the community proportion of males having i steady
and j casual partners (during a period of equal length as a
typical infectious period), and let pðf Þi;j denote the corre-
sponding proportion for females. In order to the total
number of steady and casual partnerships of males and
females to be identical (assuming there are equally many
males and females) these proportions should satisfyX

i;j

ipðmÞi;j ¼
X

i;j

ipðf Þi;j and
X

i;j

jpðmÞi;j ¼
X

i;j

jpðf Þi;j .

Similar to before, a female has an ði; jÞ-male as a steady
partner with probability ~pðmÞi;j;S, the corresponding prob-
ability for a casual partner equals ~pðmÞi;j;C , and males have
corresponding partnerships with specified female types
with probabilities ~pðf Þi;j;S and ~pðf Þi;j;C , respectively, where

~pðmÞi;j;S ¼
ipðmÞi;jP
k;l kpðmÞk;l

; ~pðmÞi;j;C ¼
jpðmÞi;jP
k;l lpðmÞk;l

,

~pðf Þi;j;S ¼
ipðf Þi;jP
k;lkp

ðf Þ
k;l

; ~pðf Þi;j;C ¼
jpðf Þi;jP
k;l lp

ðf Þ
k;l

.

Consider an infectious ði; jÞ-female who was infected
through a steady partnership. Let lðf Þ

ði;j;SÞðk;l;SÞ denote the
expected number of males, having ðk; lÞ-partners that she
infects through a steady partnership. Similarly, lðmÞ

ði;j;SÞðk;l;SÞ is
the corresponding expected number, but for a male
infecting females. The suffix hence indicates the sex of the
infector, the first three indices show how many partners
this type has and through which type of partnership s/he
was infected, and the last three indices specifies the type to
be infected: his/her number of partners and through which
type of partnership s/he gets infected. It follows that

lðf Þ
ði;j;SÞðk;l;SÞ ¼ ði � 1Þ ~pðmÞk;l;Sp

ðfmÞ
S ,

lðf Þ
ði;j;SÞðk;l;CÞ ¼ j ~pðmÞk;l;Cp

ðfmÞ
C ,

lðf Þ
ði;j;CÞðk;l;SÞ ¼ i ~pðmÞk;l;Sp

ðfmÞ
S ,

lðf Þ
ði;j;CÞðk;l;CÞ ¼ ðj � 1Þ ~pðmÞk;l;Cp

ðfmÞ
C ,

lðmÞ
ði;j;SÞðk;l;SÞ ¼ ði � 1Þ ~pðf Þk;l;Sp

ðmf Þ
S ,

lðmÞ
ði;j;SÞðk;l;CÞ ¼ j ~pðf Þk;l;Cp

ðmf Þ
C ,
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lðmÞ
ði;j;CÞðk;l;SÞ ¼ i ~pðf Þk;l;Sp

ðmf Þ
S ,

lðmÞ
ði;j;CÞðk;l;CÞ ¼ ðj � 1Þ ~pðf Þk;l;Cp

ðmf Þ
C .

In the branching process approximation of the epidemic
starting with, say, a man, the next generation will consist of
females, the generation thereafter of males, etc. This
implies that the offspring distribution between generations
typically differ every other generation. We therefore look
at the offspring distribution two generations later. Suppose
we start with a male of type ði; j;SÞ, which hence had i

steady and j casual partners and was infected by a steady
partner. Let lð2mÞ

ði;j;SÞ;ðk;l;SÞ denote the expected number of
infected males of type ðk; l;SÞ infected two generations later
that are caused by our ði; j;SÞ-male. Then, by conditioning
and summing over possible female routes, lð2mÞ

ði;j;SÞ;ðk;l;SÞ
satisfies

lð2mÞ
ði;j;SÞ;ðk;l;SÞ ¼

X
r;s

ðlðmÞ
ði;j;SÞðr;s;SÞl

ðf Þ
ðr;s;SÞðk;l;SÞ

þ lðmÞ
ði;j;SÞðr;s;CÞl

ðf Þ
ðr;s;CÞðk;l;SÞÞ,

and similarly

lð2mÞ
ði;j;SÞ;ðk;l;CÞ ¼

X
r;s

ðlðmÞ
ði;j;SÞðr;s;SÞl

ðf Þ
ðr;s;SÞðk;l;CÞ

þ lðmÞ
ði;j;SÞðr;s;CÞl

ðf Þ
ðr;s;CÞðk;l;CÞÞ,

lð2mÞ
ði;j;CÞ;ðk;l;SÞ ¼

X
r;s

ðlðmÞ
ði;j;CÞðr;s;SÞl

ðf Þ
ðr;s;SÞðk;l;SÞ

þ lðmÞ
ði;j;CÞðr;s;CÞl

ðf Þ
ðr;s;CÞðk;l;SÞÞ,

lð2mÞ
ði;j;CÞ;ðk;l;CÞ ¼

X
r;s

ðlðmÞ
ði;j;CÞðr;s;SÞl

ðf Þ
ðr;s;SÞðk;l;CÞ

þ lðmÞ
ði;j;CÞðr;s;CÞl

ðf Þ
ðr;s;CÞðk;l;CÞÞ.

If the ði; j;X Þ-indices are ordered in some way and we let
Lð2mÞ denote the matrix containing the elements above,
ordered accordingly, then Lð2mÞ describes the mean off-
spring matrix after two generations, starting with an
infectious male. The largest eigenvalue to this matrix
specifies the growth rate after two generations, and
depending on whether it is larger or smaller than 1,
determines if a major outbreak is possible or not. If we take
the square root we get the more natural one-generation
correspondence.

The basic reproduction number R0 is hence the square
root to the largest eigenvalue of Lð2mÞ having elements
defined above. If we did the same reasoning above, only
starting with an infectious female, and derived the square

root to the largest eigenvalue to that matrix, we would get
the same value, so one can choose either one. As for the
case of a homosexual community it is hard to state any

general conclusions about R0 for the heterosexual commu-
nity model. In Section 4 the partnership network is fitted to
real data and R0 is calculated for some choices of
transmission parameters.

3.2. No distinction between steady and casual partnerships

If we neglect that there are different types of partnerships
having different transmission probabilities, then the
corresponding eigenvalue is easier to compute.
To this end, let pðmf Þ denote the probability of transmis-

sion in a partnership where the male is infectious and the
female is susceptible, and pðfmÞ is the opposite transmission
probability. Further, let pðmÞk denote the proportion males
having k partners (during a time period of length as a
typical infectious period), and let pðf Þk be the corresponding
for females. Similar to before, the probability that a female
has contact with a male having k partners, equals

~pðmÞk ¼
kpðmÞkP

j jpðmÞj

and

~pðf Þk ¼
kpðf ÞkP

j jpðf Þj

is the probability that a male contact is with a female
having k partners. Let ~K ðf Þ and ~K ðmÞ, respectively, denote
random variables having these distributions. Similar to the
homosexual model, the present model does not coincide
with the special case of the model in Section 3.1 having
p
ðfmÞ
S ¼ p

ðfmÞ
C ¼ pðfmÞ and p

ðmf Þ
S ¼ p

ðmf Þ
C ¼ pðmf Þ due to the

difference in partnership selection between the two models.
As before, the early stages of the epidemic, assuming a

large community, is approximated by a multitype branch-
ing process. Using similar arguments as in (1) it can be
shown that the expected number of males a typical female
infects during the early stages of an outbreak equals

pðfmÞEð ~K ðf Þ � 1Þ ¼ pðfmÞ EðK ðf ÞÞ þ
V ðK ðf ÞÞ � EðK ðf ÞÞ

EðK ðf ÞÞ

� �
.

Similarly, a typical male on average infects

pðmf ÞEð ~K ðmÞ � 1Þ ¼ pðmf Þ EðK ðmÞÞ þ
V ðK ðmÞÞ � EðK ðmÞÞ

EðK ðmÞÞ

� �

females. This implies that the average increase typically
varies between odd and even generations. It is therefore
natural to define the basic reproduction number as the
square root of their product:

In order to be able to compare this R0 (neglecting
different transmission probabilities for steady and casual
partnerships) with the one obtained admitting such
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pðfmÞ EðK ðf ÞÞ þ

V ðK ðf ÞÞ � EðK ðf ÞÞ

EðK ðf ÞÞ

� �
pðmf Þ EðK ðmÞÞ þ

V ðK ðmÞÞ � EðK ðmÞÞ

EðK ðmÞÞ

� �s
.
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differences, the transmission parameters as well as popula-
tion frequencies of number of partners have to be
calibrated. For the number of partners the natural
calibration is clearly

pðf Þk ¼
Xk

i¼0

pðf Þi;k�i and pðmÞk ¼
Xk

i¼0

pðmÞi;k�i.

For the comparison to be fair the transmission parameters
should be a weighted average of the steady and casual
transmission probabilities, where the weights take into
account how frequent the different types of partnerships
are. More precisely, they should satisfy

pðmf Þ ¼
p
ðmf Þ
S

P
i;j ipðf Þi;j þ p

ðmf Þ
C

P
i;j jpðf Þi;jP

i;jði þ jÞpðf Þi;j

,

pðfmÞ ¼
p
ðfmÞ
S

P
i;j ipðmÞi;j þ p

ðfmÞ
C

P
i;j jpðmÞi;jP

i;jði þ jÞpðmÞi;j

.

With these definitions, the model ignoring different
transmission probabilities for steady and casual partner-
ships can both underestimate and overestimate R0. In the
next section the two models are fitted to data and
computed.

4. Application to a study on sexual partnerships on the island

of Gotland, Sweden

The calculations in this study are based on data from a
study on sexual behaviour which was conducted in 1988 on
Gotland, a Swedish island in the Baltic Sea (Giesecke et al.,
1992).

4.1. The data

A random sample of 10% of the individuals aged 16–31
was drawn, and the response rate was 68% (775
individuals, 426 women and 349 men). It was concluded
that the material was free from systematic biases (Giesecke
et al., 1992).

The respondents were asked for the number of sex
partners during the last year and for each such partner, the
number of sex acts they had with him/her during the last
year (and also when and for how long the partnership
continued), thus making the study quite unique in detail.
Individuals reporting no sexual activity (22% of the women
and 31% of the men) will not contribute to the spread and
are left out in what follows. All remaining individuals were
used as the data to be analysed. In this data 332ð¼ 58%Þ
were women and 241ð¼ 42%Þ men. In Fig. 1 the
distribution of the number of partners during the last year
are shown for men and women, respectively.

The mean number of sexual partners reported were 1.5
for women and 1.7 for men. In Fig. 2 the average total

number of sex acts during a year is shown, where we have
distinguished between men and women, and also according
to how many partners the individual had during the year.

It is seen that the average total number of sex acts
decreases with the number of partners for women, and at
least not increases for men. This clearly implies that the
average number of sex acts per partner decreases with the
number of partners (as also observed in Blower and Boe,
1993). As a consequence, individuals having many sex
partners can potentially spread the disease to more
individuals, but on the other hand, the chance of spreading
the disease to a specific partner is lower because of fewer
sex acts.

4.2. Estimation of R0 from the Gotland data

The data presented in the previous section contain no
information about any specific STI. Instead we use the data
to fit the heterosexual network described in Section 3.1,
where the degree of an individual corresponds to the
number of sex partners s/he has during one year. As we
have no specific STI in mind we use this length for the
infectious period. But, if a specific disease was in mind with
e.g. shorter infectious period, then the degrees of indivi-
duals should reflect the number of partners (and sex acts)
for such a period hence resulting in a network having fewer
partnerships. Given the resulting network, we estimate R0

for the community in case an STI, with specific transmis-
sion parameters, enters the community.
The ‘‘true’’ probability that an infectious individual

infects a susceptible individual in a sexual relationship
depends on: the gender of the infector and of the
susceptible, the number of sex acts during the infectious
period, the infectivity of the disease, the type of sexual
activity, individual heterogeneities in terms of susceptibility
and infectivity, and other things. To obtain detailed
information about all this is, however, hard. In the present
data material we have information about the (approx-
imate) number of sex acts in each partnership. We can thus
define an infection probability which, beside depending on
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the gender of the infectious individual, varies with the
number of sex acts. A natural model is to assume that each
sex act, independently and with equal probability, results in
transmission to the susceptible individual (see Rottingen
and Garnett, 2002, for a further discussion on related
models). The probability that a female susceptible escapes
infection from an infectious male partner after k sex acts,
and with per sex act infection probability pmf , then equals

ð1� pmf Þ
k,

and the probability that she becomes infected is
1� ð1� pmf Þ

k. Similarly, the probability that an infectious
female infects her susceptible male partner after k sex acts
equals 1� ð1� pfmÞ

k, where pfm is the per-sex-act prob-
ability that a female transmits the disease to her male
susceptible partner. In the analysis below where R0 is
estimated, we will treat these per-sex-act transmission
probabilities as the parameters being varied keeping
everything else fixed. We treat two specific scenarios: pfm ¼

pmf and pfm ¼ 0:5pmf .
In the model in Section 3 we did not allow the

transmission probability in a partnership to explicitly
depend on the number of sex acts. The reason why not is
that such a model would make the number of different
types of partnerships enormous and the number of
individuals in each type of partnership very small, thus
introducing over-parametrisation. Instead we only consider
two different types of partnership, steady and casual, where
steady and casual refer to the number of sex acts rather
than duration of the partnership, the number of sex acts
being more relevant for disease transmission. (One could of
course distinguish between 3 and 4 types of partnership,
but even then the level of complexity for deriving R0

increases drastically, and the gain in precision is probably
minor.) Using our more detailed data we can distinguish
between steady and casual partnerships in many ways. In
our analysis we have performed two such separations. The
first is where a casual partnership is defined by a single sex
act and everything more than one sex act is considered a

steady partnership. With this definition p
ðmf Þ
C ¼ 1� ð1�

pmf Þ
1
¼ pmf (and similarly p

ðfmÞ
C ¼ pfm) since a casual

partnership always has one single sex act. In order to
obtain expressions for p

ðmf Þ
S as a function of pmf we have,

for each partnership in which a male has more than one sex
act, computed 1� ð1� pmf Þ

#sex acts. The transmission
probability p

ðmf Þ
S is then set to equal the arithmetic mean

of these quantities (the geometric mean could have been
used instead but the difference was minor). The parameter
p
ðfmÞ
S is computed similarly, only replacing pmf by pfm and

considering averages over females in different partnerships.
We have also treated a different separation in which

anything less than 10 sex acts is considered a casual
partnership and 10 or more sex acts is defined as a steady
partnership. In Fig. 3 we show a histogram of the number
of sex acts per partnership (remember that the question-
naire was for one calender year, so partnership durations
are limited to 1 year).
It is of course arguable what cut-off to use to distinguish

between steady and casual partnerships. A motivation to
use 1 is that this is clearly the smallest possible cut-off and
also because this is by far the most common number of sex
acts in a partnership (see magnification in Fig. 3). The
other cut-off, 10, was chosen by the motivation that after
10 the frequency really seemed to drop (see magnified
histogram). We could of course have used 5 instead of 10 as
our alternative cut-off but we suspect that our conclusions
would not be very different.
The estimation of p

ðmf Þ
S and p

ðmf Þ
C as functions of pmf (and

p
ðfmÞ
S and p

ðfmÞ
C as functions of pfm) is done by taking similar

arithmetic means, only now over the new separations of
steady and casual partnerships. In Fig. 4 we show plots of
the resulting p

ðmf Þ
S (left) and p

ðmf Þ
C (right) as functions of pmf

(plots of p
ðfmÞ
S and p

ðfmÞ
C look similar but are not shown).

There it is seen that p
ðmf Þ
C ¼ pmf (i.e. a straight line) for

the situation where casual partnership means one sex act.
In the left figure the case where all partnerships are
treated as equal is also plotted (with the interpretation
that no partnerships are casual). It is seen that the
transmission probability p

ðfmÞ
S quickly comes close to 1, in
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particular, for the case where steady partnership means
more than 10 sex acts.

Given these separations between steady and casual
partnerships it is possible to compute R0. In Fig. 5 we have,
for a community estimated from the Gotland data, plotted R0

as a function of the per-sex-act male-to-female transmission
probability pmf under the assumption that the disease
transmission probability is the same from female to male
(i.e. pfm ¼ pmf ), and that the duration of a typical infectious
period is 1 year. The curve with squares is for the separation
with one sex act being a casual partnership and the curve with
triangles corresponds to the separation with a casual
partnership defined as less than 10 sex acts. Also in the
figure is a curve with diamonds corresponding to the case
where there is no distinction between casual and steady
partnerships (corresponding to the model of Section 3.2). For
this curve, pðmf Þ and pðfmÞ are estimated similarly to earlier,
only now the averages are taken over all partnerships.

In Fig. 5 it is seen that when the per-sex-act transmission
probability is smaller than � 0:4, as is the case for many
STI’s, the effect of not distinguishing between casual and
steady partnerships is that R0 is systematically over-
estimated. (For HIV one estimate for pmf is 0.001
(Leynaert et al., 1998), for Chlamydia pmf has been
estimated to 0:2 (Lycke et al., 1980) and 0:35 (Katz et al.,
1990). Almost always it is believed that pfmopmf .) By
‘‘systematically’’ we mean that the difference would remain
in much larger communities and is thus not explained by
uncertainty. An intuitive explanation to the observed
systematic over-estimation, also taking the contact beha-
viour in the community into account, is the following.
When all partnerships are assumed to have equal
transmission probability, this transmission probability is
over-estimated for partnerships having few sex acts. In the
Gotland data it was seen that partnerships with few sex
acts tend to be between individuals having many partners
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as would be expected. And, when all partnerships have the
same transmission probability, such individuals influence
R0 more than individuals with few partners do because of
the size-biasing effect mentioned earlier. As a consequence,
the effect of the over-estimation of transmission probabil-
ities for individuals with many partners is not compensated
by the corresponding under-estimation for individuals with
few partners, with the effect that R0 is over-estimated when
all partnerships are treated equally. We suspect that the
difference in R0 between treating all partnerships as
identical compared to when admitting different types of
partnerships would be even bigger if more than two types
of partnerships would have been considered.

A relevant question is why the observed over-estimation
only holds when the per-sex-act transmission is low or
moderate (in Fig. 5 it no longer holds when pmf exceeds
about 0.5). A possible explanation to this, mentioned in
Section 3.2, is that the model with two types of partner-
ships for the special case where both type of partnerships
have equal transmission probability does not coincide with
the model having one type of partnership. A simple
example illustrates this. Suppose that half of the commu-
nity has 1 steady and 0 casual partnership and the other
half of the community has 0 steady and 3 casual partners
(males and females are assumed to behave equivalently).
Then, all individuals with one partner will have partners
also having only one partnership, and individuals with
three partners will all have partners with three partnerships
(note that this is not the case if only one type of partnership
is considered and 50% have one partner and 50% have
three partners). If the transmission probability is not very
different between steady and casual partnerships (which is
necessarily the case when the per-sex-act probability is

large!) then this so-called assortative mixing will increase
R0 more than the previously mentioned effect will decrease
it (that R0 increases in this case follows because a core sub-
group will dominate the early stages in an outbreak). As an
effect, R0 will be higher with two types of partnerships
whenever the per-sex-act transmission probability is large
enough. Of course, the example is extreme but since
individuals with a steady partnership tend to have fewer
casual partnerships than those without steady partners, the
explanation should be valid in real communities.
Another observation in Fig. 5 is that there seems to be

little difference between the two separations between steady
and casual partnerships when the transmission probability
is low whereas separating at 10 sex acts gives a higher R0

estimate when the per-sex-act transmission probability is
large. We have no immediate explanation to this but
believe it also has to do with the difference in partnership
distribution affecting the assortative mixing.
In Fig. 6, the same type of plot is shown, but now under

the more realistic assumption that pðfmÞ ¼ 0:5pðmf Þ, i.e. that
the per-sex-act transmission probability from a female to a
male is only half that of male to female. This relation
between pðfmÞ and pðmf Þ is more realistic for most sexually
transmitted diseases (for e.g. gonorrhea pðfmÞ was estimated
to 0:55pðmf Þ (Yorke et al., 1978), and for HIV pðfmÞ was
estimated to 0:5pðmf Þ (Leynaert et al., 1998). The same type
of qualitative results holds also under this assumption, but
now for pðmf Þ up to about 0.5. The only qualitative
difference (compared to the case when pðfmÞ ¼ pðmf Þ) seems
to be that when the per-sex-act transmission probability is
large, the models distinguishing between steady and casual
partnerships give lower R0 estimates as compared to both
per-sex-act transmission probabilities being equal.
As mentioned earlier the per-sex-act transmission prob-

ability is often smaller than 0.5 and sometimes much
smaller. So how can an STI become endemic since Fig. 6
indicates an R0 estimate of about 0.6, which would be even
less when the infectious period is shorter than 1 year? Of
course, the model does not capture all features of an STI, in
particular, not individual heterogeneities in terms of
susceptibility, infectivity and sexual behavior, but even if
it would, this could be explained by the disease being
endemic only in a more restrictively defined core group
within which R041 (the data were a community sample of
individuals aged 16–31).

5. Discussion

In the paper a model for the spread of an STI was
defined allowing arbitrary partnership distribution and
distinguishing between steady and casual partnerships. An
approximation using branching processes was derived thus
giving an expression for R0 determining whether a major
outbreak is possible or not. When fitted to data the main
conclusion was that neglecting differences between partner-
ships has the effect that R0 is systematically over-estimated.
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The model can be made more realistic in several ways.
One underlying assumption is that an individual chooses
his/her partners randomly among all partnerships of
opposite sex ‘‘on the market’’. As an effect, an individual
with few, say 1, partner chooses his/her partner in the same
way as someone who has many partners. It would perhaps
be more realistic to allow for some assortative mixing
meaning that promiscuous people tend to have partners
who are also promiscuous. However, to include this into
the model makes the analysis harder and to fit the degree of
assortative mixing to our data is hard since no such
information about partner’s sexual activity was available.

Another assumption is that the sexual network is
considered fixed over time. In reality, partnerships break
up or are interrupted and new are created, with the
possibility of dual simultaneous partnerships. Community
properties of such dynamics, which are at least partly
available in the analysed data, of course affect the potential
spread of disease. However, as mentioned previously, an
interpretation of this static network is that the number of
partners of an individual reflects the number of partners
such an individual has during a period corresponding to
the infectious period. This should make the interpretation
of R0 the same as in a dynamic network having the same
numbers of partnerships over that period of time. The
advantage with the present static network model of course
being that it can be analysed in more detail.

A different and important model relaxation would be to
allow individual heterogeneity in terms of transmission
probabilities. Some individuals may have a higher risk of
getting infected (in any of his/her partnerships) and others
have lower risk, and similarly the per-sex-act probability of
infecting others may vary between individuals. Such
heterogeneity will have the effect that transmission will

tend to take place during the first few sex acts if ever (for
partnerships with high transmission and rarely for partner-
ships with low transmission probability). We believe that
this should somewhat reduce the magnitude of over-
estimation of R0, but how much is an open question. To
actually fit such a generalised model to data would be the
problematic part. Another step towards realism is to allow
individuals to be either homosexual, heterosexual or
bisexual. Such an extension would be quite straightfor-
ward, and estimates of community fractions of the different
types can often be obtained although this is not available in
the Gotland data set.
One important question not addressed in the present

paper is to study different preventive measures affecting the
transmission probability and/or the degree distribution. To
derive and compare expressions for the reproduction
number when different preventive measures are in place
could be used in guiding which measures are most effective.
To summarize, more work is thus needed for realistic

modelling of the spread of STI’s in a community, and more
data sets should be analysed to see if the observed features
in the present analysis hold also there. Still, we believe that
the main finding of the present work, namely that
neglecting the empirical observation that individuals with
many partners tend to have fewer sex acts per partner will
over-estimate R0, will still hold true under more realistic
models. Having said this, this effect might be dominated by
other effects when considering more complex and realistic
models. Making more realistic models is hence important
for determining if our conclusions apply in real world
situations.
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