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We consider a (social) network whose structure can be represented by a simple random graph having a
pre-specified degree distribution. A Markovian susceptible-infectious-removed (SIR) epidemic model is
defined on such a social graph. We then consider two real-time vaccination models for contact tracing
during the early stages of an epidemic outbreak. The first model considers vaccination of each friend
of an infectious individual (once identified) independently with probability q. The second model is
related to the first model but also sets a bound on the maximum number an infectious individual can
infect before being identified. Expressions are derived for the influence on the reproduction number of
these vaccination models. We give some numerical examples and simulation results based on the Poisson
and heavy-tail degree distributions where it is shown that the second vaccination model has a bigger
advantage compared to the first model for the heavy-tail degree distribution.
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1. Introduction

Networks, for example social networks, are often described by
simple undirected random graphs in order to capture social rela-
tionships among different individuals (see [1–3]). Usually the ver-
tices of the graph correspond to individuals and the edges to some
social relations (e.g. [4–6]). On such a (social) graph an epidemic
model may be defined, where initially individuals are free from
the disease and susceptible. An infectious individual can infect its
susceptible friends (those who have not had the disease yet, but
can catch it), before it recovers and becomes immune. The identi-
fication of individuals that have been in contact with an infectious
individual (contact tracing) has attracted attention as a disease
control measure that seeks to uncover newly infected cases prefer-
ably before they become infectious (e.g. see [7–10]). The traced
individuals who are still susceptible can be vaccinated (or immu-
nized in some other way) in order to prevent a major outbreak.
How to contain the disease before it takes off is a question that
can be addressed by the choice of a vaccination strategy (see e.g.
[11–14]).

In the present paper, we study issues arising from such mod-
elling. In particular we consider a simple social graph of a large
fixed population where the vertex degree (number of friends)
follows a pre-specified distribution F. The social graph is as-
ll rights reserved.
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sumed to be otherwise completely random, implying that there
will be no clustering (of connected friends) or degree correlation
(assortativity or disassortativity). A simple stochastic epidemic
model is the Markovian susceptible-infectious-removed (SIR)
for the spread of the disease in the social network (see
[14,15]). Initially, one randomly selected individual is infected
from outside the population. Any individual who gets infected
infects each of his/her friends, who are still susceptible at the
rate k during the infectious period having exponential distribu-
tion, and then recovers and becomes immune (denoted re-
moved). For this social graph and epidemic model, we study
two vaccination models implemented during early stages of the
epidemic using contact tracing. In both vaccination models in-
fected individuals are detected after some delay and once an
individual is detected his/her friends are ‘vaccinated’. We will
use the word vaccinated but it could equally well be isolation
or some other control measure that stops potential spreading
of the individual. In the first vaccination model, we introduce
some realism in that not all friends are found and vaccinated.
In the second model, being more optimistic, it is assumed that
all friends are found and vaccinated once the individual is de-
tected, and it is also assumed that there is a maximal value m
of the number of friends an individual can infect before being
detected.

For a fixed large population of size n we derive the reproduc-
tion number R0 defined as the expected number of secondary
cases generated by a typical infectious individual during the early
stages of the epidemic, for an epidemic without intervention. The
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quantity R0 is of fundamental importance to the dynamics of
infections, since a major outbreak is possible if and only if R0 > 1
(e.g. [15]). We also derive the reproduction numbers for the two
vaccination models. Using Poisson and heavy-tail degree distribu-
tions for the social networks, we illustrate how effective the two
vaccination models are and show that the gain in the second
model is greater for the heavy-tail degree distribution. The first
vaccination model is much less effective for heavy-tail degree dis-
tributions mainly because individuals with high degree, which
are less uncommon in the heavy-tail case and which have rela-
tively higher chance of getting infected, have the chance to infect
many more individuals in the first vaccination model. The numer-
ical results, based on large population approximations, are veri-
fied by means of simulations in finite populations.

Much work has been done on vaccination strategies prior to ar-
rival of the disease. For example, targeted vaccination [16], uni-
form vaccination [17–19] and acquaintance vaccination [16,20].
In the uniform and acquaintance vaccination strategies, individuals
are chosen randomly, and targeted vaccination strategy requires
the identification of individuals with high degrees. However, dur-
ing the early stages of an epidemic, contact tracing can be used
as a control measure of the epidemic in a social network, see e.g.
[21], where individuals who are related to an identified infectious
person are located and vaccinated (or subjected to some other type
of immunization). The present paper contributes to this work on
early stage vaccination by proposing two real-time vaccination
models applicable during the early stages of an epidemic outbreak,
and that require no knowledge of individuals’ degree prior to the
detection of an infectious person. Another aim of the paper is to de-
rive expressions for the reproduction numbers, without vaccina-
tion as well as when each vaccination model is implemented,
and to compare the efficiency of the vaccination models in pre-
venting major outbreaks. The rest of the paper is organized as fol-
lows. In Section 2 we describe a model to generate a social network
with a given degree distribution. We also define a simple epidemic
model for a disease spreading on the social network, derive the ba-
sic reproduction number and approximate the probability of a
minor outbreak. Section 3 treats vaccination as a measure to pre-
vent major outbreaks, and discusses two vaccination models. Sec-
tion 4 provides numerical examples and simulation results of the
model. Finally, Section 5 discusses the results and provides some
concluding remarks.
2. The model

2.1. The network model

Consider a community of size n (assumed to be large) and as-
sume that the degree distribution F ¼ fpkg

1
k¼0 is given. We define

a random network model describing the social structure of the
population. The network model is based on the configuration mod-
el (see, e.g. [22]) and is defined as follows. Take a set of n vertices
and for each vertex i assign a number of stubs Di independently
from the distribution F ¼ fpkg

1
k¼0. Then pair these stubs completely

at random and join the stubs to form edges between the vertices.
That is, first pick two stubs randomly among all stubs in the graph
and join them. Then pick two stubs at random from the remaining
stubs and join them, and so on. We then remove all multiple edges
and loops thus making the graph simple. This procedure produces
a graph with the desired degree distribution as n ?1, but which
in all other aspects is random. That is, we generate a graph which
is drawn uniformly at random from the set of graphs with the gi-
ven distribution. There will hence be no clustering or degree corre-
lation (assortativity or disassortativity). See [23,24] for details on
the mixing patterns of the graph and [25] for details on how to
generate the graph and discussion on what degree distributions
the algorithm works for.

2.2. A simple epidemic model on the social graph

We now define an epidemic process on the social network de-
scribed above. As mentioned before, we consider three states: sus-
ceptible, infectious and recovered (and immune) that an individual
can be in during an epidemic process. The SIR epidemic model is
used to describe the dynamic process of infections in the popula-
tion through friendships (which are edges in the graph). Assume
initially that all individuals are susceptible except one individual
who is infected from outside the population. The infected individ-
ual remains infectious for a time period according to a random var-
iable I which follows an arbitrary distribution G, and after the
period I the individual recovers and becomes immune. During this
infectious period I, an infectious individual infects each of his/her
susceptible friends according to independent Poisson processes
with intensity k. This implies that the first contact between the
infectious individual and a particular neighbour i takes place time
Ti (time units) after the infection, where Ti is exponentially distrib-
uted with mean 1

k. We assume that there is no latent period, so any
susceptible friend contacted by an infectious individual becomes
immediately infectious. Those who become infected behave simi-
larly, and the epidemic process goes on until there are no more
infectious individuals, when the epidemic stops. It is worth noting
that the time Ti to contact a specific friend i is different from time Tj

to contact another friend j, where i – j, and the contact times
fTigk

i¼1, k being the number of friends, are independent and expo-
nentially distributed, and only contacts occurring in the interval
[0, I] lead to infections.

2.3. The basic reproduction number

We now derive the basic reproduction number for the epi-
demic model, and to do so we start by deriving the probability
to infect a given individual before recovery. During the initial
stages of an epidemic in a large population, contacted individuals
are susceptible with high probability, implying that the number
of infectious individuals during early stages may be approximated
by a branching process (see e.g. [26,27]). In a branching process
every infectious individual gives birth to (infects) a random num-
ber of offspring (infected) independently of each other, but with
the same distribution. The process is assumed to start with Z0

individuals and each individual capable of giving birth has a ran-
dom lifespan equivalent to her infectious period I. In the follow-
ing we assume that initially there is only one (Z0 = 1) infectious
individual capable of infecting other individuals in its neighbour-
hood. The approximation of the process can be made precise by
coupling arguments as in [26], but this is beyond the scope of
the present paper.

Given an infectious individual, transmission of infection to a gi-
ven friend occurs if and only if the first contact takes place during
the infectious period. That is, if the time Ti to contact a specified
susceptible friend i is less than the infectious period I having an
arbitrary but specified distribution G. We compute the probability
p that transmission of infection will occur by conditioning on Ti as
follows:

p ¼ PðTi < IÞ ¼
Z 1

0
PðTi < IjTi ¼ tÞke�kt dt

¼
Z 1

0
ð1� GðtÞÞke�kt dt: ð2:1Þ

To determine the basic reproduction number of the epidemic pro-
cess, we consider an infectious individual in the second generation
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since the initial infectious individual is chosen at random without
respect to the degree. In the second generation and onwards, an
infectious individual with k friends is selected with probability
proportional to kpk (which is size biased), hence individuals with
many friends are more likely to be selected. If the selected person
has degree k, he/she generates on average (k � 1)p new cases since
the individual he/she was infected by is not susceptible. Hence, it
follows that the basic reproduction number becomes:

R0 ¼ p
X

k

ðk� 1Þ kpkP
jjpj
¼ p

X
k

ðk� 1Þ kpk

EðDÞ

(see [28] for more details). An alternative representation is given
by

R0 ¼ p EðDÞ þ VðDÞ � EðDÞ
EðDÞ

� �
: ð2:2Þ

When we derive the probability of a major outbreak below we
will restrict ourselves to the case where the infectious period is
exponentially distributed (with parameter c). Suppose hence that
GðtÞ ¼ 1� e�ct , i.e. that the infectious period I � exp(c) with mean
1/c. The probability p (defined in (2.1)) then becomes

p ¼ PðTi < IÞ ¼
Z 1

0
e�ctke�kt dt ¼ k

kþ c
; ð2:3Þ

(see e.g. [29,30] for related results). The corresponding basic repro-
duction number in Eq. (2.2) then becomes

R0 ¼
k

kþ c
EðDÞ þ VðDÞ � EðDÞ

EðDÞ

� �
: ð2:4Þ

If R0 > 1 major outbreaks are possible whereas if R0 6 1 then only
minor outbreaks can occur.

2.4. The probability of a minor outbreak

In order to determine the probability of a minor outbreak, it is
important to consider the distribution of the number of offspring
(infected) Z generated by one infectious individual, since given this
distribution the extinction probability can be derived (see e.g.
[27]). During his/her infectious period, from now on assumed to
be exponentially distributed with parameter c, an individual in-
fects each friend at rate k, and recovers at rate c. Conditioning on
the degree D = k, an individual hence infects at least one of his
k � 1 susceptible friends with probability

PðZ P 1jD ¼ kÞ ¼ 1� PðZ ¼ 0jD ¼ kÞ ¼ 1�
Z 1

0
ðe�ktÞk�1ce�ct dt

¼ 1� c
ðk� 1Þkþ c

¼ ðk� 1Þk
ðk� 1Þkþ c

: ð2:5Þ

Similarly, the probability that an individual infects at least two
friends follows the same line of approach as in Eq. (2.5), and thus
becomes

PðZ P 2jD ¼ kÞ ¼ ðk� 1Þk
ðk� 1Þkþ c

� ðk� 2Þk
ðk� 2Þkþ c

:

In general, the probability that an individual infects to at least z
friends hence is

PðZ P zjD ¼ kÞ ¼
Yz

j¼1

ðk� jÞk
ðk� jÞkþ c

� �
; z < k: ð2:6Þ

Consequently, from (2.6)

PðZ ¼ zjD ¼ kÞ ¼
Yz

j¼1

ðk� jÞk
ðk� jÞkþ c

 !
� c
ðk� 1� zÞkþ c

; z < k:

ð2:7Þ
The degree distribution of the index case is {pk}, since the ini-
tially infected person was selected at random from the community.
However, the degree distribution of infected individuals in the sec-
ond and later generations of the initial phase of the epidemic will
be the size biased version of this distribution: {kpk/E(D)} (see [31]
for a proof). This follows because the probability to get infected
during the early stages is proportional to the number of friends
you have – for example, individuals with no friends clearly will
not get infected. The unconditional offspring distribution is thus gi-
ven by

PðZ ¼ zÞ

¼
X1

k¼zþ1

Yz

j¼1

ðk� jÞk
ðk� jÞkþ c

 !
� c
ðk� 1� zÞkþ c

" #
� kpk

EðDÞ : ð2:8Þ

Hence, all succeeding offspring in the later generations give birth
independently according to the distribution in Eq. (2.8). If the off-
spring distribution of the index case was the same as for infected
in later generations then, from branching process theory (see e.g
[27]), the extinction probability (i.e. the probability of a minor out-
break in the epidemic) q would be the smallest solution to

q ¼
X1
z¼0

qzPðZ ¼ zÞ: ð2:9Þ

It is also known in branching process theory that when the mean
number of offspring is less or equal to 1 (E(Z) = R0 < 1) then the only
solution is q = 1, and if R0 > 1 then there is a second solution q < 1
which is equal to the extinction probability. The quantity q is the
probability of extinction (i.e. a minor outbreak) if the index case
had the same offspring distribution as the infected in later genera-
tions. This is, however, not the case for two reasons: the initially
infectious person has degree distribution fpkg

1
k¼0 (rather than

f kpk
EðDÞg) and may infect all its friends (rather than all except one).

So, let eZ denote the number of individuals that an initial person in-
fects. The unconditional offspring distribution of the index case is
hence given by

P eZ ¼ z
� �

¼
X1
k¼z

Yz

j¼1

ðkþ 1� jÞk
ðkþ 1� jÞkþ c

 !
� c
ðk� zÞkþ c

" #
� pk: ð2:10Þ

To obtain the probability of a minor outbreak also taking into ac-
count the index case we simply condition on the number of off-
spring this individual has. If the index case has z offspring (which
happens with probability PðeZ ¼ zÞ, defined in (2.10)) then the epi-
demic will go extinct if all the epidemics initiated by the z individ-
uals goes extinct. These z epidemics all go extinct with probability
qz. To conclude, the probability p of a minor outbreak of the epi-
demic initiated by the index case is hence given by

p ¼
X1
z¼0

qzP eZ ¼ z
� �

;

where q was defined as the smallest solution to (2.9) This probabil-
ity is computed numerically in Section 4 for a specific example. It
should be noted that p < 1 if and only if q < 1.
3. Vaccination models

Vaccination is a major tool for protection of individuals in a
population against infectious diseases. Similar effects to vaccina-
tion may be obtained through isolation and quarantine, in what
follows ‘vaccination’ could hence also be interpreted in this more
general form. In this section, we discuss two hypothetical vaccina-
tion models that might be applicable during the early stages of an
epidemic upon detection of the diseased cases. In both models, it is
assumed that whenever an infectious individual is detected, which
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happens after some delay time, his or her friends are traced and lo-
cated, but there is no ‘multi-step’ tracing. Such located individuals
are vaccinated, and it is assumed that the vaccine gives full immu-
nity if the person was susceptible, but that the vaccine has no ef-
fect if the person was already infected (see e.g. [32,33] for more
realistic assumption on vaccine efficacy). The delay time between
infection and vaccination includes the time to show of symptoms,
the time to be identified by authorities, the time to locate and vac-
cinate friends of the individual and also the time for the vaccine to
have its effect. For simplicity it is assumed that all vaccinated
friends of an individual become immune at the same time.

The two vaccination models are different in that the first model
assumes that not all friends are detected, whereas the second mod-
el assumes all friends are detected and also that there is a maxi-
mum number an infectious individual can infect before getting
detected, irrespective of the number of friends. Below we describe
the two vaccination models in more detail and derive expressions
for their reproduction numbers and compare their effectiveness.

3.1. Vaccination of located friends

Let S be the delay time whose distribution is denoted by H. The
vaccination model assumes that each friend of an infected and de-
tected individual is located independently with probability q, and
all located friends who are still susceptible are vaccinated. We also
assume that the infectious period I and delay time S are indepen-
dent. We introduce an indicator random variable X such that
Xi = 1 (which happens with probability q) if a given friend i of an
infectious individual is located and Xi = 0 otherwise. Taking into ac-
count the infectious period I and the time Ti to contact a given
friend i, transmission of infection occurs when Ti < min(S, I), or if
S < Ti < I and {Xi = 0}. Conditioning on Ti = t, a given friend gets in-
fected with probability

~p¼PðTi<minðS;IÞÞþPðS<Ti< I\fXi¼0gÞ

¼
Z 1

0
PðTi<minðS;IÞjTi¼ tÞþð1�qÞPðS<Ti< IjT¼ tÞð Þke�kt dt:

When we consider arbitrary distributions of I and S as before,
that is, G and H, respectively, we get the following general relation
for the probability of infection:

~p ¼
Z 1

0
ðð1� GðtÞÞð1� HðtÞÞÞke�kt dt

þ ð1� qÞ
Z 1

0
HðtÞð1� GðtÞÞke�kt dt: ð3:1Þ

As before, during the early stages an infectious individual has de-
gree k with probability kpk

EðDÞ, and will then on average infect
ðk� 1Þ~p individuals. The corresponding reproduction number R
hence equals

R ¼ ~p
X

k

ðk� 1Þ kpk

EðDÞ ¼
~p EðDÞ þ VðDÞ � EðDÞ

EðDÞ

� �
: ð3:2Þ

From now on, we assume that the infectious period I and detec-
tion time S are independent and exponentially distributed with
mean 1/c and 1/h, respectively. We then get from Eq. (3.1) that

~p ¼
Z 1

0
ke�ðkþcþhÞt dt þ ð1� qÞ

Z 1

0
ð1� e�htÞke�ðkþcÞt dt

¼ qk
kþ cþ h

þ ð1� qÞk
kþ c

: ð3:3Þ

The reproduction number Rh,q in Eq. (3.2) becomes

Rh;q ¼
qk

kþ cþ h
þ ð1� qÞk

kþ c

� �
EðDÞ þ VðDÞ � EðDÞ

EðDÞ

� �
: ð3:4Þ
Using Eq. (2.4) and some algebra, Eq. (3.4) can be simplified to yield
the representation of Rh,q in terms of the basic reproduction number
R0 as

Rh;q ¼ 1� qh
kþ cþ h

� �
R0: ð3:5Þ

Rh,q hence grows linearly with the basic reproduction number R0. In
order to surely prevent an epidemic outbreak when this vaccina-
tion, we must have that Rh,q 6 1, or equivalently that

1� qh
kþ cþ h

� �
R0 6 1:

To be more precise, q and h must satisfy

qh
kþ cþ h

P 1� 1
R0
:

In this vaccination model there are two special cases. First, if all
friends of an infectious person are located so that q = 1 the repro-
duction number in Eq. (3.5) becomes

Rh;q¼1 ¼
kþ c

kþ cþ h
R0: ð3:6Þ

In this special case, the reproduction number Rh,q=1 is assured to be
below unity if

h P ðkþ cÞðR0 � 1Þ;

or equivalently if the expected time to detection 1
h satisfies

1
h
6

1
ðkþ cÞðR0 � 1Þ

implying that the detection intensity h must be large enough in or-
der to avoid the spread of infection in the social network.

A second special case is when the detection intensity h is so
large that the first term of ~p in the second equality of Eq. (3.3) ap-
proaches zero in the limit as h ?1. Then the probability of infec-
tion becomes:

~p ¼ ð1� qÞk
kþ c

:

This is equivalent to detecting an infectious individual immediately
when he/she becomes infected and a proportion q of all friends is
vaccinated. Using the same argument as before, the corresponding
reproduction number in Eq. (3.5) reduces to

Rh¼1;q ¼ ð1� qÞR0; ð3:7Þ

which is linear in q, and surely there will be a minor outbreak if
q P 1� 1

R0
. The interpretation of this is that, if R0 is large, for in-

stance a heavy tailed network, then nearly all friends must be vac-
cinated. The criterion that q P 1� 1

R0
is the same as in a general

vaccination programme in order to obtain herd immunity. The dif-
ference with the approach suggested here is that it is only necessary
to vaccinate around those who get infected. If this is possible, the
spread can be controlled with considerable fewer vaccinations than
if the vaccination took place before an outbreak.

In principle it is possible to derive the full offspring distribution
and thus the extinction probability which we now sketch. We
approximate the initial phase of the epidemic by a branching pro-
cess. Given the infectious period I = i and detection time S = s,
an individual contacts a particular friend with probability
gs;i ¼ qð1� e�k minðs;iÞÞ þ ð1� qÞð1� e�kiÞ. Consequently, gs;i ¼
qð1� e�ksÞ þ ð1� qÞð1� e�kiÞ if s < i or gs;i ¼ 1� e�ki if s > i. Thus,
given that degree D = k, time to detection S = s and infectious time
period I = i, the number of infections produced by one individual in
the first generation is binomially distributed with parameters
(k � 1) and gs,i. The parameter (k � 1) follows since the initially
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infectious individual was infected by one of her friends (who can-
not be re-infected). Hence, an individual gives birth to Z = z off-
spring with probability

PðZ ¼ zjD ¼ kÞ ¼
Z 1

0

Z i

0

k� 1
z

� �
gz

s;ið1� gs;iÞ
k�1�zfSðsÞfIðiÞdsdi

þ
Z 1

0

Z 1

i

k� 1
z

� �
gz

s;ið1� gs;iÞ
k�1�zfSðsÞfIðiÞdsdi; ð3:8Þ

where f(s) and f(i) are the density functions of the time to detection
S and infectious period I, respectively.

Unconditionally, the number of individuals infected in a given
generation is hence given by

PðZ ¼ zÞ ¼
X1

k¼zþ1

PðZ ¼ zjD ¼ kÞ kpk

EðDÞ : ð3:9Þ

As before, we let q be the extinction probability of the branching
process if the index case had the same offspring distribution as indi-
viduals of later generations, implying that q is the smallest solution
to q ¼

P1
z¼0qzPðZ ¼ zÞ. However, the index case has a slightly differ-

ent offspring distribution eZ since its degree distribution is fpkg
1
k¼0

(and not kpk/E(D)) and all friends can get infected (rather than all
but one). Thus the probability p of a minor outbreak is given by
p ¼

P1
j¼0qjPðeZ ¼ jÞ. It is worth pointing out that the offspring distri-

bution and the extinction probability p is numerically quite compli-
cated in most cases. The reproduction number Rh,q given in (3.5),
which determines whether major outbreaks may occur or not and
which are the focus of the present paper, are of much simpler form.

3.2. Vaccination of friends and bounding the maximum number of
infections

In the first vaccination model the reproduction number Rh,q was
linear in the basic reproduction number R0 (see Eq. (3.5)), implying
that if R0 is large, which is the case with heavy tail degree distribu-
tions, so is Rh,q. We are then motivated to introduce another more
optimistic vaccination model to see if it is possible to perform bet-
ter. The new model aims at reducing the reproduction number fur-
ther by controlling individuals who have many friends (super-
spreaders) and this is done by assuming that there exists an upper
bound m on the number of possible infections from a given infec-
tious individual (for example this could be approximately true if
infectives are more likely to become detected the more people they
infect). The vaccination model is defined as follows. Let S and I be
the detection time and infectious period, and assume as before that
they are independent and exponentially distributed with mean 1/h
and 1/c, respectively. While infectious and before being detected
an individual having (k � 1) susceptible friends, contacts his/her
friends independently at rate k. We denote these contact times
Ti

(k), i = 1, . . .,k � 1 (measured from the time of infection). This im-
plies that the ordered times TðkÞð1Þ 6 TðkÞð2Þ 6 � � � 6 TðkÞðk�1Þ satisfy
T ðkÞð1Þ � expððk� 1ÞkÞ, T ðkÞð2Þ � TðkÞð1Þ � expððk� 2ÞkÞ, and so on. Using
this notation the individual hence infects at least i friends if
TðkÞðiÞ < minðS; IÞ. However, in the new model we also have a bound
m on the number of friends that can be infected before an infec-
tious individual is detected. It follows that an infected individual
who has k � 1 susceptible friends infects Z of them before detec-
tion, where

Z ¼min max i : TðkÞðiÞ < minðS; IÞ
� �

;m
n o

:

To compute the expected number of infected friends produced by a
typical infectious individual during the early stages, we first deter-
mine the offspring distribution which is done in the same way as in
Section 2.4. The difference between the first and second vaccination
models is that, in the second model, all friends are located and also
the number of infections caused by one individual is bounded by m.
Hence, for z ¼ 1; . . . ;m ^ ðk� 1Þ, the probability that at least z
friends are infected given D = k is

PðZ P zjD ¼ kÞ

¼ ðk� 1Þk
ðk� 1Þkþ cþ h

� ðk� 2Þk
ðk� 2Þkþ cþ h

� � � ðk� zÞk
ðk� zÞkþ cþ h

¼
Yz

j¼1

ðk� jÞk
ðk� jÞkþ cþ h

� �
: ð3:10Þ

Since an individual with k friends cannot infect more than
m ^ ðk� 1Þ friends, then PðZ > zjD ¼ kÞ ¼ 0, for z > m ^ ðk� 1Þ.
The unconditional probability that at least z friends get infected
is thus given by

PðZ P zÞ ¼
X1

k¼zþ1

PðZ P zjD ¼ kÞ kpk

EðDÞ ; z ¼ 1; . . . ;m: ð3:11Þ

The sum in (3.11) starts at k = z + 1 since in order to infect z friends
an infectious person needs at least z + 1 friends, one being the infec-
tor. The expected number of individuals infected by the infectious
person, which is also the reproduction number, is

Rh;m ¼ EðZÞ ¼
Xm

z¼1

PðZ P zÞ

¼
Xm

z¼1

X1
k¼zþ1

PðZ P zjD ¼ kÞ kpk

EðDÞ

 !

¼
Xm

z¼1

X1
k¼zþ1

Yz

j¼1

ðk� jÞk
ðk� jÞkþ cþ h

 !
kpk

EðDÞ : ð3:12Þ

The epidemic outbreak is surely avoided if Rh,m 6 1. We should note
here that since Rh,m depends on the parameters k and c, then it also
depends on R0 defined in (2.4), but not as explicitly as Rh,q in the
first vaccination model.

As before it is possible to derive the offspring distribution and
hence the probability of a minor outbreak which we now sketch.
During the early stages the epidemic can be approximated by a
branching process. From Eq. (3.10) the distribution of offspring
produced by an individual in the later generations given that it
has degree D = k is hence, for z ¼ 0;1; . . . ;m ^ ðk� 1Þ, given by

PðZ ¼ zjD ¼ kÞ

¼
Yz

j¼1

ðk� jÞk
ðk� jÞkþ cþ h

 !
� c
ðk� 1� zÞkþ cþ h

: ð3:13Þ

As a consequence for z = 0,1, . . .,m, the unconditional offspring dis-
tribution is

PðZ ¼ zÞ

¼
X1

k¼zþ1

Yz

j¼1

ðk� jÞk
ðk� jÞkþ cþ h

 !
� c
ðk� 1� zÞkþ cþ h

" #

� kpk

EðDÞ : ð3:14Þ

Similar to before, applying theory for branching process [27]
the probability q of extinction, assuming all individuals have
offspring distribution P(Z = z), is the smallest solution to
q ¼

P1
z¼0qzPðZ ¼ zÞ.

However, the initial infectious individual has degree distribu-
tion given by fpkg

1
k¼0 and can infect all friends (rather than all

but one). Thus if eZ denotes this modified offspring distribution of
the index case, then the probability p of a minor epidemic outbreak
is given by
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Fig. 1. Histogram of final sizes for 500 simulations of an epidemic without
vaccination in a heavy-tail degree distribution with n = 1000 individuals and
R0 = 7.2 > 1, i.e. above threshold, indicating that there is a major outbreak.

Table 1
Numerical values from a Poisson degree distribution with mean 4 and k = c = 1 and
R0 = 2

Model 1 Rh,q p(1) l(1) Model 2 Rh,m p(2) l(2)

h = 1, q = 0.2 1.87 0.414 260 h = 1, m = 10 1.33 0.732 231
h = 1, q = 0.5 1.67 0.490 238 h = 1, m = 5 1.30 0.710 218
h = 1, q = 1 1.33 0.698 224 h = 1, m = 2 1.01 0.908 82
h = 5, q = 0.2 1.71 0.472 252 h = 5, m = 10 0.57 1 –
h = 5, q = 0.5 1.28 0.706 187 h = 5, m = 5 0.56 1 –
h = 5, q = 1 0.57 1 – h = 5, m = 2 0.51 1 –
h = 20, q = 0.2 1.64 0.496 215 h = 20, m = 10 0.18 1 –
h = 20, q = 0.5 1.09 0.874 100 h = 20, m = 5 0.18 1 –
h = 20, q = 1 0.18 1 – h = 20, m = 2 0.17 1 –

Rh,q and Rh,m are computed numerically whereas p and l are obtained from the
simulations. See text for further details.

Table 2
Numerical values from a heavy-tail degree distribution with mean 4 and k = c = 1 and
R0 = 7.2

Model 1 Rh,q p(1) l(1) Model 2 Rh,m p(2) l(2)

h = 1, q = 0.2 6.7 0.430 256 h = 1, m = 10 3.5 0.694 172
h = 1, q = 0.5 6.0 0.468 219 h = 1, m = 5 2.5 0.742 147
h = 1, q = 1 4.8 0.702 234 h = 1, m = 2 1.1 0.968 68
h = 5, q = 0.2 6.2 0.470 230 h = 5, m = 10 0.92 1 –
h = 5, q = 0.5 4.6 0.654 197 h = 5, m = 5 0.95 1 –
h = 5, q = 1 2.1 0.990 73 h = 5, m = 2 0.85 1 –
h = 20, q = 0.2 5.9 0.478 193 h = 20, m = 10 0.98 1 –
h = 20, q = 0.5 3.9 0.778 126 h = 20, m = 5 0.89 1 –
h = 20, q = 1 0.7 1 – h = 20, m = 2 0.5 1 –

Rh,q and Rh,m are computed numerically whereas p and l are obtained from the
simulations. See text for further details.
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p ¼
X1
j¼0

qjP eZ ¼ j
� �

:

As was mentioned also for the first vaccination model it is for spe-
cific cases quite complicated to derive the offspring distribution and
the probability p of a minor outbreak. In the examples of the next
section, we therefore focus on the reproduction numbers which
are easier to compute.

4. Examples and simulations

We have compared our two vaccination models by simulations
for different parameter values using the same population of size
n = 1000 individuals. We used two different degree distributions,
the Poisson distribution with mean 4 and a heavy-tail (scale-free)
distribution, to compare the effectiveness of the vaccination mod-
els. For reasonable comparison of the models, the offspring
distribution in the heavy tail is modelled as a sum of two indepen-
dent random variables X1 and X2, (that is Z = X1 + X2), where the
distribution of X1 is PX1 ðkÞ ¼ Cðkþ 1Þ�2:5

; k ¼ 0;1;2; . . ., with

C ¼
P1

j¼0ðjþ 1Þ�2:5
� ��1

� 1=1:34 and having mean �0.9, and

where X2 is Poisson distributed with mean 3.1. It follows that Z
is heavy tail with mean 4, i.e. the same as the other (Poisson) de-
gree distribution.

We have chosen both the contact rate k and the recovery rate c
to be equal to 1 in all simulations. For the Poisson degree distribu-
tion with mean 4, the basic reproduction number is equal to 2
(using Eq. (2.4)). In the heavy-tail degree distribution, the theoret-
ical basic reproduction number is infinite (R0 = +1), but in a finite
population the basic reproduction number is of course finite. For
our finite population size, the basic reproduction number of our
heavy-tail distribution is approximately 7.2, and it is computed
(from Eq. (2.4)) with mean degree equal to 4.0 and degree variance
45.6 obtained by using the truncated degree distribution.

In order to compare the effectiveness of the two vaccination
models in terms of preventing an outbreak, we have chosen the
detection rate h, the proportion of located friends q and the bound
on the maximum number m a person can infect to take on the val-
ues h = 1,5,20, q = 0.2,0.5,1 and m = 2,5,10. These parameter val-
ues are just a representation of many other values which can be
chosen for the same purpose. Based on Eqs. (3.5) and (3.12) the
interest is to observe the behaviour of the reproduction numbers
for the two vaccination models as the values of h, q and m are var-
ied. Hence, these parameter values are designated as small (h = 1,
q = 0.2, m = 2), intermediate (h = 5, q = 0.5, m = 5) and large
(h = 20, q = 1, m = 10) with reference to the simulation results.

We have performed 500 simulations of the epidemic without
vaccination and each of the two vaccination models for each
parameter set-up. The social graph was generated once in order
to have a common social structure, and in each simulation the ini-
tial infectious individual was chosen randomly from the graph. We
define p(1) and p(2) as the proportions of the 500 simulations hav-
ing 50 or less infected individuals (in the first and the second vac-
cination models, respectively), so ‘minor outbreak’ is here
interpreted as having 50 or less infected. Admittedly, this number
is quite arbitrarily chosen, but as can be seen from the simulations
(e.g. Fig. 1) a different cut-off would not change results much. We
also let l(1) and l(1), respectively, be the average sizes among ma-
jor outbreaks in the first and the second vaccination models (here
the choice with 50 as cut-off plays a slightly bigger role). The sum-
mary of the results are shown in Tables 1 and 2.

In Table 1 the numerical results from the Poisson degree distri-
bution are presented. There are nine combinations of parameter
values comprised of the pairs (h,q) from the first model, and nine
combinations of the pairs (h,m) from the second model. Each pair
of the parameter values is used in the simulations to obtain the
proportions p(i) of minor outbreaks and the average sizes among
major outbreaks l(i), for i = 1,2. Using Eqs. (3.5) and (3.12), the
reproduction numbers corresponding to the pairs (h,q) and (h,m)
were computed numerically. The results indicate that the second
vaccination model is most effective (as to be expected) in reducing
the reproduction numbers below unity, thus preventing an epi-
demic outbreak. The only case where the first model is effective
is when the detection rate of an infectious individual is intermedi-
ate or high (that is h = 5 or h = 20) and the proportion of located
friends is large (q = 1). We also note that the first vaccination mod-
el with any h and q = 1 corresponds to the second vaccination mod-



N. Shaban et al. / Mathematical Biosciences 216 (2008) 1–8 7
el with the same h and m = +1. This is reflected in Table 1 that
Rh,q = 1 equals Rh,m = 10 up to rounding errors for h = 1,5,20. The
second model performs well for all values of our choice for the
maximum bound of infections (m = 2,5,10) when the detection
rate is intermediate (h = 5) or high (h = 20).

Table 2 shows the corresponding results, but for the heavy-tail
degree distribution. When the basic reproduction number R0 = 7.2
(in our case) the first model is effective when the detection rate is
large (h = 20) and requires the vaccination of all friends of the
infectious individuals (q = 1). The second model works well for
the intermediate or high detection rate (that is h = 5 or h = 20)
and for all our choices of the maximum bound of infections is small
(that is m = 2,5,10). Hence, model 2 is more efficient in reducing
the reproduction number as well as preventing outbreaks. More
importantly, the difference between the two vaccination models
is greater when considering the heavy-tail degree distribution.

Figs. 1 and 2 illustrate the outbreak sizes of the epidemic for the
500 simulations in the heavy-tail degree distribution. Fig. 1 pre-
sents the outbreak size from 500 simulations of the epidemic with-
out vaccination and the basic reproduction number R0 equals 7.2.
The proportion of simulations resulting in minor outbreaks is
0.402 which is in agreement with the computed extinction proba-
bility p = 0.413 obtained using methods presented in Section 2.4,
and the average size among major outbreaks is 265. Fig. 2A shows
the outbreak size after the implementation of the first vaccination
model with detection rate h = 5 and the proportion of located
friends q = 1. It is seen that there are never as many infected as
in the major outbreaks when no vaccination was in place. Still, sev-
eral of the outbreaks have quite a number of infected. For example,
the proportion of major outbreaks is 1 � p(1) = 0.010, indicating
that there still is a small risk of getting many infected for these par-
ticular parameter values. This is in agreement with the computed
reproduction number Rh,q = 2.1, which is above threshold. Fig. 2B
shows the corresponding results for the second vaccination model
with the same detection rate h = 5 and having m = 10 as bound on
the maximum number of individuals one person can infect (so the
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Fig. 2. Histograms of outbreak sizes for 500 simulations with n = 1000 individuals in th
model with h = 5 and q = 1, whereas in (B) (right) is the second vaccination model with
only difference between the two vaccination models is that in
model 2 individuals can at most infect 10 friends). All outbreaks
are now ‘minor’ (p(2) = 1), in fact no outbreak had more than five
infected people, which shows that the second vaccination model
is efficient. This too agrees with the computed reproduction num-
ber Rh,m = 0.92, below threshold. Hence, we note from Fig. 2 that
the second vaccination model is more effective when compared
with the first vaccination model. However, both vaccination mod-
els have big impact in stopping the disease from spreading when
compared with Fig. 1 for epidemics without vaccination.

5. Discussion

In the present paper, we have studied two vaccination models
implemented during the early stages of an epidemic outbreak.
We used contact tracing as part of epidemic control in the social
networks. The aim was to incorporate and determine the role of
delay time, from the point at which an individual becomes infec-
tious until he is detected and his friends are vaccinated. The repro-
duction numbers for the two vaccination models were derived and
compared through simulation and some numerical examples when
having Poisson and a heavy-tail degree distribution in the social
network.

It was shown that the first vaccination model was less effective
in preventing disease spread as compared to the second model
where also a maximal bound on the number of people one person
can infect was assumed. The second vaccination model is more
effective since the effect of individuals with many friends (super-
spreaders) is reduced. Since super-spreaders are more frequent
when having heavy-tail degree distributions, the difference be-
tween the models is greater for such degree distributions.

In general, if two different control strategies are compared, the
first having a larger reproduction number than the second, one
would typically expect the first strategy to have a smaller extinc-
tion probability and larger mean number of among major out-
breaks. We note the two vaccination models treated in the
1234
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e heavy-tail degree distribution. In (A) (left) we implemented the first vaccination
h = 5 and m = 10.
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present paper illustrate that this is not true in general. For instance,
when h = 20 and q = 0.5 model 1 in Table 2 yields the reproduction
number Rh,q = 3.9, and when h = 1 and m = 10 yield the reproduc-
tion number Rh,m = 3.5. Still, the proportion of minor outbreak is
p(1) = 0.778 for model 1 and p(2) = 0.694 for model 2, and the aver-
age size among major outbreaks is l(1) = 126 for model 1 and
l(2) = 172 for model 2. This illustrates that there is no direct rela-
tion between reproduction numbers and probabilities of major
outbreaks or of their sizes, but only that their relation to the critical
value of 1 determines whether or not major outbreaks are at all
possible.

The model for the social network can be made more realistic in
several ways. One underlying assumption is that an individual
chooses his/her friends independently of each other. In real life
there might be some assortative mixing (see [34]), meaning that
individuals with many (few) friends are connected to individuals
with many (few) friends. Also many real world networks show
strong clustering, implying that there is positive probability that
two individuals with a common friend are also friends. However,
to include these features in the social network would make the
analysis of the epidemic and comparison of the vaccination models
much harder. Another assumption is that the social network is con-
sidered fixed over time. This is appropriate for diseases with short
infectious periods but for diseases with long infectious period, a
dynamic social network would be preferred. The advantage with
a fixed network is that the expression of the reproduction number
can be derived and the performance of the vaccination models can
be analyzed and compared in more detail.

An important question not addressed in this paper is to study
the effects of different distributions for the infectious period and
delay time, and to introduce a latency period. To derive expressions
for the reproduction number in such situations after the imple-
mentation of our vaccination models are important problems.
Other interesting problems could be to numerically determine
the probability of major outbreaks and the final size when these
vaccination models are implemented and to compare the theoret-
ical results with the corresponding simulation results in Tables 1
and 2. We still believe the findings of the present paper give some
insight into possible effects of different vaccination strategies and
that the qualitative conclusions may be valid in more complex and
realistic settings.
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