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a b s t r a c t

A stochastic epidemic model allowing for both mildly and severely infectious individuals is defined,
where an individual can become severely infectious directly upon infection or if additionally exposed
to infection. It is shown that, assuming a large community, the initial phase of the epidemic may be
approximated by a suitable branching process and that the main part of an epidemic that becomes estab-
lished admits a law of large numbers and a central limit theorem, leading to a normal approximation for
the final outcome of such an epidemic. Effects of vaccination prior to an outbreak are studied and the crit-
ical vaccination coverage, above which only small outbreaks can occur, is derived. The results are illus-
trated by simulations that demonstrate that the branching process and normal approximations work
well for finite communities, and by numerical examples showing that the final outcome may be close
to discontinuous in certain model parameters and that the fraction mildly infected may actually increase
as an effect of vaccination.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

For several infectious diseases infected people get different
severity of the disease and the degree of severity may also affect
the ability to spread the disease further. Examples of such diseases
are dengue fever (Mangada and Igarashi [1]), measles (Morley and
Aaby [2]) and varicella (Parang and Archama [3]). In the present pa-
per, we analyse a stochastic epidemic model allowing for different
severities. More precisely the model has two degrees of severity,
mild and severe, and the degree of severity affects both the rate of
contact an infective has with other individuals and the probabilities
that the contacted individuals becomes mildly or severely infected.
Additional to an individual becoming severely infected directly
upon infection, the model also allows for mildly infectious individu-
als to become severe if exposed further to the disease. We also define
a vaccine response model where the vaccine may reduce susceptibil-
ity, infectivity and/or the length of the infectious period.

As the community size increases we show that the initial phase
of an epidemic with few initial infectives may be approximated by
a suitable branching process (in which individuals cannot change
from mild to severe!) and the basic reproduction number R0 is de-
rived; R0 > 1 indicates that a significant fraction of the community
may become infected, i.e. that a major epidemic may occur. Also
assuming that the community size tends to infinity, a law of large
numbers and central limit theorem for the final number of mild

and severely infected are obtained for the situation where there
is a major outbreak. We also sketch the corresponding results for
the case that a fraction v of the community are vaccinated prior
to introduction of the disease, and derive the critical vaccination
coverage vc needed to surely prevent a major outbreak.

The results are illustrated by numerical examples. We show by
means of simulations that the branching approximation, and the
central limit theorem for the final outcome in the event of a major
outbreak, work satisfactorily as an approximation in a finite com-
munity. We also illustrate how the limiting final proportion in-
fected depends on certain model parameters and how the
proportion is reduced as a function of v for three specific vaccine
response cases denoted all-or-nothing, leaky and non-random.

Even though deterministic limits for the final proportion in-
fected are obtained, they are not very explicit in the parameters;
for this reason we give some more explicit bounds. We also show
that the final proportion infected can be close to discontinuous in
certain model parameters. Another observation is that the propor-
tion mildly infected need not be monotonically decreasing in v, the
fraction vaccinated, implying that vaccinating more individuals
can have the effect that more people become mildly infected. Final-
ly, we show that even though a vaccine response reducing infectiv-
ity by a certain factor gives the same reproduction number as if
instead the length of the infectious period is reduced by the same
factor, the two vaccine responses do not give identical fractions
ultimately infected.

In Section 2, the epidemic and vaccine response models are de-
fined. In Section 3, we present our main results together with short
heuristic motivations for them. The illustrative examples are given
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in Section 4 and formal proofs for most of our results appear in Sec-
tion 5. The paper ends with a short discussion in Section 6.

2. The epidemic model and vaccination response model

2.1. The infector–exposure dependent severity epidemic model

We now define the infector–exposure dependent severity (IEDS)
epidemic model. In the model there are two types of disease severity,
mild and severe, and an individual may become mild or severe upon
infection, with probabilities of the two alternatives depending on
whether the individual was infected by a mildly or severely infec-
tious individual. Additionally, a mildly infectious individual may
turn into a severely infectious individual if he/she is subsequently
exposed to the infection. From now on we simplify terminology
and (somewhat incorrectly) denote a mildly infectious individual a
mild infective and a severely infectious individual a severe infective.

Consider a closed homogeneously mixing community having
initially, i.e. at time t ¼ 0, n susceptibles, mM mild infectives and
mS severe infectives. Mild infectives have close contact with others,
chosen uniformly at random from the n initial susceptibles, at rate
kM and severe infectives have close contact with others, chosen
uniformly at random from the n initial susceptibles, at rate kS. A
close contact by a mild infective with a susceptible results in the
contacted susceptible becoming mildly infective with probability
pMM and severely infected with the complimentary probability
pMS ¼ 1� pMM. Similarly, a close contact by a severe infective with
a susceptible results in the latter becoming mildly infected with
probability pSM and severely infected with the remaining probabil-
ity pSS ¼ 1� pSM. Further, a mild infective ‘‘reinfects” any given
mild infective at rate kMaM=n, and a severe infective ‘‘reinfects”
any given mild infective at rate kSaS=n, where ‘‘reinfects” means
that the contacted mild infective becomes a severe infective. Final-
ly, mild infectives recover and become immune at rate cM and se-
vere infectives recover and become immune at rate cS, implying
that (without reinfection) the infectious periods are assumed to
be exponentially distributed. All contact processes, removal pro-
cesses and uniform ‘selections’ are assumed to be mutually inde-
pendent. For t P 0, let XðnÞðtÞ ¼ ðXðtÞ;YMðtÞ;YSðtÞ; ZMðtÞ; ZSðtÞÞ,
where XðtÞ;YMðtÞ;YSðtÞ; ZMðtÞ and ZSðtÞ denote, respectively, the
number of susceptibles, the number of mild infectives, the number
of severe infectives, the number of recovered from the mild state
and the number of recovered from the severe state at time t.

Note that, for ‘‘historical” reasons, the scaling in the individual
contact rate divides the contact rates by the initial number of suscep-
tible individuals ðnÞ rather than by the population size nþmM þmS

which might seem more natural. For the same reason we later con-
sider ‘‘proportions” of individuals in the different states by dividing
by n rather than by nþmM þmS. The norming matters only in the
limit as n!1 and there is a distinction between the two versions
only when the initial ‘‘proportion” of infectives ðmM þmSÞ=n tends
to a strictly positive number. Results for the population proportions
can then be obtained by a simple linear transformation.

The present model has several other models studied earlier as
special cases. If, for instance, aM ¼ aS ¼ 0 there is no possibility
to shift infectious state and we then have the infector-dependent
severity (IDS) model investigated by Ball and Britton [4]. Two spe-
cial cases (assuming aM ¼ aS ¼ 0) are where pMM ¼ pSM ¼ 1, when
all infected individuals become mildly infected, or the opposite,
pMM ¼ pSM ¼ 0, when all become severely infected. We then have
the general stochastic epidemic (see, for example, Bailey [5, Chap-
ter 6]) with (individual to individual) infection rate nkM and re-
moval rate cM (or nkS and cS, respectively), except possibly for
the initial infectives. Another special case here is when
pMM ¼ pSS ¼ 1, so the type of an infected individual is always the

same as that of his/her infector. The model then becomes the so-
called competing epidemic model studied by Kendall and Saunders
[6], Scalia-Tomba and Svensson [7] and Scalia-Tomba [8].

If instead pMS ¼ pSS ¼ 0, all infected individuals first become
mildly infected but may later become severely infected if addition-
ally exposed to infection. We then have a model that is very similar
to the exposure dependent severity (EDS) model studied by Ball
and Britton [9]. The present model differs from the EDS model in
that if a mildly infectious individual is reinfected then he/she
immediately stops being a mild infective and becomes a severe
infective. In the EDS model, the mild and severe infectious periods
can overlap, or be completely disjoint, and the severe state has
more the interpretation of being an additional infection pressure.

Another special case is when kM ¼ kS ð¼ kÞ and cM ¼ cS ð¼ cÞ.
Then there is no difference in how much infectivity the two sever-
ities generate, so the total number of infected behaves like the gen-
eral stochastic epidemic model with infection and removal rates nk
and c, respectively.

2.2. A vaccination response model

Suppose that, prior to the outbreak, a fraction v of the susceptible
population is vaccinated. We now describe the vaccine response
model. Each individual that is vaccinated has an independent ran-
dom vaccine response described by a three dimensional random
vector ðA;B;HÞ, where A P 0 is associated with the susceptibility
and B P 0 and H P 0 are associated with the infectivity and infec-
tious period in the event that the individual does become infected.
In general, the random variables A; B and H may be correlated, and
typically they are all bounded above by 1 (unless the vaccine in-
creases susceptibility, infectivity or the length of the infectious per-
iod). More specifically, an individual who has vaccine response
ða; b; hÞ has relative risk a of becoming infected (either mildly or se-
verely) from a contact, when compared to an unvaccinated individ-
ual. If the vaccinated person becomes infected, the close contact rate
is reduced by the factor bh, compared to an unvaccinated infectious
individual of the same type. Further, the recovery rate of the individ-
ual is changed, compared to an unvaccinated infective of the same
type, by the factor bh�1 (so when b < 1 and h < 1 the recovery rate
is increased implying a shorter infectious period, due to the vaccine).
Finally, vaccination is assumed to have an equivalent effect on the
reinfection process. Thus the rate that a mildly infected vaccinated
individual, who has vaccine response ða; b; hÞ, switches to being se-
verely infected is reduced by the factor a and the rate at which a vac-
cinated infective, who has vaccine response ða; b; hÞ, makes
switching contacts is reduced by the factor bh.

The meaning of a is hence the relative susceptibility of the vac-
cinee (compared to an unvaccinated individual), b is the relative
expected infectious force, or equivalently the relative expected
accumulated infectivity, exerted by the vaccinee if infected and h
quantifies if the reduction in infectious force is due to a lower
infectivity while infectious and/or a shorter infectious period. Of
the two parameters affecting the infectious force, b denoting its
(relative) expected value is in this sense more central, whereas h
only quantifies how the reduction is obtained in terms of lower
infectivity and/or shorter infectious period. The case h ¼ 1 corre-
sponds to only lower infectivity but unchanged infectious period,
and h ¼ 0 is the other extreme where the infectivity is unchanged
but the infectious period is reduced. If PðH ¼ 1Þ ¼ 1, so the infec-
tious period of an infected individual is unchanged by vaccination,
then the vaccine response model reduces to the one introduced by
Becker and Starczak [10].

There are various measures of vaccine efficacy that can be de-
fined for this vaccine action model, according to whether reduction
in susceptibility, infectivity or susceptibility–infectivity is of inter-
est, cf. Becker et al. [11]. The one used in this paper is
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VESI ¼ 1� E½AB�. Note that for a single-type epidemic among a
homogeneously mixing population, if a proportion v of the popula-
tion are vaccinated in advance of an outbreak then, under the pres-
ent vaccine response model, the basic reproduction number R0 is
reduced to ð1� vVESIÞR0 (cf. Becker and Starczak [10]).

In what follows, we study two specific forms of vaccine re-
sponse. The first one is where ðA;B;HÞ ¼ ð0; �; �Þ with probability
e, and ðA;B;HÞ ¼ ð1;1;1Þ with the remaining probability 1� e.
(Note that whenever A ¼ 0 a vaccinated individual cannot be in-
fected, so the reduction in infectivity and/or duration of infectious
period, if infected, become irrelevant.) This vaccine response, de-
fined in Smith et al. [12], is commonly known as the all-or-nothing
vaccine response (Halloran et al. [13]) and has VESI ¼ e. The other
vaccination response treated in the present paper is
ðA;B;HÞ ¼ ða; b; hÞ with probability 1, for some constants a, b and
h, so VESI ¼ 1� ab. Following Ball and Lyne [14], we call this vac-
cine response the non-random vaccine response. It is worth noting
that, for the non-random vaccine response, when h ¼ 1 the infec-
tivity is reduced to b, relative to an unvaccinated individual, and
the infectious period is unchanged; and h ¼ 0 implies that the
infectivity is unchanged but the average infectious period is re-
duced to b, relative to an unvaccinated individual. In fact, the
reduction in infectivity multiplied by the reduction in infectious
period equals bh

=bh�1 ¼ b which is hence independent of h. Never-
theless, h does have an effect on the outcome of the epidemic, as is
illustrated in Section 4. If b ¼ 1 in the non-random case, then the
vaccine response is the so-called leaky response (Halloran et al.
[13]). Note that in this case the value of h is irrelevant and
VESI ¼ 1� a, so the efficacy of an all-or-nothing vaccine can be
matched by setting a ¼ 1� e.

3. Main results and heuristic arguments

In this section, we present large population properties of the
IEDS model, first without and then with vaccination. The results
are asymptotic assuming the population size tends to infinity.
Alongside the results we also give heuristic arguments supporting
the results. Proofs to most results are given in Section 5.

3.1. Initial stages of the epidemic

Assume that n, the initial number of susceptibles, is large but
that the initial number of mild and severe infectives mM and mS

are small (in the asymptotic setting n tend to infinity whereas
mM and mS are kept fixed). Then the initial stages of the epidemic
can be approximated by a two-type branching process. This fol-
lows because it is very unlikely that infective individuals happen
to have contact with individuals who have already been contacted,
so infectives infect new individuals (more or less) independently of
each other; such independence is the fundamental assumption in a
branching process. For the same reason, during the early stages it is
very unlikely that an infective will ‘‘reinfect” a mild infective, since
the rate at which this happens is proportional to the proportion of
the population that are mildly infected, and hence is small during
the early stages when n is large. Thus these reinfections do not oc-
cur in the approximating branching process, so it is identical to the
approximating branching process of the IDS-model (Ball and Brit-
ton [4]) in which mildly infected individuals cannot be reinfected
to become severely infected.

It follows that the process of infectives in the early stages of the
IEDS epidemic model in a large community may be approximated
by a two-type branching process. The two types, M and S (corre-
sponding to mild and severe infectives, respectively), have
exponential lifetimes with parameters cM and cS (i.e. means c�1

M

and c�1
S ), respectively. While alive, M-individuals give birth to

M-individuals at rate kMpMM and S-individuals at rate kMpMS, and
S-individuals give birth to M-individuals at rate kSpSM and S-indi-
viduals at rate kSpSS. The approximating branching process is initi-
ated with mM M-individuals and mS S-individuals.

The mean offspring matrix of this branching process is

M ¼
lMM lMS

lSM lSS

� �
:¼

kMpMM=cM kMpMS=cM

kSpSM=cS kSpSS=cS

� �
; ð3:1Þ

each component being the close-contact rate multiplied by the
average length of the infectious period (1=cM and 1=cM for mild
and severe infectives, respectively). The basic reproduction number
R0 (e.g. Heesterbeek and Dietz [15]) equals the largest positive
eigenvalue of M, which can be shown to equal

R0 ¼
1
2

lMM þ lSS þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlMM þ lSSÞ

2 þ 4
kMkS

cMcS
ð1� pMM � pSSÞ

s !
:

ð3:2Þ

It is well known (e.g. Haccou et al. [16, p. 123]) that, provided
lMSlSM–0 (i.e. both lMS and lSM are non-zero), the branching pro-
cess has non-zero probability of taking off if and only if R0 > 1. Note
that if kM > 0 and kS > 0 then lMSlSM–0 if and only if pMS and pSM

are both strictly positive.
It is also possible to derive the probability that the epidemic takes

off using branching process theory. A mild infective infects new mild
cases at the rate kMpMM and new severe cases at the rate kMpMS, dur-
ing its infectious period which is exponentially distributed having
mean 1=cM. Conditional upon the length of the infectious period,
the number of infected of the two types are independent and Poisson
distributed. Removing the conditioning makes the two random vari-
ables dependent. One way to describe their joint distribution is that
their sum is geometrically distributed with probability parameter
cM=ðcM þ kMÞ (and mean k M=cM) and, given the sum, the number
of mildly infected is binomially distributed with number of trials gi-
ven by this sum and success probability pMM. Let ðXMM;XMSÞ be a
bivariate random variable giving the numbers of mild and severe
cases created by a typical mild infective and define ðXSM;XSSÞ simi-
larly for a typical severe infective. Then, exploiting the above condi-
tioning yields that the probability generating functions qM and qS of
ðXMM;XMSÞ and ðXSM;XSSÞ, respectively, are

qMðs1; s2Þ ¼ E sXMM
1 sXMS

2

� �
¼ cM

cM þ kMðpMMð1� s1Þ þ pMSð1� s2ÞÞ
; ð3:3Þ

qSðs1; s2Þ ¼ E sXSM
1 sXSS

2

� �
¼ cS

cS þ kSðpSMð1� s1Þ þ pSSð1� s2ÞÞ
: ð3:4Þ

If the epidemic is initiated by one mild infective, then the epidemic
will not take off if and only if every individual that the initial person
infects (if any) avoids creating a major outbreak. Let pM denote the
probability that the epidemic does not take off given that it is
started by one mild infective, and let pS denote the corresponding
probability when the epidemic is started by one severe infective.
Then the above reasoning (well known from branching process the-
ory) motivates that pM and pS must solve the equations

xM ¼
X

i;j

xi
Mxj

SPðXMM ¼ i;XMS ¼ jÞ

¼ qMðxM; xSÞ ¼
cM

cM þ kMðpMMð1� xMÞ þ pMSð1� xSÞÞ
;

xS ¼
X

i;j

xi
Mxj

SPðXSM ¼ i;XSS ¼ jÞ

¼ qSðxM; xSÞ ¼
cS

cS þ kSðpSMð1� xMÞ þ pSSð1� xSÞÞ
:
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It can be shown that, when R0 > 1 and lMSlSM–0, then these equa-
tions have a unique solution ðpM;pSÞ in ½0;1Þ2, and these are the
probabilities of avoiding a major outbreak when starting with one
mild infective, or one severe infective, respectively. If the epidemic
is initiated by mM mild and mS severe infectives, then the probabil-
ity that the epidemic takes off equals

Pðmajor outbreakjmM;mSÞ ¼ 1� pmM
M pmS

S : ð3:5Þ

If lMSlSM ¼ 0 the branching process is decomposable (see e.g. Hac-
cou et al. [16, p. 26]) and ðpM;pSÞ can be determined by considering
an appropriate embedded single-type branching process.

Let ðZM; ZSÞ denote the ultimate number of individuals ever born
in the branching process. Similarly, let ðZðnÞM ; ZðnÞS Þ be the final num-
ber of removed of the two types in the epidemic starting with n
susceptible individuals. Then it can be shown that the distribution
of ðZðnÞM ; ZðnÞS Þ converges to that of ðZM; ZSÞ as n!1; see Corollary
5.2 in Section 5.1, where the stronger, almost sure convergence is
proved. The latter is the distribution of the total progeny of a
two-type branching process. If R0 > 1 the branching process can
grow beyond all limits, thus implying that the distribution of
ðZM; ZSÞ is defective, with strictly positive probability that both ran-
dom variables are infinite. For the epidemic this corresponds to the
case that there is a major outbreak meaning that the number of
ultimately infected is of order n rather than of order 1. The size
of such an outbreak is described in the next subsection. In Section
4.1, we illustrate how the distinction of minor and major outbreaks
in a finite community can be determined using the branching pro-
cess approximation.

3.2. Limiting epidemic process

Suppose that n is large and assume that the limits
lM :¼ limn!1mM=n and lS :¼ limn!1mS=n exist. As described fur-
ther in Section 5.2, provided that lM þ lS > 0, the stochastic IEDS
model can be approximated by a deterministic model. More pre-
cisely, if we let XðnÞ ¼ fXðnÞðtÞ : t P 0g, where, for t P 0,

XðnÞðtÞ ¼ XðnÞðtÞ;Y ðnÞM ðtÞ;Y
ðnÞ
S ðtÞ; Z

ðnÞ
M ðtÞ; Z

ðnÞ
S ðtÞ

� �
¼ 1

n
XðtÞ;YMðtÞ;YSðtÞ; ZMðtÞ; ZSðtÞð Þ;

then it can be shown that, as n tends to infinity, this normalised
process converges to the solution x ¼ fxðtÞ : t P 0g of the following
set of differential equations

dx
dt ¼ �ðkMyM þ kSySÞx;
dyM
dt ¼ ðkMpMMyM þ kSpSMySÞx� ðkMaMyM þ kSaSySÞyM � cMyM;

dyS
dt ¼ ðkMpMSyM þ kSpSSySÞxþ ðkMaMyM þ kSaSySÞyM � cSyS;

dzM
dt ¼ cMyM;

dzS
dt ¼ cSyS;

9>>>>>>>=>>>>>>>;
ð3:6Þ

with initial condition

xð0Þ ¼ ðxð0Þ; yMð0Þ; ySð0Þ; zMð0Þ; zSð0ÞÞ ¼ ð1;lM;lS; 0;0Þ: ð3:7Þ

Further, as described in Section 5.2, a weak convergence result can
also be derived using theory for density dependent Markov pro-
cesses (Ethier and Kurtz [17]) showing that the process
V ðnÞ ¼ fV ðnÞðtÞ : t P 0g, where

V ðnÞðtÞ :¼
ffiffiffi
n
p
ðXðnÞðtÞ � xðtÞÞ ðt P 0Þ;

converges to a Gaussian process, whose covariance function can, in
principle, be determined. These results can be extended heuristi-
cally to hold also for the end of the epidemic, the time of which
tends to infinity as n!1, by making a suitable random time trans-

formation. This suggests that the final number of mildly and se-
verely removed cases ðZðnÞM ; ZðnÞS Þ satisfy a central limit theorem:

ffiffiffi
n
p ZðnÞM

n � zMð1Þ
ZðnÞS

n � zSð1Þ

0@ 1A!D N
0
0

� �
;RZð1Þ

� �
; as n!1; ð3:8Þ

where!D denotes convergence in distribution and RZð1Þ is the low-
er right 2� 2 sub-matrix of the matrix BeRð~sÞB> in (5.22) and > de-
notes transpose. An outline for the heuristic proof of this result is
given in Section 5.2. The central limit theorem is illustrated in Sec-
tion 4.2, where simulations of the IEDS model show that the normal
approximation works well.

Unfortunately, it is not possible to express the deterministic
limit ðzMð1Þ; zSð1ÞÞ, nor the variance matrix RZð1Þ in a very expli-
cit form in order to study their dependence on the model parame-
ters ðkM; kS; pMM; pMS; pSM; pSS; cM; cS;aM;aSÞ. In Section 4.2, we give
some numerical illustrations and also show that the final propor-
tion infected zMð1Þ þ zSð1Þmay be close to discontinuous in some
parameters. Even though the deterministic limits are not very ex-
plicit it is possible to get bounds, that are more explicit, on the final
proportion infected. This is done in the next two subsections.

3.3. Final outcome of deterministic model

The first, fourth and fifth equation in (3.6) imply that

dx
dt
¼ �x RM

dzM

dt
þ RS

dzS

dt

� �
;

where RM ¼ kM=cM and RS ¼ kS=cS, which, when integrated, together
with the initial condition (3.7), yields

xðtÞ ¼ exp½�ðRMzMðtÞ þ RSzSðtÞÞ� ðt P 0Þ: ð3:9Þ

Let ẑM ¼ zMð1Þ and ẑS ¼ zSð1Þ be the final proportion of mild and
severe removed cases, respectively. Let l ¼ lM þ lS. Then, letting
t !1 in (3.9) and noting that xð1Þ ¼ 1þ l� ẑM � ẑS, shows that
ðẑM; ẑSÞ satisfies

1þ l� ẑM � ẑS ¼ exp½�ðRMẑM þ RSẑSÞ�: ð3:10Þ

If RM ¼ RS then it follows from (3.10) that ẑM þ ẑS satisfies the usual
(non-linear) equation giving the final size of the standard determin-
istic SIR epidemic, viz. 1þ l� z ¼ expð�R0zÞ, where R0 is the com-
mon value of RM and RS. Let ẑ denote the greatest root of this
equation. Then ðẑM; ẑSÞ satisfies the linear equation ẑM þ ẑS ¼ ẑ. Sup-
pose that RM–RS, and assume without loss of generality that
RM < RS. We describe now some properties of ðẑM; ẑSÞ, formal proofs
of which may be found in Appendix A.

Suppose first that l > 0 and let z�S be the unique positive root
of 1þ l� z ¼ expð�RSzÞ. For ẑS 2 ½0; z�S�, there is a unique
ẑM 2 ½0;1þ lÞ such that ðẑM; ẑSÞ satisfies (3.10), and there is no
solution of (3.10) in the first quadrant with ẑS > z�S. Thus, the Eq.
(3.10) defines implicitly a function h : ½0; z�S� ! ½0;1þ lÞ, where,
for ẑS 2 ½0; z�S�, hðẑSÞ gives the value of ẑM so that ðẑM; ẑSÞ satisfies
(3.10). An example of the function h is illustrated by the dashed
line in the right panel of Fig. 3. The function h is concave and sat-
isfies hð0Þ ¼ z�M, where z�M is the unique positive root of
1þ l� z ¼ expð�RMzÞ, and hðz�SÞ ¼ 0. The solutions of (3.10) lie
on the curve ðẑM; ẑSÞ ¼ ðhðẑSÞ; ẑSÞ ð0 6 ẑS 6 z�SÞ that joins ðz�M;0Þ to

ð0; z�SÞ in the first quadrant. Further, if RS P ð1þ lÞ�1 then
h is injective if and only if RM P R�M, where R�M ¼max
ðRS log RS=½RSð1þ lÞ � 1�;0Þ, while, if RS < ð1þ lÞ�1 then h is not
injective for any RM < RS. (The function h being injective means
that whenever zð1ÞS ; zð2ÞS 2 ½0; z�S� are distinct then hðzð1ÞS Þ–hðzð2ÞS Þ.)
Moreover, hðẑSÞ þ ẑS is strictly increasing in ẑS for ẑS 2 ð0; z�SÞ. This
means that the ‘‘proportion” of the population who are ultimately
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infected by the deterministic IEDS epidemic satisfies
z�M 6 ẑM þ ẑS 6 z�S. (Recall that it is assumed that RM < RS. If
RM > RS then of course the bounds z�M and z�S are switched.)

Similar results hold when l ¼ 0. Still assuming that RM < RS, if
RS 6 1 then (0,0) is the only solution of (3.10) in the first quadrant.
If RS > 1 then (0,0) is still a solution of (3.10), corresponding to a
minor outbreak in the stochastic model although we are not con-
sidering probabilities of such, but major outbreaks are now possi-
ble and, for large populations, their asymptotic final size satisfies
(3.10) with ðẑM; ẑSÞ–ð0;0Þ. As in the case l > 0, the Eq. (3.10) de-
fines implicitly a function h : ½0; z�S� ! ½0;1Þ, where z�S is now the
non-zero solution of 1� z ¼ expð�RSzÞ. All the above results con-
cerning the function h and the behaviour of hðẑSÞ þ ẑS continue to
hold, except now z�M is given by the largest real solution of
1� z ¼ expð�RMzÞ. Hence, z�M ¼ 0 if RM 6 1 and z�M > 0 if RM > 1.
Thus, if RM 6 1, the solutions of (3.10) lie on a curve that joins
(0,0) to ð0; z�SÞ, whilst, if RM > 1, they lie on a curve that joins
ðz�M;0Þ to ð0; z�SÞ, where z�M > 0.

Note that in general (3.10) does not determine the final out-
come of the deterministic IEDS epidemic. Except for a few very
special cases, discussed in Ball and Britton [4], Section 2.2.2, it is
not possible to derive a second, independent equation satisfied
by ðẑM; ẑSÞ.

3.4. Bounds on the final size

Let R0 ¼minðRM;RSÞ and R0 ¼maxðRM;RSÞ. Then the theory in
Section 3.3 shows that, for lM P 0 and lS P 0, the final fraction in-
fected in the deterministic IEDS model, zMð1Þ þ zSð1Þ, satisfies

zmin 6 zMð1Þ þ zSð1Þ 6 zmax; ð3:11Þ

where zmin and zmax are the largest roots of

1þ lM þ lS � z ¼ e�R0z and 1þ lM þ lS � z ¼ e�R0z;

respectively. Thus, the limiting proportion ever infected in the
deterministic IEDS model is bounded between those of the
general deterministic epidemic with basic reproduction num-
bers R0 and R0. The smaller the difference between R0 and
R0, the narrower the bounds (3.11) become. If R0 ¼ R0, then
zmin ¼ zmax and the model is closely related to the general epi-
demic model, except that some infectives are labelled mild and
others severe.

Suppose that lM ¼ lS ¼ 0: If pMM þ p SM ! 0 and/or
aM þ aS !1 (implying that nearly all infectives are severe cases),
then zMð1Þ ! 0 and zSð1Þ converges to zmax if R0 ¼ RS (the typical
case) and to zmin otherwise. Similarly, if pMS þ pSS ! 0 and
aM þ aS ! 0 (so nearly all infectives are mild), then zSð1Þ ! 0
and zMð1Þ converges to zmin if R0 ¼ RM (the typical case) and to
zmax otherwise. Essentially the same results hold if lM þ lS > 0:

Similar bounds to (3.11) hold for the stochastic IEDS model.
Specifically,

Zmin6
st

ZMð1Þ þ ZSð1Þ6
st

Zmax; ð3:12Þ

where Zmin and Zmax are the total sizes of the general stochastic epi-
demics, with initially mM þmS infectives and n susceptibles, having
basic reproduction numbers R0 and R0, respectively, and 6

st
denotes

stochastically less than. The stochastic inequalities (3.12) are
proved in Appendix B by extending the construction of Sellke [18]
to the IEDS model.

3.5. Effects of vaccination

We now analyse the effect of vaccinating a proportion v of sus-
ceptibles prior to an outbreak.

3.5.1. The all-or-nothing vaccine response
We start with the all-or-nothing response, where a vaccinated

individual is completely immune with probability e (for efficacy)
and the vaccination has no effect with the remaining probability
1� e. It is easy to model the effects of this vaccine response. In a large
community, a fraction 1� v þ vð1� eÞ ¼ 1� ve are (fully) suscepti-
ble and the remaining fraction ve are completely immune, and that is
all that is changed compared to the situation without vaccination.

This implies that we can approximate the initial stages with a
two-type branching process having the same death rates as before
but with all birth rates reduced by a factor ve, so the former birth
rates should all be multiplied by the factor 1� ve. The matrix of
mean offspring is hence the former (Eq. 3.1) multiplied by 1� ve,
and the new reproduction number equals the former (R0 defined
in (3.2)) multiplied by 1� ve:

RðAoNÞ
v ¼ ð1� veÞR0: ð3:13Þ

The critical vaccination coverage v ðAoNÞ
c is the fraction v necessary to

reduce RðAoNÞ
v down to 1. From the form of RðAoNÞ

v , it is immediately
seen that, when 1 < R0 6 ð1� eÞ�1, the critical vaccination coverage
is given by

v ðAoNÞ
c ¼ 1

e
1� 1

R0

� �
: ð3:14Þ

If R0 > ð1� eÞ�1, vaccination alone cannot be sure of preventing a
major outbreak.

Starting with few initial infectives, RðAoNÞ
v 6 1 implies that there

can be no major outbreak whereas if RðAoNÞ
v > 1 there is a possibility

for a major outbreak. The probability for a major outbreak may also
be derived using branching process theory, similar to the case with-
out vaccination. If the epidemic does take off the epidemic process
may be approximated by the same set of differential equations as
without vaccination, Eq. (3.6), but with initial condition
ðxð0Þ; yMð0Þ; ySð0Þ; zMð0Þ; zSð0ÞÞ ¼ ð1� ve;lM;lS;0;0Þ. In Section
4.3, we illustrate how the limiting final size of the two types change
with v for fixed vaccine efficacy e and IEDS model parameters.

3.5.2. The non-random vaccine response
For the non-random vaccine response things are a bit more

complicated. As before it is possible to approximate the initial
stages by a branching process to derive a reproduction number
RðNRÞ

v and to approximate the epidemic process by a deterministic
system in the event that the epidemic takes off. The difference is
that we now have four types of infectious individual: mild unvac-
cinated, severe unvaccinated, mild vaccinated and severe vacci-
nated. The mean offspring matrix for the approximating
branching process is hence a 4� 4 matrix. However, its form is
quite similar to the offspring matrix without vaccination. For in-
stance, the expected number of mild unvaccinated that a mild
unvaccinated infects during its infectious period equals
lMU;MU ¼ ðkM=cMÞp MMð1� vÞ ¼ ð1� vÞlMM and the average num-
ber of mild vaccinated individuals this person infects equals
lMU;MV ¼ ðkM=cMÞpMMva ¼ valMM. This is true because the fraction
v are vaccinated, and each vaccinated individual has relative risk a
of becoming infected, compared to an unvaccinated individual.
Similarly, a mild vaccinated infects, on average, lMV;MU¼
bhðkM=bh�1cMÞpMMð1�vÞ¼bðkM=cMÞpMMð1�vÞ¼ ð1�vÞblMM mild
unvaccinated and lMV;MV ¼ bðkM=cMÞpMMva ¼ vablMM mild vacci-
nated. The other terms in the mean offspring distributions are
obtained similarly. It is worth noting that the parameter h, quanti-
fying if the reduced infection pressure of vaccinees comes from
lower infectivity and/or shorter infectious period, does not enter
the mean offspring matrix. Consequently, this parameter does
not have an effect on determining whether or not an outbreak
may occur – however, in Section 4.3 we see that it does have an ef-
fect on how many are infected if an outbreak actually occurs.
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Let MðNRÞ
v denote the mean offspring matrix of the above branch-

ing process, with the types ordered MU, SU, MV, SV. Then,

MðNRÞ
v ¼

ð1�vÞlMM ð1�vÞlMS valMM valMS

ð1�vÞlSM ð1�vÞlSS valSM valSS

ð1�vÞblMM ð1�vÞblMS vablMM vablMS

ð1�vÞblSM ð1�vÞblSS vablSM vablSS

26664
37775¼Vv

ab�M;

ð3:15Þ

where � denotes Kronecker product, the matrix of higher dimen-
sion having each pairwise product as a separate matrix element
(see e.g. Bellman [19, p. 235]), and

Vv
ab ¼

1� v va

ð1� vÞb vab

� �
: ð3:16Þ

The reproduction number RðNRÞ
v is given by the largest eigenvalue

MðNRÞ
v , which, in view of (3.15) is the product of the largest eigen-

values of Vv
ab and M. Recall that the largest eigenvalue of M is R0.

The matrix Vv
ab has rank one, so its largest eigenvalue equals its

trace, 1� vð1� abÞ, whence

RðNRÞ
v ¼ ð1� vð1� abÞÞR0: ð3:17Þ

We see that this is very similar to the reproduction number RðAoNÞ
v in

(3.13), the only difference being that e is replaced by 1� ab. The
factor 1� ab may be interpreted as the vaccine efficacy for the
non-random vaccine response, as noted in Section 2.2. The critical
vaccination coverage v ðNRÞ

c hence has the following form, assuming
1 < R0 6 ðabÞ�1:

v ðNRÞ
c ¼ 1

1� ab
1� 1

R0

� �
: ð3:18Þ

When R0 > 1=ðabÞ, then vaccination alone cannot surely prevent a
major outbreak occurring.

If RðNRÞ
v > 1 the epidemic may take off even if the epidemic is ini-

tiated by few infectives. If the community size n is large the epi-
demic may then be approximated by the following set of
differential equations:

dxU

dt
¼ � kMðyMU þ bhyMVÞ þ kSðySU þ bhySVÞ

� �
xU;

dxV

dt
¼ �a kMðyMU þ bhyMVÞ þ kSðySU þ bhySVÞ

� �
xV;

dyMU

dt
¼ kMpMMðyMU þ bhyMVÞ þ kSpSMðySU þ bhySVÞ
� �

xU

� kMaMðyMU þ bhyMVÞ þ kSaSðySU þ bhySVÞ
� �

yMU � cMyMU;

dyMV

dt
¼ a kMpMMðyMU þ bhyMVÞ þ kSpSMðySU þ bhySVÞ

� �
xV

� a kMaMðyMU þ bhyMVÞ þ kSaSðySU þ bhySVÞ
� �

yMV � bh�1cMyMV;

dySU

dt
¼ kMpMSðyMU þ bhyMVÞ þ kSpSSðySU þ bhySVÞ
� �

xU

þ kMaMðyMU þ bhyMVÞ þ kSaSðySU þ bhySVÞ
� �

yMU � cSySU;

dySV

dt
¼ a kMpMSðyMU þ bhyMVÞ þ kSpSSðySU þ bhySVÞ

� �
xV

þ a kMaMðyMU þ bhyMVÞ þ kSaSðySU þ bhySVÞ
� �

yMV � bh�1cSySV;

dzMU

dt
¼ cMyMU;

dzMV

dt
¼ bh�1cMyMV;

dzSU

dt
¼ cSySU;

dzSV

dt
¼ bh�1cSySV;

with initial condition xUð0Þ ¼ 1� v , xVð0Þ ¼ v , yMUð0Þ ¼ lM,
ySUð0Þ ¼ lS, and the remaining coordinates equal to 0.

By analysing this system of differential equations it is possible
to see what fraction of the different types are removed at the
end of the epidemic, i.e. to study zMUð1Þ, zMVð1Þ, zMVð1Þ and
zMVð1Þ. In Section 4.3, we give some numerical illustrations which
show how the proportion ultimately infected varies with the vac-
cine coverage v. It is also seen there that these proportions depend
on the vaccine response parameter h.

4. Numerical examples

Below we give some examples supporting our limiting results
and illustrating some interesting features of the model.

4.1. Illustration of branching process approximation

In Section 3.1, it is explained that the distribution of the final
number infected of the two types, ðZðnÞM ; ZðnÞS Þ, converges to the dis-
tribution of ðZM; ZSÞ, the total numbers ever born in a certain two-
type branching process. In particular, the final numbers of infected
tend to infinity (with n) with the same probability as the branching
process grows beyond all limits. This means that for finite but fairly
large n, the distribution of ðZðnÞM ; ZðnÞS Þ is concentrated on two parts:
small numbers (minor outbreak) or close to some large determin-
istic value (obtained from the deterministic model) of order n. This
is illustrated in Fig. 1 where we show histograms of the final num-
ber infected (of either type) from 10000 simulations for a specific
set of parameter values, namely cM ¼ cS ¼ 1, kM ¼ 1 kS ¼ 2:5,
aM ¼ aS ¼ 1, pMM ¼ 0:8; pMS ¼ 0:2; pSM ¼ 0:2, and pSS ¼ 0:8 and dif-
ferent community sizes. Thus, both mild and severe infectives are
assumed to infect new individuals to the same type as themselves
with probability 0.8 and, using (3.2), R0 ¼ 2:0782. Each epidemic
was initiated with one mild and one severe infective, so
mM ¼ mS ¼ 1. It is seen that the distribution is bimodal already
for n ¼ 100 and when n P 500 there is a large region between
the two modes having no empirical support. Consequently, the no-
tion of minor and major outbreak makes sense once the population
size is moderate (e.g. 500) or larger. For smaller community sizes
the distinction between minor and major outbreaks is not as clear.

Our next illustration concerns the determination of the proba-
bility of a major outbreak approximated from branching process
theory (Section 3.1). To illustrate this we performed simulations
of the epidemic in communities of various sizes. In the simulations
all the parameter values except aM and aS were the same as above.
Since the approximating branching process has no switching from
mild to severe one would expect the approximation to be better
the less frequent such switches are in the epidemic, i.e. the smaller
aM and aS are. For this reason simulations were performed for
three situations, all having aM ¼ aS ¼: a. The three situations were
a ¼ 0, 1 and 10. Starting with one mild and one severe infected,
10000 simulations were performed, for a range of different com-
munity sizes. In Table 1, we list the fraction of simulations that re-
sulted in a major outbreak. A ‘‘major outbreak” was defined as an
outbreak resulting in more than 30% infected (of either type) – as
seen in Fig. 1 the results are not very sensitive to the particular
choice of boundary between minor and major outbreaks.

Using the results of Section 3.1, we computed the theoretical
probability for the branching process growing beyond all limits,
which approximates the probability of a major outbreak for the
IEDS model. Starting with one mild and one severe infective we ob-
tained that Pðmajor outbreakjmM ¼ 1;mS ¼ 1Þ ¼ 0:6479. The
approximating branching process has no switches between mild
and severe, so this outbreak probability approximates all epidem-
ics, irrespective of a (and n). From the table it is seen that the the-
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oretical outbreak probability agrees well with the empirical frac-
tions once the population size is 500 or larger, and this holds for
all choices of a. Of course, there is some randomness from using
10000 simulations. The standard deviation for the empirical frac-
tions is approximately 0.0048, so a 95% confidence interval for
the theoretical outbreak probability would approximately be the
observed fraction plus or minus 0.01. Hence a hypothesis test
would not reject, at the 5% level, 0.6479 as the theoretical outbreak
probability for any set of simulations with n ¼ 500 or larger.

Observe from Table 1 that, for small n, the empirical probability
of a major outbreak generally increases with a. This is because
RS > RM (see Section 3.3), so reinfection of a mild infective in-
creases the chance that an outbreak becomes established. This ef-
fect becomes less marked as n increases, since the chance of
reinfection in the early stages of an outbreak decreases, and is ab-
sent in the limit n!1.

4.2. Illustration of central limit theorem and final size

Having investigated the branching process approximation we
now focus on major outbreaks by having R0 > 1 and starting with
a fair number of infectives. For this situation, we performed simu-
lations to assess how well the central limit approximation works

for finite populations. Fig. 2 is based on 10000 simulations of the
IEDS model for a population consisting of n = 100000 individuals,
with the epidemic parameters being the same as those used in
Fig. 1. Recall that R0 ¼ 2:0782, so the epidemic is above threshold.
To avoid minor outbreaks, each simulation was initiated by 100
mild and 100 severely infectious individuals. The figure contains
histograms of the final number of mild (left) and severe (right)
cases from the simulations. The average scaled (i.e. divided by
the initial number of susceptibles, n) numbers of mildly and se-
verely infected in the simulations, including initial infectives, were
0.1776 and 0.6659, respectively. The corresponding theoretical val-
ues, obtained using methods described in Section 3.3, were
zMð1Þ ¼ 0:1776 and zSð1Þ ¼ 0:6660, i.e. essentially the same as
the empirical means. The limiting covariance matrix RZð1Þ (see
Eq. (3.8)) was computed numerically. The limiting scaled variances
and covariance (now multiplied by n) for the proportions infected
(elements (1,1), (2,2) and (1,2) of RZð1Þ in Eq. (3.8)) were
r11ð1Þ ¼ 0:3184, r22ð1Þ ¼ 1:2297 and r12ð1Þ ¼ �0:4248. The
corresponding empirical variances from the simulations were
0.3161, 1.2076 and �0.4135, respectively, again close to their
asymptotic counterparts. In Fig. 2, the probability density functions
of the approximating normal distributions, with means nzMð1Þ
and nzSð1Þ, and variances nr11ð1Þ and nr22ð1Þ, are superim-
posed. (The probability density functions are scaled so that the
areas under them match those of the histograms.) As can be seen,
there is excellent agreement between the empirical distributions
and the theoretical asymptotic normal distributions.

We now illustrate that the final size of the limiting determinis-
tic model can be close to discontinuous in certain model parame-
ters. In Fig. 3, we consider epidemics with parameters
cM ¼ 1; cS ¼ 1; kM ¼ 0:8; kS ¼ 5; pMM ¼ 1; pMS ¼ 0; pSM ¼ 1; pSS ¼ 0,
and initial proportions infected lM ¼ 0:01 and lS ¼ 0. The reinfec-
tion parameters are varied by setting aM ¼ aS ¼ a and letting a
vary from 0 to 10. The left panel of the figure shows the total frac-
tion ultimately infected, zMð1Þ þ zSð1Þ, as a function of a. We see
that zMð1Þ þ zSð1Þ is close to discontinuous in a when a � 7:43. A
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Fig. 1. Histograms of final number removed (of either type) from 10 000 simulations of the IEDS model for a few different community sizes. See text for more details.

Table 1
Fraction of major outbreaks in 10000 simulations of the IEDS model for different
community sizes n and different a. See text for further details.

n a ¼ 0 a ¼ 1 a ¼ 10

100 0.6137 0.6316 0.6729
200 0.6320 0.6316 0.6703
500 0.6399 0.6501 0.6565

1000 0.6489 0.6436 0.6539
5000 0.6450 0.6430 0.6455

10000 0.6495 0.6505 0.6489
100000 0.6511 0.6490 0.6511
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similar phenomenon (but with an actual discontinuity) was ob-
served in the EDS model (Ball and Britton [9]) and in some deter-
ministic models for endemic diseases (e.g. Greenhalgh et al. [20]
and van den Driessche and Watmough [21]). A possible explana-
tion for this phenomenon in the present model is as follows. Note
that the model is below threshold, as R0 ð¼ RMÞ ¼ 0:8 < 1. How-
ever, the initial proportion mildly infected lM > 0 makes it less
subcritical, since mild infectives can be reinfected to become se-
vere infectives, whose infection parameters are well above thresh-
old ðRS ¼ 5Þ. As a increases, there is more reinfection and hence
more severe infectives, which leads to even more reinfection since
severe infectives reinfect at an appreciably higher rate than mild
infectives. Thus there is positive feedback, leading to a steep rise
in the fraction ultimately infected as a passes a certain value.

The right panel of Fig. 3 investigates this near-discontinuity more
fully. The dashed line denotes the curve on which the final outcome
ðzMð1Þ; zSð1ÞÞ of a deterministic IEDS epidemic with ðRM;RSÞ ¼
ð0:8;5:0Þ and ðlM;lSÞ ¼ ð0:01;0:00Þ must lie (see Section 3.3). The
solid lines show phase curves of ðzMðtÞ; zSðtÞÞ for the deterministic
IEDS model with a ¼ 7:40;7:41; . . . ;7:50, which change appreciably
between a ¼ 7:43 and a ¼ 7:44. Further computations, not illus-
trated, indicate that as a increases from 0 to 1 the phase curves
change continuously from a straight line joining the origin to ðz�M;0Þ
to a straight line joining the origin to ð0; z�SÞ, where z�M ¼ 0:0466 and

z�S ¼ 1:0034. Thus the behaviour of the deterministic model is close
to discontinuous in a but not actually discontinuous.

4.3. Final size as function of v

We now illustrate what effect the vaccine response models have
on the fractions of ultimately mild and severely infected in the lim-
iting deterministic epidemic processes.

First, we compare the final outcome using an all-or-nothing
vaccine and a leaky vaccine, both having vaccine efficacy
e ¼ 0:75, as a function of the fraction vaccinated v. The model
parameters are chosen to be kM¼1; kS¼4; cM¼1; cS¼1; pMM¼
0:8; pMS¼0:2; pSM¼0:2; pSS¼0:8; aM¼1; aS¼1, with initial frac-
tions of mild and severe infectives given by lM ¼ 10�6 and
lS ¼ 0, respectively. Thus, the epidemic parameters are the same
as those used in Fig. 1, except that kS is increased to 4 to highlight
better the effect of vaccination. Fig. 4 shows the final fractions
infected of the two types for these parameter values and varying
the vaccination coverage v.

It is seen that, for these particular parameter values, vaccination
has greatest impact on the number of severely infected. It is also
observed that the all-or-nothing vaccine outperforms the leaky
vaccine having the same efficacy. This observation is true in gen-
eral and has been explained by the fact that the first contact with
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Fig. 2. Histograms of final outcome from 10000 simulations of the IEDS model in a community of 100000 individuals, with theoretical normal approximation superimposed.
To the left are the number of mildly infected and to the right the number of severely infected.
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a ¼ 7:40;7:41; . . . ;7:50. (The top phase curve is for a ¼ 7:50.) See text for further details.
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a vaccinee under either type of vaccine response has the same risk
of resulting in infection, whereas additional contacts (with not yet
infected!) never result in infection under the all-or-nothing vac-
cine response but may result in infection under the leaky vaccine
response (Ball and Becker [22]). Finally, even though the all-or-
nothing vaccine response is better in this sense, both responses
have the same critical vaccination coverage vc ¼ 0:9250
(R0 ¼ 3:2649 from (3.2)), as is seen by setting ða; bÞ ¼ ð1� e;1Þ in
(3.18) and comparing with (3.14).

Note from Fig. 4 that, under the leaky vaccine, the fraction mildly
infected initially increases slightly with the vaccination coverage.
This effect is more marked for other parameter values. Fig. 5 plots

the final fractions infected for the all-or-nothing and leaky vaccines,
both having efficacy e ¼ 0:75, and model parameters set to
kM¼2;kS¼5; cM¼1; cS¼1; pMM¼1; pMS¼0; pSM¼1; pSS¼0;aM¼10;
aS¼10; lM¼10�6; lS¼0. As before, the all-or-nothing vaccine
response outperforms the leaky vaccine response having the same
efficacy. We note also that the fraction mildly infected initially in-
creases appreciably with the vaccination coverage for both vac-
cine responses. The explanation of this is that even though the
overall fraction infected decreases, the proportion severely in-
fected decreases much faster since fewer and fewer switch from
mild to severe, thus making the proportion of mildly infected
increase.
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Fig. 4. Final fractions infected (of the two types) as a function of the vaccination coverage v, under the all-or-nothing and leaky vaccine models.
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Fig. 5. Final fractions infected as a function of the vaccination coverage under the all-or-nothing and leaky vaccine models.
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Our final comparison concerns the non-random vaccine re-
sponse model, and in particular compares the effect of reducing
infectivity ðh ¼ 1Þ with the effect of reducing the length of the
infectious period ðh ¼ 0Þ. In Fig. 6, we plot the fractions ultimately
infected of the two types for both vaccine responses, as a function
of the vaccination coverage. The epidemic model parameters are
the same as in Fig. 5, and the vaccine parameters are set to
a ¼ b ¼ 0:5 in the non-random vaccine response model, resulting
in efficacy 1� ab ¼ 0:75 as before. It is seen that the two vaccines
perform differently although the difference is only moderate. There
are fewer severely infected and more mildly infected when the
infectious period is reduced and not the infectivity ðh ¼ 0Þ com-
pared to the opposite ðh ¼ 1Þ. A possible explanation for this is that
reducing the infectious period mainly implies fewer switches from
mild to severe, whereas as reducing infectivity brings down the
infectious pressure in general. In an equivalent figure (not shown),
where the epidemic parameters are the same as in Fig. 4, the
curves for the two vaccine responses ðh ¼ 0 and h ¼ 1Þ are virtually
identical. Note that with these latter epidemic parameters, individ-
uals may become severe cases when first infected and there is less
reinfection.

5. Proofs

5.1. Branching process approximation

The branching process approximation of the initial stages of the
IEDS epidemic may be made fully rigorous by extending the cou-
pling argument of Ball and Donnelly [23]. We consider a sequence
of IEDS epidemics, fEðnÞ : n P 1g say, with the epidemic EðnÞ having
initially (i.e. at time t ¼ 0) n susceptibles, m M mild infectives, mS

severe infectives and no removed (recovered) individuals. Let
ðX;F; PÞ be a probability space on which are defined the following
independent sets of random quantities:

(i) mild infectious careers HM
i ¼ ðI

M
i ;gMM

i ;gMS
i ;gMR

i ; nMR
i Þ

ði ¼ �ðmM � 1Þ;�ðmM � 2Þ; . . .Þ, independent and identically
distributed according to HM ¼ ðIM;gMM;gMS;gMR; nMRÞ,

where the components of HM are independent, IM is expo-
nentially distributed with mean c�1

M , and gMM;gMS;gMR and
nMR are homogeneous Poisson processes on ½0;1Þ having
rates kMpMM, kMpMS, kMaM and kMaM, respectively;

(ii) severe infectious careers HS
i ¼ ðI

S
i ;gSM

i ;gSS
i ;gSR

i ; n
SR
i Þ

ði ¼ �ðmS � 1Þ;�ðmS � 2Þ; . . .Þ, independent and identically
distributed according to HS ¼ ðIS;gSM;gSS;gSR; nSRÞ, where
the components of HS are independent, IS is exponentially
distributed with mean c�1

S , and gSM;gSS;gSR and nSR are are
homogeneous Poisson processes on ½0;1Þ having rates
kSpSM, kSpSS, kSaS and kSaS, respectively;

(iii) vðnÞi ðn ¼ 1;2; . . . ; i ¼ 1;2; . . .Þ, where for each
n ¼ 1;2; . . . ;vðnÞ1 ;vðnÞ2 ; . . . are independent and uniformly dis-
tributed on f1;2; . . . ;ng;

(iv) ~vi ði ¼ 1;2; . . .Þ, independent and uniformly distributed on
f�ðmM � 1Þ;�ðmM � 2Þ; . . . ;0g.

The random quantities (iv) are required only if mM > 0.
For n ¼ 1;2; . . ., a realisation of the epidemic EðnÞ is constructed

as follows. Label the n suscpetibles 1;2; . . . ;n, the mM initial mild
infectives �ðmM � 1Þ;�ðmM � 2Þ; . . . ;0 and the mS initial severe
infectives �ðmMþmS�1Þ;�ðmMþmS�2Þ;...;�mM. For i ¼ �ðmS � 1Þ;
�ðmS � 2Þ; . . . ;0, the initial severe infective i�mM has infectious
period IS

i , during which it makes mild, severe and reinfection
contacts with initial susceptibles at the points of gSM

i ;gSS
i and gSR

i ,
respectively, and reinfection contacts with initial mild infectives
at the points of nm�1

M nSR. (If n is a simple point process on ½0;1Þ
with points at t1 < t2 < � � � and a > 0 then an denotes the point
process with points at at1 < at2 < � � �; thus nm�1

M nSR
i is a homoge-

neous Poisson process with rate n�1mMkSaS). Similarly, for
i ¼ �ðmM � 1Þ;�ðmM � 2Þ; . . . ;0, unless it is reinfected (see below),
the initial mild infective i has infectious period IM

i , during which it
makes mild, severe and reinfection contacts with initial suscepti-
bles at the points of gMM

i ;gMS
i and gMR

i , respectively, and reinfection
contacts with initial mild infectives at the points of nm�1

M nMR
i .

For k ¼ 1;2; . . ., the kth contact made with the initial suscepti-
bles is with individual vðnÞk . If it is a mild or severe contact then
the contacted individual becomes infected with the corresponding
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Fig. 6. Final fractions infected as a function of the vaccination coverage for two choices of the non-random vaccine model.
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type if it is still susceptible, otherwise the contact is ignored. If it is
a reinfection contact then the contacted individual becomes a se-
vere infective if it is a mild infective and the contacted individual
is distinct from the individual making the contact, otherwise the
contact is ignored. For l ¼ 1;2; . . ., the lth reinfection contact made
with the initial mild infectives is with individual ~vl. If the contacted
individual is still mildly infected and distinct from the individual
making the contact then it becomes severely infected, otherwise
the contact is ignored. The kth susceptible to be mildly infected
in EðnÞ adopts the mild infectious career HM

k . Suppose that this indi-
vidual is infected at time t1. Then, unless it is reinfected, it makes
contacts during ½t1; t1 þ IM

k � at times given by ft1 þ gMM
k g[

ft1 þ gMS
k g [ ft1 þ gMR

k g [ ft1 þ nm�1
M nMR

k g. The lth individual to be-
come severely infected after time t ¼ 0 in EðnÞ, either directly or
by reinfection, adopts the severe infectious career HS

l . Suppose
that this individual becomes severely infected at time t2. Then it
makes contacts during ½t2; t2 þ IS

l � at times given by ft2 þ gSM
l g[

ft2 þ gSS
l g [ ft2 þ gSR

l g [ ft2 þ nm�1
M nSR

l g. When a mild infected is
reinfected, its mild infectious period terminates immediately and
it adopts a severe infectious career as described above. An individ-
ual becomes recovered and immune to further infection when it is
no longer infectious. The epidemic stops when there is no infective,
mild or severe, left in the population. It is easily verified that the
epidemic EðnÞ is probabilistically equivalent to the IEDS model de-
fined in Section 2.1.

The above random quantities can also be used to construct a real-
isation of a two-type (mild and severe) branching process, having
initially mM mild individuals, labelled �ðmM�1Þ;�ðmM�2Þ;...;0,
and mS severe individuals, labelled �ðmMþmS�1Þ;�ðmMþ
mS�2Þ;...;�mM. For i ¼ �ðmM � 1Þ;�ðmM � 2Þ; . . . ; 0, the initial
mild individual i lives until time IM

i , has one mild child at each of
the times given by gMM

i \ ½0; IM
i � and one severe child at each of

the times given by g MS
i \ ½0; IM

i �. Similarly, for i ¼ �ðmS � 1Þ;
�ðmS � 2Þ; . . . ;0, the initial severe individual i�mM lives until time
IS

i , has one mild child at each of the times given by gSM
i \ ½0; I

S
i � and

one severe child at each of the times given by gSS
i \ ½0; I

S
i �. For

k ¼ 1;2; . . ., the kth mild individual born in ð0;1Þ in the branching
process lives until age IM

k , has one mild child at each of the times
given by ftM

k þ gMM
k g \ ½tM

k ; t
M
k þ IM

k � and one severe child at each of
the times given by ftM

k þ g MS
k g \ ½tM

k ; t
M
k þ IM

k �, where tM
k is the time

when the kth mild birth occurs. Similarly, for l ¼ 1;2; . . ., if the lth
severe individual is born at time tS

l > 0, then she has one mild child
at each of the times given by ftS

l þ gSM
l g \ ½tS

l ; t
S

l þ IS
l � and one

severe child at each of the times given by ftS
l þ gSS

l g \ ½tS
l ; t

S
l þ IS

l �.
Of course, the branching process stops if there is no live
individual.

For n ¼ 1;2; . . . ; let

Mn ¼min k P 2 : vðnÞ1 ;vðnÞ2 ; . . . ;vðnÞk are not distinct
n o

:

Then, noting the connection with the ‘birthday problem’, as in the
proof of Ball and Donnelly [23], Theorem 2.1, we may assume that

n�1=2Mn!
a:s:

M as n!1; ð5:1Þ

where!a:s: denotes almost sure convergence and M is a strictly posi-
tive random variable defined on ðX;F; PÞ having probability density
function f ðxÞ ¼ x exp � 1

2 x2
	 


ðx > 0Þ.
For t P 0, let YðtÞ ¼ ðYMðtÞ;YSðtÞÞ, where YMðtÞ and YSðtÞ denote,

respectively, the numbers of mild and severe individuals alive in the
branching process at time t, and let Y ðnÞðtÞ ¼ ðY ðnÞM ðtÞ;Y

ðnÞ
S ðtÞÞ, where

Y ðnÞM ðtÞ and Y ðnÞS ðtÞ denote, respectively, the numbers of mild and se-
vere infectives at time t in the epidemic EðnÞ ðn ¼ 1;2; . . .Þ. Further,
for t P 0, let ZMðtÞ and ZSðtÞ denote, respectively, the total numbers
of mild and severe births during ð0; t� in the branching process. Sup-
pose that pMSpSM > 0. Then the branching process is indecomposable

(see e.g. Haccou et al. [16, p. 27]) and its Malthusian parameter, a say,
is given by the maximal eigenvalue of the matrix

G ¼
kMpMM � cM kMpMS

kSpSM kSpSS � cS

� �
: ð5:2Þ

Further, let v ¼ ðvM;vSÞ be the left eigenvector of G corresponding
to a, normalized so that vM þ vS ¼ 1. Then Theorem 2 on p. 206
of Athreya and Ney [24], together with the theory of asymptotic
growth and stabilisation of general multitype branching processes
(e.g. Jagers [25]), implies that there exists a non-negative random
variable W, defined on ðX;F; PÞ, so that almost surely

lim
t!1

e�atZMðtÞ ¼ a�1kMvMW and

lim
t!1

e�atZSðtÞ ¼ a�1kSvSW: ð5:3Þ

Moreover, WðxÞ ¼ 0 if and only if x 2 AEXT, where AEXT 2F is the
set on which the branching process becomes extinct.

Theorem 5.1.

(a) For P-almost all x 2 AEXT,

lim
n!1

sup
06t<1

jY ðnÞðt;xÞ � Yðt;xÞj ¼ 0: ð5:4Þ

(b) For P-almost all x 2 X n AEXT,

lim
n!1

sup
06t6b log n

jY ðnÞðt;xÞ � Yðt;xÞj ¼ 0; ð5:5Þ

for any b 2 ½0; ð2aÞ�1Þ:

Proof. Let CM
i ¼ jðgMM

i [ gMS
i [ gMR

i Þ \ ½0; I
M
i �j ði ¼ �ðmM � 1Þ;�ðmM � 2Þ; . . .Þ

and CS
i ¼ jðgSM

i [ gSS
i [ gSR

i Þ \ ½0; I
S
i �j ði ¼ �ðmS � 1Þ;�ðmS � 2Þ; . . .Þ,

so, for example, CM
0 is the total number of contacts with the initial

susceptibles made by the initial mild infective labelled 0. In view
of (5.1), there exists B1 2F with PðB1Þ ¼ 1 such that limn!1n�1=2

MnðxÞ ¼ MðxÞ for all x 2 B1. Fix x 2 AEXT \ B1, so ZMð1;xÞ and
ZSð1;xÞ are both finite. Hence

PZMð1;xÞ
i¼�ðmM�1ÞC

M
i ðxÞ andPZSð1;xÞ

i¼�ðmS�1ÞC
S
i ðxÞ are also both finite. Now MnðxÞ ! 1 as n!1,

so there exists an integer N1ðxÞ such that, for all n P N1ðxÞ, all
the contacts with initial susceptibles in EðnÞ are with distinct indi-
viduals. For i ¼ �ðmM � 1Þ;�ðmM � 2Þ; . . ., let sMR

i ðxÞ be the time
of the first point of nMR

i ðxÞ in ð0;1Þ and, for i ¼ �ðmS � 1Þ;
�ðmS � 2Þ; . . ., define sMS

i ðxÞ similarly. Note that, for example, the
ith mild infective does not make any reinfection contact with the ini-
tial mild infectives if n > mMIM

i ðxÞ=sMR
i ðxÞ. Thus, if N2ðxÞ is

the smallest integer greater than both maxfmMIM
i ðxÞ=sMR

i ðxÞ : i ¼
�ðmM � 1Þ;�ðmM � 2Þ; . . . ; ZMð1;xÞg and maxfmSIS

i ðxÞ=sSR
i ðxÞ :

i ¼ �ðmS � 1Þ;�ðmS � 2Þ; . . . ; ZSð1;xÞg, then for all n P N2ðxÞ,
there is no reinfection contact with the initial mild infectives in
EðnÞ. Hence, for all n > maxðN1ðxÞ;N2ðxÞÞ, (i) every birth in the
branching process yields a new infective in EðnÞ and (ii) there is no
reinfection in EðnÞ, and (5.4) follows since PðAEXT \ B1Þ ¼ PðAEXTÞ.

To prove part (b), first note that by the strong law of large
numbers there exists B2 2F, with PðB2Þ ¼ 1, such that, for all
x 2 B2,

lim
n!1

n�1
Xn

i¼�ðmM�1Þ
CM

i ðxÞ ¼ kMð1þ aMÞc�1
M and

lim
n!1

n�1
Xn

i¼�ðmS�1Þ
CS

i ðxÞ ¼ kSð1þ aSÞc�1
S :

Also, (5.3) implies that there exists B3 2F, with PðB3Þ ¼ 1, such
that for all x 2 B3, limt!1e�atZMðt;xÞ ¼ a�1kMvMWðxÞ and
limt!1e�atZSðt;xÞ ¼ a�1kSvSWðxÞ, with WðxÞ > 0 if x 2 B3 \ n
AEXT. Fix x 2 ðB1 \ B2 \ B3Þ n AEXT and b 2 ð0; ð2aÞ�1Þ: Since x 2 B3,
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there exists an integer N3ðxÞ such that ZMðb log n;xÞ <
2a�1kMvMWðxÞnab and ZSðb log n;xÞ < 2a�1kSvSWðxÞnab for all
n P N3ðxÞ. Further, since x 2 B2, there exists an integer
N4ðxÞP N3ðxÞ such that, for all n P N4ðxÞ,

XZMðb log n;xÞ

i¼�ðmM�1Þ
CM

i ðxÞ <
X2a�1kMvMWðxÞnab

i¼�ðmM�1Þ
CM

i ðxÞ

< 4a�1k2
MvMð1þ aMÞc�1

M WðxÞnab ð5:6Þ

and

XZSðb log n;xÞ

i¼�ðmS�1Þ
CS

i ðxÞ < 4a�1k2
SvSð1þ aSÞc�1

S WðxÞnab: ð5:7Þ

Also, as x 2 B1, there exists an integer N5ðxÞ such that, for all
n P N5ðxÞ,

MnðxÞ >
1
2

n
1
2MðxÞ: ð5:8Þ

It follows from (5.6), (5.7) and (5.8) that there exists an integer
N6ðxÞ such that, for all n P N6ðxÞ,XZMðb log n;xÞ

i¼�ðmM�1Þ
CM

i ðxÞ þ
XZSðb log n;xÞ

i¼�ðmS�1Þ
CS

i ðxÞ < MnðxÞ; ð5:9Þ

so, for such n, all contacts with the initial susceptibles during
½0;b log n� in EðnÞ are with distinct individuals.

Let I�ðxÞ ¼maxðIM
� ðxÞ; I

S
�ðxÞÞ, where

IM
� ðxÞ ¼ max

�ðmM�1Þ6i60
IM

i ðxÞ and IS
�ðxÞ ¼ max

�ðmS�1Þ6i60
IS
i ðxÞ;

be the time of the last death of an initial individual in the branching
process. Then, noting that ZMðI�ðxÞ;xÞ and ZSðI�ðxÞ;xÞ are both fi-
nite, arguing as in the proof of part (a) shows that there exists an
integer N7ðxÞ such that, for all n P N7ðxÞ, there is no reinfection
contact with the initial mild infectives in EðnÞ. Thus, recalling (5.9),
Y ðnÞðt;xÞ ð0 6 t 6 b log nÞ and Yðt;xÞ ð0 6 t 6 b log nÞ coincide for
all n P maxðN6ðxÞ;N7ðxÞÞ and (5.5) follows since
PððB1 \ B2 \ B3Þ n AEXTÞ ¼ PðX n AEXTÞ. h

When pMSpSM ¼ 0 the branching process is decomposable. It is
readily seen that part (a) of Theorem 5.1 still holds in this case
and that part (b) holds with a replaced by maxðkMpMM � cM;

kSpSS � cSÞ. The following corollary to Theorem 5.1 is immediate
and holds without requiring pMSpSM > 0. Recall that ZMð1Þ and
ZSð1Þ are, respectively, the total numbers of mild and severe births
that ever occur in the branching process. For n ¼ 1;2; . . ., let ZðnÞM ð1Þ
and ZðnÞS ð1Þ be, respectively, the total number of mild and severe
removals in the epidemic EðnÞ. Note that ZMð1Þ and ZSð1Þ may
be infinite but ZðnÞM ð1Þ and ZðnÞS ð1Þ are necessarily finite.

Corollary 5.2.

(a) For P-almost all x 2 AEXT,

lim
n!1

ZðnÞM ð1;xÞ; Z
ðnÞ
S ð1;xÞ

� �
¼ ZMð1;xÞ þmM; Z

ðnÞ
S ð1;xÞ þmS

� �
:

(b) For P-almost all x 2 X n AEXT,

lim
n!1

ZðnÞM ð1;xÞ þ ZðnÞS ð1;xÞ ¼ 1:

5.2. LLN and CLT for final size distribution

As in Section 5.1, consider a sequence of IEDS epidemics,
fEðnÞ : n P 1g say, indexed by the initial number of susceptibles n.
For t P 0, let XðnÞðtÞ, Y ðnÞM ðtÞ, Y ðnÞS ðtÞ, ZðnÞM ðtÞ and ZðnÞS ðtÞ denote respec-

tively the numbers of susceptible, mild infective, severe infective,
mild removed and severe removed individuals at time t. Suppose
that Y ðnÞM ð0Þ ¼ mðnÞM ;Y ðnÞS ð0Þ ¼ mðnÞS ; ZðnÞM ð0Þ ¼ 0 and ZðnÞS ð0Þ ¼ 0
ðn ¼ 1;2; . . .Þ, so initially there are mðnÞM mild infectives and mðnÞS se-
vere infectives in EðnÞ. The epidemics EðnÞ ðn ¼ 1;2; . . .Þ each have
the same infection, reinfection and removal parameters. The pro-
cess XðnÞ ¼ fXðnÞðtÞ : t P 0g, where XðnÞðtÞ ¼ ðXðnÞðtÞ;Y ðnÞM ðtÞ;
Y ðnÞS ðtÞ; Z

ðnÞ
MðtÞ; Z

ðnÞ
S ðtÞÞ

> ðt P 0Þ is a continuous-time Markov chain
with transition rates

qðnÞðs;iM ;iS ;rM ;rSÞ;ðs�1;iMþ1;iS ;rM ;rSÞ ¼ n�1s½kMpMMiM þ kSpSMiS�;

for a new mild infection,

qðnÞðs;iM ;iS ;rM ;rSÞ;ðs�1;iM ;iSþ1;rM ;rSÞ ¼ n�1s½kMpMSiM þ kSpSSiS�;

for a new severe infection,

qðnÞðs;iM ;iS ;rM ;rSÞ;ðs;iM�1;iSþ1;rM ;rSÞ ¼ n�1iM½kMaMðiM � 1Þ þ kSaSiS�; ð5:10Þ

for a reinfection,

qðnÞðs;iM ;iS ;rM ;rSÞ;ðs;iM�1;iS ;rMþ1;rSÞ ¼ cMiM;

for a mild removal, and

qðnÞðs;iM ;iS ;rM ;rSÞ;ðs;iM ;iS�1;rM ;rSþ1Þ ¼ cSiS;

for a severe removal, where ðs; iM; iS; rM; rSÞ> is the state of XðnÞ at a
given time. The factor ðiM � 1Þ in (5.10) arises because a mild infec-
tive cannot reinfect itself.

Let i ¼ ðs; iM; iS; rM; rSÞ> and note that each of the above transi-
tion rates admits the form n½f ðn�1iÞ þ Oðn�1Þ� as n!1, where f de-
pends on the type of transition. Thus, fXðnÞ : n P 1g satisfies the
more general form of a density dependent population process de-
fined by Ethier and Kurtz [17, Chapter 11, Equation (1.13)]. (Apart
from those for reinfection, the transition rates satisfy the usual
density dependent form in which the Oðn�1Þ term is identically
zero.)

Suppose further that n�1mðnÞM ! lM and n�1mðnÞS ! lS as n!1,
where lM þ lS > 0. Then, Ethier and Kurtz [17, Theorem 11.2.1],
implies that as n!1, n�1XðnÞ converges almost surely over any
finite time interval to x ¼ fxðtÞ : t P 0g, where xðtÞ ¼ ðxðtÞ; yMðtÞ;
ySðtÞ; zMðtÞ; zSðtÞÞ> and ðxðtÞ; yMðtÞ; ySðtÞ; zMðtÞ; zSðtÞÞ is given by
the solution of (3.6) with initial condition (3.7). Moreover, a central
limit theorem for fluctuations of XðnÞ about x is given by Ethier and
Kurtz [17, Theorem 11.2.3]. (In this subsection is more convenient
for xðtÞ to be a column vector, rather than a row vector as it is in
Section 3.2.)

We are primarily interested in the final outcome of the epi-
demic EðnÞ, which is not covered by the above asymptotic results.
For n P 1, the final outcome of EðnÞ is given by XðnÞðsðnÞÞ, where
sðnÞ ¼ infft > 0 : Y ðnÞMðtÞ þ Y ðnÞS ðtÞ ¼ 0g is the duration of the epi-
demic EðnÞ. A central limit theorem for XðnÞðsðnÞÞ cannot be obtained
directly from the theory in Ethier and Kurtz [17] because
infft > 0 : yMðtÞ þ ySðtÞ 6 0g ¼ 1. Thus, as in Ball and Britton [4],
we consider the following random time scale transformation of
XðnÞ, cf. Ethier and Kurtz [17, p. 467].

For t 2 ½0; sðnÞ�, let AðnÞðtÞ ¼
R t

0 n�1ðkMY ðnÞM ðuÞ þ kSY ðnÞS ðuÞÞdu be the
total force of infection exerted on a given susceptible in EðnÞ during
½0; t�, and let AðnÞ ¼ AðnÞðsðnÞÞ. For 0 6 t 6 AðnÞ, let UðnÞðtÞ ¼
inffu P 0 : AðnÞðuÞ ¼ tg, let eX ðnÞðtÞ ¼ XðnÞðUðnÞðtÞÞ and writeeX ðnÞðtÞ ¼ ðeX ðnÞðtÞ; eY ðnÞM ðtÞ; eY ðnÞS ðtÞ; eZ ðnÞMðtÞ; eZ ðnÞS ðtÞÞ

>. The process eX ðnÞ ¼eX ðnÞðtÞ : 0 6 t 6 AðnÞg is obtained from XðnÞ by running the clock at
rate nðkMY ðnÞM ðuÞ þ kSY ðnÞS ðuÞÞ

�1. Thus the transition rates of eX ðnÞ are
obtained from those given above for XðnÞ by dividing by kMiM þ kSiS.

The possible jumps of eX ðnÞ from a typical state i ¼ ðs; iM;

iS; rM; rSÞ> are D ¼ fð�1;1;0;0;0Þ>; ð�1;0;1;0;0Þ>; ð0;�1;1;0;0Þ>;
ð0;�1;0;1;0Þ>; ð0;0;�1;0;1Þ>g. The rates of these jumps admit
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the form n½~blðn�1iÞ þ Oðn�1Þ� ðl 2 DÞ, as n!1, where the functions
~bl ðl 2 DÞ are given by

~bð�1;1;0;0;0Þð~x; ~yM; ~yS;~zM;~zSÞ ¼ ~x kMpMM~yMþkSpSM~ySð Þ
kM~yMþkS~yS

;

~bð�1;0;1;0;0Þð~x; ~yM; ~yS;~zM;~zSÞ ¼ ~x kMpMS~yMþkSpSS~ySð Þ
kM~yMþkS~yS

;

~bð0;�1;1;0;0Þð~x; ~yM; ~yS;~zM;~zSÞ ¼ ~yM kMaM~yMþkSaS~ySð Þ
kM~yMþkS~yS

;

~bð0;�1;0;1;0Þð~x; ~yM; ~yS;~zM;~zSÞ ¼ cM~yM
kM~yMþkS~yS

;

~bð0;0;�1;0;1Þð~x; ~yM; ~yS;~zM;~zSÞ ¼ cS~yS
kM~yMþkS~yS

:

9>>>>>>>>>=>>>>>>>>>;
ð5:11Þ

LeteF ð~x; ~yM; ~yS;~zM;~zSÞ ¼
X
l2D

~blð~x; ~yM; ~yS;~zM;~zSÞl

and, for t P 0, let ~xðtÞ ¼ ð~xðtÞ; ~yMðtÞ; ~ySðtÞ;~zMðtÞ;~zSðtÞÞ> be defined by

~xðtÞ ¼ ~xð0Þ þ
Z t

0

eF ð~xðuÞÞdu; ð5:12Þ

where ~xð0Þ ¼ ð1;lM;lS;0;0Þ
>. Thus ~xðtÞ satisfies the differential

equation

d~x
dt ¼ �~x;
d~yM
dt ¼

~xðkMpMM~yMþkSpSM~ySÞ�ðkMaM~yMþkSaS~ySþcMÞ~yM
kM~yMþkS~yS

;

d~yS
dt ¼

~xðkMpMS~yMþkSpSS~ySÞþðkMaM~yMþkSaS~ySÞ~yM�cS~yS
kM~yMþkS~yS

;

d~zM
dt ¼

cM~yM
kM~yMþkS~yS

;

d~zS
dt ¼

cS~yS
kM~yMþkS~yS

:

9>>>>>>>>>=>>>>>>>>>;
ð5:13Þ

Let ~s ¼ infft P 0 : ~yMðtÞ þ ~y SðtÞ 6 0g. It is easily verified that
~s <1. Let ~sðnÞ ¼ infft > 0 : eY ðnÞM ðtÞ þ eY ðnÞS ðtÞ ¼ 0g ð¼ AðnÞÞ, soeX ðnÞð~sðnÞÞ yields the final outcome of EðnÞ. We seek a central limit the-
orem for eX ðnÞð~sðnÞÞ but first some more notation is required.

Let @eFð~xÞ ¼ ½@j
eF ið~xÞ� denote the matrix of first partial derivatives

of eFð~xÞ and, for 0 6 s 6 t 6 ~s, let eUðt; sÞ be the solution of the ma-
trix differential equation

@

@t
eUðt; sÞ ¼ @eFð~xðtÞÞeUðt; sÞ; eUðs; sÞ ¼ I; ð5:14Þ

where I denotes the 5� 5 identity matrix. Let eGð~xÞ ¼Pl2D
~blð~xÞll>:

For t 2 ½0; ~s�, leteV ðnÞðtÞ ¼ ffiffiffi
n
p
ðn�1 eX ðnÞðtÞ � ~xðtÞÞ;

where eX ðnÞðtÞ ¼ eX ðnÞð~sðnÞÞ if t > ~sðnÞ, and suppose that
limn!1

ffiffiffi
n
p
ðn�1mðnÞM � lMÞ ¼ 0 and limn!1

ffiffiffi
n
p
ðn�1mðnÞS � lSÞ ¼ 0. For

t0 2 ð0; ~sÞ, ~F is Lipschitz-continuous and @eF is differentiable in a
small neighbourhood of f~xðuÞ : 0 6 u 6 t0g. Further, for l 2 D, ~bl is
bounded on any compact subset of ½0;1� � ð0;1Þ4. Thus, the condi-
tions of Theorem 11.2.3 of Ethier and Kurtz [17], are satisfied, so, for
any t0 2 ð0; ~sÞ,

feV ðnÞðtÞ : 0 6 t 6 t0g ) feV ðtÞ : 0 6 t 6 t0g; ð5:15Þ

where ) denotes weak convergence in the space of right-continu-
ous functions from ½0; t0� ! R5 with left limits, endowed with the
Skorohod topology, and feV ðtÞ : 0 6 t 6 t0g is a zero-mean Gaussian
process with eV ð0Þ ¼ 0 and covariance function given by

covðeV ðtÞ; eV ðsÞÞ ¼ Z minðt;sÞ

0

eUðt;uÞeGð~xðuÞÞ½eUðs;uÞ�>du: ð5:16Þ

Let /ð~x; ~yM; ~yS;~zM;~zSÞ ¼ ~yM þ ~yS, so ~sðnÞ ¼ infft > 0 : /ðeX ðnÞðtÞÞ 6 0g
and ~s ¼ infft > 0 : /ð~xðtÞÞ 6 0g. Provided its conditions are satis-
fied, Theorem 11.4.1 of Ethier and Kurtz [17] implies thatffiffiffi

n
p
ðn�1 eX ðnÞð~sðnÞÞ � ~xð~sÞÞ

!D eV ð~sÞ� r/ð~xð~sÞÞeV ð~sÞ
r/ð~xð~sÞÞeF ð~xð~sÞÞ eFð~xð~sÞÞ as n!1; ð5:17Þ

where !D denotes convergence in distribution. Now, r/ð~xÞ ¼
ð0;1;1;0;0Þ, so, using (5.11),

r/ð~xðtÞÞeF ð~xðtÞÞ ¼ ~xðtÞ � cM~yMðtÞ þ cS~ySðtÞ
kM~yMðtÞ þ kS~ySðtÞ

ðt 2 ½0; sÞÞ: ð5:18Þ

Assuming that the limit exists, let h ¼ limt!~s�½~yMðtÞ=~ySðtÞ�. Then,
using L’Hôpital’s rule,

h¼ limt!~s�
~y0MðtÞ
~y0SðtÞ

¼ lim
t!~s�

~xðtÞðkMpMM~yMðtÞþkSpSM~ySðtÞÞ�cM~yMðtÞ�ðkMaM~yMðtÞþkSaS~yMðtÞÞ~yMðtÞ
~xðtÞðkMpMS~yMðtÞþkSpSS~ySðtÞÞ�cS~ySðtÞþðkMaM~yMðtÞþkSaS~yMðtÞÞ~yMðtÞ

� �
¼

~xð~sÞðkMpMMhþkSpSMÞ�cMh
~xð~sÞðkMpMShþkSpSSÞ�cS

: ð5:19Þ

Thus, provided ~xð~sÞðkMpMShþ kSpSSÞ � cS–0, h satisfies the quadratic
equation

~xð~sÞkMpMSh
2 þ ½xð~sÞðkSpSS � kMpMMÞ þ cM � cS�h� ~xð~sÞkSpSM ¼ 0:

ð5:20Þ

Suppose that pMS > 0 and pSM > 0. Then the roots of (5.20) have
opposite signs and, since ~yMðtÞ and ~ySðtÞ are each non-negative for
t 2 ½0; ~sÞ, h is given by the positive root. Letting t ! ~s- in (5.18)
now yields

r/ð~xð~sÞÞeF ð~xð~sÞÞ ¼~xð~sÞ � cMhþ cS

kMhþ kS

¼ð1þ hÞ½~xð~sÞðkMpMShþ kSpSSÞ � cS�
kMhþ kS

; ð5:21Þ

using (5.19). Now r/ð~xð~sÞÞeFð~xð~sÞÞ 6 0 by the definition of ~s, so
(5.21) implies that r/ð~xð~sÞÞeFð~xð~sÞÞ < 0, since h > 0 and
~xð~sÞðkMpMShþ kSpSSÞ � cS–0.

In addition to r/ð~xð~sÞÞeFð~xð~sÞÞ < 0, Theorem 11.4.1 of Ethier
and Kurtz [17] requires that (5.15) holds for some t0 > ~s. This re-
quires extending the transition rate functions ~bl ðl 2 DÞ, defined
at (5.11), so that ~xðtÞ is defined on ½0; t0Þ for some t0 > ~s, with
the conditions of Theorem 11.2.3 of Ethier and Kurtz [17] still
being satisfied, in particular so that eF is Lipschitz-continuous in a
neighbourhood of f~xðtÞ : 0 6 t 6 t0g, and this does not seem possi-
ble. However, assuming that (5.17) still holds, it follows that

ffiffiffi
n
p

n�1 eX ðnÞð~sðnÞÞ � ~xð~sÞ
� �

!D Nð0;BeRð~sÞB>Þ as n!1; ð5:22Þ

where eRð~sÞ ¼ covðeV ð~sÞ; eV ð~sÞÞ and

B ¼ I �
eFð~xð~sÞÞð0;1;1; 0;0Þ
ð0;1;1;0;0ÞeF ð~xð~sÞÞ :

Note that (5.14) and (5.16) imply that eRðtÞ ¼ covðeV ðtÞ; eV ðtÞÞ
ð0 6 t 6 ~sÞ satisfies

deR
dt
¼ eGð~xÞ þ @eFð~xÞeR þ eR½@eFð~xÞ�>; eRð0Þ ¼ 0: ð5:23Þ

Thus, in principle, eRð~sÞ can be computed by solving numerically
the differential Eqs. (5.13) and (5.23) simultaneously. However,
in practice we have found that this procedure is not very accu-
rate in some examples and much better results are obtained by
first transforming (5.13) and (5.23) back into the original time
domain. Thus,

dR
dt
¼ kMyM þ kSySð Þ eGðxÞ þ @eFðxÞRþ R@eFðxÞ�>� �

; Rð0Þ ¼ 0;

is solved numerically simultaneously with (3.6), where
xð0Þ ¼ ð1;lM;lS;0;0Þ

>, whence ðxð~sÞ; eRð~sÞÞ ¼ ðxð1Þ;Rð1ÞÞ.
Clearly the above argument is heuristic in places. However, the

assertions concerning the limit h are supported by all of our
numerical studies, as is the central limit theorem (5.22) for the fi-
nal outcome of the epidemic.
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6. Discussion

The IEDS model combines the possibility that the severity de-
pends on who one is infected by, as in the IDS model (Ball and Brit-
ton [4]), and that it is possible to become severely infected if
additionally exposed to the disease, as considered in the EDS model
(Ball and Britton [9]). In that sense the model is now quite flexible
and realistic. Of course, there are several aspects in which the mod-
el can be made more realistic. The assumption of homogeneous
mixing could be relaxed, for example by introducing households
(cf. Ball and Becker [22]). Another generalisation of interest would
be to allow for different types of individuals, e.g. age cohorts, hav-
ing different transmission rates between different types of individ-
uals. The model can also be generalised by having more than two
degrees of severity, and by allowing for an arbitrary distribution
of the infectious period.

From a statistical point of view it would of course be interesting
to derive parameter estimators and estimate model parameters for
specific diseases. In particular it would be interesting to study if
severe cases typically appear directly upon infection or when addi-
tionally exposed. For such estimation to be possibly it will be nec-
essary to have some type of temporal data rather than only final
size data.

A specific example of the mild severity is for diseases having
asymptomatic cases. Usually such cases shed less infectious matter
per time unit, but on the other hand they may be infectious for
longer, since severe cases typically stay home once symptoms ap-
pear, thus effectively ending their infectious period. This can be re-
flected in the present model by having kM < kS and cM < cS. It could
very well be that the total expected infectivity shed by a mild case
may exceed that of a severe case ðkM=cM > kS=cSÞ, but this is al-
lowed for in the present model.

The vaccine response model treated in the present paper is
quite general in that it allows infectivity reduction in two ways:
lower infectivity and/or shorter infectious period. It would be
interesting to study this general form of response model also for
other epidemic models. In work not presented here owing to space
considerations, the authors consider this response model for a
simple SIS (susceptible ! infective ! susceptible) epidemic in a
partially vaccinated community; for the parameter values consid-
ered, the overall endemic level increases with h.
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Appendix A. Properties of deterministic final outcome

Suppose first that l > 0 and recall that RS > RM. For fixed
zS 2 ½0;l�, define functions fzS : ½0;1Þ ! ½0;1Þ and gzS

: ½0;1Þ
! ½0;1Þ by fzS ðzMÞ ¼ expð�ðRMzM þ RSzSÞÞ and gzS

ðzMÞ ¼ 1þ l� zS

�zM. For zS 2 ½0;l�, the solutions of fzS ðzMÞ ¼ gzS
ðzMÞ give the values

of ẑM so that ðẑM; ẑSÞ satisfies (3.10) with ẑS ¼ zS. It is easily seen
that fzS ð0Þ < gzS

ð0Þ if zS < z�S, fzS ð0Þ ¼ gzS
ð0Þ if zS ¼ z�S and fzS ð0Þ >

gzS
ð0Þ if zS > z�S, where z�S is the positive solution of 1þ l� z ¼

expð�RSzÞ. The function fzS is convex and strictly decreasing, and
it is easily seen that, if zS < z�S, then fzS � gzS

has a unique root in
½0;1þ l�. Thus, hðzSÞ is well defined for zS 2 ½0; z�SÞ. Now, 0 is clearly
a root of fz�S

� gz�S
and considering the first derivatives of fz�S

and gz�S
at the origin shows that it is the only positive root if and only if
RM expð�RSz�SÞ 6 1. Recall that 1þ l� z�S ¼ expð�RSz�SÞ. Hence, 0
is the only positive root of fz�S

� gz�S
if and only if

z�S P 1þ l� 1
RM

: ðA:1Þ

The inequality (A.1) is clearly satisfied if RM 6 ð1þ lÞ�1,so assume
that RM > ð1þ lÞ�1.Since RS > RM,(A.1) is satisfied if
z�S P 1þ l� 1

RS
.Let f : ½0;1Þ ! ½0;1Þ and g : ½0;1Þ ! ½0;1Þ be de-

fined by f ðzÞ ¼ expð�RSzÞ and gðzÞ ¼ 1þ l� z.Then z�S is the posi-
tive root of f � g and z�S P 1þ l� 1

RS
if and only if

f ð1þ l� 1
RS
Þ 6 gð1þ l� 1

RS
Þ.Elementary algebra shows that this last

condition is equivalent to expðRSð1þ lÞ � 1ÞP RS,which clearly
holds as RS > RM > ð1þ lÞ�1.Thus,0 is the only positive root of
fz�S
� gz�S

and hðzSÞ is well defined for zS 2 ½0; z�S�.Let f 0zS
denote the first

derivative of fzS .Then f 0zS
ð0Þ increases with zS and it is easily shown

that fzS � gzS
has no positive root whenzS > z�S. Thus, (3.10) has no

solution in the first quadrant with ẑS > z�S.
The following lemma is useful in proving the stated properties

of the function h.

Lemma 6.1. Suppose that ðzM; zSÞ is a solution of (3.10) in the first
quadrant and RM < RS. Then,

RMð1þ l� zM � zSÞ < 1: ðA:2Þ

Proof. The result is immediate if RM 6 ð1þ lÞ�1, since (0,0) is not a
solution of (3.10). A similar argument to the above shows that (A.1)
holds with strict inequality, whence (A.2) holds if zS ¼ z�S. Thus,
suppose that RM > ð1þ lÞ�1 and zS 2 ½0; z�SÞ. Condition (A.2) is
equivalent to zM > 1þ l� zS � R�1

M , which holds if fzS ð1þ l� zS

�R�1
M Þ < gzS

ð1þ l� zS � R�1
M Þ. After rearranging, the latter condi-

tion is equivalent to expððRS � RMÞzSÞ expðRMð1þ lÞ � 1Þ > RM.
Now expððRS � RMÞzSÞP 1, as RS > RM, and expðRMð1þ lÞ � 1Þ >
RM, as RM > ð1þ lÞ�1, and (A.2) follows. h

Differentiating the equation

1þ l� zS � zM ¼ expð�ðRMzM þ RSzSÞÞ; ðA:3Þ

implicitly with respect to zS and rearranging yields

dzM

dzS
¼ � 1� RSð1þ l� zS � zMÞ

1� RMð1þ l� zS � zMÞ
; ðA:4Þ

whence

dðzM þ zSÞ
dzS

¼ ðRS � RMÞð1þ l� zS � zMÞ
1� RMð1þ l� zS � zMÞ

:

Now 1� RMð1þ l� zS � zMÞ > 0 by Lemma 6.1, zS þ zM < 1þ l and
RM < RS, so dðzMþzSÞ

dzS
> 0, i.e. hðzSÞ þ zS strictly increases with zS for

zS 2 ð0; z�SÞ.
Differentiating (A.4) with respect to zS and rearranging yields

d2zM

dz2
S

¼ � RS � RM

ð1� RMð1þ l� zS � zMÞÞ2
dðzM þ zSÞ

dzS
< 0;

for zS 2 ð0; z�SÞ, since RM < RS and dðzMþzSÞ
dzS

> 0. Thus, h is concave on
ð0; z�SÞ.

Note that h : ½0; z�S� ! ½0;1þ lÞ is injective if and only if
h0ð0Þ 6 0. Recall that hð0Þ ¼ z�M, where z�M is the positive root of
1þ l� z ¼ expð�RMzÞ. Then, from (A.4) and using Lemma 6.1,
h0ð0Þ 6 0 if and only if z�M P 1þ l� R�1

S . Note that z�M is given by
the positive root of f0 � g0, so a necessary and sufficient condition
for z�M P 1þ l� R�1

S is that f0ð1þ l� R�1
S Þ < g0ð1þ l� R�1

S Þ,
which is equivalent to

RMðRSð1þ lÞ � 1ÞP RS log RS: ðA:5Þ

Let R�M ¼maxðRS log RS=½R Sð1þ lÞ � 1�;0Þ. Then it is easily seen

that, if RS P ð1þ lÞ�1 then R�M < RS and (A.5) is satisfied if and only

if RM P R�M. If RS < ð1þ lÞ�1 then expð�ð1� RSð1þ lÞÞÞ >
RSð1þ lÞ > RS, so log RS

RSð1þlÞ�1 > 1 and (A.5) is not satisfied for any

RM 2 ½0;RSÞ. Thus, if RS P ð1þ lÞ�1, then h : ½0; z�S� ! ½0;1þ lÞ is
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injective if and only if RM P R�M, while, if RS < ð1þ lÞ�1, then h is
not injective for any RM 2 ½0;RSÞ.

Suppose now that l ¼ 0 and note that in this case (0,0) is
always a solution of (3.10). Now, since RM < RS, for zM; zS P 0,

expðð�ðRMzM þ RSzSÞÞP expð�RSðzM þ zSÞÞP 1� RSðzM þ zSÞ;

with strict inequality unless ðzM; zSÞ ¼ ð0;0Þ. Hence, (0,0) is the only
solution of (3.10) in the first quadrant if RS 6 1. If RS > 1, similar
arguments to the above yield the properties of the solutions of
(3.10) stated in Section 3.3. The main difference is that now zero
is always a root of f0 � g0 and there is a strictly positive root if
and only RM > 1. Thus z�M > 0 if and only if RM > 1.

Appendix B. Proof of stochastic comparison (3.12)

We describe first how a realisation of the stochastic IEDS model
EðnÞ can be obtained by adapting the construction of Sellke [18]. La-
bel the individuals as in Section 5.1. Let L1; L2; . . . ; Ln be Expð1Þ (i.e.
unit-mean exponential) random variables (the ‘‘resistances to
infection” for the initial susceptibles), L0�mMþ1; L

0
�mMþ2; . . . ; L0n be

Expð1Þ random variables (the ‘‘resistances to switching to severe”
for the initial mild infectives and susceptibles), X�ðmMþmSÞþ1;

X�ðmMþmSÞþ2; . . . ;Xn be Expð1Þ (Xi is used to determinine the length
of the infectious period(s) for individual i if it becomes infected)
and, finally, let U1;U2; . . . ;Un be random variables that are uni-
formly distributed on the interval (0,1) (Ui is used to determine
whether individual i becomes a mild or severe infective if it be-
comes infected). All the above random variables are mutually
independent.

We now construct a realisation of EðnÞ using these random vari-
ables. We use the same notation as in Section 5.1 but suppress the
explicit dependence on n. Start at time t ¼ 0 and set
Xð0Þ ¼ n;YMð0Þ ¼ mM and YSð0Þ ¼ mS. For i ¼ �ðmM þmSÞ þ 1;
�ðmM þmSÞ þ 2; . . . ;�mM, the initial severe infective i recovers
and becomes immune at time c�1

S Xi. For j ¼ �mM þ 1;
�mM þ 2; . . . ;0, the initial mild infective j recovers and becomes
immune at time c�1

M Xj, unless it has switched to severe prior to this
time. For any t P 0, we define the accumulated infection pressure
AðtÞ by AðtÞ ¼ n�1

R t
0 kMYMðsÞ þ kSYSðsÞds and the accumulated

switching pressure WðtÞ by WðtÞ¼n�1
R t

0 kMaM maxðYMðsÞ�1;0Þþ
kSYSðsÞaSds. (The term maxðYMðsÞ � 1;0Þ arises because a mild
infective cannot reinfect itself, cf. the factor ðiM � 1Þ in (5.10).)
Move forward in time (from t ¼ 0) until either (i) the accumulated
infection pressure AðtÞ reaches the resistance of any susceptible, or
(ii) the accumulated switching pressure WðtÞ reaches the switch-
ing resistance of a mild infective, or (iii) the infectious period of
any mild or severe infective terminates. If (i) occurs, say AðtÞ
reaches Li, then the number of susceptibles XðtÞ is reduced by
one; individual i becomes a mild infective and YMðtÞ is increased
by one if

Ui 6
kMYMðt�ÞpMM þ kSYSðt�ÞpSM

kMYMðt�Þ þ kSYSðt�Þ
;

otherwise i becomes a severe infective and YSðtÞ is increased by one.
If (ii) occurs, say WðtÞ reaches L0j, then individual j switches from
being mildly to severely infected, YMðtÞ is decreased by one and
YSðtÞ is increased by one. Suppose that this switch occurs sj units
of time after j was first infected. Then j’s severe infectious period
has length given by c�1

S ðXj � cMsjÞ. (Note that the lack-of-memory
property of the exponential distribution ensures that the length of
j’s severe infectious period is exponentially distributed with mean
c�1

S .) If (iii) occurs, then either YMðtÞ or YSðtÞ is reduced by one, as
appropriate, and the relevant individual is removed. Continue
moving forward in time, updating the variables as above, until there
is no infective of either type in the population, at which point the

epidemic terminates. It is easily verified, using the lack-of-memory
property of the exponential distribution, that this construction
yields a process that is probabilistically indistinguishable from the
IEDS model described in Section 2.1.

Consider an individual, i say, in the above epidemic and suppose
that i becomes mildly infected and switches to being severely
infected si units of time later, so si < c�1

M Xi. Let TP
i denote the total

infectious pressure i exerts on any given individual during its
entire infectious career. Then, TP

i ¼ n�1TPðXi; siÞ, where

TPðx; sÞ ¼ kMsþ kSðx� cMsÞc�1
S

¼ RSxþ cMsðRM � RSÞ ð0 6 s < c�1
M xÞ: ðB:1Þ

Note that if i becomes a severe case when first infected then
TP

i ¼ n�1TPðXi;0Þ, and if i becomes a mild case when first infected
and never switches to being severe then TP

i ¼ n�1TPðXi; c�1
M XiÞ.

The random variables L1; L2; . . . ; Ln and X�ðmMþmSÞþ1;

X�ðmMþmSÞþ2; . . . ;Xn can also be used to construct a realisation of a
general stochastic epidemic with infection parameter kS and re-
moval rate cS, GSEðnÞðkS; cSÞ say, by setting aM ¼ aS ¼ 1 in the
above construction. Similarly, a realisation of a general stochastic
epidemic with infection parameter kM and removal rate cM,
GSEðnÞðkM; cMÞ say, is obtained by setting aM ¼ aS ¼ 0, changing
the mS initial severe infectives to mild infectives and forcing all
new infections to be mild cases. Moreover, in GSEðnÞðkS; cSÞ, the total
infectious pressure exerted by i, if it becomes infected, is given by
n�1TPðXi;0Þ, while in GSEðnÞðkM; cMÞ it is given by n�1TPðXi; c�1

M XiÞ.
Suppose that RM 6 RS. Then it is immediate from (B.1) that

TPðx; sÞ is decreasing in s for each fixed x > 0. It follows that for
any given individual, the total infectious pressure it exerts if it
becomes infected in the IEDS epidemic EðnÞ is bounded below by
that for GSEðnÞðkM; cMÞ and above by that for GSEðnÞðkS; cSÞ. It then
follows that, since the resistances to infection L1; L2; . . . ; Ln are the
same for the three epidemics, the total size of EðnÞ is bounded below
and above by those of GSEðnÞðkM; cMÞ and GSEðnÞðkS; cSÞ, respectively.
Thus (3.12) holds with Zmin and Zmax corresponding to
GSEðnÞðkM; cMÞ and GSEðnÞðkS; cSÞ, respectively. A similar argument
holds if RM P RS, except now TPðx; sÞ is decreasing in s for each
fixed x > 0, so the bounding general stochastic epidemics are
interchanged.
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