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1 Introduction

The present paper concerns models for infectious diseases in a community of
households, in which the response to disease varies between individuals; we
restrict our attention to having two different responses, denoted mild and se-
vere. One common such situation is for example where there are asymptomatic
cases showing no or hardly any symptoms but still contributing to the further
spread of the disease.

The reason why individuals show different symptoms may vary for dif-
ferent diseases. In the present paper we focus on two potential explanations.
The first explanation is that the disease response is determined by individual
characteristics, for example someone having partial immunity might become
asymptomatic if infected (e.g. Staalsoe and Hviid (1998) for malaria and Leroy
et al. (2001) in the context of ebola). The second explanation we consider is
where the response depends on the type of infectious contact and/or whom
the individual was contacted by. Examples where this seems to be the case
are dengue fever (Mangada and Igarashi 1998), measles (Morley and Aaby
1997) and varicella (Mehta and Chatterjee 2010). Ball and Becker (2006) con-
sider the evaluation of vaccination strategies for a model in which infectious
cases may be either mild or severe. However, their analysis is based on post-
vaccination reproduction numbers rather than on mechanistic models such as
those considered in this paper.

The first explanation, where the response is determined by individual char-
acteristics of the infected person, is suitably modelled using a multitype epi-
demic household (MT-HH) model (Ball and Lyne 2001). In the MT-HH model
individuals are categorized into different types; the type of an individual may
affect susceptibility to the disease and also response, in particular infectivity,
in the event when the individual becomes infected. Quite often an individ-
ual’s characteristics would not be known, which implies that the proportions
of individuals of the different types in the community are unobserved.

The second explanation can be modelled by extending the so-called infector-
dependent-severity (IDS) epidemic model of Ball and Britton (2007) to an
infector-dependent-severity household (IDS-HH) epidemic model. In the IDS
model, the probability of an individual becoming a mild/severe case depends
on the disease response of the person who caused that individual’s infection.
In the IDS-HH model this may also depend on whether the contact causing
the infection was a within- or between-household contact; for example, within-
household transmission might have a higher risk of leading to severe infection.

Once the final size distribution of the IDS-HH epidemic model is obtained,
together with known such results for the MT-HH model, it is possible to com-
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pare the two distributions. The motivation for the present paper lies in this
comparison. In particular we pose (and answer) the following question: can fi-
nal size data from an epidemic outbreak with varying disease response be used
to discriminate between the two candidate explanations for why infection re-
sponse varies? Except in a few degenerate cases, the answer to the question is
yes. This is illustrated numerically by showing that, in the limit as the pop-
ulation size tends to infinity in an appropriate manner, a possible outcome
for either of the model is (usually) inconsistent with the other model. This
is done by generating “data” from the MT-HH (IDS-HH) model and showing
that the Kullback-Leibler divergence of the estimated outbreak probabilities
from the “data” is much smaller when inference is based on the MT-HH (IDS-
HH) model than when it is based on the IDS-HH (MT-HH) model. The final
size outcome probabilities for the IDS-HH epidemic are obtained by numeri-
cally solving a set of differential equations, and the final size outcome prob-
abilities for the MT-HH model are obtained numerically by solving a set of
balance equations. Consequently, we have no analytical results “proving” that
the two models are inconsistent – our arguments are instead based on numer-
ical studies. We also consider data generated from finite populations and use
a simulation study to demonstrate that it is possible to discriminate between
the models using a pseudolikelihood approach.

The paper is organised as follows. In Section 2 we define the MT-HH model
and review final outcome results for that model. In Section 3 we define the
IDS-HH model and derive an appropriate determinstic approximation to it. In
Section 4 we compare and contrast the final size outcomes of the two models via
simulation studies, which (i) confirm the applicability of the asymptotic results
to finite populations, (ii) strongly suggest that, as proved by Ball and Lyne
2010 for the MT-HH model, the final outcome of the IDS-HH model satisfies
a central limit theorem and (iii) shed light on some interesting differences
between the models. In Section 5 we show numerically that inference from
final outbreak data makes it possible to distinguish between the two models,
using both infinite populations, as described in the previous paragraph, and
also finite populations, where a pseudolikelihood approach (cf. Ball and Lyne
2010) is applied to simulated data. The paper ends with a short discussion in
Section 6.

2 The multitype household model

2.1 Model definition

The multitype household epidemic was first analysed in depth by Ball and
Lyne (2001), see also Becker and Hall (1996) and Britton and Becker (2000).
We now describe this model using slightly different notation. With the present
application in mind, we restrict the model to two types and exponentially
distributed infectious periods.
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Each individual is categorized as being a mild or a severe type, with
the interpretation that if infected, the individual will become this type of
infective. Additional to this, individuals reside in households. Let mk,s de-
note the number of households having k mild and s severe individuals, let
mn =

∑n

k=0 mk,n−k denote the number of households of size n, and let
m =

∑

∞

n=1 mn(=
∑

k,s mk,s) denote the total number of households. Further,

let N =
∑

∞

n=1 nmn denote the total population size, which is assumed to be
finite. Our analysis is of the limiting situation in which the total number of
households m tends to infinity in such a way that mn/m → ρn (n = 1, 2, . . .),
where

∑

∞

n=1 ρn = 1 and the limiting mean household size µH =
∑

∞

n=1 nρn is
finite. It would rarely be the case that the type of an individual is known, so
we assume that each individual is a mild case with probability βM (and severe
with probability 1 − βM ), with the types of different individuals being mutu-
ally independent. It then follows that the number of mild cases in a household
of size n is binomially distributed. Hence, in a large community, we have that
mk,s/mk+s ≈

(

k+s
k

)

βk
M (1 − βM )s, and this holds with equality in the limiting

situation described above.

The disease spreads according to the following rules. Initially, a small given
number of individuals are infected (from some external force) and the remain-
ing individuals are susceptible. During his/her infectious period a mild infec-
tious individual has (global) infectious contacts with any given other mild in-

dividual at rate λ
(G)
MM/N and with any given severe individual at rate λ

(G)
MS/N .

Similarly, an infectious severe individual has (global) infectious contacts with

any given mild individual at rate λ
(G)
SM/N and with any given other severe in-

dividual at rate λ
(G)
SS /N . Additionally, an infectious mild individual has (local)

infectious contact with any given other mild member of his/her household at

rate λ
(L)
MM and with any given severe mamber of his/her household at rate

λ
(L)
MS . The corresponding rates for local infectious contacts of an infectious

severe individual are λ
(L)
SM and λ

(L)
SS . An ‘infectious contact’ is defined as a

contact which results in infection if the other individual is susceptible – oth-
erwise the contact has no effect. The infectious period of all individuals follow
exponential distributions, with rates γM and γS for mild and severe infectives,
respectively. All contact processes are governed by homogeneous Poisson pro-
cesses, having rates as above. Further, all infectious periods and all contacts
processes (whether or not either or both of the indivdiduals involved are the
same) are assumed to be mutually independent. We assume that infected in-
dividuals are able to infect other individuals as soon as they have become
infected, i.e. there is no latent period. Once an inidividual’s infectious period
is over, he/she recovers and becomes immune to further infection. The absence
of a latent period, though unrealistic for most, if not all, human diseases, has
no consequence for our present purpose, since the distribution of the final out-
come of the MT-HH model is not changed if an almost surely finite latent
period is incorporated (provided the rest of the model is the same).
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The MT-HH model has the following 11 parameters: θ(MT ) = (λ
(G)
MM , λ

(G)
MS ,

λ
(G)
SM , λ

(G)
SS , λ

(L)
MM , λ

(L)
MS , λ

(L)
SM , λ

(L)
SS , γM , γS , βM ). Later we consider final size data

for this model. In that situation we can, and hence do, assume without loss
of generality that γM = γS = 1. (The final outcome of a closed-population
stochastic SIR epidemic of this type can be obtained by considering a random
directed graph whose vertices are the individuals in the population and, for
any vertices i 6= j, there is a directed edge from i to j if and only if individual
i, if infected, has infectious contact with individual j; see, for example, Pellis
et al. (2008). The set of people who are ultimately infected by the epidemic
is given by the those individuals for which there is a chain of directed edges
leading to them from an initial infective. Thus if, for example, γM 6= 1, we can
divide all infection rates from mild infectives by γM and then set γM = 1 with-
out changing the probability measure of the above random directed graph, and
hence without changing the final outcome distribution. Note that this directed
random graph explains also the above comment concerning a latent period.)
It is also shown in Ball et al. (2004) that the 4 global infection parameters
are not uniquely identifiable from final size data – what is identifiable are two
separate linear combinations of these four parameters (details are given at
the end of Section 2.2). In conclusion we hence have 7 parameters that are
identifiable from final size data for the MT-HH model.

2.2 Large population properties of the MT-HH model

The MT-HH model is closely related to the model analysed in Ball and Lyne
(2001). (The latter model allows for arbitrarily many types, non-random al-
location of types of individuals to households and arbitrary but specified in-
fectious period distributions.) Using essentially the same argument as in Ball
and Lyne (2001), the MT-HH model possesses a threshold parameter R∗, a
reproduction number for the proliferation of infected households, which de-
termines whether or not an epidemic started with few initial infectives can
become established in a large population. We now consider the final outcome
of such an epidemic that becomes established, so implicitly we assume that
R∗ is above its threshold value of 1. For n = 1, 2, . . . and rM , rS = 0, 1, . . .

such that rM + rS ≤ n, let p
(MT )
n (rM , rS |θ

(MT )) denote the limiting fraction
of households of size n that have rM mild cases and rS severe cases at the end
of an epidemic that becomes established, where the limit is as the total num-
ber of households m → ∞. An outline derivation of a method for determining

p
(MT )
n (rM , rS |θ

(MT )) is given below. It is a slight adaptation of the argument
used in Ball and Lyne (2001), which should be consulted for further details.

It is fruitful to consider first the following two-type single-household epi-
demic model proposed by Addy et al. (1991). Suppose that the household is of
size n, that it contains k mild individuals and n−k severe individuals, and that
all n individuals are initially susceptible. During the course of the epidemic,
individuals avoid infection from outside of the household independently, with
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probabilities πM and πS for mild and severe individuals, respectively. The lo-
cal spread within the household is governed by the same disease dynamics as
in the MT-HH model. Write

Λ(L) =

[

λ
(L)
MM λ

(L)
MS

λ
(L)
SM λL

SS

]

, π = (πM , πS)

and denote this single-household epidemic model by E(n,k)(Λ(L), π). (Recall

that we assume that γM = γS = 1.) Let Z
(n,k)
M and Z

(n,k)
S denote respec-

tively the numbers of mild and severe removed cases in the household at the

end of the single-household epidemic, let p(n,k)(i, j|Λ(L), π) = P (Z
(n,k)
M =

i, Z
(n,k)
S = j) (0 ≤ i ≤ k, 0 ≤ j ≤ n − k), µ

(n,k)
M (Λ(L), π) = E[Z

(n,k)
M ] and

µ
(n,k)
S (Λ(L), π) = E[Z

(n,k)
S ]. The probabilities p(n,k)(i, j|Λ(L), π) may be de-

termined using the following triangular system of linear equations (see Addy
et al. (1991, Equation (4))):

i1
∑

i=0

j1
∑

j=0

(

k−i
i1−i

)(

n−k−j
j1−j

)

p(n,k)(i, j|Λ(L), π)

πk−i1
M πn−k−j1

S (hM (i1, j1))i(hS(i1, j1))j
=

(

k

i1

)(

n − k

j1

)

(0 ≤ i1 ≤ k, 0 ≤ j1 ≤ n − k),

where

hM (i1, j1) =
1

1 + (k − i1)λ
(L)
MM + (n − k − j1)λ

(L)
MS

and

hS(i1, j1) =
1

1 + (k − i1)λ
(L)
SM + (n − k − j1)λ

(L)
SS

.

The means µ
(n,k)
M (Λ(L), π) and µ

(n,k)
S (Λ(L), π) are easily computed once the

probabilities p(n,k)(i, j|Λ(L), π) have been obtained.
Returning to the MT-HH model, suppose that there are few initial infec-

tives, and let zM and zS denote respectively the proportions of individuals that
are ultimately mild removed and severe removed, respectively. Then, if the to-
tal population size N is large, the probability that a given mild susceptible
avoids global infection throughout the course of the epidemic is approximately

πM = exp[−(NzM
λ
(G)
MM

N
+ NzS

λ
(G)
SM

N
)] = exp[−(zMλ

(G)
MM + zSλ

(G)
SM )]. The corre-

sponding probability for a given severe susceptible is πS = exp[−(zMλ
(G)
MS +

zSλ
(G)
SS )]. In the limit as the number of households m → ∞, the approximate

probabilities πM and πS become exact and whether or not distinct individu-
als avoid global infection become independent. It follows that, in the event of
an epidemic becoming established, the final outcome within a typical house-
hold of size n, that initially contained k mild and n − k severe susceptibles
is distributed according to the final outcome of the single-household epidemic
E(n,k)(Λ(L), π), with π = (πM , πS) given by

πM = exp[−(zMλ
(G)
MM + zSλ

(G)
SM )] and πS = exp[−(zMλ

(G)
MS + zSλ

(G)
SS )].

(2.1)
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Note that the expected final number of mild removal cases in a household
chosen uniformly at random is given by µHzM . Thus, by conditioning on first
the size of and then the number of mild individuals in such a randomly chosen
household, we have that

µHzM =
∞
∑

n=1

ρn

n
∑

k=0

(

n

k

)

βk
M (1 − βM )n−kµ

(n,k)
M (Λ(L), π). (2.2)

A similar argument shows that

µHzS =

∞
∑

n=1

ρn

n
∑

k=0

(

n

k

)

βk
M (1 − βM )n−kµ

(n,k)
S (Λ(L), π). (2.3)

After substituting for π from (2.1), equations (2.2) and (2.3) give a pair of
non-linear equations for (zM , zS). These equations always have the solution
(zM , zS) = (0, 0). If R∗ ≤ 1 this is the only solution, whilst if R∗ > 1
there is (subject to very mild conditions on the parameters) a unique sec-
ond solution in [0, 1]2, (z∗M , z∗S) say, giving the proportions of individuals that
are ultimately mild and severe removed in the event of an epidemic that be-
comes established. It follows that, if π

∗ = (π∗

M , π∗

S) is obtained by substituting
(zM , zS) = (z∗M , z∗S) in (2.1), then, for n = 1, 2, . . . and 0 ≤ rM + rS ≤ n,

p(MT )
n (rM , rS |θ

(MT )) =

n−rS
∑

k=rM

(

n

k

)

βk
M (1 − βM )n−kp(n,k)(rM , rS |Λ

(L), π∗)

(2.4)

Calculating these final size probabilities numerically is relatively straightfor-
ward and follows exactly this procedure. Having substituted for π from (2.1),
we first solve (numerically) the balance equations (2.2) and (2.3) to find
(z∗M , z∗S), substitute this into (2.1) to find (π∗

M , π∗

S), then use (2.4) to calculate

the final size distributions {p
(MT )
n (rM , rS |θ

(MT ))}.

Note from (2.1) that any (λ
(G)
MM , λ

(G)
MS , λ

(G)
SM , λ

(G)
SS ) satisfying z∗Mλ

(G)
MM +

z∗Sλ
(G)
SM = − logπ∗

M and z∗Mλ
(G)
MS + z∗Sλ

(G)
SS = − logπ∗

S yields the same final

size probabilities {p
(MT )
n (rM , rS |θ

(MT ))}, so only these two linear combina-

tions of (λ
(G)
MM , λ

(G)
MS , λ

(G)
SM , λ

(G)
SS ) and not the individual global infection rates

are identifiable from final size data. Thus when fitting the MT-HH model we

estimate (πM , πS) rather than (λ
(G)
MM , λ

(G)
MS , λ

(G)
SM , λ

(G)
SS ).

3 The IDS household model

3.1 Model definition

The infector-dependent-severity household model is an epidemic model where
infected individuals may, upon infection, become either severely infected or
mildly infected, and the probability that an infected individual becomes mildly
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(or severely) infected may depend on both the type of its infector and whether
the infectious contact is local or global. Additionally, individuals reside in
households and the transmission rate is typically appreciably higher between
individuals sharing a household. The model is defined as follows.

Assume that there are N individuals in total, and that each individual
resides in a household. Let mn denote the number of households of size n and
let m =

∑

∞

n=1 mn denote the total number of households. We consider the
limiting situation in which the population size tends to infinity in the same

way as described in Section 2.1. Initially there are k
(m)
M mild infectives and

k
(m)
S severe infectives, with the remaining individuals assumed to be suscepti-

ble. (The locations of the initial infectives is discussed later.) Mild infectives
recover and become immune at rate γM and severe infectives recover and be-
come immune at rate γS . Thus, the infectious periods of infectives are assumed
to follow exponential random variables, with parameter depending on whether
an infective is a mild or a severe case. While infectious, a mild infective makes

global infectious contacts with any given individual at rate λ
(G)
M /N . If a con-

tacted person is susceptible he/she becomes mildly infected with probability

p
(G)
MM and severely infected with probability 1− p

(G)
MM ; if a contacted person is

already infected then the contact has no effect. Additionally, a mild infective
has contact with any (other) given household member (local contact) at rate

λ
(L)
M , and such a contacted individual, if susceptible, becomes a mild infective

with probability p
(L)
MM and severe infective with probability 1 − p

(L)
MM . Severe

infectives have contacts according to the same rules, although with parameters

λ
(G)
S /N , p

(G)
SM , λ

(L)
S and p

(L)
SM . All contact processes and infectious periods are

assumed to be mutually independent. The epidemic continues until there is no
(mild or severe) infective present, when the epidemic stops.

The parameters of the IDS-HH model are θ(IDS) = (λ
(G)
M , λ

(G)
S , λ

(L)
M , λ

(L)
S ,

p
(G)
MM , p

(G)
SM , p

(L)
MM , p

(L)
SM , γM , γS). Note that rescaling time does not change the

final outcome of an epidemic, so, without loss of generality, we may assume
that e.g. γM = 1, whence there are 9 parameters that are, in principle, iden-
tifiable from final outcome data. Note also that the directed random graph
argument used for the final outcome of the MT-HH model fails to hold for
the IDS-HH model, since the distribution of edges emanating from any given
individual depends on the type of that individual, which is not determined at
the outset of the epidemic and indeed depends on the temporal behaviour of
the epidemic. Thus, fixing γM as well as γS would involve a loss of generality
and the distribution of the final outcome of the IDS-HH model is generally
not invariant to a latent period.

3.2 Large population properties of the IDS-HH model

Suppose that the epidemic starts at time t = 0 and for t ≥ 0, let X
(m)
n:i,j,k,ℓ(t)

denote the number of households of size n that at time t have i mild infectives, j
severe infectives, k mild removed individuals and ℓ severe removed individuals.
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Assume now that there is a maximal household size nmax, so ρn = 0 for all
n > nmax. For t ≥ 0, let X

(m)(t) be the vector obtained by letting n, i, j, k, ℓ
vary over all possible feasible values; viz. n = 1, 2, . . . , nmax, 0 ≤ i+j+k+ℓ ≤
n. Then {X(m)(t) : t ≥ 0} is a density-dependent Markov population process
which can be analysed using theory developed in Ethier and Kurtz (1986,
Chapter 11).

Suppose that m−1
X

(m)(0) → x(0) as m → ∞, where x(0) satisfies
∑nmax

n=1
∑

k,ℓ xn:0,0,k,ℓ(0) < 1, so a strictly positive fraction of the population is ini-
tially infected in the limit as m → ∞. Then the above-mentioned theory of
Ethier and Kurtz (1986) shows that the IDS-HH epidemic process scaled by
m, X̄(t) := X(t)/m, converges in probability to a vector of deterministic func-
tions defined by a set of differential equations. More precisely, the component
X̄n:i,j,k,ℓ(t) = Xn:i,j,k,ℓ(t)/m = ρnXn:i,j,k,ℓ(t)/mn converges to ρnx̃n:i,j,k,ℓ(t)
defined below. The interpretation of x̃n:i,j,k,ℓ(t) is hence the (asymptotic) frac-
tion of the size-n households that at time t have i mild infectives, j severe
infectives, k mild removed individuals and ℓ severe removed individuals. Us-
ing this notation we can define the (asymptotic) fraction mildly and severely
infected at time t, iM (t) and iS(t) respectively, by

iM (t) =
∑

n,i,j,k,ℓ

iρnx̃n:i,j,k,ℓ(t)/µH

iS(t) =
∑

n,i,j,k,ℓ

jρnx̃n:i,j,k,ℓ(t)/µH .

The functions x̃n:i,j,k,ℓ(t) are defined by the following set of differential
equations:

x̃′

n:i,j,k,ℓ(t) =
(

λ
(G)
M p

(G)
MM iM (t) + λ

(G)
S p

(G)
SM iS(t) + λ

(L)
M p

(L)
MM (i − 1) + λ

(L)
S p

(L)
SMj

)

× (n − (i − 1 + j + k + ℓ)) ρnx̃n:i−1,j,k,ℓ(t)

+
(

λ
(G)
M p

(G)
MSiM (t) + λ

(G)
S p

(G)
SS iS(t) + λ

(L)
M p

(L)
MSi + λ

(L)
S p

(L)
SS (j − 1)

)

× (n − (i + j − 1 + k + ℓ)) ρnx̃n:i,j−1,k,ℓ(t)

+ γM (i + 1)ρnx̃n:i+1,j,k−1,ℓ(t)

+ γS(j + 1)ρnx̃n:i,j+1,k,ℓ−1(t)

−
(

λ
(G)
M iM (t) + λ

(G)
S iS(t) + λ

(L)
M i + λ

(L)
S j

)

(n − (i + j + k + ℓ))

× ρnx̃n:i,j,k,ℓ(t)

− (γM i + γSj)ρnx̃n:i+1,j,k−1,ℓ(t), (3.1)

with initial values given by xn:i,j,k,ℓ(0) = ρnx̃n:i,j,k,ℓ(0).
The differential equation (3.1) applies to all relevant (n : i, j, k, ℓ), i.e.

where each of the indices are non-negative and i + j + k + ℓ ≤ n. Vector
components ‘out of bounds’, e.g. where some index is negative, are defined
to be 0, for example x̃3:0,−1,1,1(t) ≡ 0. The first four terms in (3.1) are for
households entering the state (n : i, j, k, ℓ), explaining why they have a plus
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sign. The first term is for a household presently in state (n : i − 1, j, k, ℓ)
having a mild infection and gives the overall rate for such an event to occur.
The second term is for (n : i, j − 1, k, ℓ)-households having another severe
infection, the third term is for (n : i + 1, j, k − 1, ℓ)-households having a mild
removal and the fourth term is for the severe removals. The remaining terms
describe events that cause a household to leave the state (n : i, j, k, ℓ). The
fifth term is the overall rate at which susceptibles in a (n : i, j, k, ℓ)-households
become infected, either mildly or severely and the last term is the overall rate
at which infectives (mild and severe) in (n : i, j, k, ℓ)-households are removed.

Our goal is to obtain p
(IDS)
n (rM , rS |θ

(IDS)), the limiting fraction of house-
holds of size n that have rM mild and rS severe cases at the end of the
epidemic. If the numbers of initial mild and severe infectives, k

(m)
M and k

(m)
S ,

are held fixed as m → ∞, then, for large m, the epidemic can become estab-
lished only if the household reproduction number R∗ is strictly larger than
one. (The reproduction number R∗ can be obtained by approximating the
process of infected households by a two-type branching process, the type
of an infected household being the type of its initial case; we omit the de-
tails as R∗ is not required for the present paper.) Ideally, we would like to

be able to calculate p
(IDS)
n (rM , rS |θ

(IDS)) for an epidemic that becomes es-

tablished under these conditions. However, if k
(m)
M and k

(m)
S are held fixed,

then
∑nmax

n=1

∑

k,ℓ xn:0,0,k,ℓ(0) = 1 and the theory of Ethier and Kurtz (1986)
cannot be applied directly. Thus we assume instead that a very small, but
strictly positive, fraction of individuals are initially infected and approximate

p
(IDS)
n (rM , rS |θ

(IDS)), by solving the differential equations (3.1) numerically
up to a time when the remaining fraction of infective individuals is negligible.
More specifically, we assume that a fraction fS = 10−5 of the population is ini-
tially severely infective, with these infective individuals being chosen uniformly
at random, so

x̃n:i,j,k,ℓ(0) =

{

(

n

j

)

f j
S(1 − fS)n−j if i = k = ℓ = 0,

0 otherwise.

We stop the numerical integration at the first time t′ when the proportion
of the population that is infective, i.e. iM (t′) + iS(t′), is less than δ = 10−7

(≪ fS). The final size probabilities are then given by p
(IDS)
n (rM , rS |θ

(IDS)) =
x̃n:0,0,rM ,rS

(t′). However, note that the final size probabilities are essentially
insensitive to the initial conditions, provided that the proportion of index cases
is sufficiently small.

The theory of Ethier and Kurtz (1986, Chapter 11) can also be used to
show that, in the limit as the number of households m → ∞, the fluctu-
ations of the stochastic model X(t) about its deterministic limit x(t) (de-
fined by xn:i,j,k,ℓ(t) = ρnx̃n:i,j,k,ℓ(t)), after being suitably scaled, converge to
a zero-mean Gaussian process, whose covariance function can, in principle, be
determined. As in Ball and Britton (2007, 2009), this central limit theorem
can be extended heuristically to hold also for the end of the epidemic, the
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time of which tends to infinity as m → ∞, by making a random time scale

transformation in which the clock runs at rate m(λ
(G)
M IM (t) + λ

(G)
S IS(t))−1,

where IM (t) and IS(t) are respectively the total number of mild and severe
infectives present at time t in the untransformed process, cf. Ethier and Kurtz
(1986, pp. 466–467). This yields a multivariate central limit theorem for the
quantities Zn(rM , rS) (n ≥ 1, rM , rS ≥ 0, rM + rS ≤ n), where Zn(rM , rS) is
the number of households of size n which ultimately have rM mild removed
and rS severe removed individuals. In principle, it is possible to compute the
covariance matrix of the limiting normal distribution numerically, though in
practice the required computations are prohibitive except for populations com-
prising only very small households. For a population with households of sizes
1, 2, . . . , nmax, determining the deterministic limit x(t) requires solving a sys-
tem of nmax

E =
(

nmax+5
5

)

− nmax − 1 differential equations and determining

the above covariance matrix requires solving a system of
(

nmax
E +1

2

)

differential
equations. For nmax = 1, 2, 3, 4, 5, nmax

E = 4, 18, 52, 121, 246, so while it is per-
fectly feasible to solve for x(t) numerically, that may not be the case for the
covariance matrix.

4 Numerical illustrations of model behaviour

To illustrate the asymptotic results given in the previous sections and explore
some of the properties of the two models we have presented, we performed
simulation studies of both models and compared some of their final size prop-
erties. In order to do this we first needed to select values for the parameters
of our models.

First we address these parameter choices in the MT-HH model. As men-
tioned in Section 2.1, the removal rates can without loss of generality be set
to unity: γM = γS = 1. The fraction of mild types in the community was
set to βM = 0.4. This value was chosen so that approximately one third of
all infected are mild cases (reported by Carrat et al. (2008) to be the case for
asymptomatic cases regarding influenza). The global contact rates were chosen

as λ
(G)
MM = 0.25, λ

(G)
MS = 0.8, λ

(G)
SM = 0.8 and λ

(G)
MM = 1.5, so severe infectives

are more infectious and also mild infectives rarely globally infect mild sus-

ceptibles. The corresponding local contact rates were chosen as λ
(L)
MM = 0.2,

λ
(L)
MS = 0.4, λ

(L)
SM = 0.4 and λ

(L)
MM = 0.8, so severe infectives are also more

infectious locally and mild infectives have a relatively higher probability of
infecting mild susceptibles when compared with global contacts. The absolute
values of the two contact matrices were chosen so that approximately 50% of
the population becomes infected, this being a realistic value for influenza (see
Ferguson et al. (2005)). The relative magnitude of the global and local contact
rates was chosen so that both types of contact play a significant role in the
spread of infection.

The parameters of the IDS-HH model were chosen to be λ
(G)
M = 1, λ

(G)
S = 2,

p
(G)
MM = 0.8, p

(G)
SM = 0.2, λ

(L)
M = 0.5, λ

(L)
S = 1, p

(G)
MM = 0.5, p

(G)
SM = 0.1, γM = 1
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and γS = 2. These parameter values were chosen for the same reasons as the
parameters for the MT-HH model, with the addition that the infectious period
was set to be shorter (on average) for severe cases than for mild cases, having
in mind asymptomatic individuals who are less likely to ‘self-quarrantine’ as
they are unaware of their infection.

The parameter common to both models is the distribution of household
sizes. In this paper we consider two different population structures. The first
is for the case where households of size 1, 2 and 3 are equally likely and no
larger households exist, i.e. ρ1 = ρ2 = ρ3 = 1/3, and is chosen largely for com-
putational convenience. The second population structure corresponds to the
household structure of UK in 2003 (found by typing ‘household sizes’ into the
search box at http://www.statistics.gov.uk/census2001/census2001.asp), with
the simplification that households of size 5 and larger were truncated and all as-
sumed to have size 5 (only 2% of the households had larger household size than
5, so this truncation should have negligible effect). The household structure
for this case is given by ρ1 = 0.29, ρ2 = 0.35, ρ3 = 0.15, ρ4 = 0.14, ρ5 = 0.07.
For future reference we denote these distributions by ρ(3) = (1, 1, 1)/3 and
ρ(5) = (29, 35, 15, 14, 7)/100. We also note that 3 is the minimum value of
nmax for both models to be, in principle, identifiable.

For both models we ran 10,000 simulations of systems with 10,000 house-
holds, the sizes being given by ρ = ρ(5). (We treated ρ as giving the proportions
of households of different sizes, rather than having random household sizes with
distribution ρ.) In order that minor outbreaks are unlikely, we initiated the
epidemics with 10 infectives, each randomly chosen in different households of
size 5; in the MT-HH model these individuals may be mild-type or severe-type
(with respective probabilities βM and 1 − βM ) and in the IDS-HH model we
specified that they are all severe cases. For simulations that result in more
than 0.15 of the population becoming infected we then recorded the over-
all final size amongst initial susceptibles and the within-household final sizes
amongst households that are initially completely susceptible. (Inspection of
histograms (not shown) of the final proportion of individuals infected suggests
that this cutoff is appropriate for separating minor and major outbreaks.)

Figures 1 and 2 show histograms of the numbers of individuals ultimately
mildly and severely infected in, respectively, the 9,992 simulations of the MT-
HH model and the 9,993 simulations of the IDS-HH model that resulted in
major outbreaks. Overlaid on these histograms are probability density func-
tions (scaled so as the area under them matches that of the histograms) of
normal distributions with the same mean and variance. The excellent agree-
ment between the histograms and density functions in Figure 1 is expected in
view of the central limit theorem for the MT-HH model of Ball and Lyne (2001)
and in Figure 2 this lends credence to the central limit theorem discussed in
Section 3.2 above for the final outcome of the IDS-HH model. Though the

mean values of these distributions are similar (µ
(MT )
M ≈ 4,525, µ

(IDS)
M ≈ 4,854;

µ
(MT )
S ≈ 9,835, µ

(IDS)
S ≈ 10,008) – indeed the parameter values were cho-

sen with this intention – it is interesting to note that the variability is rather
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different in the two models. The spread of the distribution of the number of
mild cases in the IDS-HH model is appreciably larger than that in the MT-HH

model (σ
(MT )
M ≈ 93 and σ

(IDS)
M ≈ 150) and, though not to the same extent, the

distribution of the number of severe cases is also slightly more spread in the

IDS-HH model (σ
(MT )
S ≈ 167 and σ

(IDS)
S ≈ 218). Part of the reason for this is

that in the MT-HH model the types of individuals are determined in advance,
but in the IDS-HH model the types of the infected individuals depend on the
evolution of the epidemic and some feedback may occur (though with different
parameters it might potentially be positive or negative).
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Fig. 1 Histograms of final outcome of major outbreaks in simulations of the MT-HH model
in a community of 10,000 households, with matched normal approximations superimposed.
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Fig. 2 Histograms of final outcome of major outbreaks in simulations of the IDS-HH model
in a community of 10,000 households, with matched normal approximations superimposed.

Tables 1 and 2 give further information about the within-household out-
comes of major outbreaks in the two models. These tables give, for each house-
hold size n, estimates from the simulations of the probability that a typical
individual in a household of size n is ultimately (i) mildly infected (p̂M ),
(ii) severely infected (p̂S) and (iii) infected (p̂INF = p̂M + p̂S), and also of
the probability that a case in a household of size n is severe (p̂S/p̂INF). The
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Table 1 Properties of MT-HH epidemics that become established.

n p̂M p̂S p̂INF p̂S/p̂INF

1 0.1272 (0.1273) 0.3255 (0.3256) 0.4527 (0.4529) 0.7190 (0.7189)

2 0.1585 (0.1585) 0.3751 (0.3753) 0.5336 (0.5337) 0.7030 (0.7031)

3 0.1923 (0.1925) 0.4228 (0.4229) 0.6151 (0.6154) 0.6873 (0.6872)

4 0.2270 (0.2271) 0.4656 (0.4658) 0.6926 (0.6929) 0.6723 (0.6722)

5 0.2602 (0.2603) 0.5020 (0.5021) 0.7621 (0.7624) 0.6587 (0.6586)

Table 2 Properties of IDS-HH epidemics that become established.

n p̂M p̂S p̂INF p̂S/p̂INF

1 0.1815 (0.1822) 0.2870 (0.2865) 0.4685 (0.4687) 0.6126 (0.6113)

2 0.1969 (0.1976) 0.3546 (0.3542) 0.5515 (0.5517) 0.6430 (0.6419)

3 0.2095 (0.2104) 0.4267 (0.4261) 0.6362 (0.6364) 0.6707 (0.6695)

4 0.2190 (0.2196) 0.4980 (0.4975) 0.7169 (0.7171) 0.6946 (0.6937)

5 0.2229 (0.2250) 0.5671 (0.5638) 0.7901 (0.7888) 0.7178 (0.7147)

figures in parentheses are the corresponding infinite population asymptotic

quantities obtained from {p
(MT )
n (rM , rS |θ

(MT ))} and {p
(IDS)
n (rM , rS |θ

(IDS))},
respectively.

In both cases we observe good agreement between the deterministic and
estimated stochastic quantities. Also observe that, in both models, the propor-
tion of individuals infected increases with household size n. This a consequence
of local spread being greater in larger households. In the MT-HH model the
proportion of cases that are severe decreases with n, whereas this proportion
increases with n in the IDS-HH model. In the IDS-HH model this simply re-
flects the fact that local infections are very likely to result in severe cases. In
the MT-HH model, however, an individual’s type is determined in advance
rather than by the spread of infection and this results in a ‘saturation effect’
of sorts. Note that the proprtion of cases in households of size 1 that are se-
vere (0.7191) is larger than the proportion of individuals that are of severe
type (0.6). In larger households more local spread is expected than in smaller

households (as λ
(L)
MM , λ

(L)
MS , λ

(L)
SM and λ

(L)
SS are independent of household size)

and the rates are such that severe types are more likely to be infected. Indeed,
in a very large household we would expect everyone to be infected, in which
case the proportion of cases that are severe must be equal to the proportion of
individuals of severe type. For any household size, the proportion of globally
contacted individuals that are severe is 0.7191. However, since local spread
increases with households size and there is greater scope for local infection
amongst mild types than severe types (as relatively fewer are infected glob-
ally) the proportion of cases that are severe must decrease with household
size.

Clearly the above phenomena depend on the parameter values chosen in
the two models. For example, in either model, simply interchanging the labels
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of the two types results in the opposite effect of household size on p̂S/p̂INF

being observed.

5 Model discrimination

Suppose data from a population with household structure given by {ρn} are
generated from one of the two models, with some given parameters θ(MT ) or
θ(IDS), as appropriate. An important inference, or discrimination, problem
in light of two possible models is then whether it is possible to determine
which of the models the data come from. It is hard to give an analytical
answer to this question since the final size probabilities are not explicit. We
address the question with a numerical investigation. For our purposes, the
data are the distributions of within-household final sizes q = {qn(rM , rS), 0 ≤
rM + rS ≤ n, 0 ≤ n ≤ nmax}. We consider the case where q is the asymptotic
(m → ∞) final size distribution derived from one or other of the models
using the methods described in Sections 2.2 and 3.2, in order to determine
whether the two models actually produce different final size distributions. We
also consider the case where q is derived from stochastic simulations of one or
other of the two models (i.e. with m finite), to determine whether or not any
difference between the two models is sufficiently pronounced to be detectable
with a dataset that resembles more closely one available in real life.

In the remainder of this section we describe first, in Section 5.1, how we
generate the data that we use, both from infinite and finite populations, then
discuss, in Section 5.2 how we fit the models to a given final size distribution.
In Section 5.3, we describe our main findings concerning whether the MT-
HH and IDS-HH models can be distinguished on the basis of final size data.
In Section 5.4 we motivate our use of the Kullback-Leibler divergence as a
tool for model fitting and discrimination and finally, in Section 5.5, we discuss
identifiability issues that arise in fitting the models to final outcome data.

5.1 Data generation

Final size data for an infinite population are generated using the methods
described in the previous sections. For the MT-HH model we solve equations
(2.1)–(2.4) numerically and for the IDS-HH model we solve the differential
equations (3.1) numerically, as described in Sections 2.2 and 3.2, respectively.
To generate final size data for finite populations we simulate an outcome of the
relevant stochastic process according to the model description in Section 2.1
or 3.1, as appropriate, (with 10 initial severe infectives, each in separate house-
holds of size nmax, to increase the chance of a major outbreak occuring). If a
major outbreak does occur (which we take to be more than 0.15 of the popula-
tion becoming infected) then we calculate the empirical final size distribution
considering only the households in that simulation that had no initial infec-
tives. In either case we denote by q = {qn(rM , rS)} the ‘target’ household final
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size distributions that we try to reproduce from the model we choose to fit to
the data.

5.2 Model fitting

We now describe the algorithm we use to fit each model to given final size
data q = {qn(rM , rS)}. The goal is to find parameters θ of the model we are
fitting so that the distance between the final size distributions {pn(rM , rS |θ)},
corresponding to θ(MT ) or θ(IDS), and the ‘target’ final size distributions
q = {qn(rM , rS)} is as small as possible. We measure this distance using the
Kullback-Leibler (K-L) divergence

f(θ) = DKL(q||p(θ)) =

nmax
∑

n=1

ρn

∑

rM ,rS

qn(rM , rS) log

(

qn(rM , rS)

pn(rM , rS |θ)

)

. (5.1)

The use of the K-L divergence is motivated by its well-known relationship
with likelihood-based inferential procedures (see, for example, Bishop et al.

(1975, pp. 344–348)), which is discussed in more detail in Section 5.4. We
minimise f(θ) numerically using Matlab’s fmincon constrained optimisation
routine. This requires selecting a starting point θ0 for the parameters; we
choose these starting values independently at random, the rate parameters
from an exponential distribution with mean 1 and proportion/probability pa-
rameters uniformly from the interval (0, 1). In the case of fitting the IDS-HH
model we find that the numerical optimisation is more difficult and that it is
beneficial to sample several (we use 20) such possible starting points θ0 and
then start the numerical optimisation routine at the best of these points (i.e.
that with smallest f(θ0)), so that the numerical routine is more likely to start
at a point in parameter space that is at least moderately compatible with the
target final size distributions q. We describe this process of choosing a starting
point for and then running the optimisation routine as a single ‘run’ of our
algorithm (i.e. model fitting procedure).

Calculating p(θ) = {pn(rM , rS |θ)} using the methods described in Sec-
tion 2.2 or 3.2 is straightforward and in principle evaluating f(θ) is then trivial
as long as p has no zero entries, i.e. as long as the parameter vector θ results
in the model being super-critical. However, there are numerical problems that
can arise when calculating the K-L divergence as in equation (5.1). These
problems arise due to so-called ‘catastrophic cancellation’ which occurs when
using the formula (5.1) if q and p differ only slightly. The terms qi log(qi/pi)
are all small (since p and q are close) but are of differing signs (since sometimes
qi > pi and sometimes vice-versa), thus when the sum

∑

i qi log(qi/pi) is close
to zero there can be catastrophic cancellation and the calculated sum can be
wildly inaccurate. We resolve this by using the Taylor series approximation
s log(s/t) ≈ (s − t)2/2t about s = t (cf. Bishop et al. (1975, Lemma 14.9-1)),



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17

which implies

f(θ) = DKL(q||p(θ)) ≈

nmax
∑

n=1

ρn

∑

rM ,rS

(qn(rM , rS) − pn(rM , rS |θ))
2

2pn(rM , rS |θ)
. (5.2)

This approximation becomes exact as p → q so using it when the calculated K-
L distance is small gives a good approximation and avoids numerical problems.
Numerical experiments comparing the calculated values of f(θ) using (5.1)
and (5.2) show good agreement, improving as f(θ) becomes smaller (precisely
as expected), but when f(θ) is less than about 10−6 we begin to see significant
disagreement. Therefore, all our calculations of K-L distance initially use (5.1)
but if the result is smaller than 10−5 we recalculate using (5.2).

The random starting values of θ(MT ) and θ(IDS) in our fitting procedure
will sometimes be poor (i.e. give large values of f(θ)) and result in the opti-
misation routine staying in a part of parameter space that gives a very poor
fit. Thus, when fitting a model to data we run our algorithm many times over
to ensure that as much as possible of the parameter spaces are explored. The
number of these runs necessary is somewhat variable; this issue is addressed
in Section 5.5.

Initially we focus simply on the smallest of the K-L distances f(θ̂) of the
model from the data that we find for each combination of dataset and model.
In Section 5.5 we explore in more detail the variability of the f(θ̂) from run
to run of our algorithm and also examine the behaviour of the corresponding
parameter estimates θ̂.

5.3 Model discrimination

5.3.1 Infinite data

To determine whether or not each model is capable of producing the final size
distributions generated by the other model we fit a given final size distribution
to both models, in the expectation that the correct model will fit appreciably
better. We find that the correct model can be made to fit as well as we please
by tightening the stopping criteria of the numerical optimisation routine but
that there is a definite non-zero lower bound for f(θ̂) when we fit the wrong
model. Further details of this are given in Section 5.5.

We summarise our findings by way of Table 3, which shows the best fits
obtained from 100 runs of our algorithm (measured by f(θ̂)) obtained when
fitting the IDS-HH and MT-HH models to the (asymptotic) final size dis-
tributions produced from each of the models (with parameter values as in
Section 4) with each of the household size distributions ρ(3) and ρ(5). Table 3
demonstrates the significant differences in fit obtained when fitting the two
models to each data set (i.e. each column of the table). In Table 3 and the
following discussion, ‘data’ refers to the model that generated the given final
size distributions we fit to and ‘model’ refers to the model we fit to these data.
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Table 3 Best fits of each model to final size distributions obtained from all four combina-
tions of household size distribution and model.

data

ρ = ρ(3) ρ = ρ(5)

MT-HH IDS-HH MT-HH IDS-HH

MT-HH 3.4× 10−11 1.5× 10−3 2.0× 10−11 6.8× 10−3

m
o
d
el

IDS-HH 4.7× 10−5 8.9× 10−9 1.1× 10−4 3.3× 10−8

Table 4 Breakdown of contribution to final K-L distances by households of different sizes
when ρ = ρ(3).

MT-HH model, IDS-HH model, MT-HH model, IDS-HH model,

n MT-HH data IDS-HH data IDS-HH data MT-HH data

1 4.4× 10−12 7.6× 10−10 2.0× 10−5 2.0× 10−7

2 1.1× 10−11 1.0× 10−9 3.2× 10−5 1.1× 10−5

3 1.8× 10−11 7.1× 10−9 1.4× 10−3 3.6× 10−5

total 3.4× 10−11 8.9× 10−9 1.5× 10−3 4.7× 10−5

It can be seen that using the household size distribution ρ(5) which includes
households up to size 5 makes no qualitative difference to these conclusions.
However, it is interesting to examine the effect of larger households on the
above K-L distances. Table 4 shows the contribution to the best final K-L
distances in Table 3 from households of each size, which amounts to separat-
ing out the summands ρn

∑

rM ,rS
qn(rM , rS) log(qn(rM , rS)/pn(rM , rS |θ)) in

equation (5.1). The breakdown of the best final K-L distances suggests that
an appreciably greater contribution to the K-L distances comes from larger
households than would be expected simply based upon the proportions of
households of different sizes present. This perhaps suggests that data collec-
tion effort might be focused somewhat more on larger households; though of
course this depends crucially on our assumption that the same transmission
parameters apply in households of all sizes.

We see (Table 3) that the final size distribution generated by each model
using somewhat realistic parameter values cannot be captured by the other
model. To investigate whether this conclusion holds for the models in general,
we need to do this comparison for a range of (supercritical) parameter values.
We expect that the fits will be poor except possibly for some degenerate cases
where the models can produce the same final size distributions.

To test whether one model can reproduce final size data from the other,
we select parameters for one model at random, resampling if the correspond-
ing R∗ ≤ 1, and calculate the corresponding final size distribution, then fit
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Fig. 3 Smallest K-L distances f(θ̂) obtained when fitting the one model to the final size
distributions from the other with random (super-critical) parameters.

the other model to this ‘data’. When selecting the random model parameters
to use, each parameter is chosen independently, rate parameters from an ex-
ponential distribution with mean 1 and probability parameters uniformly on
[0, 1]. We then repeat this experiment many times so that we explore a range
of parameter combinations of the model from which we derive our data. The
final K-L distance (best fit) f(θ̂) that we report for each paremeter combina-
tion is the best fit obtained in 5 runs of our algorithm. (When fitting to final
size data that is not exactly reproducible by the model we are fitting we find
that the variability of f(θ̂) between runs is very small and thus 5 runs is more
than sufficient to be confident that we have found the best-fitting model; see
Section 5.5 for further details.)

Figure 3 shows histograms of the best K-L distances f(θ̂) obtained when
fitting one model to final size data generated by the other with random param-
eters and household size distribution ρ(3). We have fitted the MT-HH model
to 10,000 random IDS-HH datasets but owing to the computational expense
of fitting the IDS-HH model we have only fitted it to 300 random MT-HH
datasets. It can clearly be seen that for most parameter combinations the final
size distributions cannot be reproduced by the wrong model. Of course the
correct model can reproduce these final size distributions and to confirm this
we have also fitted the correct model to many of these data. As expected,
the correct model fits appreciably better than the wrong model except in the
degenerate cases discussed below when both models can be fitted to the data
(details not shown).

Further analysis of the cases where the ‘wrong’ model fits the data relatively
well (f(θ̂) < 10−6) reveals at least one of the following reasons. In either model,
if the process is only just super-critical, i.e. R∗ is only slightly larger than 1,
then many of the quantities qn(rM , rS) in (5.1) are very small so relatively
fewer of the summands contribute to the sum and it is somewhat easier for
the wrong model to be able to fit the data.

In the IDS-HH model, two further situations arise where the wrong (i.e.
MT-HH) model fits the final size data quite well: (i) one or both types of
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individual makes very few local contacts, i.e. min{λ
(L)
M , λ

(L)
S /γS} is close to

0 (recall γM = 1) and (ii) local contacts by mild and severe individuals are

approximately equally likely to cause mild/severe cases, i.e. |p
(L)
MM − p

(L)
SM | is

close to 0. In case (i), within-household spread essentially only involves one
type of individual making contacts and the local infection rate and probability
can be tuned to produce almost any local final outcome distribution. In case
(ii) local infection processes become like those in the MT-HH model because
each (locally infected) individual becomes mild or severe (independently) with

the same probability p
(L)
MM ≈ p

(L)
SM . In the MT-HH model there are also two

further situations where the wrong (i.e. IDS-HH) model can reproduce the
final outcome data well. The first is if there is essentially only one type of
individual, i.e. βM is close to 0 or 1; if one type is not present it is trivial
that the two models coincide (in the sense that they can produce the same
final size distributions). The second case is where the disease is highly globally
infectious amongst one type of individual, i.e. π has (at least) one element
close to 0. Here local transmission is essentially a one-type process and again
the models coincide.

5.3.2 Finite data

We have just seen that it is possible to discriminate between the two models
using final size data from an infinite population. Real data of course never
pertains to an infinite population, so in the present subsection we perform the
same type of analysis except that data are now generated from the stochastic
models in a community of m = 10, 000 households. The data, generated both
from the stochastic MT-HH model and the stochastic IDS-HH model, hence
consist of empirical final size distributions rather than the exact asymptotic
distributions. The model fitting procedure is exactly the same as before but we
now use the empirical final size distribution as the target final size distribution
q in (5.1).

From each model, with parameter valules as in Section 4 and household
size distribution ρ(3), we generated 25 independent empirical final size distri-
butions taken from simulations on systems of 10,000 households that resulted
in a major outbreak and then fitted both models to each empirical final size
distribution. Figure 4 shows plots of the fit of each model to each dataset,
the fit being measured by the smallest value of f(θ̂) found in 5 runs of our
algorithm. (When fitting to empirical final size distributions we find that the

variability of f(θ̂) between runs is very small and thus 5 runs is more than
sufficient to be confident that we have found the best-fitting model; see Sec-
tion 5.5 for further details.) For clarity, the results in the figure have been
ordered according to the best fit of the true model.

From these plots it is immediately clear that the correct model (i.e. the
one that generated the data) has the best fit on most occasions (24 out of 25
for the IDS-HH data and 22 out of 25 for the MT-HH data). It also seems
clear that it is generally easier to rule out the MT-HH model when looking at
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Fig. 4 Smallest K-L distances f(θ̂) obtained when fitting both models to the output of 25
separate empirical final size distributions from simulations of each model.

data from the IDS-HH model than vice-versa (the gap between the two lines
is generally much larger in plot (a) than in plot (b)). Especially intriguing is
the observation that, when the data are from the MT-HH model there is a
clear association between the K-L distances to the best IDS-HH and MT-HH
model; however there is much less, if any, association when the data are from
the IDS-HH model. This may be an artifact of the fact that, as can be seen
from Figure 3, the IDS-HH model is generally able to fit MT-HH data better
than the MT-HH model can fit IDS-HH data.

5.4 Pseudolikelihood motivation for use of K-L divergence

In this subsection we motivate our choice of the Kullback-Leibler divergence
for assessing the distance between the two models by relating it to a maximum
pseudolikelihood estimation procedure. For ease of presentation our arguments
are informal, rather than fully rigorous. Suppose, as above, that we have data
{qn(rM , rS)} from an epidemic in a community of m households. If we make
the approximation that the outcomes in different households are mutually
independent then the likelihood of these data under one or the other of our
models is given by

L(θ) =

nmax
∏

n=1

∏

rM ,rS

[pn(rM , rS |θ)]
mnqn(rM ,rS), (5.3)

where mn is the number of households of size n in the community, and

(θ, pn(rM , rS |θ)) is either (θ(MT ), p
(MT )
n (rM , rS |θ

(MT ))) or (θ(IDS), p
(IDS)
n (rM ,

rS |θ
(IDS))). In reality, (5.3) is a pseudolikelihood since the outcomes in dis-

tinct households are dependent, as they are part of the same community-wide
epidemic, though the dependence is small (the covariance of the final outcomes
in distinct households is of order 1/m for large m; cf. Ball and Lyne (2010)).

The maximum pseudolikelihood estimator of θ, denoted by θ̂, is obtained by
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maximising L(θ), or equivalently by maximising l(θ) = log L(θ), which is given
by

l(θ) = m

nmax
∑

n=1

ρn

∑

rM ,rS

qn(rM , rS) log pn(rM , rS |θ).

Note that maximising l(θ) is equivalent to minimising the Kullback–Leibler di-
vergence DKL(q||p(θ)), defined by (5.1). Moreover, the pseudolikelihood ratio
goodness-of-fit test statistic, Λm say, for assessing the adequacy of the model
for these data is given by

−2 logΛm = 2mDKL(q||p(θ̂)); (5.4)

cf., for example, Bishop et al. (1975, Equation 10.2-6), who consider testing
the goodness-of-fit of a specified multinomial model.

Now, for example, suppose that these data {qn(rM , rS)} were actually
generated by the IDS-HH model with parameter θ(IDS), but that we fit the

MT-HH model. Then (cf. Section 3.2) qn(rM , rS)
p

−→ p
(IDS)
n (rM , rS |θ

(IDS))

as m → ∞, whence θ̂(MT ) p
−→ θ

(MT )
∗ as m → ∞, where θ

(MT )
∗ minimises

DKL(p(IDS)(θ(IDS))||p(MT )(θ(MT ))) with respect to θ(MT ). (Here,
p

−→ denotes
convergence in probability.) Hence, using (5.4),

−
1

m
2 log Λm

p
−→ 2DKL(p(IDS)(θ(IDS))||p(MT )(θ

(MT )
∗ )) as m → ∞.

If, instead, we fit the IDS-HH model with parameter θ(IDS), then θ̂(IDS) p
−→

θ(IDS) as m → ∞ and, since DKL(p(IDS)(θ(IDS))||p(IDS)(θ(IDS))) = 0, −2m−1

log Λm
p

−→ 0 as m → ∞. In these circumstances, −2 logΛm asymptotically
equals the usual chi-square goodness of fit test statistic

X2 =

nmax
∑

n=1

∑

rM ,rS

(mnqn(rM , rS) − mnp
(IDS)
n (rM , rS |θ̂

(IDS)))2

mnp
(IDS)
n (rM , rS |θ̂(IDS))

.

However, dependencies between the households imply that X2 may not have
the usual asymptotic χ2 distribution; instead the asymptotic distribution of
X2 is a linear combination of d independent χ2

1 random variables, where d is
the degrees of freedom of the usual chi-square test (cf. Ball and Lyne (2010)).
Nevertheless, (5.4) gives a guide for interpreting both our infinite and finite
population model discrimination results. Moreover, if these data {qn(rM , rS)}
come from a small fraction, ε0 say, of the households among which the epidemic
is spreading, as is often the case in practice, then, if the model is correct, the
asymptotic distribution of X2 is very close to the usual χ2

d distribution, the
approximation being exact in the limit as ε0 ↓ 0 (cf. Ball and Lyne (2010)).

Clearly there are precisely analagous results which hold if the data instead
come from the MT-HH model.
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5.5 Identifiability and model fitting

In this subsection we investigate how our model fitting methodology works in
practice. We find that there are two key issues that influence the overall be-
haviour of our algorithm. The first is the striking difference in the distribution
of final K-L distances f(θ̂) in the situations where the target final size distri-
bution q can or cannot be captured exactly (to numerical accuracy) by the
asymptotic version of the model we try to fit. The target final size distribution
cannot be captured exactly when either (i) we try to fit the wrong model or
(ii) the data is from a finite population. (This has the important consequence
that when fitting a model to empirical final size distributions we need only run
the algorithm a few, say 5–10, times to be confident that we have found the
best possible fit.) We therefore restrict our attention here to an exploration of
seeking to fit the models to ‘data’ which are the asymptotic (m → ∞) distri-
butions corresponding to the parameter values given earlier, with household
size distribution ρ(3) = (1, 1, 1)/3. We refer to these data with this household
size distribution and the parameters given previously as q(MT ) and q(IDS). In
the course of this we clearly see the second issue that arises, namely that there
are identifiability issues in the IDS-HH model. In the IDS-HH model as we
parameterise it, it seems that some parameters are identifiable while some are
more difficult to identify, though we can find functions of these parameters
which do appear to be identifiable.

5.5.1 Fitting the correct model

Firstly we look at fitting each model to data generated from that same model,
so we should be able to recover the input parameters used to generate the
data and find that f(θ̂) is very close to 0. Figure 5 shows density estimates

(essentially smoothed histograms, which we use for ease of display) of f(θ̂)
for the best 90 of 100 runs of our algorithm when fitting each model to data
generated by that model. We use only the best 90% of runs so as to exclude the
poor fits sometimes obtained for the reasons explained in the second paragraph
of Section 5.2. (For comparison, Figure 5 also shows the smallest f(θ̂) values
found when fitting each model to the data generated by the other model; these
are displayed as points rather than densities since, as shown in Section 5.5.3, in
these circumstances the variability of f(θ̂) is very small.) This figure shows that

our algorithm consistently finds model parameters θ̂ which quite accurately
reproduce the target final size distributions, indicated by the very small values
of f(θ̂). We see shortly why the MT-HH model can be fitted to its own final
size distribution rather better then the IDS-HH model. If we examine the
parameter estimates θ̂ that yield these final K-L distances we see (Table 5)
that the MT-HH model recovers the parameters used to generate q(MT ) with a
high degree of accuracy and very little variability, whereas when we fit the IDS-
HH model to q(IDS) we find (Table 6) that several parameters are estimated
quite poorly.
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Fig. 5 Profiles of final K-L distances obtained when fitting both models to both q(MT ) and
q(IDS).

Table 5 Summary of parameter estimates when fitting the MT-HH model to q(MT ) (best
90 of 100 runs).

Parameter πM πS λ
(L)
MM

λ
(L)
MS

λ
(L)
SM

λ
(L)
SS

βM

True value 0.7263 0.5224 0.2000 0.4000 0.4000 0.8000 0.4000
Mean 0.7263 0.5224 0.2000 0.4000 0.4000 0.8000 0.4000

Std. dev. 0.00003 0.00004 0.00004 0.00013 0.00008 0.00022 0.00004

Table 6 Summary of parameter estimates when fitting the IDS-HH model to q(IDS) (best
90 of 100 runs).

Parameter λ
(G)
M

λ
(G)
S

λ
(L)
M

λ
(L)
S

p
(G)
MM

p
(G)
SM

p
(L)
MM

p
(L)
SM

γS

True value 1.0000 2.0000 0.5000 1.0000 0.8000 0.2000 0.5000 0.1000 1.5000
Mean 1.7805 3.9959 0.5028 4.2510 0.3924 0.4954 0.4935 0.0932 8.5436

Std. dev. 0.6781 3.4214 0.0017 2.4507 0.1662 0.2507 0.0040 0.0046 4.9344

5.5.2 Identifiability in the IDS-HH model

The poorer recovery of input parameters in the IDS-HH model can to a large
extent be explained by issues of identifiability. We mention in Section 2 that it
is known that in the MT-HH model the global rate parameters are not uniquely
identifiable from final size data (Ball et al. 2004) and for this reason we esti-

mate the probabilities π rather than the global rates (λ
(G)
MM , λ

(G)
MS , λ

(G)
SM , λ

(G)
SS ).

However, the IDS-HH model we propose is new so such identifiability issues
have not been explored. Moreover, identifiability is difficult to study rigorously
for this model as there is no analytical expression for the household final size
distributions. Careful examination of the parameter estimates when fitting the
IDS-HH model to q(IDS) suggests that some identifiability issues are present
here. In particular, in our parameterisation of the IDS-HH model there are
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three combinations of parameters that seem identifiable whilst some of the
individual parameters are very difficult to identify separately.

The first of these combinations is λ
(L)
S and γS ; our algorithm estimates

the ratio λ
(L)
S /γS extremely well (see Table 7), but has difficulty identifying

the precise values of these parameters. The second set of troublesome pa-

rameters consists of the global contact rates λ
(G)
M and λ

(G)
S and the removal

rate γS . If the removal rates γM and γS are known then the relationship

πG = exp(−(zMλ
(G)
M /γM + zSλ

(G)
S /γS)), where πG = q1(0, 0) (= n

√

qn(0, 0)
for any n ≤ nmax) is the probability that a given individual avoids global

infection, specifies a linear equation that λ
(G)
M and λ

(G)
S must satisfy. If we as-

sume that the removal rates are both known then our algorithm identifies the
correct linear combination of global contact rates very easily but finds it very
difficult, though possible, to find the most likely values of these parameters
individually. However, we assume that (one of) the removal rates is unknown
and, as just discussed, not estimated very well; thus the global rates are gener-
ally not estimated very reliably. Nevertheless, when the initial guess for γS is

close to its optimum (correct) value, λ
(L)
S and the above linear combination of

λ
(G)
M and λ

(G)
S are also estimated easily and reasonably accurately, and a very

good fit is obtained. In the latter situation it is also possible to recover the

individual rates λ
(G)
M and λ

(G)
S with our algorithm but this is far more difficult.

That zMλ
(G)
M /γM + zSλ

(G)
S /γS is estimated well is demonstrated in Table 7,

in which zM and zS are given by their observed values in the (infinite) data.
The other parameters with identifiability issues are the global infection

probabilities p
(G)
MM and p

(G)
SM . Some information about these parameters can be

obtained by considering households of size 1 which become infected. Focus on
such a household and suppose that there are in total YM mild and YS severe
infectives in the population just prior to its infection. Then the probability
that this infection is mild is

YMλ
(G)
M p

(G)
MM + YSλ

(G)
S p

(G)
SM

YMλ
(G)
M + YSλ

(G)
S

.

Now, YM and YS are random and vary throughout the epidemic. A crude
approximation is to replace the ratio YM/YS by γ−1

M zM/γ−1
S zS, the latter tak-

ing into account the different infectious periods of mild and severe infectives.
Thus the proportion of infected households of size 1 that are mildly infected
is approximately

zMλ
(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

zMλ
(G)
M /γM + zSλ

(G)
S /γS

,

leading to the relationship

p
(IDS)
1 (1, 0|θ(IDS))

p
(IDS)
1 (1, 0|θ(IDS)) + p

(IDS)
1 (0, 1|θ(IDS))

≈
zMλ

(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

zMλ
(G)
M /γM + zSλ

(G)
S /γS

.

(5.5)
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We have seen above that the denominator in the right hand side of (5.5) can
be estimated well, hence it is reasonable to expect that the numerator might
be too. That this is indeed the case is borne out in Table 7.

Table 7 Functions of estimated IDS-HH model parameters when fitting IDS-HH model to
q(IDS) (best 90 of 100 runs).

Function zM λ
(G)
M

/γM + zSλ
(G)
S

/γS λ
(L)
S

/γS zMλ
(G)
M

p
(G)
MM

/γM + zSλ
(G)
S

p
(G)
SM

/γS

True value 0.50669 0.50000 0.21340
Mean 0.50672 0.49807 0.21069

Std. dev. 0.00003 0.00113 0.00170

5.5.3 Fitting the incorrect model

We now turn our attention to the situation where we try to fit one of the
models to final size data arising from the other model. Fitting the MT-HH
model to IDS-HH data gives parameter estimates summarised in Table 8.
While there is more variation in the MT-HH parameter estimates than when
we fit to data from the MT-HH model, the variation is still relatively small.
Furthermore, the variation in the final K-L distances f(θ̂) is very small (mean
1.46×10−3, st. dev. 1.5×10−10), giving confidence that (i) we have found the
region of parameter space where the MT-HH model can best reproduce the
data from the IDS-HH model and (ii) that the best fitting MT-HH model does
not reproduce the IDS-HH final size distribution very well. For comparison the
minimum of these K-L distances is also shown in Figure 5, as a point rather
than a density because the variation is so small.

Table 8 Summary of parameter estimates when fitting the MT-HH model to q(IDS) (best
90 of 100 runs).

Parameter πM πS λ
(L)
MM

λ
(L)
MS

λ
(L)
SM

λ
(L)
SS

βM

Mean 0.5210 0.6450 1.3712 0.2561 0.0509 0.8990 0.3373
Std. dev. 0.00003 0.00001 0.00035 0.00003 0.00003 0.00007 0.00002

Lastly we consider fitting the IDS-HH model to the MT-HH data; see
Table 9 and Figure 5. Here we see variations in θ̂ roughly the same as those
seen when fitting the IDS-HH model to data it can reproduce exactly. Again

we find that the estimates of λ
(L)
M and the p(L)’s show little variation and

we also see the same identifiability issues present. Although the estimates of
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γS , λ
(L)
S , λ

(G)
S and the p(G)’s individually vary wildly we find that λ

(L)
S /γS ,

zMλ(G)/γM + zSλ
(G)
S /γS and zMλ

(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS show very

little variation (see Table 10). Similarly to when we fit the MT-HH model to
the IDS-HH data, we find very little variability in the final K-L distances that
we find, for the 90 smallest values the mean and st. dev. are 4.69 × 10−5 and
1.0 × 10−7, respectively. Though these K-L distances certainly seem bounded
away from zero, suggesting that the IDS-HH model cannot reproduce the MT-
HH final size distribution, they are appreciably smaller than when fitting the
MT-HH model to IDS-HH data.

Table 9 Summary of parameter estimates when fitting the IDS-HH model to q(MT ) (best
90 of 100 runs).

Parameter λ
(G)
M

λ
(G)
S

λ
(L)
M

λ
(L)
S

p
(G)
MM

p
(G)
SM

p
(L)
MM

p
(L)
SM

γS

Mean 2.3496 4.0997 0.1982 4.2774 0.2351 0.5028 0.2757 0.3470 9.7983
Std. dev. 0.6919 2.2107 0.0001 2.8475 0.1548 0.2579 0.0038 0.0037 6.5202

Table 10 Functions of estimated IDS-HH model parameters when fitting IDS-HH model
to q(MT ) (best 90 of 100 runs).

Function zM λ
(G)
M

/γM + zSλ
(G)
S

/γS λ
(L)
S

/γS zMλ
(G)
M

p
(G)
MM

/γM + zSλ
(G)
S

p
(G)
SM

/γS

Mean 0.50504 0.57068 0.13909
Std. dev. 0.00003 0.00023 0.00143

6 Discussion

In this paper we define two candidate models that might explain how an
infectious disease having varying disease response could spread in a community
of households. Large population properties of the two models are presented.
These results are used to show by means of numerical illustrations, that it
is generally possible to discriminate between the two models. More precisely,
given final outcome data from a sufficiently large community of households it
is, except in some degenerate cases, possible to determine which of the two
explanations to varying disease response that best explain the data.

Both models could of course be extended towards higher realism. For exam-
ple, besides household structure, all individuals are assumed similar whereas
it would be more realistic to distinguish between adults and children having
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different mixing rates. Another extension would be to allow for more than two
different disease responses. It is of course also possible to come up with other
models giving rise to mild and severe infectives. However, we believe that the
two models studied capture the perhaps two most likely reasons: either the
infection status of an individual is predetermined or else it depends on whom
the person was infected by. In the first situation it could be natural to extend
the model to allow this predetermined status to be dependent between indi-
viduals of the same household, for example due to previous exposure to the
disease. In the present model it is assumed that the predetermined infection
status is independent also within households. Another important extension
would of course be to apply the method to real data with the hope to find out
more about the underlying reason for having varying disease response.
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