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Abstract

This paper treats a stochastic model for an SIR (susceptiblefi infectivefi removed) multitype household

epidemic. The community is assumed to be closed, individuals are of different types and each individual

belongs to a household. Previously obtained probabilistic and inferential results for the model are used to

derive the optimal vaccination scheme. By this is meant the scheme that vaccinates the fewest among all

vaccination schemes that reduce the threshold parameter below 1. This is done for the situation where all

model parameters are known and also for the case where parameters are estimated from an outbreak in the

community prior to vaccination. It is shown that the algorithm which chooses vaccines sequentially, at each
step selecting the individual which reduces the threshold parameter the most, is not in general an optimal

scheme. As a consequence, explicit characterisation of the optimal scheme is only possible in certain special

cases. Two different types of vaccine responses, leaky and all-or-nothing, are considered and compared for

the problems mentioned above. The methods are illustrated with some numerical examples.
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1. Introduction

This paper is concerned with SIR (susceptiblefi infectivefi removed) epidemic models,
describing the spread of an infectious disease in a closed finite community (see, for example,
Lef�evre [1] and Andersson and Britton [2]). The effect that vaccination of part of the community
has on the fundamental threshold parameter (often referred to as the basic reproduction number
R0, see for example, Heesterbeek and Dietz [3]) is studied. Vaccination schemes which reduce this
number to below its threshold value of 1 are said to be preventive, since major outbreaks cannot
occur in the community once such a vaccination scheme has been launched. A vaccination scheme
is said to be optimal if it vaccinates the fewest number of individuals among all preventive vac-
cination schemes. The main focus of the paper lies in deriving the structure of such optimal
vaccination schemes. This is done for a fully stochastic model for a multitype community in which
individuals reside in households. The different types of individual have different susceptibilities to
the disease and/or different infectivities if infected, and could for example reflect different age-
groups, sex and/or health status. The household structure reflects the fact that infection rates
between individuals of the same household are higher than infection rates between individuals of
different households.

Two models for vaccine response are considered. In the first model, a vaccinated individual is
either rendered completely immune or the vaccine has no effect. In the second model, vaccinated
individuals have a reduced probability of infection given exposure to infection. These models are
defined in Smith et al. [4] and, following Halloran et al. [5], are referred to as all-or-nothing and
leaky, respectively.

Ball and Lyne [6] studied the probabilistic behaviour of the multitype households model treated
in this paper. In particular, they derived a threshold parameter R� (the households model
equivalent of R0) that determines whether or not a major outbreak can occur; see also Becker and
Hall [7]. Statistical inference for model parameters, based on final outcome data (possibly only for
a sample of households in the community) is considered by Ball and Lyne [8]. Ball et al. [9] treat
inference procedures for the same kind of data, but now for the threshold parameter R�, both
before and after vaccination. It is shown that R� cannot be estimated consistently. Instead, sharp
upper and lower bounds for R� are derived, both before and after vaccination, which can be
estimated consistently from final outcome data. This investigation is continued here, by deter-
mining how to allocate vaccines in an optimal way, i.e. how to select which individuals to vac-
cinate. This is done both for the case where all model parameters, and hence also R�, are known,
and for the case where parameters are estimated from final size data. In the latter case, the vaccine
allocation which reduces the upper bound of R� down to 1 with minimum vaccine coverage is
determined.

It is shown that a complex non-linear optimisation problem has to be solved in order to find the
optimal vaccination scheme when all parameters are known, except when the between-household
transmission parameters satisfy so-called proportionate mixing, in which case the optimal vac-
cination scheme may be found by solving a linear programming problem. When parameters are
estimated, and the upper bound estimate of R� must be reduced down to 1 for a vaccination
scheme to surely be preventive, the derivation of the optimal vaccination scheme is also a linear
programming problem. Thus the vaccination problem with parameter estimation proves simpler
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than the general known parameters case and can be used to provide bounds on the general
problem.

A second observation is that the optimal vaccination scheme vopt, giving the smallest overall
vaccination coverage cv, has no explicit form in general. This is in contrast to, for example, the
single type household case with all-or-nothing vaccines. In this scenario it has been proven for
some special cases, and conjectured to hold in general, that successive vaccinations within the
same household yield diminishing reductions in the threshold parameter R�, leading to simple
characterisations of the optimal vaccination scheme (see Ball and Lyne [10]).

The paper is organised as follows. The stochastic multitype SIR households epidemic model is
described in Section 2, where its threshold behaviour is outlined. The threshold parameters fol-
lowing a vaccination scheme, using the two models for vaccine response, are determined and
compared. Optimal vaccination schemes and their form are considered in Sections 3, for the case
when global mixing is proportionate and all infection rates are known, and in Section 4, for the
case when the infection rates need to be estimated from final outcome data. Some numerical
examples are given in Section 5 and the paper concludes with a brief discussion in Section 6.
2. Model, model properties and vaccination

2.1. Model

The model under consideration in this paper is that of Ball and Lyne [6] for the spread of an
SIR epidemic among a closed, finite population that contains J classes of individuals,
labelled 1; 2; . . . ; J , and is partitioned into households. Let J ¼ f1; 2; . . . ; Jg and N0 ¼
fn ¼ ðn1; n2; . . . ; nJÞ 2 ZJ : nj P 0 ðjPJÞ, jnj ¼

PJ
j¼1 nj P 1g. Suppose that, for n 2 N0, the

population contains mn households of category n, where a household of category n contains nj
individuals of class j ðj 2 JÞ. Let m ¼

P
n2N0

mn denote the total number of households in the
population, Nj ¼

P
n2N0

njmn denote the total number of individuals of class j in the population
ðj 2 JÞ and N ¼

P
n2N0

jnjmn denote the total number of individuals in the population. Assume
that N , and hence Njðj 2 JÞ and m, is finite. This implies that mn ¼ 0 for all but finitely many n.
Let N ¼ fn 2 N0 : mn > 0g.

The epidemic is initiated by some individuals becoming infected at time t ¼ 0, with the
remaining individuals in the population all assumed to be susceptible. For j 2 J, the infectious
periods of class-j infectives are each distributed according to a finite random variable T ðjÞ

I , having
an arbitrary but specified distribution with mean tj. For i; j 2 J, throughout its infectious period
a given class-i infective makes global contacts with any given susceptible of class j in the popu-
lation at the points of a homogeneous Poisson process having rate kG

ij =Nj and, additionally, it
makes local contacts with any given susceptible of class j in its own household at the points of a
homogeneous Poisson process having rate kL

ij. All the Poisson processes describing infectious
contacts (whether or not either or both of the individuals involved are the same), as well as the
random variables describing infectious periods, are assumed to be mutually independent. A
susceptible becomes infective as soon as it is contacted by an infective and is removed (and plays
no further part in the epidemic) at the end of its infectious period. The epidemic ceases as soon as
there are no infectives present in the population.
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2.2. Threshold behaviour

Suppose that the number of households m is large. During the early stages of an epidemic
initiated by a small number of infectives, the process of infected households in the epidemic can be
approximated by a multitype branching process (which assumes that all global contacts are with
individuals residing in an otherwise completely susceptible household), with type space J, where
the type of an infected household is given by the class j of its initial (globally contacted) infective
(see Ball and Lyne [6] for rigorous results). It is said that a global epidemic occurs if, in the limit as
m! 1, the epidemic infects infinitely many households, i.e. if the branching process does not go
extinct. Let M ¼ ½mij�, where for i; j;2 J, mij is the mean number of class-j global contacts that
emanate from a typical type-i infected household. It is assumed that M is positively regular, thus
avoiding the possibility of a global epidemic among some, but not all, classes of individual. The
threshold theorem for the epidemic process then states that the threshold parameter R� is defined
as the maximal eigenvalue of M , and a global epidemic occurs with non-zero probability if and
only if R� > 1.

Expressions for mij ði; j 2 JÞ are required to compute R�. For n 2 N, let an ¼ mn=m denote the
proportion of households of category n in the population and, for i 2 J and n 2 N, let
aiðnÞ ¼ nimn=Ni be the probability that a class-i individual chosen at random in the population
resides in a household of category n. Consider a completely susceptible household of category n in
which a class-i individual is contacted globally. For j 2 J, let ln;i;jðKLÞ, where KL ¼ ½kL

ij�, denote
the mean number of class-j individuals that are ultimately infected in the household (neglecting
further global infections), including the initial infective if j ¼ i. An algorithm for computing
ln;i;jðKLÞ ðn 2 N; i; j;2 JÞ is given in the appendix of [9]. In Ball and Lyne [6], Section 4.3, it is
shown that
mij ¼
X
n2N

aiðnÞ
X
k2J

ln;i;kðKLÞtkkG
kj ði; j 2 JÞ: ð2:1Þ
In (2.1) the factor aiðnÞ conditions on which household category the class-i individual belongs to.
The factor ln;i;kðKLÞ is the expected number of class-k individuals infected in this category of
household when only local infections are considered and the initial infective is of class i, and tkk

G
kj

is the expected number of global contacts with class-j individuals one such class-k individual has
during his or her infectious period.
2.3. Vaccination

2.3.1. Post-vaccination threshold parameter
Suppose that vaccination may reduce an individual’s susceptibility to a disease but not his or

her ability to transmit it if infected. For n 2 N and 06 r ¼ ðr1; r2; . . . ; rJÞ6 n, where inequalities
between vectors are to be interpreted elementwise, let vn;r denote the proportion of households of
category n that have had r members vaccinated, and let v ¼ fvn;r : n 2 N; 06 r6 ng. Similar to mij
of the previous section but now also taking vaccination into account, let mijðvÞ denote the ex-
pected number of class-j global contacts that emanate from a single household epidemic that is
initiated by a randomly chosen class-i individual being contacted globally ði; j;2 JÞ. Arguing as
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in the derivation of (2.1), but conditioning also on the number of vaccinated people in the class-i
individual’s household, yields
mijðvÞ ¼
X
n2N

aiðnÞ
Xn
r¼0
vn;r
X
l2J

lVn;r;i;lðKLÞtlkG
lj ði; j 2 JÞ; ð2:2Þ
where lVn;r;i;lðKLÞ denotes the mean number of class-l cases in a category n household having
r vaccinated, when a randomly chosen class-i individual in that household is contacted
globally.

The quantity lVn;r;i;lðKLÞ depends on the model for vaccine action. Two different types of vac-
cination response are considered, namely all-or-nothing and leaky. The all-or-nothing model as-
sumes that the vaccine either renders its recipient complete immunity or else it has no effect, and
that vaccinated individuals react independently, with probability �i for a class-i individual ði 2 JÞ.
Conditioning on the number of susceptible individuals k in a category n household having r
vaccinated, and noting that the probability that a randomly contacted class-i individual from that
household is susceptible (and thus triggers a local epidemic) is ki=ni, shows that
lVn;r;i;lðKLÞ ¼
Xn
k¼nr

YJ
p¼1

rp
np  kp

� �
�
npkp
i ð1

(
 �iÞrpnpþkp

)
ki
ni

lk;i;lðKLÞ: ð2:3Þ
The leaky model assumes that vaccinated individuals respond by acquiring partial immunity
rather than acquiring either complete immunity or no immunity at all. Specifically, it is assumed
that all infection rates to vaccinated class-j individuals are reduced by a factor �j ðj 2 JÞ. Hence,
for i; j 2 J, the rate at which a class-i infective has global contact with a vaccinated class-j
individual is kG

ij ð1 �jÞ=Nj and the corresponding local contact rate is kL
ijð1 �jÞ. Note that the

average vaccine �j for each class of individual is the same as in the all-or-nothing case. Let
� ¼ ð�1; �2; . . . ; �JÞ and let lnr;r;u:i;lðKL; �Þ ðlnr;r;v:i;lðKL; �ÞÞ denote the expected number of infected
class-l individuals, counting both vaccinated and unvaccinated individuals, in a category n
household having r vaccinated, and hence n r unvaccinated, individuals, initiated by an infec-
tious unvaccinated (vaccinated) class-i individual, neglecting further outside infections. Suppose
that a randomly chosen class-i individual in such a household is contacted globally. The proba-
bility that this individual becomes infected, and hence triggers a local epidemic, is 1 �i if it is
vaccinated and 1 if it is unvaccinated. Further, the probability that this individual is vaccinated is
ri=ni. Thus,
lVn;r;i;lðKLÞ ¼ ni  ri
ni

lnr;r;u:i:lðKL; �Þ þ rið1 �iÞ
ni

lnr;v:i;lðKL; �Þ: ð2:4Þ
Let MðvÞ ¼ ½mijðvÞ�. Then R�ðvÞ, the maximal eigenvalue of MðvÞ, is a threshold parameter for
the epidemic after vaccination, in the sense that a global epidemic can occur only if R�ðvÞ > 1.
Consequently, a vaccination scheme v having R�ðvÞ6 1 is protective for the whole community, the
aim of launching a vaccination programme.

There is in general no closed form expression for R�ðvÞ. However, if the global infection rates
take the proportionate mixing, also denoted separable mixing, form (see, for example, Hethcote
and Van Ark [11] or Becker and Marschner [12]) kG

ij ¼ gG
i jG

j ði; j;2 JÞ, then the matrix MðvÞ has
rank one, so R�ðvÞ is given by its trace, i.e.
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R�ðvÞ ¼
X
i2J

X
n2N

aiðnÞ
Xn
r¼0
vn;r
X
l2J

lVn;r;i;lðKLÞtlgG
l jG

i : ð2:5Þ
2.3.2. Comparison of all-or-nothing and leaky vaccines
In this section, we show in a precise way that if the vaccine efficacy � is held fixed, the all-or-

nothing model for vaccine action results in a greater reduction in the spread of disease than the
leaky model. To that end, note that since all the contact processes in the model of Section 2.1 are
Poisson, that model can be constructed using a Sellke-type [13] construction, in which different
initial susceptibles have independent critical exposures to infection, which are each distributed
according to a negative exponential random variable with mean 1. For tP 0 a given susceptible of
class i accumulates exposure to infection at rate

P
j2JðyGj ðtÞk

G
ji N

1
i þ yLj ðtÞk

L
jiÞ, where, for j 2 J,

yGj ðtÞ is the total number of class-j infectives in the population and yLj ðtÞ is the number of class-j
infectives in the given susceptible’s household. A susceptible succumbs to infection as soon as its
total exposure to infection reaches its critical level.

Let Q, QAoN and QLe denote the critical exposures to infection of typical unvaccinated, vacci-
nated (all-or-nothing) and vaccinated (leaky) individuals, respectively. If the vaccine has efficacy
� 2 ð0; 1Þ, then QAoN ¼ 1 if the vaccine is successful (i.e. with probability �) and QAoN ¼ Q
otherwise, whilst QLe ¼ ð1 �Þ1Q. Thus, by the convexity of the exponential function,
P ðQLe > tÞ ¼ expðð1 �ÞtÞ6 �þ ð1 �Þ expðtÞ ¼ P ðQAoN > tÞ ðtP 0Þ;

with strict inequality for t > 0. Hence, QAoN is stochastically larger than QLe. It follows that, for
the model of Section 2.1, if the same vaccination scheme is used, the ensuing epidemics under the
all-or-nothing and leaky vaccine actions can be coupled so that, with probability one, the set of
individuals ultimately infected by the all-or-nothing epidemic is a subset of those ultimately in-
fected by the leaky epidemic.

Let RAoN
� ðvÞ and RLe

� ðvÞ denote the post-vaccination threshold parameter assuming an all-or-
nothing and leaky vaccine, respectively. For i; j 2 J, the expected number of class-j global
contacts made by a randomly chosen class-i individual is the same under the two models for
vaccine action (assuming common efficacy �), hence if all the households are of size 1 (so het-
erogeneity in the population is due entirely to there being different classes of individuals) then
RAoN
� ðvÞ ¼ RLe

� ðvÞ (see Britton [14]). However, when there are households of size >1, local spread
affects MðvÞ and the above coupling argument shows that RAoNðvÞ6RLe

� ðvÞ, with strict inequality
except for a few special cases.
3. Optimal vaccination schemes, known infection rates

As noted in Section 2.3.1, the main aim of any vaccination scheme is to bring the threshold
parameter below one, i.e. to ensure that R�ðvÞ6 1. Therefore, for a given community and a given
vaccine response, the vaccination scheme v is said to be preventive (written v 2 P ) if the induced
threshold parameter satisfies R�ðvÞ6 1. If the vaccine response, or efficacy, � is not large enough, it
could be that no vaccination scheme is preventive, i.e. that R�ðvfullÞ > 1, where vfull corresponds to
everyone in the population being vaccinated. In that case, a better vaccine or some additional
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preventive measure, such as improving sanitary conditions, is needed to surely prevent future
global outbreaks.

On the other hand, if the vaccine response is large enough there may be many different vac-
cination schemes v satisfying R�ðvÞ6 1. It is then important to determine which such scheme is the
best in the sense that it requires the fewest vaccinations. Accordingly, if
SðvÞ ¼
P

n2N
Pn

r¼0 jrjvn;ranP
n2N jnjan

ð3:1Þ
denotes the proportion of the population that are vaccinated (i.e. the overall vaccination cover-
age) under the scheme v, then any scheme
vopt 2 argmin
v2P

fSðvÞg ¼ fv0 2 P : Sðv0Þ6 SðvÞ for all v 2 Pg ð3:2Þ
is optimal. The corresponding coverage cv ¼ SðvoptÞ is called the critical vaccination coverage. The
definition of vopt could be generalised to incorporate costs associated with the practical imple-
mentation of a vaccination scheme, for example by including an additional cost per household
having individuals vaccinated (cf. Ball and Lyne [10]). However, only the simple version, where
cost is proportional to the number of vaccinations, is considered here.

It is generally a non-trivial task to determine vopt, since R�ðvÞmay be non-linear and not admit a
closed-form expression. However, if the global infection rates take the proportionate mixing form
then R�ðvÞ and SðvÞ are both linear functions of v, so determining the allocation of vaccines which
(a) minimises R�ðvÞ subject to an upper bound on SðvÞ or (b) minimises SðvÞ subject to R�ðvÞ6 1
(i.e. find vopt) are both linear programming problems, cf. Becker and Starczak [15]. Note that there
are further (linear) constraints on v implicit in the above formulations, specifically that, for
n 2 N, vn;r P 0 ð06 r6 nÞ and

Pn
r¼0 vn;r ¼ 1.

3.1. Construction of optimal vaccination scheme

It is possible to construct the solutions of the above linear programming problems directly. For
n 2 N and 06 r6 n, let hn;r ¼ vn;rmn be the number of category n households that have r indi-
viduals vaccinated. Recall that aiðnÞ ¼ nimn=Ni. From (2.5),
R�ðvÞ ¼
X
n2N

Xn
r¼0
hn;rMn;r;
where
Mn;r ¼
X
i2J

nijG
i

Ni

X
l2J

lVn;r;i;lðKLÞtlgG
l : ð3:3Þ
From (3.1), the vaccine coverage is given by
SðvÞ ¼
P

n2N
Pn

r¼0 jrjhn;rP
n2N jnjmn

:

Suppose that all of the m households in the population have the same category, n say. Let
r1; r2; . . . rp denote the different ways of vaccinating a single household, so p ¼ Pi2Jðni þ 1Þ. Note
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that the case of no vaccination, r ¼ 0, is included in this list. Consider the convex hull of the points
ðjrk j

n
;mMn;rkÞ ðk ¼ 1; 2; . . . ; pÞ in R2. The lower edge of this convex hull is a decreasing, piecewise

linear convex function, f : ½0; 1� ! ½R�ðvfullÞ;R�� say, satisfying f ð0Þ ¼ R� and f ð1Þ ¼ R�ðvfullÞ. For
c 2 ½0; 1�, f ðcÞ is the minimum achievable value of R�ðvÞ subject to SðvÞ ¼ c. An explicit solution
to this problem is given in Appendix A, where extension to unequal household sizes and the
determination of vopt (see (3.2)) are also considered. Note that, unless ðc; f ðcÞÞ ¼ ðjrk jjnj ;mMn;rkÞ for
some k, then the corresponding vaccination scheme is mixed, in a sense that is made clear in the
following example.

For this example, assume that J ¼ 2, that the vaccine is all-or-nothing and has equal efficacy of
98% for both classes, so that � ¼ ð0:98; 0:98Þ, that local mixing is uniform, with kL

ij ¼ 1:7
ði; j;2 JÞ, and that the distribution of an infective’s infectious period is constant and equal to the
unit of time. Suppose that the population consists entirely of households with category (2,1), so
N1 ¼ 2N2, that gG ¼ ð1; 0Þ and jG ¼ ð1; 4Þ, so that only class 1 individuals contribute to global
infection. Then the points ðjrk jjnj ;mMn;rkÞ ðk ¼ 1; 2; . . . ; pÞ in R2 and their convex hull are as shown in
Fig. 1.

To read off the optimal vaccination policy find the intersection of the lower edge of the convex
hull with the R�ðvÞ ¼ 1 dashed line, which for this example yields a coverage of 0.5111. The policy
that achieves this optimal reduction in R�ðvÞ with minimal coverage is a mixture of the two policies
represented by the stars on the figure which are the end-points of this segment of the convex hull.
The relative proportions in the mixture are equal to the proportions of the line segment to the left
and right of the intersection with R�ðvÞ ¼ 1. These proportions may not yield an integer number of
households, in which case the right-hand number of households must be rounded up and the left-
hand rounded down to provide an optimal integer solution. Since the section of convex hull
Fig. 1. Reduction of R� as a function of coverage, marking the points jrk j
jnj ;mMn;rk

� 	
ðk ¼ 1; 2; . . . ; pÞ in R2 by stars (the

numbers in brackets by each star indicate the number of individuals of class-1 and class-2 vaccinated respectively) and

the lower edge of the convex hull of the stars by the solid lines. The dashed line marks R� ¼ 1 (see text for further

details).
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connects the stars marked (0,1) and (2,0) the best use of one dose of vaccine in a household is to
give it to the class-2 individual, but the best use of two doses is to give both doses to class-1
individuals. Thus a sequential construction by continuously increasing the vaccine coverage (see
Section 3.2) cannot yield this section of the convex hull.

The construction using the convex hull is easily generalised to any cost function associated with
a vaccination scheme, provided that it is additive over households. More specifically, if CðrkÞ
denotes the cost of vaccinating one household according to rk ðk ¼ 1; 2; . . . ; pÞ, then the convex
hull of ðCðrkÞ;mMn;rkÞ ðk ¼ 1; 2; . . . ; pÞ is considered.
3.2. Form of optimal vaccination scheme

Although the above provides a method for determining optimal vaccination allocations, it
would be useful to have a more explicit characterisation of the resulting solution and thereby gain
insight into the form of optimal vaccination schemes. For single type epidemics, i.e. when J ¼ 1,
such a characterisation is possible. Note that for such epidemics ðn; rÞ is replaced by ðn; rÞ, where n
denotes the size of a household and r is the number of individuals in it that are vaccinated. For
n ¼ 1; 2; . . ., let lnðkLÞ denote the mean size of a single household epidemic, with initially n 1
susceptibles and 1 infective, where kL denotes the local infection rate. (As before, lnðkLÞ includes
the initial infective.) Ball and Lyne [10] considered all-or-nothing vaccines and showed that,
provided the sequence ðnlnðkLÞÞ is convex in n, Gðn; rÞ ¼ Mn;r Mn;rþ1 is increasing in n and
decreasing in r, so the optimal vaccination scheme is to pick individuals for vaccination
sequentially, with the recipient of each vaccine being chosen by maximising Gðn; rÞ over ðn; rÞ with
hn;r > 0. Note that, if Gðn; rÞ is decreasing in r, then successive vaccinations in the same household
yield diminishing reductions in R� so, under an optimal vaccination scheme, the numbers of
vaccinated individuals in two households of the same size can differ by at most one. The convexity
of ðnlnðkLÞÞ was conjectured by Ball et al. [16], who considered perfect vaccines and showed that,
provided the conjecture is true, the optimal vaccination scheme is the equalising strategy, in which
vaccines are allocated sequentially, always to a household that contains the greatest number of
unvaccinated individuals.

Multitype epidemics without household structure can be studied within the framework of the
model of Section 2.1 by assuming that all the households are of size 1, i.e. that mn ¼ 0 if jnj > 1.
For such epidemics, let v ¼ ðv1; v2; . . . ; vJÞ, where vi is the proportion of class-i individuals that are
vaccinated. Using (2.2)–(2.4), under both the all-or-nothing and the leaky models, the post-vac-
cination threshold parameter, R�ðvÞ say, is given by the maximal eigenvalue of the matrix
MðvÞ ¼ ½mijðvÞ�, where mijðvÞ ¼ ð1 vi�iÞtikG

ij ði; j 2 JÞ. Optimal vaccination schemes for this class
of epidemics are considered by Cairns [17], but when J P 3 there is no general solution. However,
if mixing is proportionate then R�ðvÞ ¼

P
i2Jð1 vi�iÞtik

G
ii , so if the classes are labelled so that

x1 P x2 P . . . P xJ , where xi ¼ �itik
G
ii , it is easily seen that a scheme in which vaccines are allocated

sequentially, always to an individual with greatest xi among unvaccinated individuals, is
optimal.

The above numerical example suggests that, even when global mixing is proportionate, the
optimal vaccination scheme for the multitype households model does not generally admit a simple
characterisation.
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4. Optimal vaccination schemes, unknown infection rates

4.1. Estimation

4.1.1. Estimation of local and global infection parameters
When estimating the threshold parameter R�ðvÞ associated with any given vaccination scheme,

and to design vaccination schemes that prevent global epidemics with minimal vaccination cov-
erage, it is necessary to have estimates of the local and global infection parameters. In the present
section these parameters are assumed to be unknown and are to be estimated from data on one
previous outbreak in the population. Suppose that the data consists of the final outcome, for a
sample of households, of the previous outbreak. The distributions of the infectious periods
T ðiÞ
I ði 2 JÞ are assumed known from previous epidemiological studies.
The following method for estimating ðKL;KGÞ is studied in Ball and Lyne [8]. It assumes that

the previous outbreak resulted in a global epidemic. Thus we first outline some finer properties of
a global epidemic, which are used in the estimation procedure. As before, further details may be
found in Ball and Lyne [6].

Assume that the number of initial infectives is small and suppose that a global epidemic occurs.
For j 2 J, let zj denote the expected proportion of class-j susceptibles that are ultimately infected.
Let Aj denote the aggregated sum of the infectious periods of all class-j infectives present during
the epidemic, so Aj is the sum of T ðjÞ

I -variables, one for each class-j individual who gets infected.
The probability that a given class-i individual avoids global infection throughout the entire epi-
demic is given by
pi ¼ E exp

 "

X
j2J

Ajk
G
ji =Ni

!#
� exp

 

X
j2J

cjzjtjk
G
ji =ci

!
ðj 2 JÞ; ð4:1Þ
where ci ¼ Ni=N is the proportion of class-i-individuals. The approximation on the right follows

since m is assumed large so Aj � NjzjE T ðjÞ
I

h i
¼ Ncjzjtj. Further, when m is large, distinct indi-

viduals avoid global infection approximately independently of each other. The ultimate spread of
infection within an initially completely susceptible category-n household is thus approximately
distributed as that of a multitype single household epidemic model, studied by Addy et al. [18], in
which, in addition to local infection, during the course of the epidemic initially susceptible
individuals avoid infection from outside the household independently and with probability pi
for a class-i susceptible. Denote this single household epidemic by EnðKL; pÞ where p ¼
ðp1; p2; . . . ;pJÞ. For j 2 J, let ln;jðKL; pÞ be the expected number of class-j individuals that are
ultimately infected by EnðKL;pÞ. An algorithm for computing ln;jðKL; pÞ ðn 2 N; j 2 JÞ is given
in Ball et al. [9].

For i 2 J; zi can be interpreted as the probability that a class-i initial susceptible chosen at
random from the population is ultimately infected by the epidemic. By conditioning on the cat-
egory, n say, of household to which this initial susceptible belongs and noting that its chance of
ultimate infection is then ln;iðKL;pÞ=ni, it follows that
zi ¼
X
n2N

aiðnÞln;iðKL; pÞ=ni ði 2 JÞ: ð4:2Þ
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Together with (4.1) (with ‘�’ replaced by ‘¼ ’), this is a set of J implicit equations for
z ¼ ðz1; z2; . . . ; zJÞ. Note that z¼ 0 is always a root of (4.2). It is shown in Ball and Lyne [6],
Section 5.2, that under a mild regularity condition, if R� 6 1 then z ¼ 0 is the only solution of (4.2)
in ½0; 1�J , while if R� > 1 then there is a unique second root, with zi > 0 ði 2 JÞ, giving the ex-
pected proportions of individuals of different classes that are infected by a global epidemic.

Returning to the estimation procedure, label the m households in the population 1; 2; . . . ;m.
For i ¼ 1; 2; . . . ;m, let n(i) be the category of household i and di ¼ 1ð0Þ if household i is observed
(unobserved) in the previous outbreak. The number of susceptibles (of the various classes) in
household i that were ultimately infected by the epidemic, is specified by ki and kD ¼ fki : di ¼ 1g
denotes the observed data.

Let pnðkjKL; pÞ be the probability that the epidemic EnðKL; pÞ has final outcome k ðn 2 N;
06 k6 nÞ. For n 2 N, a triangular system of linear equations governing pnðkjKL;pÞ ð06 k6 nÞ is
given in Ball et al. [9]; see also Addy et al. [18].

Eqs. (4.1) and (4.2) implicitly determine p as a function of ðKL;KGÞ, so write p ¼ pðKL;KGÞ.
There does not exist a feasible method for computing the likelihood of ðKL;KGÞ given kD, so
consider estimating ðKL;KGÞ by maximising the pseudolikelihood
LðKL;KGjkDÞ ¼
Ym
i¼1

fpnðiÞðkijKL; pðKL;KGÞÞgdi : ð4:3Þ
Note that (4.3) is a pseudolikelihood, and not a likelihood, since the outcomes in different
households are not independent.

The pseudolikelihood (4.3) can be maximised by first maximising it as a function of ðKL;pÞ, to
yield the estimate ðK̂L; p̂Þ, then obtaining an estimate, ẑ say, of z by substituting ðK̂L; p̂Þ in the
right hand side of (4.2), and finally solving (4.1), with ðp; zÞ replaced by ðp̂; ẑÞ for KG. However,
the final step in this procedure involves solving J linear equations in the J 2 unknown quantities kG

ij
ði; j 2 JÞ, so KG is not identifiable from the observed data using this approach. It is possible that
the local infection rates KL may also be unidentifiable, for example if for some i; j 2 J there is no
household in the sample that contains individuals of classes i and j, but either this can be avoided
by choosing the sample of households suitably, or the relevant kL

ijs are redundant for the popu-
lation at hand.
4.1.2. Estimation of R�, R�ðvÞ and optimal vaccination scheme

Consider now estimation of the pre- and post-vaccination threshold parameters, R� and R�ðvÞ,
for a future epidemic having the same ðKL;KGÞ as the observed epidemic. The vaccination efficacy
� and the type (all-or-nothing or leaky) of the vaccine are assumed known, as are the distributions
of the infection periods T ðiÞ

I ði 2 JÞ. For ease of exposition, it is also assumed that the population
structure has not changed since the previous outbreak. However, the methodology is easily ex-
tended to the case when the population structure is different for the future epidemic, and this is
done in Ball et al. [9].

Observe that R� and R�ðvÞ cannot be estimated consistently using the above pseudolikelihood
methodology, since KG is not identifiable. In Ball et al. [9] a Perron–Frobenius argument is used to
show that, subject to the constraint (4.1) on KG,
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min
k
RðkÞ
� ðvÞ6R�ðvÞ6 max

k
RðkÞ
� ðvÞ; ð4:4Þ
where
RðkÞ
� ðvÞ ¼ 1

ckzk

X
i2J

X
n2N

cið log piÞaiðnÞ
Xn
r¼0

vn;rlVn;r;i;kðKLÞ ðk 2 JÞ: ð4:5Þ
Fix k 2 J and let KG be given by kG
kj ¼ ð logpjÞcj=ðckzktkÞ ðj 2 JÞ and kG

ij ¼ 0 if i 6¼ k. It is
easily verified that, with this choice of KG, (4.1) is satisfied and R�ðvÞ ¼ RðkÞ

� ðvÞ. Thus the bounds in
(4.4) can be attained. Bounds for R� are obtained by letting v be the null vaccination scheme in (4.4).
The bounds in (4.4) can be estimated consistently by replacing ðp; z;KLÞ by the estimate ðp̂; ẑ; K̂LÞ.

As R�ðvÞ cannot be estimated consistently, neither can the optimal vaccination scheme vopt. Let
Rmax
� ðvÞ ¼ maxk RðkÞ

� ðvÞ. Then it follows from (4.4) that any vaccination scheme v with Rmax
� ðvÞ6 1

is preventive, irrespective of the underlying parameter KG consistent with the data, whilst for any
vaccination scheme v with Rmax

� ðvÞ > 1 there exists KG, consistent with the data, so that R�ðvÞ > 1.
Thus it is appropriate to consider minimisation of the vaccine coverage SðvÞ subject to the con-
straints RðkÞ

� ðvÞ6 1 ðk 2 JÞ. Note that this is a linear programming problem since, by (3.1) and
(4.5), the objective function SðvÞ and the constraints RðkÞ

� ðvÞ6 1 ðk 2 JÞ are all linear functions of
the optimising variables v.

4.2. Form of optimal vaccination scheme

Recall that aiðnÞ ¼ nimn=Ni, ci ¼ Ni=N and hn;r ¼ vn;rmn. It follows from (4.5) that
RðkÞ
� ðvÞ ¼ 1

Nkzk

X
n2N

Xn
r¼0
hn;rM ðkÞ

n;r ; ð4:6Þ
where X

M ðkÞ

n;r ¼
i2J

ð log piÞnilVn;r;i;kðKLÞ ðk 2 JÞ: ð4:7Þ
The aim is to determine an allocation of vaccines vopt which minimises the vaccine coverage SðvÞ
subject to RðkÞ

� ðvÞ6 1 ðk 2 JÞ. For fixed k 2 J, M ðkÞ
n;r takes a similar form to Mn;r in (3.3), so the

problem of reducing RðkÞ
� ðvÞ to 1 with minimum vaccine coverage can be solved using the method

described in Section 3.1. However, it is necessary to simultaneously make RðkÞ
� ðvÞ6 1 ðk 2 JÞ.

There does not appear to be a simple way of constructing, or characterising, the solution to the
simultaneous problem. Nevertheless, certain properties of optimal allocations can be investigated.
In Section 4.2.1 it is shown that successive vaccinations in the same household can lead to
increasing reductions in Rmax

� ðvÞ, so the optimal vaccination scheme need not take the equalising
form. In Section 4.2.2 it is shown that optimal allocations need not be sequential.

4.2.1. Example illustrating increasing reductions in R�
Suppose that the vaccine is perfect, i.e. � ¼ 1, where 1 denotes the row vector of J ones. Then

the all-or-nothing and leaky formulations coincide and lVn;r;i;kðKLÞ ¼ niri
ni

lnr;i;kðKLÞ. It follows
from (4.7) that
M ðkÞ
n;r ¼ M ðkÞðn rÞ ðn 2 N; 06 r6 nÞ; ð4:8Þ
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where
M ðkÞðlÞ ¼
X
i2J

ð logpiÞlill;i;kðKLÞ ðl P 0Þ: ð4:9Þ
Suppose that J ¼ 2, that local mixing is uniform, so kL
ij ¼ kL ði; j 2 JÞ, and that the distribu-

tion of an infective’s infectious period is independent of its class, so T ð1Þ
I and T ð2Þ

I are identically
distributed. Recall the definition of lnðkLÞ given in Section 3.2.

Lemma 4.1. Under the above conditions, for n1 ¼ 1; 2; . . . and n2 ¼ 0; 1; . . .,
lðn1;n2Þ;1;1ðK
LÞ ¼ lðn2;n1Þ;2;2ðK

LÞ ¼
n2 þ ðn1  1Þln1þn2ðk

LÞ
n1 þ n2  1

ð4:10Þ
and
lðn1;n2Þ;1;2ðK
LÞ ¼ lðn2;n1Þ;2;1ðK

LÞ ¼
n2ðln1þn2ðk

LÞ  1Þ
n1 þ n2  1

: ð4:11Þ
Proof. For n ¼ 1; 2; . . ., let pnðkLÞ denote the probability that a given initial susceptible is
ultimately infected by a single type single household epidemic, given that initially there are
n 1 susceptibles and 1 infective. Then pnðkLÞ ¼ ðlnðkLÞ  1Þ=ðn 1Þ ðn ¼ 1; 2; . . .Þ. Eqs. (4.10)
and (4.11) follow on noting that lðn1;n2Þ;1;1ðK

LÞ ¼ 1þ ðn1  1Þpn1þn2ðk
LÞ and lðn1;n2Þ;1;2ðK

LÞ ¼
n2pn1þn2ðKLÞ. Finally, lðn1;n2Þ;1;1ðK

LÞ ¼ lðn2;n1Þ;2;2ðK
LÞ and lðn1;n2Þ;1;2ðK

LÞ ¼ lðn2;n1Þ;2;1ðK
LÞ by sym-

metry. h

Suppose that the population is comprised entirely of households with category (3,1), so
N1 ¼ 3N2. Then it follows from (4.9) and Lemma 4.1 that, for n ¼ 0; 1; 2; 3,
M ð1Þðn; 1Þ ¼ ð logp1Þnlðn;1Þ;1;1ðKLÞ þ ð logp2Þlðn;1Þ;2;1ðKLÞ
¼ ð logp1Þð1þ ðn 1Þlnþ1ðkLÞÞ þ ð log p2Þðlnþ1ðKLÞ  1Þ ð4:12Þ
and
M ð2Þðn; 1Þ ¼ ð logp1Þnlðn;1Þ;1;2ðKLÞ þ ð logp2Þlðn;1Þ;2;2ðKLÞ
¼ ð logp1Þðlnþ1ðkLÞ  1Þ þ ð logp2Þl1ðkLÞ; ð4:13Þ
where M ðkÞðn; 1Þ ¼ M ðkÞððn; 1ÞÞ ðk ¼ 1; 2Þ.
Suppose further that the infectious period is constant and equal to the unit of time, and let

q ¼ expðkLÞ. Then the final size of a single household epidemic has the same distribution as that
of a Reed–Frost chain-binomial epidemic with probability of adequate contact p ¼ 1 q. It
follows, for example from Bailey [19, p. 245], that
l1 ¼ 1; l2 ¼ 2 q; l3 ¼ 3 4q2 þ 2q3; l4 ¼ 4 6q3  6q4 þ 15q5  6q6; ð4:14Þ

so
ðl4  l3Þ  ðl3  l2Þ ¼ qð1 8qþ 10q2 þ 6q3  15q4 þ 6q5Þ;

where ln ¼ lnðkLÞ. Thus, there exists q0 > 0 so that ðl4  l3Þ  ðl3  l2Þ < 0 for q < q0.
(Numerical calculation yields q0 � 0:158.) Hence, from (4.13), if kL > kL

0 ¼  log q0 then
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M ð2Þð3; 1Þ M ð2Þð2; 1Þ < M ð2Þð2; 1Þ M ð2Þð1; 1Þ. Further, 1
3
ðM ð2Þð3; 1Þ M ð2Þð0; 1ÞÞ < 1

2
ðM ð2Þð3;1Þ

M ð2Þð1; 1ÞÞ if and only if l4 > 3l2  2. Using (4.14), for q 2 ð0; 1Þ,
l4  3l2 þ 2 ¼ 3qð1 2q2  2q3 þ 5q4  2q5Þ ¼ 3qð1 qÞ2ð1þ q2 þ 2qð1 q2ÞÞ > 0:
Suppose that kL > kL
0 and that it is only possible to vaccinate class-1 individuals. Then, pro-

vided that, prior to any vaccination, Rð2Þ
� > Rð1Þ

� , it is initially clearly optimal, in terms of reduction
in Rmax

� ðvÞ, to vaccinate two individuals in the same household rather than two individuals in
distinct households. (Note that RðkÞ

� > 1 ðk ¼ 1; 2Þ, since the estimation method described in
Section 4.1 is predicated on the occurrence of a global epidemic.) It is now shown that Rð2Þ

� > Rð1Þ
�

and kL > kL
0 can hold simultaneously.

To do this it is convenient to use the concept of a (local) susceptibility set [6]. Return to the
general setting, consider a single household having category n and label the individuals in that
household 1; 2; . . . ; jnj. Let H ¼ f1; 2; . . . ; jnjg and consider the random directed graph, G say, on
H, in which for any ordered pair ði; jÞ of distinct individuals in H there is a directed arc from i to
j if and only if i, if infected, contacts j locally during its infectious period. For i; j 2 H, write i, j
if and only if there is a chain of directed arcs from i to j in G, with the convention that i, i. For
i 2 H, the susceptibility set of individual i is defined as Sn

i ¼ fj 2 H : j, ig. Note that for the
epidemic among a community of households, if the household under consideration is initially
completely susceptible, then individual i avoids infection by the epidemic if and only if none of the
individuals in its susceptibility set Sn

i is infected globally. For n 2 N and i; j 2 J, let Snij be the
number of class-j individuals in the susceptibility set of a typical class-i individual who resides in a
household of category n. Then the probability that a typical class-i individual, residing in an
initially completely susceptible household of category n, avoids infection throughout the course of
a global epidemic is given by
E
Y
j2J

p
Snij
j

" #
;

and arguing as in the derivation of (4.2) yields
zi ¼ 1
X
n2N

aiðnÞE
Y
j2J

p
Snij
j

" #
ði 2 JÞ; ð4:15Þ
see Ball and Lyne [6], Section 5.2, where it is explained that (4.2) and (4.15) yield the same
equation for z.

Lemma 4.2. For a two-class epidemic in which all households have category ðn1; n2Þ (with n1; n2 > 0),
local mixing is uniform and the infectious period of all infectives have the same distribution
z2 < z1 if and only if p1 < p2:
Proof. Suppressing the explicit dependence on n, for i ¼ 1; 2, let Si ¼ Si1 þ Si2 be the total size of
the susceptibility set of a typical class-i individual. Note that S1 and S2 have the same distribution
(written S1¼D S2), since local mixing is uniform and T ð1Þ

I ¼D T ð2Þ
I . By (4.15), the probability that a

typical class-i individual avoids infection is given by
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1 zi ¼ EfE½pSi11 pSi22 jSi�g ¼ EfE½pSi11 pSiSi12 jSi�g ði ¼ 1; 2Þ; ð4:16Þ

so z1 ¼ z2 if p1 ¼ p2. Suppose that p1 < p2. Then, for s ¼ 1; 2; . . . ; n1 þ n2 and 06 s21 6 s11 6 s,
ps111 pss112 6 ps211 pss212 , with strict inequality if s21 > s11. Thus, if ðS11jS1 ¼ sÞ>

st
ðS21jS2 ¼ sÞ

ðs ¼ 1; 2; . . . ; n1 þ n2Þ, where >
st

denotes stochastically greater than, it follows using (4.16) that
z2 < z1. A similar argument would also show that z2 > z1 if p1 > p2.

To complete the proof we show that ðS11jS1 ¼ sÞ>
st
ðS21jS2 ¼ sÞ ðs ¼ 1; 2; . . . ; n1 þ n2Þ. For

n;mP 0 and 06 s6 nþ m, let X sn;m be a random variable giving the number of class-1 individuals
contained in a random sample without replacement of size s from a population comprising n class-
1 individuals and m class-2 individuals. Note that if an individual’s susceptibility set is of size s
then the probability that a given other individual belongs to that susceptibility set is s1

n1þn21
. Thus,

by considering whether or not a particular individual of the opposite class is a member of the
susceptibility set,
ðS11jS1 ¼ sÞ¼D s 1

n1 þ n2  1
ðX s2

n11;n21 þ 1Þ þ n1 þ n2  s
n1 þ n2  1

ðX s1
n11;n21 þ 1Þ
and
ðS21jS2 ¼ sÞ¼D s 1

n1 þ n2  1
ðX s2

n11;n21 þ 1Þ þ n1 þ n2  s
n1 þ n2  1

ðX s1
n11;n21Þ:
Hence, ðS11jS1 ¼ sÞ>
st
ðS21jS2 ¼ sÞ, as required. h

In the example, S22 � 1 and, by symmetry, P ðS12 ¼ 1jS1 ¼ s1Þ ¼ s11
3

(s1 ¼ 1; 2; 3; 4). It then
follows from (4.15) that
z1 ¼ 1 P ðS ¼ 1Þp1  PðS ¼ 2Þ 1

3
p1p2

�
þ 2

3
p2
1

�
 P ðS ¼ 3Þ 2

3
p2
1p2

�
þ 1

3
p3
1

�
 P ðS ¼ 4Þp3

1p2

ð4:17Þ

and
z2 ¼ 1 P ðS ¼ 1Þp2  PðS ¼ 2Þp1p2  P ðS ¼ 3Þp2
1p2  PðS ¼ 4Þp3

1p2: ð4:18Þ

Now setting v ¼ 0 in (4.6), using (4.8), (4.12) and (4.13), and noting that N1 ¼ 3m and N2 ¼ m,

yields
Rð1Þ
� ¼ 1

N1z1
mM ð1Þð3; 1Þ ¼ 1

3z1
fð log p1Þð1þ 2l4Þ þ ð log p2Þðl4  1Þg ð4:19Þ
and
Rð2Þ
� ¼ 1

N2z2
mM ð2Þð3; 1Þ ¼ 1

z2
fð logp1Þðl4  1Þ þ ð log p2Þðl1Þg; ð4:20Þ
where the explicit dependence of ln on kL has been suppressed. Suppose that p1 < p2. Then, by
Lemma 4.2, z2 < z1 and, since l1 ¼ 1 and l4 6 4, l1

z2
> l41

3z1
. To show that l41

z2
> 1þ2l4

3z1
, note that, in

the current Reed–Frost setting, the directed arcs in G are present independently and with prob-
ability p ¼ 1 q. It follows that the size S of a typical susceptibility set has the same distribution
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as the size, C say, of a typical local infectious clump Ci ¼ fj 2 H : i, jg, where i denotes the
initial infective. Thus, S has the same distribution as the total size of a Reed-Frost epidemic, with
1 initial infective and 3 initial susceptibles, so PðS ¼ 1Þ ¼ q3, PðS ¼ 2Þ ¼ 3pq4, PðS ¼ 3Þ ¼
3p2q3ð1þ 2qÞ and PðS ¼ 4Þ ¼ p3ð1þ 3qþ 6q2 þ 6q3Þ, see, for example, Bailey [19, p. 245]. It then
follows, using (4.14), (4.17) and (4.18), that
3z1ðl4  1Þ  z2ð1þ 2l4Þ ¼ q3f9ðp2  p1Þð1þ p2
1Þ  6ð1 p3

1p2Þg þ oðq3Þ as q # 0:
Thus, provided p2  p1 >
2
3
, there exists q1 ¼ q1ðp1;p2Þ so that l41

z2
> 1þ2l4

3z1
for all q 2 ½0; q1Þ.

Hence, if p2  p1 >
2
3
and kL > kL

1 ¼  log q1, it follows from (4.19) and (4.20) that Rð2Þ
� > Rð1Þ

� .

Finally, note from (4.6), (4.12) and (4.13) that the reductions in Rð1Þ
� and Rð2Þ

� from vaccinating
two class-1 individuals in the same household are
Gð1Þ ¼ 1

N1z1
fM ð1Þð3; 1Þ M ð1Þð1; 1Þg ¼ 1

3N2z1
fð logp1Þ2l4 þ ð logp2Þðl4  l2Þg ð4:21Þ
and
Gð2Þ ¼ 1

N2z2
fM ð2Þð3; 1Þ M ð2Þð1; 1Þg ¼ 1

N2z2
ð logp1Þðl4  l2Þ; ð4:22Þ
respectively. Thus, Gð1Þ > Gð2Þ, if l2 > l4ð1 ð2z2Þ=ð3z1ÞÞ, which is clearly satisfied if kL is suffi-
ciently large and p1 sufficiently small (since z1 and z2 are then both close to 1), say p1 < p0

1 and

kL > kL
2 . Hence, provided p1 < p0

1, p2  p1 >
2
3

and kL > kL
3 ¼ maxfkL

0 ; k
L
1 ; k

L
2 g, Rð2Þ

� > Rð1Þ
� ,

M ð2Þð3; 1Þ < M ð2Þð2; 1Þ < M ð2Þð2; 1Þ M ð2Þð1; 1Þ and 1
3
ðM ð2Þð3; 1Þ M ð2Þð0; 1ÞÞ < 1

2
ðM ð2Þð3; 1Þ

M ð2Þð1; 1ÞÞ, so it is optimal to start vaccination by vaccinating 2 class-1 individuals in successive
households. Further, if such a vaccination scheme is performed then Rð1Þ

� ðvÞ < Rð2Þ
� ðvÞ. Hence, if a

fraction c of class-1 individuals are to be vaccinated, if c6 2
3
it is optimal to vaccinate 2 individuals

in a proportion c of households and no individuals in the remaining households (so the equalising
strategy is not optimal), whilst if c > 2

3
it is best to vaccinate 2 individuals in a proportion 3ð1 cÞ

of households and 3 individuals in the remaining households. This example can be constructed by

first choosing p1; p2 > 0 so that p1 < p0
1 and p2  p1 >

2
3
, then choosing kL > kL

3 , then using (4.2) to
determine z and finally choosing KG so that (4.1) is satisfied.

An intuitive explanation for the form of the optimal vaccination scheme runs as follows. Since
the bound Rð2Þ

� is achieved when class-2 individuals are responsible for all global infections, it is
sufficient to consider disease spread between such individuals. Moreover, such spread either oc-
curs directly, by global contact between two class-2 individuals, or indirectly, by global contact
between a class-2 and a class-1 individual, who then transmits the infection locally to a class-2
individual. As class-2 individuals cannot be vaccinated, only indirect spread is reduced by vac-
cination. The contribution to Rð2Þ

� made by indirect spread within a household is linear in the mean
size of the local epidemic within that household. When the local infection rate is very high, ln
ðn ¼ 2; 3; . . .Þ is a concave function of n, so it is better to vaccinate two individuals in the same
household than in distinct households.

Note that, since Rmax
� ðvÞ is a continuous function of ðKL; p; �Þ, the example can be extended to

allow for non-uniform local mixing, imperfect vaccines and vaccination of class-2 individuals,
with the same conclusions holding provided that elements of KL are sufficiently large and ð�1; �2Þ is
sufficiently close to (1,0).
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4.2.2. Example illustrating non-sequential optimal scheme

For this example, again assume that the vaccine is perfect, i.e. that � ¼ 1, that J ¼ 2, that local
mixing is uniform, so kL

ij ¼ kLði; j 2 JÞ, and that the distribution of an infective’s infectious period
is constant and equal to the unit of time.

Suppose that the population consists entirely of households with category (2,1), so N1 ¼ 2N2. It
follows from Lemma 4.1 and (4.9), that M ð1Þðl1; l2Þ and M ð2Þðl1; l2Þ (for l1 ¼ 0; 1; 2 and l2 ¼ 0; 1)
are as given in the following table.

To reduce Rð2Þ
� the best 1-dose scheme in a household is clearly to vaccinate the class-2 individual,

since M ð2Þð2; 0Þ ¼ 0. For Rð1Þ
� the best 2-dose scheme in a household is clearly to vaccinate the

class-1 individuals, since M ð1Þð0; 1Þ ¼ 0. To show that the optimal scheme is non-sequential, note
that the best use of a single dose is to vaccinate the class-2 individual ifM ð1Þð1; 1Þ > M ð1Þð2; 0Þ, and
this scheme is on the lower edge of the convex hull of the points ðð3 i jÞ, M ð1Þði; jÞÞ
ði ¼ 0; 1; 2; j ¼ 0; 1Þ if M ð1Þð2; 1Þ > 2M ð1Þð2; 0Þ.

To examine when these inequalities can be satisfied note that

M ð1Þðl1; l2Þ l2

0 1

l1
0 0 0
1  log p1  log p1  ð1 qÞ log p2

2 2ðlogp1Þð2 qÞ  log p1ðl3ðkLÞ þ 1Þ  log p2ðl3ðkLÞ  1Þ
M ð2Þðl1; l2Þ
l1
0 0  log p2

1 0 ð1 qÞ logp1  log p2

2 0  log p1ðl3ðkLÞ  1Þ  log p2
M ð1Þð1; 1Þ > M ð1Þð2; 0Þ () 3 logp1  log p2 > qð2 logp1  log p2Þ:
Choosing p1 and p2 so that 2 log p1  logp2 > 0, the above inequality becomes
q <
3 log p1  logp2

2 log p1  logp2

;

which is true for an interval of the form ½0; q0� provided that 3 logp1  log p2 > 0, where
q0 2 ð0; 1Þ. Thus, if p3

1 > p2 then M ð1Þð1; 1Þ > M ð1Þð2; 0Þ for all sufficiently large kL.
Next, note that
M ð1Þð2; 1Þ > 2M ð1Þð2; 0Þ
()  ðlogp1Þðl3ðkLÞ þ 1Þ  ðlogp2Þðl3ðkLÞ  1Þ > 4ðlogp1Þð2 qÞ
() ð1þ 2q2  q3Þ logp2 > ð2þ 2q 2q2 þ q3Þ log p1;
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using (4.14). Suppose that p3
1 > p2. If q ¼ 0, then the left-hand side of the above inequality equals

 logp2 while the right-hand side equals 2 logp1, so the inequality holds. Alternatively, for
q ¼ 1, the left-hand side equals zero while the right-hand side equals  log p1, so the inequality
does not hold. Hence, there exists an interval ½0; q1Þ (with q1 2 ð0; 1Þ) such that, for
q 2 ½0; q1Þ;M ð1Þð2; 1Þ > 2M ð1Þð2; 0Þ. Let q2 ¼ maxðq0; q1Þ. Then, provided p3

1 > p2, M ð1Þð1; 1Þ >
M ð1Þð2; 0Þ and M ð1Þð2; 1Þ > 2M ð1Þð2; 0Þ for q 2 ð0; q2Þ, i.e. for kL >  log q2.

The implication of the above is that, if p3
1 > p2 and kL >  log q2, the optimal scheme for a

small number of doses is to only vaccinate class-2 individuals, as it corresponds to the best use of a
single dose in a household for both bounds and it is on the convex hull for both. Further, this
scheme will remain optimal until all class-2 individuals have been vaccinated, at which point
Rð2Þ
� ¼ 0 and
Rð1Þ
� ¼ mM ð1Þð2; 0Þ

N1z1
¼ ð2 qÞ logp1

z1
;

so Rð1Þ
� > 1 if p1 < e1. To reduce Rð1Þ

� further it is necessary to proceed to the next point on
the corresponding convex hull, i.e. to vaccinate both class-1 individuals and not the class-2
individual in some households. Thus the optimal vaccination scheme cannot be achieved
sequentially.
5. Numerical examples

The first example is similar to that used in Section 4.2.2. Here the parameters are assumed to be
known and the global infection rates take the proportionate mixing form, i.e. kG

ij ¼ gG
i jG

j . The
vaccine is perfect, i.e. � ¼ 1, so that the leaky and all-or-nothing formulations coincide. There are
two classes of individual, i.e. J ¼ 2, local mixing is uniform, so kLij ¼ k ði; j 2 JÞ, and the dis-
tribution of an infective’s infectious period is constant and equal to the unit of time. The pop-
ulation consists entirely of households with category (2,1), so N1 ¼ 2N2 and only class-1
individuals contribute to global infection, so gG

2 ¼ 0. The other global infection rate parameters
are given by gG

1 ¼ k, jG
1 ¼ 0:6 and jG

2 ¼ 2:4.
Thus both the local and global infection rates are scaled with a common parameter k. The

optimal vaccination scheme (as a function of k) to reduce R� to 1 is illustrated in Fig. 2. For
k ¼ 0:38, R� ’ 1, so that for k < 0:38 no vaccination is required. For 0:38 < k < 1:02, the optimal
scheme vaccinates the one class-2 individual in some households and no-one in the other house-
holds. For k > 1:02, the optimal scheme vaccinates the one class-2 individual in some households
and both class-1 individuals in the other households. As k ! 1, the proportion of households with
both class-1 individuals vaccinated increases to 1. (For this example, vaccinating all the class-1
individuals totally prevents global infection, so the optimal coverage converges to 2/3 as k ! 1).
Thus, for k ’ 1:02 (corresponding to R� ’ 4:95), the optimal scheme is to vaccinate all the class-2
individuals (optimal coverage¼ 1/3) whereas for k large, the optimal scheme is to vaccinate all the
class-1 individuals and none of the class-2 individuals (optimal coverage¼ 2/3).

The intuition for the form of the optimal schemes is as follows. Class-2 individuals are 4 times
more susceptible than class-1 individuals, while local mixing is homogeneous (with a high rate of
infection, k). So, despite class-2 individuals not contributing to global infection, the best way to
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start reducing global infection emanating from a household is to vaccinate the class-2 individual,
conferring more protection on the class-1 individuals than vaccinating one of them. However,
once k is sufficiently large, this is no longer sufficient to keep the epidemic under control. The best
use of two vaccines in any household is clearly to vaccinate both class-1 individuals, because that
entirely eliminates global infection emanating from the household. So the optimal scheme now
vaccinates fewer class-2 individuals, and more class-1 individuals.

The second example illustrates the superiority of an all-or-nothing vaccine over a leaky vaccine
with the same efficacy (shown in Section 2.3.2). Consider a single type population, with para-
meters kG ¼ 0:25 and kL ¼ 1 and, as in Addy et al. [18], the infectious period of all individuals is
assumed to follow a gamma distribution with mean 4.1 days and shape parameter 2. The value of
kG is a plausible choice for the global infection rate, whereas the value of kL is deliberately chosen
to be very high, to emphasise the difference between the two vaccine actions. The household
structure used in this example is that of the sample from the influenza epidemics in Tecumseh,
Michigan, analysed by Addy et al. [18]. That is, 133 households of size 1, 189 households of size 2,
108 of size 3, 106 of size 4 and 31 of size 5. The sample was an approximate 10% sample from the
underlying population (but scaling the household numbers has no effect on the threshold
behaviour or the optimal vaccination coverage). Fig. 3 shows the resulting threshold parameter as
a function of the vaccination coverage for both types of vaccine which have been calibrated by
having the same efficacy � ¼ 0:55. As seen from the figure, the all-or-nothing vaccine considerably
outperforms the leaky vaccine and, in particular, the leaky vaccine cannot prevent an epidemic
even with complete coverage (resulting threshold greater than 1), while the all-or-nothing vaccine
can (resulting threshold less than 1, the critical coverage is where the dotted line and solid line
on the figure intersect). This phenomenon cannot occur in a non-households model. If the vac-
cines have higher efficacy both types may be able to prevent future epidemics, but the critical
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vaccination coverage is always smaller for the all-or-nothing vaccine. For example if � ¼ 0:7,
which is typical for the current killed influenza vaccine (Ira M. Longini, personal communication),
cAoN
v ¼ 0:60 and cLev ¼ 0:80.
6. Discussion

This paper considers optimal vaccination schemes for an epidemic model allowing for ob-
servable (and hence classifiable) individual heterogeneities as well as mixing heterogeneities caused
by the presence of households. In reality there are also unobservable individual heterogeneities
and mixing heterogeneities due to other social structures, for example schools and workplaces,
which affect the spread of an infectious disease. Still, it is believed that households, in combination
with having different classes of individual, capture the integral part of departures from homo-
geneity, so models allowing for these two types of heterogeneity should not be too far from real
epidemic outbreaks.

The notion of an optimal vaccination scheme might at first sight seem purely academic in that in
reality, a vaccination program is unlikely to follow such a scheme. Still, the derivation of optimal
vaccination schemes can give useful qualitative indications on which household categories are
effective in reducing the threshold parameter. The present analysis also derives an expression forR�ðvÞ
for any suggested vaccination program v, or an estimate in the case when parameters are estimated
from a previous outbreak. Thus, a vaccination scheme suggested by health practitioners can be
checked to ensure that it reduces the threshold parameter below 1, and for a vaccination scheme that
only specifies the relative proportions of various household categories to be vaccinated, the present
analysis enables calculation of the minimal absolute proportions for the scheme to be preventive.

There are three main qualitative results of the paper. The first is that there is, in general, no
simple sequential algorithm to describe the optimal vaccination scheme as there is, or at least has
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been conjectured to be, in the single-class setting. Instead the optimal vaccination scheme has to
be derived by solving a non-linear optimisation problem. The second conclusion from the paper is
that the seemingly more complicated case, where parameters have to be estimated from a previous
outbreak, admits a simpler solution for the optimal vaccination scheme. Here the optimal vac-
cination scheme is given by the solution to a linear programming problem. The reason for this
simplification comes from the observation that the threshold parameter cannot be estimated
consistently, instead upper and lower bounds can be estimated, and it is only vaccination schemes
with corresponding upper bounds being smaller than 1 that are surely preventive. To find such a
vaccination scheme with upper bound estimate below 1, having minimal vaccination coverage,
turns out to be a linear programming problem. Thirdly, we show in a precise way that if the
vaccine efficacy � is held fixed, the all-or-nothing model for vaccine action results in a greater
reduction in the spread of disease than the leaky model. This has important implications for the
threshold parameter following vaccination in a households model, which usually is different under
the two models of vaccine action. By contrast, in a non-households model, the threshold
parameter is the same for both all-or-nothing and leaky vaccines.
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Appendix A

As in Section 3, suppose first that all households have category n. Let r1; r2; . . . ; rp denote the
different ways of vaccinating a single household and suppose that the null vaccination scheme
r ¼ 0 is given by r1. For i; j ¼ 1; 2; . . . ; p with i 6¼ j, let aði; jÞ ¼ Mn;ri Mn;rj and bði; jÞ ¼
aði; jÞ=ðjrjj  jrijÞ be, respectively, the absolute and per vaccine reduction in R�ðvÞ achieved by
vaccinating a single household according to rj instead of according to ri. (Note that aði; jÞ may be
negative and bði; jÞ is not defined if jrjj ¼ jrij.) Let i0 ¼ 1. For k ¼ 1; 2; . . ., let I0

k ¼ fi : riirij
and aðij; iÞ > 0; j ¼ 0; 1; . . . ; k  1g, Ik ¼ argmaxi2I0

k
fbðik1; iÞg and choose ik 2 argmaxi2I0

k

faðik1; iÞg. Note that this process must terminate after a finite number of steps, i.e. that
q ¼ minfk : Mn;rik

¼ Mn;ng is well defined (though riq may not equal n, for example if some classes
of individuals are insensitive to the vaccine). For k ¼ 0; 1; . . . ; q, let ck ¼ jrik j=jnj be the vaccine
coverage if every household in the population is vaccinated according to rik . Then, by construc-
tion, 0 ¼ c0 < c1 < � � � < cq6 1. Further, for fixed vaccine coverage c 2 ½0; cq�; if c ¼ ck for some k
then R�ðvÞ is minimised by vaccinating every household according to rik , whilst if c 6¼ ck
ðk ¼ 0; 1; . . . ; qÞ then R�ðvÞ is minimised by vaccinating a proportion

jrik jcjnj
jrik jjrik1

j households

according to rik and the other households according to rik1
, where k ¼ minfl : cl > cg.

Consider now the general case when not all the households in the population have the same
category. For n 2 N, let ri1ðnÞ; ri2ðnÞ; . . . ; riqðnÞðnÞ denote the single household vaccinations used when
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all the households have category n and denote the corresponding per vaccine reductions in R�ðvÞ
by bnði0ðnÞ; i1ðnÞÞ; bnði1ðnÞ; i2ðnÞÞ; . . . ; bnðiqðnÞ1ðnÞ; iqðnÞðnÞÞ. Let
A ¼ fðn; rÞ : n 2 N and ðn; rÞ ¼ ðn; rikðnÞÞ for some kg:

Let ðnð1Þ; rð1ÞÞ; ðnð2Þ; rð2ÞÞ; . . . ; ðnðq�Þ; rðq�ÞÞ be an enumeration of A arranged according to decreasing
values of bnðik1ðnÞ; ikðnÞÞ. It is easily seen that, for fixed vaccine coverage c, R�ðvÞ is minimised by
sequentially picking household/vaccination categories ðnðkÞ; rðkÞÞ ðk ¼ 1; 2; . . . ; q�Þ, vaccinating all
households of category nðkÞ according to rðkÞ and stopping the process (typically with a mixed
scheme) as soon as the vaccine coverage reaches c. The problem of determining vopt, defined by
(3.2), can be solved in a similar fashion, except the process is stopped as soon as R�ðvÞ reaches one.
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