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ABSTRACT. A single-population Markovian stochastic epidemic model is defined so that

the underlying social structure of the population is described by a Bernoulli random graph. The

parameters of the model govern the rate of infection, the length of the infectious period, and the

probability of social contact with another individual in the population. Markov chain Monte Carlo

methods are developed to facilitate Bayesian inference for the parameters of both the epidemic

model and underlying unknown social structure. The methods are applied in various examples of

both illustrative and real-life data, with two different kinds of data structure considered.
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1. Introduction

This paper is concerned with methodology for performing Bayesian statistical inference for

stochastic epidemic models which include a simple kind of underlying unobserved social

structure. This topic links two themes in which there is currently a great deal of interest,

namely (i) stochastic models for epidemics in structured populations, and (ii) the use of

Markov Chain Monte Carlo methods for inference for stochastic epidemic models. Before

describing the present work in more detail, we focus briefly on these two areas.

In recent years there has been an increase in research activity regarding stochastic models

for epidemics among populations with some kind of social structure. This work is motivated

by a desire for model realism, and in particular by the fact that real-life human populations are

themselves structured. In some cases, models are designed to include a fixed known social

structure, such as simple household models (Becker & Dietz, 1995), or household models with

two levels of mixing (Ball et al., 1997). An alternative approach is to regard the social structure

itself as randomly generated within the model, as in the general social network models

described in Andersson (1999). The social structure may also be considered at an individual

level, for example with pair-formation models (Altmann, 1998). In the present paper, we will

focus on the simplest case of randomly generated social structures, namely that a Bernoulli

random graph will be used to describe potential contacts among a population of individuals.

This particular model is analysed in Andersson (1998), although no attempt was made there to

describe methods of statistical inference.

Undertaking statistical inference based on stochastic epidemic models and data from disease

outbreaks is generally a non-standard problem. This is due to both the nature of the data,

which is highly dependent and typically only partial, and also to the level of mathematical

intractability of even the simplest stochastic epidemic models. Some novel approaches have

been developed (Becker, 1989; Becker & Britton, 1999), although these often involve making
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unrealistic modelling assumptions, which in turn affects the reliability of the conclusions.

Recently, the use of Markov chain Monte Carlo (MCMC) methods has been explored (O’Neill

& Roberts, 1999; O’Neill et al., 2000). MCMC methods offer, at least in principle, important

advantages over existing methods, most notable of which is the fact that they allow a much

greater degree of modelling flexibility. However, the implementation of MCMC methods may

be problematic, since algorithm convergence and mixing difficulties can arise due to the

amount of missing data and correlation structures inherent within epidemic models.

Consequently, algorithms often need to be designed with care.

As described above, in the present paper we shall consider an epidemic model among a

population with unobserved social structure assumed to be described by a Bernoulli random

graph. The epidemic model, described in detail in the next section, assumes potential infections

occurring at the points of a Poisson process; exponentially-distributed infectious periods; no

latent periods; and full immunity following the infectious period. It is clear that this model has

limited application to the modelling of specific diseases. However, our objective is to develop

methods of statistical inference, and it seems sensible to do so with a basic model before

moving on to more complex situations. Furthermore, our focus in this paper is towards

moderately-sized datasets, for the following reasons. First, real-life datasets of the kind that

we shall consider, such as temporal data consisting of case-detection times, usually contain

tens rather than hundreds of observations. Second, larger datasets, especially those collected

over long periods of time, are often more appropriate for models which allow for interventions

or changes in the environment under which the disease spreads. Finally, the design of efficient

MCMC algorithms for larger datasets is a separate topic of interest in its own right.

The paper is organized as follows. The model is described in detail in section 2, as are the

different kinds of data that we shall consider. In section 3 the likelihood is derived and used to

define the posterior density of interest. Section 4 contains a description of an MCMC

algorithm that is our main inferential tool. In section 5 we consider a number of examples to

illustrate the performance and uses of the MCMC algorithm. We conclude in section 6 with an

overview of progress, and suggestions for future work.

2. Model and data

In this section we describe the epidemic model that our analysis is based upon, review some

known probabilistic results for this model, and indicate the kind of datasets that we shall

consider.

2.1. Modelling assumptions

We shall model the social structure of a closed population using a random graph, G.

Specifically, each individual in a closed population will be represented by a vertex in G. Given

a particular realization of G, G say, the adjacency of two vertices represents regular social

contact between the two corresponding individuals. Furthermore, a Markovian epidemic

process can be defined on G. We now describe the model in more detail.

Let G ¼ GðN ; pÞ be a Bernoulli random graph defined on N labelled vertices, with p the

probability that two vertices are joined by an edge, and let G be a given realization of G. Thus

p represents the probability that two individuals have regular social contact with each other,

with contacts between different pairs of individuals assumed to be independent of one another.

A Markovian epidemic process can now be defined on G as follows. Each vertex can be

in one of three states, namely susceptible, infective, or removed. The susceptible state

corresponds to a healthy individual who can contract the disease in question. The infective
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state describes an individual who can pass the disease on to others. Finally the removed state

describes a formerly infectious individual who now cannot be reinfected. Initially, there will

typically be a small number of infectious individuals among an otherwise wholly susceptible

population. Infective individuals remain so for a period of time that is exponentially

distributed with mean c�1 before becoming removed, where c > 0 is known as the removal

rate. During its infectious period, an infective makes infectious contacts with each adjacent

susceptible according to a Poisson process of rate b > 0, where b is known as the infection

rate. Each such contact results in the immediate infection of the susceptible in question. The

Poisson processes governing different infective–susceptible pairs are assumed to be independ-

ent of one another. The epidemic continues until there are no more infectives left in the

population.

2.2. Review of known results

We now briefly review some properties of the model described above (see Andersson, 1998). It

is convenient to reparameterize the model by introducing k ¼ Np, where k is the average

number of social contacts of a single individual. Recall that the basic reproduction number,

R0, is defined as the expected number of infectious contacts that a single infective has in a

totally susceptible population. Then R0 is given by kb=ðb þ cÞ (see Andersson, 1998). This

follows because k is the expected number of social links and b=ðb þ cÞ is the probability of a

contact occurring before the individual recovers. Denote by T the total number of infections

that occur during the epidemic. As N ! 1 the final proportion infected, T=N , converges in

distribution to a 2-point distribution. If R0 � 1 all the mass is concentrated at 0 while if R0 > 1

then the limiting distribution also has positive mass at s, where s is the unique positive solution

to the equation

1 � s ¼ expð�R0sÞ:

In the latter case the amount of probability mass at s can be derived using branching process

theory. The initial stages of the epidemic can be approximated by a branching process with

growth rate a, so that at (small) time t the number of infectives is approximately expðatÞ. Here

a is the so-called Malthusian parameter, which is the solution to the integral equationR1
0 expð�atÞlðtÞdt ¼ 1, where lðtÞ is the average rate at which an individual infects others t

time units after he was infected. For the model presented above lðtÞ ¼ kb expð�ðc þ bÞtÞ. This

is because an individual has k social links on average, and while infectious will infect any given

susceptible at rate b. Solving the equation for this choice of lðtÞ yields that the Malthusian

parameter a satisfies

a ¼ bk � c � b ¼ ðR0 � 1Þðc þ bÞ:

In this paper we shall consider parameter estimation when the social network is not

observed. Estimating c is straightforward if the lengths of the infectious periods are known.

The challenge comes in trying to distinguish b and k, since different combinations of these

parameters may lead to similar outbreak sizes. However, the results described above imply

that for fixed R0 (i.e. fixed expected outbreak size) and fixed c, the speed at which an epidemic

initially spreads will increase as b increases. In fact, as b ! 1 the duration of the entire

epidemic tends to 0 and all individuals that are socially linked with the initial infective become

infected instantaneously. On the other hand, if b is small but k is larger the final number

infected might be the same, but the duration of the epidemic is likely to be longer. These

results suggest that estimation of both b and k is feasible.
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If only the removal times are observed, then the heuristic reasoning in the previous

paragraph still holds, although now estimation of c is no longer straightforward. Finally, we

note that explicit estimators for b and k, given the kinds of data considered in the present

paper, are not known.

2.3. Data

We will consider two possibilities for the kind of data that are available, namely (I) the times

of infection and removal of each individual who ultimately becomes infected, and (II) the

removal times only. In both cases the underlying social network is not observed. For simplicity

we assume that the epidemic is known to have ceased, so that the number of observed

removals equals the number of infections, T . In reality, it is far more likely that data of type

(II) rather than (I) are actually observed, especially for human diseases. However, for some

applications or for preliminary analyses it may be acceptable to impute the missing infection

times, perhaps by simply assuming a fixed-length infectious period, so that the infection times

are exactly specified by the removal times.

Our notation is as follows. Define R ¼ ðR1;R2; . . .;RmÞ, where Rj is the removal time of

individual j, T ¼ m is the number of observed removals, and Rmin ¼ min1OjOm Rj
� �

¼ 0, so

that Rmin has the role of time origin. We also define I ¼ ðI1; I2; . . .; ImÞ, where Ij is the infection

time of individual j. For data of type (II), the unknown infection times will be regarded as

extra parameters whose inclusion in the model will greatly simplify the necessary likelihood

calculations. The infection times themselves will be imputed as part of the MCMC algorithm

described below.

3. Likelihood and posterior density

We start with some notation and definitions. It will be convenient to re-label the vertices of the

graph such that vertices 1 to m correspond to the m ultimately infected individuals in the

graph, with vertex j being associated with ðIj;RjÞ ( j ¼ 1; 2; . . .;m). For convenience we define

Ij ¼ Rj ¼ 1 for j ¼ mþ 1; . . .;N . We shall assume that there is one initial infective, labelled j,

so that Ij < Ij for all j 6¼ j, and we define ~II as I n Ij. Note that j is itself a parameter, and in

particular is not simply fixed.

We shall say that ði; jÞ 2 G if and only if the vertices i and j are adjacent in G, where

1Oi; jON . We denote by P the random directed tree with labelled vertices whose root is the

vertex corresponding to the initial infective, and in which a directed edge from vertex i to

vertex j appears if and only if i infects j during the epidemic. Thus P denotes the pathway of

infection. We denote a particular realization of P by P, and say that ði; jÞ 2 P if and only if the

directed edge from i to j appears in P. Notice that ði; jÞ 2 P only if ði; jÞ 2 G and Ii < Ij < Ri,

and so there are constraints on the possible values of P . We denote by jGj and jPj the number

of edges in G and P, respectively; note that jGjPjPj ¼ m� 1. Finally, we use the notation

pð
j
Þ to denote conditional densities (or mass functions, when appropriate).

Our objective is to make inferences about the model parameters b, c and p given the data,

which will be either R or ðI; RÞ. In a Bayesian framework we thus wish to explore the

posterior density of the model parameters given the data under the assumption of some prior

density pðb; c; pÞ. However, the likelihood of the data given the parameters involves

summation over all possible values of G and P, and can be tedious to compute. We therefore

include G and P as extra model parameters, since if they are known then the likelihood

becomes far simpler to calculate. An additional benefit, as we shall see, is that certain posterior

distributions become considerably simpler.
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In fact, since the infection mechanism in our model is defined via Poisson processes, the

likelihood will always be independent of the infection pathway P. Specifically, the product

L1L2, where L1 and L2 are defined by (2) and (3) below, can be shown to be independent of P.

However, there are certain benefits to retaining P as a parameter. For instance, keeping track

of the value of P facilitates the implementation of the MCMC algorithm described below.

Also, we could in principle consider more generalized infection mechanisms within the

framework described here.

Denoting the likelihood by L, we have that

L ¼ pð~II;Rjb; c;G;P; p; IjÞ ¼ pð~II;Rjb; c;G;P; IjÞ; ð1Þ

since ð~II;RÞ only depends on p via the value of G. Note that the likelihood involves

conditioning on the time of the start of the epidemic, Ij. This is necessary so as to ensure a

fixed time reference point, relative to which the density of the other infection and removal

times can be calculated. Although L is dependent on several quantities (~II;R; b, etc.), we shall

often either suppress reference to all quantities, or only refer to some in order to emphasize

particular dependencies (e.g. writing Lð~IIÞ).
The likelihood L has three components. First, the contribution from the m� 1 infections is

given by

L1 ¼
Y

ð j;kÞ2P
b expð�bðIk � IjÞÞ ¼ bm�1 exp �b

X
ðj;kÞ2P

ðIk � IjÞ

0
@

1
A: ð2Þ

Arguing in the same way, the contribution from infected individuals who fail to infect at least

one of their neighbours in G is given by

L2 ¼ exp �b
X

1OjOm

ðj;kÞ2GnP

½ðIk ^ RjÞ � Ij� _ 0
� �

0
BBBB@

1
CCCCA: ð3Þ

Finally, the contribution due to the removal process is

L3 ¼ cm exp �c
Xm
j¼1

ðRj � IjÞ
 !

: ð4Þ

The likelihood is thus given by

L ¼ L1L2L3;

and defined as zero for any impossible parameter choices (for example, if the infection times I

are not possible given R).

The posterior density of interest is obtained via Bayes’ Theorem as proportional to the

product of the likelihood and the prior. We assign independent priors to individual

parameters. Thus

pðb; c; p;G;PjI;RÞ / LpðPjb; c; pj;GÞpðGjpÞpðbÞpðcÞpðpÞpðIjÞpðjÞ; ð5Þ

where pðbÞ is the prior density of b, etc., and where, since G is a Bernoulli random graph,

pðGjpÞ ¼ pjGjð1 � pÞ
N
2ð Þ�jGj: ð6Þ

As will be described in the next section, pðPjb; c; pj;GÞ is the uniform distribution on the set of

all possible infection pathways. Also, for type II data we shall henceforth assume that the prior
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pðjÞ is uniformly distributed. For type I data, both Ij and j are non-random, and so the

relevant priors can be ignored.

In order to obtain information about the posterior density in (5) we use an MCMC

algorithm. The algorithm allows us to generate approximate samples from the posterior

density, and in particular from the marginal distributions of the parameters of interest. This is

achieved by constructing a Markov chain whose stationary distribution is the same as the

posterior distribution of interest. We now describe the algorithm in more detail.

4. MCMC algorithm

We now describe a single-component Metropolis–Hastings algorithm (see Gilks et al., 1996)

to generate approximate samples from the posterior density. With the exception of the

infection times and j, we shall be able to sample each parameter directly from its full

conditional distribution. Thus in the case where the data are given by ðI; RÞ, the MCMC

algorithm will be a Gibbs sampler. In the following we denote by Gam(l; k) a Gamma-

distributed random variable with density

f ðxÞ ¼ ðkxÞl�1k expð�kxÞ
CðlÞ ðx � 0Þ;

and denote by Beta(c; d) a Beta-distributed random variable with density

f ðxÞ ¼ xc�1ð1 � xÞd�1

Bðc; dÞ ð0 � x � 1Þ:

Also, we write pðgj 
 
 
Þ for the marginal density of a parameter g conditional upon the data

and all other parameters.

Sampling b: From (2) and (3) it is immediate that

pðbj 
 
 
Þ / pðbÞbm�1 expð�bAÞ;

where

A ¼
X

ðj;kÞ2P
ðIk � IjÞ þ

X
1OjOm

ðj;kÞ2GnP

½ðIk ^ RjÞ � Ij� _ 0
� �

:

Note that A is the total time for which susceptibles in the population are exposed to infected

individuals. It follows that if b has a Gam(lb; kb) prior, then

pðbj 
 
 
Þ � Gamðlb þ m� 1; kb þ AÞ:

Sampling c: From (4) we find that if c has a Gam(lc; kc) prior then

pðcj 
 
 
Þ � Gamðlc þ m; kc þ BÞ;

where

B ¼
Xm
j¼1

ðRj � IjÞ:

Sampling p: It follows from (6) that if p has a Beta(d1; d2) prior then

pðpj 
 
 
Þ � Beta jGj þ d1;
N
2

� �
� jGj þ d2

� �
:

Note in particular that the choice d1 ¼ d2 ¼ 1 gives a Uniform(0,1) prior for p.
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Sampling G: In order to produce a realization of G conditional upon the data and all other

parameters (including P), it is sufficient to generate edges randomly according to their

conditional probabilities of existence. Moreover, the independence properties of the Bernoulli

graph mean that the event that any given edge exists is independent of the existence of other

edges. We are thus concerned with Pr ði; jÞ 2 Gj 
 
 
f g ¼ aij, say, where i; j ¼ 1; . . .;N , i 6¼ j. It is

straightforward to calculate aij conditional upon the various possibilities, namely: i infects j or

vice-versa; both i and j remain susceptible; at least one of i and j becomes infected but neither

infects the other. We thus obtain that

aij ¼
1 if ði; jÞ 2 P or ðj; iÞ 2 P;
p if i > m and j > m;

uijp
1 � p þ uijp

otherwise,

8><
>:

where

uij ¼
exp �b½ðRi ^ IjÞ � Ii�
� �

if 1OiOm and Ii < Ij;

exp �b½ðRj ^ IiÞ � Ij�
� �

if 1OjOm and Ij < Ii:

(

Sampling P: In order to obtain a realization of P it is sufficient to consider each of the

ultimately infected vertices in turn, and for non-initial infectives decide which other vertex was

responsible for their infection. Specifically, consider a vertex j that is ultimately infected, so

that 1OjOm. If j is not an initial infective then the set of vertices that could have infected j (we

call such vertices suspects) is i : ði; jÞ 2 G; Ii < Ij < Ri
� �

. Since the infection mechanism is

Markovian (with equal rates of infection b from each suspect i to j) it follows that each of the

suspects is equally likely to have actually infected j. It is therefore sufficient to sample

i uniformly from the set of suspects and then set ði; jÞ 2 P.

The algorithm described thus far is all that is required when the data consist of both

infection and removal times. However, for the case where the data only consist of removal

times, it is necessary to specify sampling schemes for the infection times I, and the label of the

initial infective, j. In order to improve mixing we shall also describe an extra step which helps

to prevent the algorithm from getting stuck in certain regions of the parameter space. In the

following we shall write I� to denote a new set of infection times proposed by the algorithm.

Sampling I: Since the full conditional density of a given infection time is awkward to

compute, we use a Hastings algorithm to update I, as follows. All of the infection times, other

than Ij, are updated, but in a randomly selected order. The infection time for individual j is

then updated as follows. Since j 6¼ j, ði; jÞ 2 P for some i. Then Ij 2 ðIi; sjÞ, where

sj ¼ min Rj
� �

[ Rif g [ Ik : ðj; kÞ 2 Pf g
� �

. A new infection time, I�j say, is then sampled

according to a uniform density on the interval ðIi; sjÞ, and this new value is accepted with

probability

LðI�Þ
LðIÞ ^ 1:

If the new value is not accepted then Ij remains unchanged.

Finally, Ij is updated as follows. As before Ij < sj, where now the Ri term in the definition

of sj is ignored, but now no lower bound exists on the possible value of Ij. In this case a new

infection time I�j is sampled by setting I�j ¼ sj � X , where X is a sample from an exponential

density with mean h�1. The new value is accepted with probability

pðI�jÞLðI�Þ expð�hðI�j � IjÞÞ
pðIjÞLðIÞ

^ 1:
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If the new value is not accepted then Ij remains unchanged.

Sampling j: The method of updating P does not allow the value of j to change, since a

given set of distinct infection times can only have one initial infective, whose label is by

definition equal to j. In order to allow j to be updated, we again use a Hastings algorithm.

Suppose that infective i is currently the initial infective, so that j ¼ i. A new value for j is

proposed as follows. Select an infective j at random satisfying ði; jÞ 2 P. Denoting by mði;PÞ
the number of individuals that i infects according to P, the probability that j is chosen is

mði;PÞ�1. Next, swap the infection times of individuals i and j, so that now i is infected at time

Ij and j is infected at time Ii. Thus the proposed new value of j is j. In order to maintain a

permissible value for P, we propose an updated path P� ¼ ðP n ði; jÞf gÞ [ ðj; iÞf g. Accept the

proposed new values with probability

LðI�;P�Þmði;PÞ
LðI;PÞmðj;P�Þ ^ 1; ð7Þ

where as before I� denotes the proposed set of infection times and labels. Note that although a

new j value is proposed, the actual value of the initial infection time is unchanged, and so the

acceptance probability (7) does not depend on the prior for Ij.

Mixing step: The algorithm thus far described can experience poor mixing in practice, for

the following reason. Suppose that the current value of G is such that the infected individuals

have no contact with those who are uninfected. In this case, if the values of b proposed are

sufficiently large, then the current infection times will tend to cluster together near the initial

infection time. Consequently, the algorithm will be extremely unlikely to propose values of

G that allow uninfected individuals to contact infected ones, since any such proposed network

would have very low probability under the assumption of a high b value. The algorithm would

thus get stuck in a region where the infection times are very close together, b is large, and the

uninfected individuals are unconnected to those who are infected.

It should be noted that this situation is partially a consequence of the fact that the model

parameterization permits different explanations of the same outcome. Put crudely, the fact

that an individual does not get infected could either be due to the values of the parameters

controlling the disease spread, or instead because the individual is not connected to the

infected part of the network.

In order to prevent the algorithm getting stuck it is therefore necessary to try and move the

chain into different regions of the parameter space. The dependencies between parameters,

such as those described above, suggest a blocking approach, so that highly correlated

parameters are updated in a single block. We shall consider the block of parameters b, I and c.
We first propose a new value of I, and then new values of b and c, with the latter two values

being proposed dependent on the first. This dependency in the proposal for b and c is

important since it helps to avoid proposing low-density regions of the parameter space.

The specific method we use is as follows. Let c be drawn from a uniform density on the

interval ½r�1; r�, where r > 1 is constant. The value c is then used to rescale the current set of

infection times so that Imax ¼ max1OjOm Ij
� �

remains fixed but the interval Imax � Ij is scaled

by c. Precisely, for 1OjOm define

I�j ¼ ð1 � cÞImax þ cIj:

Next, proposed values of b and c are given by b� ¼ b=c and c� ¼ c=c, respectively. Finally the

proposed new values are accepted with probability

pðI�jÞpðb�Þpðc�ÞLðb�; c�; I�Þ
pðIjÞpðbÞpðcÞLðb; c; IÞ

^ 1;
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note that the likelihood term Lðb�; c�; I�Þ is zero if I� is incompatible with R (for example, if

Ij is not negative).

The rationale for rescaling the infection times is as follows. Roughly speaking, the lack of

detail in the data makes it hard to distinguish between long infection periods with low b values

and short infection periods with high b values. Consequently, a given configuration is likely to

have a similar posterior density to a configuration in which the inter-infection times are either

increased or decreased a little, with b and c being updated in sympathy with the rescaling. In

particular, increasing the infection times causes b to be reduced, which in turn makes the

algorithm more likely to visit regions of the parameter space in which uninfected individuals

may be connected to the infected part of the network.

The MCMC algorithm now proceeds as follows. Initial values for all unknown parameters

are assigned, and prior distributions of the parameters chosen. Then, each parameter is

updated in turn according to the schemes described in the preceeding paragraphs, with the

current values of the other parameters being used in the conditioning. One entire update of all

parameters, and the mixing step, is collectively known as a sweep. The process continues for a

number of sweeps known as the burn-in period. The purpose of the burn-in period is to allow

convergence of the Markov chain constructed by the algorithm. After the burn-in period, the

parameters are sampled at regular intervals. These samples are, at least approximately,

samples from the required posterior distribution.

Regarding convergence of the MCMC algorithm, diagnosis was performed informally, by

monitoring the sample output chains of the parameters of interest and other relevant

quantities. Examples of the latter include infection times in the case where they are not

specified by the data, and certain network summaries such as the quantity S defined in example 1

below.

5. Examples

In the examples described below, the prior for p was always a Uniform (0, 1) distribution.

Where required, the prior for Ij was taken as the improper uniform distribution on ð�1; 0Þ,
and the value of h used in the proposal density for Ij was set at 0.5. The prior distributions for

b and c are described in each example. Note that the priors on p, b and c induce a prior on R0,

although this will not in general have a standard distribution. In theory it would be possible to

focus attention on choosing a prior for R0, rather than its constituent parameters, although we

do not consider this here. Finally, the value of the mixing parameter c was set on the basis of

experimentation and exploratory initial runs, with a value chosen that appeared to allow

reasonable mixing.

In each example, we present our results in terms of the model parameters b and p, and c if

appropriate. For the final two examples, with real outbreak data, we also give results

concerning R0. In general, sample-based estimates of any function of the model parameters

can be easily obtained via the output of the simulated Markov chain.

Example 1. Test data, infection times unknown. We begin with a simple example that

illustrates the behaviour of the algorithm. The data consist of the set of removal times 0; 1; 1f g,
and we set m ¼ 3 and N ¼ 4. Prior parameters were kb ¼ kc ¼ 0:001, and lb ¼ lc ¼ 1. It is far

from straightforward to calculate posterior summary statistics exactly using numerical

integration, primarily because this involves integrating over six variables (b; c; p and the three

unknown infection times). Attempts to perform the required calculations using MAPLE

proved unsuccessful.
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Table 1 contains the means and standard deviations from the MCMC algorithm output.

Posterior density estimates for b, c and p were all found to be unimodal, with those for c and p
being approximately symmetric and that for b being right-skewed. However, it is also

informative here to consider the inter-relationships between parameters, including the graph

parameter G. Regarding the latter, we now define a new quantity that will summarize an

important aspect of G.

Define S as the number of edges in G that are linked to the vertex corresponding to the

uninfected individual. Thus, S may take the values 0, 1, 2 and 3. The reason that S is of interest

is that it is related to b. Specifically, suppose the uninfected individual is labelled U . If S > 0

then there is at least one infective who fails to infect U . Thus, crudely, b needs to be large

enough to allow two infections, but small enough so that it is not improbable that a third will

not occur. In contrast, if S ¼ 0 then the data, augmented by S, contain no information about

the probability of an individual avoiding infection, and consequently the only constraint on b
is that it should be large enough to permit two infections. Consequently, when S ¼ 0 it is

plausible that b can take values that are considerably larger than when S > 0. This effect can

be seen in Fig. 1, where the pairwise scatterplots of b and p indicate that large b values only

occur when S ¼ 0.

Table 1. Posterior parameter summaries from MCMC algorithm using simple

removal-times dataset, example 1

Parameter

b c p

Mean 24.7 0.59 0.45

S.D. 95.2 0.52 0.21

Fig. 1. Pair-wise scatterplots of b, c, p and S, example 1.
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Example 2. Distinguishing between different epidemics. We now show how our methodology

can be used, at least informally, to distinguish between data from two epidemics with different

parameter values. Unlike the previous example, the infection times are supposed known. As

outlined in section 2.2, increasing the value of the infection rate b is likely to result in a faster-

spreading epidemic. Two datasets, A and B (see Table 2), were constructed so that infections

occurred more quickly in dataset B than A, suggestive of a higher b value in B, but where the

final size of each outbreak was the same, namely m ¼ 15. Each dataset consists of ordered

pairs ðIj;RjÞ, for j ¼ 1; . . .; 15. Additionally, in the obvious notation, RA
j � IA

j ¼ RB
j � IBj for

each j ¼ 1; . . .; 15, so that the two datasets contain identical inferential information for c. The

value of N was set at 20.

Prior parameter values for b were chosen to be fairly uninformative; specifically, we set

kb ¼ lb ¼ 0:001, so that b has prior mean 1, and standard deviation
ffiffiffiffiffiffiffiffiffiffi
1000

p
. Some results for

the MCMC output for b and p are given in Table 3. The b values for the two datasets are

markedly different, providing evidence that the b values underlying the two datasets are not

the same, with the b value for dataset B appearing to be largest. Posterior density estimates for

b and p were both found to be unimodal, with similar shapes to those in example 1.

Figure 2 shows a scatterplot that illustrates the relationship between b and p for dataset A; a

very similar-looking plot is obtained by using dataset B instead. As can be seen, there is a clear

correlation structure, so that as p decreases, b increases. This can essentially be interpreted as

saying that the data could have arisen from a highly connected network with low infection

rates, from a more sparse network with higher infection rates, or from intermediate situations.

Table 2. Datasets A and B as used in example 2

ðIj;RjÞ

Dataset A Dataset B

()1.2, 0.1) ()0.9, 0.4)

()0.7, 0) ()0.7, 0)

()0.1, 1.0) ()0.5, 0.6)

(0.1, 0.9) ()0.3, 0.5)

(0.3, 1.2) ()0.2, 0.7)

(0.5, 1.6) ()0.1, 1.0)

(0.6, 1.9) ()0.1, 1.2)

(0.8, 1.1) (0.0, 0.3)

(0.9, 2.1) (0.2, 1.4)

(1.2, 2.1) (0.3, 1.2)

(1.4, 2.6) (0.4, 1.6)

(1.8, 2.8) (0.5, 1.5)

(2.1, 2.9) (0.6, 1.4)

(2.6, 3.5) (0.7, 1.6)

(3.0, 3.8) (0.9, 1.7)

Table 3. Posterior parameter summaries for datasets A and B, example 2

Dataset A Dataset B

b p b p

Mean 0.27 0.55 0.46 0.51

Median 0.17 0.54 0.23 0.49

S.D. 0.28 0.26 0.62 0.27

Equal-tailed 95% C.I. (0.077, 0.83) (0.15, 0.95) (0.093, 1.67) (0.12, 0.95)
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Next, the infection times in datasets A and B were deleted, and the MCMC algorithm applied

to the two resulting removal times datasets. The prior density for c was the same as that for b.

Table 4 contains summary results from the MCMC output. As can be seen there is clear

evidence to suggest that the value of b for dataset A is smaller than that for dataset B.

Although the difference in posterior values of b between the two datasets seems considerably

larger than the corresponding difference when the infection times are known, it should also be

noted that in this case the posterior values for p are rather different. In particular, the posterior

mean and median of p are both markedly smaller for dataset B than for dataset A. Since b and

p are related in a manner like that illustrated in Fig. 2, it seems reasonable to consider the

value of bp as providing a crude comparison of the two datasets. However, we still find that bp
has larger posterior values for dataset A. This suggests that the MCMC algorithm can still be

used to distinguish between different b values, even in the absence of infection-time data.

Example 3. Gastroenteritis outbreak data. Our next example concerns an outbreak of

gastroenteritis in a hospital ward in South Carolina, January 1996, as reported in Cáceres et al.

(1998). Although viruses that cause gastroenteritis are commonly transmitted through

contaminated food, on this occasion person-to-person spread was believed to have occurred.

Fig. 2. Scatterplot of b and p, dataset A, example 2.

Table 4. Posterior parameter summaries for datasets A and B with infection times deleted, example 2

Dataset A Dataset B

b c p b c p

Mean 0.45 1.17 0.52 1.74 1.43 0.36

Median 0.24 1.13 0.51 0.89 1.40 0.24

S.D. 0.55 0.31 0.27 2.01 0.37 0.27

95% C.I. (0.096, 1.52) (0.71, 1.73) (0.13, 0.96) (0.16, 5.9) (0.87, 2.10) (0.085, 0.90)
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Data were collected on the date of onset of symptoms for the 28 cases among 89 members of staff

working on the ward during the study period, as well as 10 cases among 91 patients who were

hospitalized for more than one day during the outbreak. Since the patient population was not

closed, and only 10 patient cases occurred, we shall for simplicity restrict attention to the cases

among staff members. The staff case data are given in Table 5. On the final day on which cases

were recorded, the hospital ward was closed to new admissions, and no more cases occurred.

In order to perform inference for these data using our model we must, as with any form of

modelling, make certain assumptions. However, our main purpose here is to illustrate

methodology rather than perform a careful data analysis, and so we will be tolerant towards

some of the less realistic assumptions. In addition to the fact that we have ignored cases among

patients, our model takes no account of an incubation period, which for viral gastroenteritis is

between 1 and 3 days (Benenson, 1990). The fact that the ward was eventually closed to the

admission of new patients seems likely to have had some effect on the course of the epidemic,

despite our only considering the epidemic among staff. Finally, there are also implicit

assumptions associated with the model, such as the Bernoulli random graph social structure

and exponentially-distributed infectious periods.

Prior distributions for b, c and p were the same as for example 2. Posterior density

summaries are given in Table 6, including information for the basic reproduction number

R0 ¼ Npb=ðb þ cÞ. Regarding the three basic model parameters, the marginal posterior

densities for c and p were reasonably symmetric, and the density for b right-skewed but fairly

sharply peaked. Fig. 3 contains pairwise scatterplots for b, c and p.
Regarding R0, its marginal posterior density was found to be unimodal, with mean 1.17. As

a very rough comparison, a martingale-based estimator of R0 described in Becker (1989,

p. 149) based only on the number infected (28) and the population size (89), and assuming

homogeneous mixing ( p ¼ 1 in our framework) estimates R0 as about 1.14. Although we

would not expect this estimate to be the same as the posterior mean for our model, it is

reassuring that they are fairly similar. In our model, the mean and standard deviation of the

infectious period are both given by c�1, and this was found to have posterior mean 0.75 days.

Although this seems quite short, it should be noted that here we are modelling the effective

infectious period, since it is assumed that case detection corresponds to removal. Also, the

posterior summaries for c give in Table 6 seem compatible with the data at first sight. For

example, there is only one day with no cases, which suggests that the unknown infectious

periods are unlikely to be very long.

It would appear that the data and prior distributions used do not lead to strong posterior

inference for the network parameter p. To investigate this further, alternative prior values

Table 5. Detection times of cases of gastro-

enteritis, example 3

Day 0 1 2 3 4 5 6 7

Cases 1 0 4 2 3 3 10 5

Table 6. Posterior parameter summaries from MCMC algorithm using gastroenteritis dataset, example 3

Parameter

b c p R0

Mean 0.061 1.47 0.54 1.17

Median 0.035 1.41 0.55 1.14

S.D. 0.0088 0.47 0.27 0.32

Equal-tailed 95% C.I. (0.015, 0.19) (0.81, 2.3) (0.11, 0.96) (0.73, 1.74)
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d1 ¼ 1, d2 ¼ 4 were used instead, so that now p had prior mean 0.2 and standard deviation

approximately 0.16. It was found that the resulting posterior density for p was right-skewed

with mean 0.25 and median 0.21, while the posterior mean and median for b became 0.15 and

0.094, respectively. The values for c and R0 were virtually unchanged, suggesting that the effect

of a less vague prior for p is (as expected) to restrict the posterior values of both p and b
accordingly, while having less effect on inference for c and R0.

Example 4. Shigellosis outbreak data. Our final example is concerned with an outbreak of

shigellosis in a shelter for the homeless between 27 December 1991 and 23 January 1992, as

reported in L.A.D.H.S. Public Health letter (1992). The spread of disease was believed to have

been propagated via person-to-person contact among 199 residents in the shelter, of whom

42 ultimately contracted the disease. The data, consisting of case-detection times, are given in

Table 7. As in the previous example, we implicitly make a number of simplifying assumptions

by using our model for these data. In particular, we assume that the epidemic ceased on

23 January although in reality a mass vaccination clinic was held on this date, after which no

additional cases occurred. However, since the clinic was held on a date several days after the

bulk of the recorded cases, our simplifying assumption does not seem too unreasonable. We

Fig. 3. Pair-wise scatterplots of b, c and p, example 3.

Table 7. Detection times of cases of shigellosis, example 4

Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Cases 1 0 0 0 0 1 0 0 0 1 1 5 1 3

Day 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Cases 0 2 3 4 7 4 3 2 1 0 0 0 2 1
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note that a more complete analysis could be obtained by extending our approach along the

lines in O’Neill & Roberts (1999) in which the epidemic is not necessarily assumed to have

finished by the end of the observation period.

Prior distributions for b and c were the same as for example 2. Posterior density summaries

are presented in Table 8. The shapes of the marginal posterior densities for b, c, p and R0

essentially resembled those in example 3, and a corresponding scatterplot to Fig. 3 also looked

similar. As for example 3, we can compare our estimate of the posterior mean for R0, namely

1.12, with a martingale-based estimate given only final size data and assuming homogeneous

mixing, and in this case the estimate is 1.09.

Regarding the algorithm, mixing was slower than for the previous example, although not

prohibitively so. Although the actual data will affect algorithm performance, the main reason

for slower mixing is likely to be the larger number of infections and larger population size in

the current example. In particular, a larger number of infections increases the size of the

parameter space that the algorithm explores, and this seems likely to have a greater impact on

mixing than a larger population size.

6. Conclusions

We have described methodology for performing Bayesian statistical inference for a network

epidemic model incorporating a simple unobserved social structure mechanism, given two

types of temporal outbreak data. Inference can be made about the parameters governing the

social structure as well as those governing the epidemic. For simplicity we have considered

only a relatively basic model for both the underlying social structure and the epidemic

transmission mechanism, using natural parameters ðb; c; pÞ. This parameterization aids

construction of a suitable MCMC algorithm, so that for example many of the full conditional

distributions of parameters can be written down explicitly. It is possible to use alternative

parameterizations, and in particular those which give lower posterior correlations, in order to

improve convergence. However, the implementation details are rather more complicated, and

so we have not considered this here. However, for large population analyses, reparameter-

izations might be worthwhile.

Our modelling framework can in principle be extended to more complex situations,

particularly with a view to increased realism. Extensions are possible for both the underlying

social structure and also the epidemic transmission model itself. In both cases, increased

complexity may lead to additional parameters, in which case identifiability problems may

occur, unless strong prior assumptions are employed. This is because the data may not be

sufficiently detailed to allow separate estimation of individual parameters in a more complex

model. However, this situation does not always arise: for instance, if a particular fixed social

structure is assumed (perhaps on the basis of existing knowledge) then estimation is only

required for the parameters governing epidemic spread. More complex modelling assumptions

are in turn likely to lead to less straightforward MCMC algorithms, and in particular careful

Table 8. Posterior parameter summaries from MCMC algorithm using shigellosis dataset, example 4

Parameter

b c p R0

Mean 0.017 0.38 0.51 1.12

Median 0.0041 0.37 0.52 1.10

S.D. 0.031 0.096 0.30 0.24

Equal-tailed 95% C.I. (0.0018, 0.042) (0.24, 0.55) (0.055, 0.96) (0.77, 1.56)
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design may be needed to ensure efficiently performing algorithms. This is especially likely to be

the case if large datasets, perhaps with populations of several hundred, are considered.
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Cáceres, V. M., Kim, D. K., Bresee, J. S., Horan, J., Noel, J. S., Ando, T., Steed, C. J., Weems, J. J.,

Monroe, S. S. & Gibson, J. J. (1998). A viral gastroenteritis outbreak associated with person-to-person

spread among hospital staff. Infection Control Hospital Epidemiol. 19, 162–167.

Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice.

Chapman & Hall, London.

Los Angeles County, Department of Health Services (L.A.D.H.S) Public Health Letter (1992) 14, No. 4.

O’Neill, P. D. & Roberts, G. O. (1999). Bayesian inference for partially observed stochastic epidemics.

J. Roy. Statist. Soc. Ser. A 162, 121–129.

O’Neill, P. D., Balding, D. J., Becker, N. G., Eerola, M. & Mollison, D. (2000). Analyses of infectious

disease data from household outbreaks by Markov chain Monte Carlo methods. J. Roy. Statist. Soc.

Ser. C 49, 517–542.

Received November 2000, in final form September 2001

Tom Britton, Department of Mathematics, Uppsala University, P.O. Box 480, SE-751 06 Uppsala, Sweden.
E-mail: tom.britton@math.uu.se

390 T. Britton and P. D. O’Neill Scand J Statist 29

� Board of the Foundation of the Scandinavian Journal of Statistics 2002.


