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This paper treats some examples where likelihood-based inference for certain model
parameters may produce empty confidence sets. The first example concerns epidemics,
and the parameter of interest is the basic reproduction number R0 , which is to be estimated
from the final size of an epidemic in a finite population. The second example treats
estimation of the mean of the offspring distribution in a branching process, based on
observing the total progeny, i.e. the total number of individuals ever born in the branching
process. The final example considers estimation of the linear drift in a Brownian motion,
based on observing the first hitting time of some horizontal barrier.
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1. I

This paper is concerned with construction of confidence sets for some examples of
probability models which display a threshold phenomenon. It considers models in which
a one-dimensional parameter, hµH5R, is of interest and inference is based on an obser-
vation x of a one-dimensional random variable X that is stochastically monotone in h.

For definiteness, suppose that X is stochastically increasing in h. Then, prima facie, a
natural method for constructing a 100(1−a) percent confidence set for h is by inverting
the family of tests of H0 : h=h0 versus H1 : hNh0 having acceptance regions A

a
(h0 )=

[L
a
(h0 ), Ua (h0 )], where

L
a
(h0 )= sup{x :P

h
0

(X∏x)∏a/2}, U
a
(h0 )= inf {x :P

h
0

(X�x)∏a/2},

where P
h
0

denotes probability conditional on h=h0 . Note that this gives a confidence



212 F. G. B, T. B  P. D. O’N

interval, which is conservative if X is discrete. However, for reasons outlined in § 2, this
method leads to unsatisfactory confidence intervals for the examples in this paper. Thus
an alternative method of constructing confidence sets is considered.

The 100(1−a) percent confidence set is constructed directly from the probability density
or mass function p(x; h ) for the random variable X as follows. First, for each h0µH, the
acceptance region A

a
(h0 ) for testing H0 : h=h0 versus H1 : hNh0 is obtained by setting

A
a
(h0 )={x : p(x; h0 )�c

a
(h0 )},

where

c
a
(h0 )=sup{c :P

h
0

{p(X; h0 )�c}�1−a}.

Thus A
a
(h0 ) is constructed by including in it the most likely values of X under h0 until

its probability is at least 1−a. The confidence set R
a
(x) for h given the datum x is then

obtained by inverting the above family of tests, so that

R
a
(x)={h : A

a
(h )+x}. (1·1)

Again, the confidence set is conservative if X is discrete.
For ease of exposition, the above two types of confidence set are referred to as equal-

tailed and inverted-likelihood-based, respectively. Note that the inverted-likelihood-based
confidence set (1·1) is not generally a likelihood-based confidence region, in the termi-
nology of Cox & Hinkley (1974, p. 218), unless c

a
(h ) is independent of h.

In this paper, inverted-likelihood-based confidence sets are considered for three different
examples, which are outlined below and described in §§ 2, 3 and 4.

Example 1. The first example, which largely motivates our investigations, concerns
estimation of the basic reproduction number R0µ[0,2 ) in an epidemic model. The basic
reproduction number, defined in § 2, is the average number of potentially infectious con-
tacts an individual makes during its infectious period. The community initially contains
n susceptible and a infectious individuals. Estimation of R0 is based on observing T,
the total number of initially susceptible individuals that are ultimately infected, so
Tµ{0, . . . , n}.

Example 2. The parameter of interest is the expected number of offspring lµ[0,2 ) of
a given individual in a Galton–Watson branching process. This is to be estimated by
observing the total progeny T, that is the number of individuals ever born in the branching
process. Note that T takes the value +2 with nonzero probability if l>1. Hence,
Tµ{0, 1, . . .}^ {+2}.

Example 3. The last example considers a Brownian motion with unknown drift param-
eter mµ(−2,+2 ). Estimation of m is based on observing T

z
, the time at which the

Brownian motion first reaches the known level z>0. If m<0 it is well known that this
may never happen, i.e. that T

z
=+2 has nonzero probability. The state space for T

z
is

hence (0,2 )^{+2}.

The examples share the property that the confidence set for the parameter of interest
is empty when the observed value is extremely unlikely under the model, regardless of the
choice of model parameter. In practical terms it seems sensible to interpret an empty
confidence set as an indication that the model is inappropriate for the data. However, for
each of the examples, it is possible to observe values that are close to those giving empty
confidence sets, but where now the confidence set is a very narrow interval. Such an
interval suggests that knowledge of the parameter of interest is very certain, a rather
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different conclusion from that drawn by obtaining an empty confidence set. Further dis-
cussion regarding empty confidence sets and their interpretation can be found in Cox &
Hinkley (1974, pp. 224ff ).

2. E 

2·1. Model and distribution of size of epidemic

Consider the following model for the spread of an epidemic among a closed population
comprising initially a infectives and n susceptibles. The infectious periods of different
infectives are independently and identically distributed according to a random variable
T
I
, having an arbitrary but specified distribution. Throughout its infectious period, a given

infective makes contacts at the points of a Poisson process with rate nb. Successive contacts
are with individuals chosen independently and uniformly from the n initial susceptibles.
If a contacted individual is still susceptible then it becomes infected and it is immediately
able to infect other susceptibles, otherwise nothing happens. The contact processes of
different infectives are mutually independent. The epidemic ceases as soon as there is no
infective present in the population.

When the initial number of susceptibles n is large, during the early stages of an epidemic
all infectious contacts are very likely to be with susceptible individuals and consequently
the process of infectives can be approximated by a branching process, in which a typical
individual lives for a time T

I
, during which it has offspring at the points of a Poisson

process with rate nb; see for example Ball & Donnelly (1995). The mean number of
contacts made by a given infective is R0=nbE(T

I
). Thus, by standard branching process

theory, for large n, the epidemic has a nonzero probability of taking off only if R0>1
(Whittle, 1955; Williams, 1971). The threshold parameter R0 is usually called the basic
reproduction number or ratio of the epidemic (Heesterbeek & Dietz, 1996).

Let T denote the total size of the epidemic, and let P
k
=pr(T=k) (k=0, 1, . . . , n). A

triangular system of linear equations for P
k

(k=0, 1, . . . , n) is given in Ball (1986).
However, this system of equations is numerically unstable, because of rounding errors,
even for relatively small values of n, for example for n=50 or n=100. When the infectious
period T

I
follows a negative exponential distribution with mean c−1, the epidemic model

reduces to the general stochastic epidemic (Bailey, 1975, Ch. 6), whose total size distri-
bution can be determined by the following, numerically stable two-dimensional system of
equations, derived from Bailey (1975, eqn (6.49)). Let r=c/b,

E={(i, j ) : i=0, 1, . . . , n, j=1, 2, . . . , n+a, 1∏ i+ j∏n+a}

and let h
i,j

, (i, j )µE, be determined by

h
n,a
= (n+r)−1, (2·1a)

(i+1)h
i+1,j−1

− (i+r)h
i,j
+rh

i,j+1
=0, (i, j )µEc(n, a), (2·1b)

where h
i,j
=0 if (i, j )1E. Then

P
k
=rh

n−k,1
(k=0, 1, . . . , n). (2·2)

Note that, for the general stochastic epidemic, R0=n/r and P
k
=P
k
(R0 ), for k=0, 1, . . . , n.

2·2. Equal-tailed confidence intervals

In practice, the total size of an epidemic is often used as a basis for inference since,
unlike the temporal course of an epidemic, it can usually be obtained accurately from
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Fig. 1. Smallpox epidemic example: 95 percent equal-
tailed confidence intervals for reproduction number, R0 .

data. Consider the problem of constructing a confidence set for R0 from an observation,
tobs say, of the total size of a general stochastic epidemic. For this model, T is stochastically
increasing in R0 , so equal-tailed confidence intervals can be constructed as described in § 1.

As an illustration, consider the case (n, a)= (119, 1), motivated by a dataset obtained
from a smallpox epidemic in Abakaliki, Nigeria (Bailey, 1975, p. 125). The 95 percent
equal-tailed confidence interval for R0 for different values of tobs is shown in Fig. 1; for
the smallpox dataset tobs=29. The intervals are clearly unsatisfactory. First, they are very
wide, because the distribution of T is bimodal when R0>1. Secondly, the upper end of
the confidence interval is the same for most values of tobs , which is a consequence of the
threshold behaviour of the epidemic. The distribution of T for various values of R0 is
shown in Fig. 2. When R0∏1, the distribution of T is unimodal with the mode at zero.
When R0>1, the distribution of T still has a mode at zero but there is a second mode,
corresponding to the epidemic taking off, at a value of T that tends to n as R0�2; in
fact, the second mode first appears when R0 is slightly larger than one (Ball & Nåsell,
1994). It is clear from Fig. 2 that when R∞

0
�2 the equal-tailed test of H0 : R0=R∞

0
versus

H1 : R0NR∞
0

has an acceptance region which contains several extremely unlikely values of
T, thus leading to very wide confidence intervals. For large n, the probability of a ‘minor’
epidemic, for the general stochastic epidemic, is approximately min{1, R−a

0
} (Whittle,

1955). Also, it is clear from Fig. 2 that, for R0�5, the distribution of T is concentrated
around 0 and n, so for such R0 and a=1, pr(T=0)jR−1

0
j 1−pr (T=n). Thus the

upper end of the conservative confidence interval is at R0= (a/2)−1, unless tobs is close to
0 or n.

2·3. Inverted-likelihood-based confidence sets

In view of the above, it seems sensible to consider inverted-likelihood-based confidence
sets for R0 . Write P

k
as P
k
(R0 ), for k=0, 1, . . . , n, and for fixed R0 let I( j, R0 ) denote

the suffix of the jth smallest P
k
(R0 ), for j=1, 2, . . . , n+1. For aµ(0, 1), let

k*(a, R0 )=max{k :Wk
j=1

P
I(j,R
0
)
(R0 )<a}. The conservative 100(1−a) percent confidence

set for R0 is obtained by inverting the family of tests of H0 : R0=R∞
0

versus H1 : R0NR∞
0

having acceptance regions

A
a
(R∞
0
)={I( j, R0 ) : j=k*(a, R∞

0
)+1, k*(a, R∞

0
)+2, . . . , n+1}.
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Fig. 2. Smallpox epidemic example: total size distribution for
general stochastic epidemic with (n, a)= (119, 1) and various R0 .
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Fig. 3. Smallpox epidemic example: 95 percent
inverted-likelihood-based confidence sets for repro-

duction number, R0 .

The 95 percent confidence sets for the case (n, a)= (119, 1) are shown in Fig. 3.
These were based on tests of R0=R∞

0
using the grid of values R∞

0
=0·0001j, for j=

1, 2, . . . , 100 000. For most values of tobs , the confidence set is a single interval, though
for a few values it is the union of at most four intervals, with either the lowest or the
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highest interval being appreciably longer than the others. Figure 3 shows the bottom end
of the lowest interval, the top end of the highest interval and the longest interval, if the
confidence set comprises two or more intervals. A finer grid of values for R∞

0
might result

in the confidence set comprising more, but not fewer, intervals for some values of tobs , but
the overall picture is unlikely to be very different from that shown in Fig. 3. Also, the top
ends of the confidence intervals when tobs=0 and 119 should be 20·0188 and 2,
respectively.

The confidence sets depicted in Fig. 3 are clearly more sensible than the intervals shown
in Fig. 1. The sets are still wide for very small and very large values of tobs but this reflects
inherent features of the model. Small epidemics are likely to occur for a wide range of
values for R0 , and very large epidemics occur with high probability for all sufficiently
large R0 .

The results of the next section suggest that the inverted-likelihood-based confidence set
is empty for some values of tobs if the initial susceptible population size n is sufficiently
large. The smallest value of n for which this phenomenon arises clearly decreases in a. For
a=0·05, numerical calculation shows that empty confidence sets do not occur when
(n, a)= (1000, 1) so, given the computational effort required to compute the total size
distribution for large n, the possible existence of empty confidence sets was investigated
by keeping (n, a)= (119, 1) and increasing a. If we use the grid of values R∞

0
= 0·0001j, for

j=1, 2, . . . , 50 000, when a=0·1, tobs= 42 gives rise to an empty confidence set whilst all
other values for tobs do not; tobs=43 yields a confidence set comprising 13 intervals! It is
possible that the empty confidence set when tobs=42 would disappear if a finer grid for
R∞
0

was used. However, if we use the same grid for R∞
0
, when a=0·2, an observed total

size of 22∏tobs∏57 gives rise to an empty confidence set. Note from Fig. 2 that values
of tobs in the interval [22, 57] have low probabilities for all R0 . It is difficult to explain
analytically the fact that the confidence set can comprise so many disjoint intervals, though
it seems likely to be because P

k
(R0 ), for k=0, 1, . . . , n, are complicated rational functions

of R0 .
It is interesting to note that tobs=29, the observed value for the smallpox dataset, lies

in the interval for which the confidence set is empty when a=0·2, casting doubt on the
correctness of the general stochastic epidemic for these data. Indeed, closer scrutiny of the
smallpox epidemic reveals that to be the case. As indicated in Bailey & Thomas (1971),
the population was partitioned into compounds, making the assumption of homogeneous
mixing questionable, and some of the susceptibles appeared actually to have been
vaccinated.

3. B  

3·1. Assumptions and confidence sets

Consider a Galton–Watson branching process with a initial ancestors, in which the
number of offspring of a single individual is distributed according to a random variable
Z
l
, where l is a parameter that governs the distribution of Z. We shall take l to be the

mean number of offspring, so that l=E(Z
l
). For k=0, 1, . . . , define p

k
(l)=pr (Z

l
=k).

Let T
l
denote the total progeny of the branching process, not including the initial ancestors,

and for k=0, 1, . . . define pAk (l)=pr (T
l
=k). Then

pAk (l)=
a

a+k
pr{Z(1)+Z(2)+ . . .+Z(a+k)=k} (k=0, 1, . . . ), (3·1)
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where Z(1), Z(2), . . . are independent and identically distributed copies of Z
l

(Jagers,
1975, Theorem 2.11.2). Note that (3·1) provides an explicit expression for the total progeny
mass function, provided that the probability on the right-hand side can be evaluated.

Suppose now that the following three conditions hold:
(i) for fixed l>0, pAAk (l)�pAk+1 (l) (k=0, 1, . . . );
(ii ) T

l
�stTl∞ for any l>l∞, where �st denotes stochastic ordering;

(iii) for k=0, 1, . . . , pAk (l)<pAk (l∞) for l>l∞>1.
A sufficient condition for (ii) is that Z

l
�stZl∞ for l>l∞, and this condition is easily

checked in practice. Consider a size-a test of H0 : l=l0 versus H1 : lNl0 constructed using
the most likely values of T

l
in the manner described in § 1. Then conditions (i) and (iii)

imply that the acceptance region A
a
(l0 ) of the test takes the form

A
a
(l
0
)=q[0, b(l

0
, a)], if l

0
<l*(a),

[0, b(l
0
, a)]^{2}, if l

0
�l*(a),

for some l*(a). Note that l*(a)>1, since T
l
<2 almost surely if l∏1.

Condition (ii) ensures that b(l, a)∏b(l∞, a) if l<l∞<l*(a). Similarly, condition (iii)
ensures that b(l, a)∏b(l∞, a) if l>l∞>l*(a). Consequently, b(l, a)∏b(l*(a), a) for all l�0
and, if the value T

l
=t is observed, the inverted-likelihood-based confidence set for l is

given by

R
a
(t)=q[min{l : b(l, a)�t}, max{l : b(l, a)∏t}], if t∏b(l*(a), a),

B, if tµ(b(l*(a), a),2 ),

[l*(a),2 ), if t=2.

Note that the probability of observing an empty confidence set is

pr{b(l*(a), a)<T
l
<2},

which by conditions (ii) and (iii) is maximised when l=1. Since l*(a)>1, this maximised
probability is slightly less than a.

3·2. Examples

We now consider two examples of different offspring distributions. Both examples satisfy
conditions (i)–(iii) implying that confidence sets for l may be empty. The first example,
namely negative binomial, corresponds to the limiting branching process for an epidemic
model where T

I
follows a gamma distribution with an integral-valued shape parameter,

of which the general stochastic epidemic is a special case. The second example, with a
Poisson offspring distribution, corresponds similarly to a Reed–Frost epidemic model, in
which T

I
is constant (Ball, 1986).

Example 1: Negative binomial oVspring distribution. Suppose that Z
l

has a negative
binomial distribution with probability mass function

p
k
(l)=A lr+lBk A r

r+lBr Ak+r−1

r−1 B (k=0, 1, . . . ).

By (3·1),

pAk (l)=
a

a+k A lr+lBk A r

r+lBr(a+k) Ak+r(a+k)−1

r(a+k)−1 B (k=0, 1, . . . ).
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It is straightforward to verify condition (ii), while, for fixed k,

dp
k
(l)/dl<0 (3·2a)

if and only if

l>k/(a+k), (3·2b)

so that condition (iii) is satisfied. For condition (i), it can be shown that

r
k
(l)=

pAk+1 (l)
pAk (l)

=qr(a+k+1)+k

k+1 r A a+k

a+k+1B q lrr

(r+l)r+1r ar
j=1

r(a+k)−1+k+ j

r(a+k)−1+ j
.

In the case a=1, we find that

a
r

j=1

r(1+k)−1+k+ j

r(1+k)−1+ j
∏qr(k+1)+k

r(k+1) rr,
while it is straightforward to show that, for all l>0, g(l)=l/(r+l)r+1 is maximised at
l=1, so that

l

(r+l)r+1
∏g(1)=

1

(1+r)r+1
.

We thus obtain that

r
k
(l)∏

rr

(1+r)r+1 qr(k+2)+k

k+2 r qr(k+1)+k

r(k+1) rr
=q r(k+2)+k

(k+2)(r+1)r q r(k+1)+k

(r+1)(k+1)r∏1,

so that condition (i) is satisfied in this case.
For numerical illustration, suppose first that r=1, so that Z

l
is geometric, a=0·05 and

a=1. We find that an observed final progeny T
l
µ[128,2 ) give rise to an empty confi-

dence set. For a=0·01 this becomes T
l
µ[3183,2 ). The probability of observing an empty

confidence set when a=0·05 is maximised when l=1 by pr{T1µ[128,2 )}=0·0498. In
Fig. 4 the upper and lower limits of the 95 percent inverted-likelihood-based confidence
interval for l are plotted as a function of the observed total progeny. As seen from Fig. 4
the confidence set is empty for T

l
µ[128,2 ). For T

l
=2, not shown in Fig. 4, the confi-

dence set is not empty; rather, the confidence set is lµ(1·001,2 ).
As a final illustration, if r=4, a=0·05 and a=1, then any observation T

l
µ[204,2 )

will give an empty confidence set.

Example 2: Poisson oVspring distribution. If Z
l
~Po (l) then

p
k
(l)=

lke−k

k!
(k=0, 1, . . . ),

and, by (3·1),

pAk (l)=
a

a+k

{l(a+k)}k

k!
e−l(a+k) (k=0, 1, . . . ).
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Fig. 4. Example 1: 95 percent inverted-likelihood-
based confidence sets for l. For an observed total
progeny k<128, the confidence set for l is the interval
between the two curves. For finite k�128 the confi-
dence set is empty; for k=0 the interval goes from 0

up to l=20, this upper limit being omitted.

It is straightforward to verify condition (ii), and condition (iii) can be verified in the same
way as in the previous example; once again we obtain the relationship given at (3·2). For
condition (i), proceeding as before we obtain that

r
k
(l)=

pAk+1 (l)
pAk (l)

=
(a+k+1)k

(a+k)k−1(k+1)
le−l,

so condition (i) will not hold if a is sufficiently large. For the case a=1 we have

r
k
(l)=Ak+2

k+1Bk le−l= k+1

k+2 A1+ 1

k+1Bk+1 le−l< k+1

k+2
e le−l<1,

since le−l is maximised at l=1. Since all three conditions are satisfied for a=1, we
conclude that inverted-likelihood-based confidence sets may be empty. For example, if
a=0·05 we find that T

l
µ[255,2 ) yields an empty confidence set for l.

3·3. Additional remarks

Remark 1: Censored observations. In practice, T
l
=2 will never be observed. Suppose

instead that observations are censored at some finite positive integer m, so that possible
observations lie in the set {0, 1, . . . , m}, with m corresponding to T

l
�m. Then empty

confidence sets are still possible, as we now illustrate.
In similar notation to that used in § 3·1, the acceptance region Am

a
(l
0
) takes the form

Am
a
(l
0
)=q[0, b

m
(l
0
, a)], if l

0
∏l*
m
(a),

[0, b
m
(l
0
, a)]^{m}, if l

0
>l*
m
(a).

Let

b*
m
(a)=max{b

m
(l, a) : l>0}.

Then, if m>b*
m
(a)+1, any observation in [b*

m
(a)+1, m−1] yields an empty confidence

set. Note that, since pr (T
l
�m)>pr (T

l
=2 ), l*

m
(a)∏l*(a), b

m
(l, a)=b(l, a) if l∏l*

m
(a),
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and b
m
(l, a)∏b(l, a) if l>l*

m
(a). Thus b*

m
(a)∏b(l*(a), a). Finally, if l*

m
(a)�1, which does

not necessarily hold, unlike in the uncensored case, then condition (iii) ensures that
b*
m
(a)=b

m
(l*
m
(a), a).

Remark 2: Initial number of ancestors. It is clear that empty confidence sets are still
possible for a>1, although it is less straightforward to work with the distribution of T

l
in this case; for example, condition (i) will not be true in general.

4. B  

4·1. T he distribution of the hitting time for a Brownian motion

Let {B
t
: t�0} be a Brownian motion with B0=0 almost surely, linear drift m and

infinitesimal variance s2. Define the hitting time T
z
= inf{t�0; B

t
=z}, that is the first

time the process reaches z, where z>0 is assumed without loss of generality. Below, m is
treated as a parameter whereas s and z are assumed to be fixed and known.

The hitting time T
z
has distribution function given by

F(t; m)=e2zmW A−mt−z

s√t B+W Amt−z

s√t B (t�0), (4·1)

where W ( . ) is the standard normal distribution function (Asmussen, 1987, p. 263).
If m�0 then P

m
(T
z
<2 )=1, where P

m
denotes probability given that the drift equals m,

and T
z

has an inverse Gaussian distribution with parameters z/m and (z/s)2. Thus, the
density function of T

z
is

f (t; m)=
z

st3/2√(2p)
e−(mt−z)2/2ts2 (t>0). (4·2)

If m<0, the distribution of T
z
also has point mass at T

z
=2 corresponding to the process

never hitting the barrier z: P
m
(T
z
=2 )=1−e2mz/s2. The density for a negative drift −|m |

is related to the corresponding density for positive drift |m | by

f (t; −|m | )=e−2|m|z/s2 f (t; |m | ) (t>0).

It follows that, conditional on T
z
being finite, the two distributions are identical (Asmussen,

1987, p. 265).

4·2. Constructing confidence sets for m

We now derive confidence sets for m assuming s and z known, where inference is based
on one observation of T

z
. The distribution of T

z
is stochastically decreasing in m, as is

easily proved by a coupling argument, using the well-known fact that if {B
t
} is a Brownian

motion without drift then {B
t
+mt} is a Brownian motion with drift m. Thus it is straightfor-

ward to construct an equal-tailed confidence interval for m, using the method described
in § 1. However, the inverted-likelihood-based confidence set is rather more complicated
and it is necessary to examine the density f (t; m) more closely.

First consider the case m�0. The density f (t; m) is unimodal and its maximum is
obtained at the point

tmax=SqA3s22m2B2+ z2

m2r− 3s2

2m2
(m>0), tmax=

z2

3s2
(m=0).
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Consequently, the inverted-likelihood-based acceptance region A
a
(m0 ) for a test

of H0 : m=m0 versus H1 : mNm0 , where m0�0, consists of the interval
I(a)
m
0

=[l (a)(m
0
), u(a)(m

0
)], where l (a) and u(a) depend on the chosen confidence level 1−a.

The lower and upper limits always satisfy l (a) (m0 )<tmax and u(a) (m0 )>tmax . Since the
density is continuous in both t and m, it follows that l (a) ( . ) and u(a) ( . ) are continuous and
u(a) (0) is some finite value. As m becomes large the distribution of T

z
becomes concentrated

on small values, implying that u(a) (m)�0 as m�2. Hence u(a) ( . ) is bounded, by umax=
umax (a, z, s) say, on [0,2 ).

Now consider the case m<0. To emphasise m being negative, write m=−|m |. As men-
tioned above, the density is proportional to the density having drift parameter |m |. This
implies that the order of inclusion of t’s in the acceptance region is the same as for the
positive case, only now the point {2} is the first outcome to be included in the acceptance
region A

a
(−|m0 | ) for the hypothesis m=−|m0 |, since it has positive point mass, as opposed

to all other values in the state space. Comparing the acceptance region for −|m0 | with
that of |m0 | we note that

P
−|m
0
|
(T
z
µI(a)
|m
0
|
^{+2})=e−2|m

0
|z/s2P

|m
0
|
(T
z
µI(a)
|m
0
|
)+ (1−e−2|m

0
|z/s2 )

=e−2|m
0
|z/s2(1−a)+ (1−e−2|m

0
|z/s2 )

>1−a,

which implies that I(a)
|m
0
|
is too wide. Thus, the acceptance region A

a
(−|m0 | ) consists of an

interval I(a)
−|m
0
|
5I(a)
|m
0
|
together with {2}. In particular, the upper limit of the interval satisfies

u(a) (−|m0 | )∏u(a) ( |m0 | ), so that the upper limit is bounded by the same umax=umax (a, z, s)
as for positive m. Consequently, no parameter value m, positive or negative, has t’s satisfying
umax<t<2 in the acceptance region A

a
(m).

Now suppose that the value T
z
=t is observed. Then the 100(1−a) percent inverted-

likelihood-based confidence set for m is given by

R
a
(t)={m: A

a
(m)+t}. (4·3)

If tµ(umax ,2 ) then the confidence set is empty, that is R
a
(t)=B. The probability of

obtaining an empty confidence set depends on the actual parameter value. The probability
is largest in the case m=0, when there is probability a of obtaining an empty 100(1−a)
percent confidence set.

As a numerical illustration, suppose that s=1 and that the barrier z=1. Then, for a=
0·05, an observed finite hitting time T1 greater than about 250 yields an empty confidence
set for m. In Fig. 5 the 95 percent inverted-likelihood-based confidence set for m is plotted
as a function of the observed hitting time t1 . Note that Fig. 5 is plotted using the scaling
m�m1/4 and t1�t1/4

1
. This scaling was chosen to ensure that certain salient features of the

confidence sets are clearly visible. For observations of t1 less than about 0·04, note that
0·041/4j0·43, there is a single interval containing large positive values of m; the confidence
intervals for very small values of t1 are not shown in Fig. 5 as the corresponding m values
are very large. An intuitive interpretation here is that a short hitting time is only likely
when there is a large positive drift. For t1 between about 0·04 and 0·07, note that
0·071/4j0·51, the confidence sets consist of two intervals, one of which includes m values
around zero, and the other of which contains large positive m values. It is harder to explain
these disjoint intervals intuitively. They arise because of the way that the density of T1
changes as m increases; the right tail of the density becomes thinner as m becomes positive
and increases, with the effect that the width of the acceptance region becomes shorter.
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Fig. 5. Brownian motion example: 95 percent inverted-
likelihood-based confidence sets for the drift parameter
m of a Brownian motion with s=1, based on observing
the hitting time T

z
=t
z

for the barrier z=1. Note that
both axes are scaled to ensure that certain interesting

features of the confidence sets are clearly visible.

For t1 between about 0·07 and 250, note that 2501/4j3·98, a single interval is obtained,
including both positive and negative values. The confidence set is empty for observations
of t1 larger than about 250. Finally, for t1=2, not shown in the figure, the confidence
set is not empty; on the contrary it is mµ(−2, 0).

4·3. Additional remarks

Remark 3: Censored observations. In practice it is of course never possible to observe
T
z
=+2. A more realistic scenario would be to observe T

z
=t if t∏t, or else T

z
>t is

observed, where t is some pre-defined time horizon to which the observer is willing to
wait. This is similar to the case of censored observations in the branching process example,
studied in § 3·3, and, provided t>umax , there exists umax (t)<umax such that observations
tµ(umax (t), t) give rise to an empty confidence set.

Remark 4: Related models. Brownian motion can be thought of as the limit of a
sequence of random walks, so inverted-likelihood-based confidence sets derived from
observing the first time that a random walk reaches a horizontal barrier may also be
empty. Also, certain birth-and-death processes can give empty confidence sets if the process
is started above the horizontal barrier.

5. D

We have given several examples where it is possible to obtain empty confidence sets for
a parameter. The examples share the probabilistic property that the random variable, on
which the analysis is based, is stochastically monotone in the parameter. Furthermore, in
all of the examples the parameter has a threshold value at which a phase transition occurs
in that the probability distribution becomes bimodal as the parameter passes the threshold
value. As a consequence, the confidence sets are empty for observed values that have low
probability regardless of the true underlying parameter.

The examples all have a ‘symmetry’ property concerned with conditioning upon a
certain event. In the Brownian motion example, if m<0, then the distribution of T

z
,

conditioned upon the barrier being hit in finite time, coincides with that of Brownian
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motion with positive drift |m |. For the branching process example, a supercritical branching
process conditioned on extinction is probabilistically indistinguishable from a subcritical
branching process with a suitable offspring distribution (Athreya & Ney, 1972,
Theorem I.12.3). As has already been stated, for large population sizes the initial stages
of an epidemic can be approximated by a branching process; in particular, a supercrit-
ical epidemic that dies out quickly behaves similarly to a subcritical epidemic.

The examples share several other features. For observations resulting in empty confi-
dence sets the maximum likelihood estimate lies close to the threshold value in all
examples. Furthermore, the estimated value of Fisher’s information, obtained by using
the maximum likelihood estimate, is very large for observations with empty confidence
sets. In spite of this, it seems sensible to interpret an empty confidence set by saying that
the model is inappropriate for the data for any choice of parameter value. Also, as men-
tioned in the introduction, there are observations, close to those having empty confidence
sets, that give a narrow confidence interval and have high observed information. Such
narrow confidence intervals are usually interpreted by saying that the parameter can be
estimated accurately. This conclusion is drastically different from nearby observations,
with empty confidence sets, where the result suggests that the model is inappropriate. An
alternative conclusion, given an observation close to one which would yield an empty
confidence set, could therefore be to question the model. This raises an important general
question: how should one relate the possibility for the model to be incorrect with the
possibility that the model is correct and the observation is extreme, for all parameter
choices?

Finally, a Bayesian analysis of the three examples would proceed as follows. For a given
prior density p(h ) of the parameter of interest, the posterior density given a datum
X=x is proportional to p(h )L

x
(h ), where L

x
(h ) denotes the likelihood. Suppose now that

x is such that an empty confidence set is obtained. If p(h ) is sufficiently diffuse, then the
posterior density will be sharply peaked around its modal value, which in turn is close to
the threshold value. Consequently, an equal-tailed credible interval would typically consist
of a short interval containing the modal value, suggesting that there is little uncertainty
about the value of h. This is clearly a very different conclusion from that inferred from an
empty confidence set.
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