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SUMMARY

An estimation of the immunity coverage needed to prevent future outbreaks of an infectious disease
is considered for a community of households. Data on outbreak size in a sample of households from
one epidemic are used to derive maximum likelihood estimates and confidence bounds for parameters of
a stochastic model for disease transmission in a community of households. These parameter estimates
induce estimates and confidence bounds for the basic reproduction number and the critical immunity
coverage, which are the parameters of main interest when aiming at preventing major outbreaks in the
future. The case when individuals are homogeneous, apart from the size of their household, is considered
in detail. The generalization to the case with variable infectivity, susceptibility and/or mixing behaviour is
discussed more briefly. The methods are illustrated with an application to data on influenza in Tecumseh,
Michigan.
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1. INTRODUCTION

The ultimate goal of any vaccination programme is to eliminate the target disease from the community
and to prevent major outbreaks from subsequent importations of the disease. It is known that this is pos-
sible by reaching, and maintaining, a sufficiently high level of immunity in the community. The level of
immunity required for success is called the critical immunity coverage. It depends on properties of the
disease, characteristics of the community and how immunity is spread across the community. Previous
estimates of the critical immunity coverage (see Anderson and May (1991) for a review) assume a pop-
ulation of uniformly mixing individuals and sometimes allow for age-specific transmission rates. Here
we allow the community to consist of households. For many diseases it is important to acknowledge that
human communities are structured into households, because of the greater contact rate between household
members. We also take the extra step of furnishing estimates with confidence bounds. Other papers con-
cerned with immunization policies in a community with households are, for example, Ball et al. (1997)
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Table 1. Frequency of outbreak sizes of influenza in
households of various sizes

Number Number initially susceptible in the household

infected 1 2 3 4 5

0 110 149 72 60 13

1 23 27 23 20 9

2 13 6 16 5

3 7 8 2

4 2 1

5 1

Total 133 189 108 106 31

and Hall and Becker (1996). A recent survey of statistical studies of infectious disease incidence is given
in Becker and Britton (1999).

It is not always the smallest achievable critical immunity coverage that is of interest, because ethics
and practical considerations often impose constraints. For example, some individuals may be opposed
to vaccination, while others will insist on all household members being vaccinated. We therefore also
estimate the critical immunity coverages for certain classes of immunization programmes.

Allowing for households in a community clearly makes it necessary to have data on outbreaks in
households. Such data are not collected routinely. In particular, surveillance data do not contain details on
household size and household outbreak size for registered cases. It is therefore also important to establish
what kind of data are needed to estimate the critical immunity coverage for a community of households.
We consider data comprised of outbreak sizes for a random sample of households. More specifically, our
discussion is motivated by, and illustrated with reference to, the data on outbreaks of influenza in a sample
of households in Tecumseh, Michigan, shown in Table 1. These data, taken from Addy et al. (1991), are
part of a larger study and may not satisfy every assumption we make in our application but they serve well
for both illustrating our method and demonstrating that it is practicable to obtain the requisite data.

The method for obtaining estimates of the critical immunity coverage consists of three steps. First
transmission models need to be used to quantify the critical immunity coverage in terms of parameters of
disease transmission and community structure. Then the various parameters that define the critical immu-
nity coverage need to be estimated. Finally, inferences for the various parameters need to be translated to
inferences about the critical immunity coverage.

Section 2 gives the assumptions made about disease transmission in the community and gives an ex-
pression for the reproduction number for infectives in this community setting. In Section 3 we address the
question: who and how many individuals should be immunized to prevent future outbreaks in the commu-
nity? Three different vaccination strategies are treated: individuals are selected randomly for vaccination,
households are selected randomly for vaccination (with all members of selected households being vacci-
nated) and, finally, the optimal allocation of vaccinees, which aims at reducing the maximum number of
susceptibles residing in a household. For each of the three strategies we quantify the critical immunity
coverage. While we speak of vaccination strategies, it should be remembered that we are actually quanti-
fying the critical immunity coverage. This may differ from the vaccination coverage required to prevent
epidemics, because vaccines are not 100% effective in the field. Here we do not address the question
of what vaccination coverage is required to achieve the desired immunity coverage. For a discussion of
the effect of a variable vaccine response on the vaccination coverage required to prevent epidemics, see
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Becker and Starczak (1998). The estimation of model parameters is considered in Section 4. In Section 5
we apply the methods to the data reported in Table 1.

Having discussed and illustrated the analysis for the case when individuals are homogeneous with
regard to disease transmission, apart from different household sizes, we then turn our attention to het-
erogeneous individuals. In Section 6 we allow individuals to vary in infectivity, susceptibility and/or
mixing rate by introducing different types of individual. In applications, such types might be different age
groups, for example. We discuss how the estimation procedures can be extended, but omit details to avoid
technicalities. A complication in the multi-type setting is that some parameters are not estimatable. As-
sumptions are needed to overcome this identifiability problem. The proposed method is illustrated briefly
with reference to the data of Table 1, when individuals are classified into children and adults.

2. MODEL ASSUMPTIONS AND NOTATION

The choice of assumptions is guided by the model of Ball et al. (1997).

2.1. Disease transmission between and within households

An infective exerts a force of infection β on each susceptible household member for a period I , the
random duration of the infectious period. The durations of the infectious period for different individuals
are assumed to be independent. Each susceptible household member avoids infection from an infected
household member with probability φ(β) = E[exp(−β I )].

Suppose that n, the total number of households, is very large and let ν denote the mean number of
individuals per household. Then the number of individuals in the community is νn. An infective exerts
a force of infection λ/νn on each individual of the community who is not in the same household. Each
susceptible avoids infection by an infective, who is not a member of the same household, with probability
E[exp(−λI/νn)]. As all infections occur from contacts with infectious individuals there have to be some
initial infectives for an epidemic to occur.

To quantify the critical immunity coverage and the likelihood function corresponding to data of the
form shown in Table 1, we need the probability distribution for the eventual size of household outbreaks.
The dependence inherent in the above infection process makes this distribution inaccessible. We therefore
adopt an assumption that reduces the dependence.

2.2. A pragmatic assumption

The probability that a susceptible avoids infection from outside the household, throughout the course
of the epidemic, depends on the number infected in the community, which is random. We reduce the
dependence in the infection process by adopting the assumption, made in Addy et al. (1991), that this
probability is q , the same constant for each susceptible. The consequence of this assumption is that now
all outbreak sizes in households are independent. It is known that this simplifying assumption is effective
at enabling inferences to be made about the within-household transmission rate, in a way that makes
allowance for the possibility of infection from outside the household. However, results established by
Ball et al. (1997) show that in certain circumstances this assumption also enables inferences to be made
about the rate of transmission between households. Specifically, they show that when the community
consists of a large number of households and a large epidemic is initiated by a few infectious individuals,
then the distributions of the final sizes of the two epidemics satisfy the same law of large numbers. This
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holds true if the parameters q and λ of the two models are calibrated by the equation

q = e−λιτ , (1)

where τ is the proportion infected and ι = E[I ], the mean duration of the infectious period. The expres-
sion for q given in (1) has a very natural interpretation. The law of large numbers implies that the number
of individuals eventually infected is approximately νnτ , and the probability of avoiding infection from all
those individuals is E[exp (−λ(I1 + · · · + Iνnτ )/νn)] ≈ exp(−λιτ).

2.3. Final size distribution for household outbreaks

A way of computing the distribution for the final number infected in a household is given by Addy et
al. (1991) under the pragmatic assumption that q is a constant. It is specified by the recursive formula

Ps,a( j) =
(

s

j

)
φ[β(s − j)]a+ j qs− j −

j−1∑
r=0

(
s − r

j − r

)
Ps,a(r)φ[β(s − j)] j−r , j = 0, . . . , s (2)

where Ps,a( j) is the probability that, starting with s susceptible and a newly infected individuals, there
are eventually j further infections. For the application we have in mind, most households will have no
infectives initially, so our interest is primarily in Ps,0( j).

To compute Ps,a( j), all probabilities {Ps,a(r); r ≤ j} have to be computed. This can lead to numerical
difficulties for very large ‘household’ sizes, say >100. For realistic household sizes the recursive formula
produces numerical values quickly. However, in order to make an estimation, one has to maximize these
expressions over some parameter space, and this may cause computational problems even for sizes rele-
vant to households. For example, Addy et al. (1991) report computational difficulties for household sizes
greater than five.

3. QUANTIFYING THE CRITICAL IMMUNITY COVERAGE

The key to specifying the critical immunity coverage is the existence of reproduction numbers, or
epidemic threshold parameters, for large communities. The parameter R0 is said to be a reproduction
number for disease transmission in a community if the probability of a major epidemic is zero if R0 ≤ 1,
and positive if R0 > 1. Various epidemiologically meaningful reproduction numbers can be defined for a
community of households, see Becker and Dietz (1996).

The most commonly used reproduction number relates to branching processes in the following way.
In a large community the initial stages of an epidemic can, for many epidemic models, be approximated
by a branching process. For the case of a community of households this approximation (Ball et al.,
1997) treats households as macro-individuals, and during the initial stages, when most households are
uninfected, infected households infect other households independently of each other. The epidemic thus
behaves approximately like a multi-type branching process where the type is specified by the size of the
household. The event of a major outbreak corresponds to an infinite population in the branching process.
It is well known (e.g. Jagers, 1975) that a branching process has positive probability of becoming infinite
if and only if the largest positive eigenvalue of the matrix of mean off-spring distribution exceeds one. A
natural definition of R0 is thus to define it as the largest eigenvalue of the matrix with elements being the
expected numbers of type-specific households one household of a given type infects (assuming all other
households are uninfected).
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To this end, let

µs =
s−1∑
j=0

( j + 1)Ps−1,1( j), (3)

using the Ps−1,1( j), defined by (2), for the case with q = 1 (i.e. no infection from outside). This makes µs

the expected final number of cases, including the primary case, in a household starting with one primary
case and s − 1 susceptibles, and assuming that there is no external force of infection. On average, each
of these individuals infects λι individuals outside the household. Among those so infected, a proportion
rπr/ν will reside in households having r susceptible individuals, where πr denotes the proportion of
households having r initially susceptible individuals and ν = ∑

r rπr is the average household size. The
matrix of expected number of infected households of various types is thus {µsλιrπr/ν}. Because each
element of the matrix is a product of one factor depending on the row and the other depending on the
column, the largest eigenvalue is simply the sum of the diagonal elements:

R0 = λι

ν

∑
s

sµsπs . (4)

A more detailed derivation of R0 is found in Ball et al. (1997).
The expression (4) is used to specify the critical immunity coverage. Although not essential, we assume

that µs depends on the household size only through s, the number initially susceptible. That is, µs does
not depend on the number of immune household members present, if any. Then the πs are the only terms
in (4) affected by vaccinating individuals. When individuals are vaccinated the mass of the distribution
{πs} is shifted towards smaller values of s, thereby decreasing the value of the reproduction number R0.
The critical immunity coverage is specified by the level of immunity that gives R0 = 1. We illustrate this
with reference to three specific immunization schemes.

When calculating the critical immunity coverage we assume that all immunity is induced by vaccina-
tion. This is appropriate because when we have a vaccination strategy capable of preventing epidemics
then there will be no significant immunity due to disease, and vaccination alone must achieve herd immu-
nity.

3.1. Immunizing individuals at random

Assume first that the vaccine renders all vaccinees immune. Suppose each individual is, indepen-
dently, selected for vaccination with probability v. This means that v is the immunity coverage, when the
community is large. We refer to this as immunization strategy I. With this strategy

πs =
∑
r≥s

hr

(
r

s

)
(1 − v)svr−s,

where {hr } is the distribution of the household size in the community, and the reproduction number, now
viewed as a function of v, becomes:

R(v) = λι

ν

∑
s

sµs

∑
r≥s

hr

(
r

s

)
(1 − v)svr−s . (5)

Note that when v = 0 this reproduction number coincides with the basic reproduction number, i.e. R(0) =
R0. The critical immunity coverage vC is the solution of R(v) = 1 and may be written vC = R−1(1).

Exactly the same equations apply for the alternative scenario in which every individual is vaccinated
and each vaccination, independently, induces immunity with probability v and is a primary vaccine failure
with probability 1 − v.
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3.2. Immunizing households at random

Again assume that the vaccine renders all vaccinees immune. Suppose now that a proportion v of all
households is selected at random, and all individuals of selected households are vaccinated. ‘At random’
means that each household has the same probability v of being selected, not depending on size. This
strategy is denoted H. It is easy to see that the proportion of individuals vaccinated under this strategy is
also v, giving immunity coverage v. However, vaccinees are distributed differently over households when
compared to strategy I.

The effect of strategy H on the number of susceptibles per household is expressed by

πs = (1 − v)hs, s ≥ 1,

since for each household size a proportion v of households now has no susceptibles. The reproduction
number for this strategy has the expression:

R(v) = λι

ν

∑
s

sµs(1 − v)hs = (1 − v)R(0) (6)

which gives the explicit expression
vC = 1 − 1/R(0)

for the critical immunity coverage (remember that vC is the solution to R(v) = 1).
By use of Jensen’s inequality, it can be shown that the critical immunity coverage under strategy H is

generally higher than the coverage under strategy I. Next we look at the optimal strategy, i.e. the strategy
with smallest critical immunity coverage.

3.3. Immunizing optimally selected individuals

Again assume that the vaccine renders all vaccinees immune. The way to choose vaccinees optimally
under the present assumptions is derived by Ball et al. (1997) for certain distributions of the infectious
period, and is conjectured to hold for arbitrary distribution. This strategy, labelled O, aims at reducing
the largest number of susceptibles per household. If, hypothetically, individuals are chosen sequentially
for vaccination, one starts by vaccinating one susceptible individual from each of the households with
the largest number of susceptibles, m, say. The maximum number of susceptibles per household is thus
reduced by one unit. If this is not enough to achieve R0 ≤ 1, one individual from all households with
m − 1 susceptible individuals (including the households selected in the previous step) is selected for
vaccination. This selection procedure continues until the resulting reproduction number does not exceed
one. One obtains a reproduction number exactly equal to one by vaccinating an individual from only a
fraction p of the households at the last step.

Suppose this procedure has been performed so that the maximum number of susceptibles per household
is now k. Then the resulting distribution of susceptibles in households can be written πs = hs , for
s < k − 1, πk−1 = hk−1 + p

∑
r≥k hr and πk = (1 − p)

∑
r≥k hr . The corresponding reproduction

number is

R(v) = λι

ν

[ ∑
s<k−1

sµshs + (k − 1)µk−1

(
hk−1 + p

∑
r≥k

hr

)
+ k(1 − p)µk

∑
r≥k

hr

]
. (7)

The critical immunity coverage is vC = [phk + (p + 1)hk+1 + (p + 2)hk+2 + · · ·]/ν where p and k are
obtained by solving the equation R(v) = 1 for k and then p.
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4. PARAMETER ESTIMATION

For each strategy, a numerical value can be found for vC once we specify values for the various param-
eters contained in the expression R(v) = 1. We are required to specify β, λ, ι and any other parameters
of the distribution for the infectious period, and the distribution of the household size {hr }. The equa-
tion R(v) = 1 does not contain the parameter q, but q plays an essential role in the estimation of other
parameters through (1). We now consider how these parameters can be estimated from data.

The distribution of household size can often be obtained precisely from census data. In any event,
estimation of the hr is a straightforward problem and we simply assume that they are known.

For the estimation of other parameters suppose that we have a sample of households selected randomly
from a community containing a large number of households. For each household in the sample we observe
the eventual number of cases arising during the course of a major epidemic. Feasible estimation from
such data requires a parametric form for the distribution of I , the length of the infectious period, whose
moment generating function has an explicit expression. Data on the size of household outbreaks are not
very informative about parameters of the distribution of I . We therefore recommend that the distribution
chosen for I contains at most two unknown parameters, which we may choose to be ι = E[I ] and σI , the
standard deviation of the infectious period. Furthermore, we may fix ι at some value because the final size
distribution depends only on the product βι, so that ι is not estimatable from such data.

Let ns j denote the number households in the sample having initially s susceptibles of which eventually
j become infected, j = 0, . . . , s. The log-likelihood for such data is

�(β, σI , q) = constant +
∑
j, s

ns j log Ps,0( j). (8)

Here it is assumed that the households in the sample contain no, or very few, initial infectives. This is not
an essential assumption, but we make it because it simplifies the discussion, and in applications it is often
the case.

In principle, maximizing the log-likelihood (8) is straightforward. In practice, this is not always easy
because of the numerically unstable recursive formula (2) for the final size probabilities. For example,
Addy et al. (1991) report numerical problems for household sizes exceeding five. An alternative approach
to maximizing complicated expressions is to use Markov chain Monte Carlo (MCMC) methods. Recently
O’Neill et al. (2000) used this approach on the Tecumseh data of Table 1 and obtained parameter estimates
that coincide with the maximum likelihood estimates obtained by Addy et al. (1991) when the same
models are treated. The MCMC approach seems likely to cope with larger household sizes.

Maximizing the likelihood (8) provides maximum likelihood estimates for β, σI and q. They are
approximately normally distributed and their variance–covariance matrix can be estimated by the inverse
of the observed Fisher-information matrix. We now wish to translate these inferences into inferences
about the critical immunity coverage. For each vaccination strategy, vC has the form R−1(1), where R
depends on β, σI and λι, and also on the strategy. To estimate λι we use (1) with the maximum likelihood
estimate for q obtained from (8). It remains to specify τ , the proportion of individuals eventually infected.
It may be that the eventual proportion of individuals infected in the community is also observed, but we
do not assume this here. Instead, we note that (1) is an asymptotic relationship, so that τ can be written:

τ = ν−1
∑
j, s

jπs Ps,0( j). (9)

By substituting

λι = − log q

τ
, (10)

with τ given by (9), into the expression for R(v) we see that R(v) depends only on the parameters β,
σI and q, for which likelihood inferences are available via (8). By substituting the maximum likelihood
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estimates of β, σI and q into R(v), thus obtaining R̂(v), we can solve for v to obtain an estimate v̂C of
vC = R−1(1).

A standard error for v̂C can be obtained by using the delta-method; see Rao (1973, p 388). First, the
standard error for R̂(̂vC) is obtained by the delta method where R(v) is differentiated with respect to β, σI

and q, and using the observed Fisher-information matrix for these parameters. To get a standard error for
v̂C = R̂−1(1), we apply the delta method again and use the fact that the derivative of an inverse function
is the reciprocal of the derivative of the function itself. More specifically, the standard error is s.e.(̂vC) =
s.e.[R̂(̂vC)]/|R̂′(̂vC)|, where R̂′(̂vC) is the derivative of R(v) with respect to v, evaluated at v = v̂C and
replacing β, σI and λι by their estimates. Using the large sample normality of the estimate we can furnish
the critical immunity coverage with a 95% upper confidence bound given by v̂C + 1.645 s.e.(̂vC).

5. APPLICATION TO THE TECUMSEH INFLUENZA DATA

We now use the data presented in Table 1 to illustrate the estimation. The data are part of a larger
study on respiratory illness; see Monto et al. (1985). They do not correspond in every detail to the format
envisioned for our approach, but the main characteristics are present, so that a meaningful illustration is
possible. The data consist of a 10% cross-sectional sample of households from the community which was
followed prospectively, and each individual in the sample was, among other things, tested for antibodies
before and after an influenza outbreak. At the end of Section 6.3 we return to the same data, only then
admitting some individual heterogeneities.

A gamma distribution is a suitable description for the variation in the infectious period. As mentioned
previously, the mean length ι cannot be separated from β. We fix its value at ι = 4.1 days, this being a
plausible value; see Elveback et al. (1976). It turns out that the likelihood varies little with the remaining
parameter of the gamma distribution, as has been observed by Addy et al. (1991). The explanation for this
is that only households with several infected individuals contain information on the infectious period, and
in this data set only 21 of the 567 households have three or more eventual cases. We proceed as in Addy
et al. (1991) by choosing the shape parameter equal to k = 2, so that the infectious period is modelled
as the sum of two exponential variates, each with mean 2.05. This choice is very close to optimal but, as
mentioned, the log-likelihood is very flat with respect to the parameter k. This distribution is considered
as given, rather than estimated, in what follows. Its moment generating function is therefore completely
specified, with φ(α) = E[exp(−α I )] = 1/(1 + 2.05α)2.

The log-likelihood (8) then depends only on the parameters β and q. Substituting the data from Table 1
(for example, n42 = 16) and maximizing with respect to β and q, using statistical software, gives the
maximum likelihood estimates β̂ = 0.0446 and q̂ = 0.8674. These estimates of β and q enable us to
estimate the µs via (2) and (3), giving µ1 = 1, µ2 = 1.161, µ3 = 1.361, µ4 = 1.612 and µ5 = 1.924.

We substitute these estimates for β and q into the observed Fisher information matrix, and then invert
the matrix to obtain the estimated variance–covariance matrix:

I −1(β̂, q̂) = 10−5
(

9.41 1.20
1.20 5.01

)
.

All estimates agree well with those obtained by Addy et al. (1991).
As mentioned, we would normally assign values to the {hr } from census data. We do not have access

to the appropriate census data for Tecumseh, and use the data in Table 1 to assign values to the {hr } in
this illustration. Taking the initial number of susceptibles to be the household size, we assign the values
h1 = 133/567, h2 = 189/567, h3 = 108/567, h4 = 106/567 and h5 = 31/567, giving the mean
household size ν = 2.49.

It remains to use (10) to estimate λι. This requires an estimate of τ , the eventual proportion of indi-
viduals infected in the community. We can do this by use of expression (9), but a more direct way of
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Table 2. Estimates of the critical immunity coverage vc for
the data in Table 1 under various immunization strategies.
The last two estimates are obtained when individuals have
been categorized into two types, depending their age, and im-
munization consists of selecting households at random. See

Section 6.3 for details

Immunization strategy Parameter estimates

v̂C s.e.(̂vC) 95% upper bound

One-type model

Individuals at random 9.0% 0.6% 10.1%

Households at random 11.9% 0.9% 13.5%

Optimally selected 6.5% 1.2% 8.4%

Two-type model

Assuming λi j = λ j 14.7% 0.8% 16.0%

Assuming λi j = 0, i �= j 14.0% – –

obtaining an estimate is to use 250/1414, the eventual proportion of individuals infected in our sample of
households. Then (10) gives the estimate λ̂ι = 0.196.

We are now ready to estimate the critical immunity coverage for each vaccination strategy. The results
are summarized in Table 2.

Immunizing individuals at random

By substituting the various estimates into the equation R(v) = 1, with R given by (5), and solving
for v we obtain the estimate v̂C = 0.0901 for the critical immunity coverage under strategy I. The
delta method gives the standard error s.e.(̂vC) = 0.0064. A ‘safe’ coverage for strategy I is therefore
v̂C + 1.645 s.e.(̂vC) = 0.1010. This means that if 10.1% of the community is immune we can be 95%
confident that the community is not at risk of a major influenza outbreak.

Immunizing households at random

The same approach, but this time using the expression (6) for R, gives the estimate v̂C = 0.1191, with
standard error s.e.(̂vC) = 0.0095. This gives a ‘safe’ coverage for strategy H of 13.5%, which is a little
higher than that obtained for strategy I, as expected.

Immunizing optimally selected individuals

Using the expression (7) for R, we estimate the optimal critical immunity coverage to be v̂C = 0.0635,
with standard error s.e.(̂vC) = 0.0123, implying that a ‘safe’ coverage is 8.4%. This is achieved by
immunizing no one in households of size three or smaller, and vaccinating individuals in households of
size four and five, so that 43% of these household have three susceptible members and 57% have four
susceptibles.
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6. INDIVIDUALS OF DIFFERENT TYPE

We now briefly discuss how to extend the above methods to the situation where individuals may vary
in susceptibility, infectivity and/or mixing patterns, by partitioning the individuals of the community into
different types. In applications there is often a need to allow for age-specific differences, for example, but
types might also be specified by gender, disease history, etc.

6.1. Multi-type model

We consider a natural extension of the model of Ball et al. (1997), presented in Section 2, in which
parameters and variables of that section are furnished with a subscript to indicate type. Suppose there are
k distinguishable types of individual, labelled 1, . . . , k. It is convenient to introduce vector notation. For
example, let si denote the number of susceptibles of type i initially in a household. Then s = (s1, . . . , sk)

indicates the numbers of individuals of the various types that are initially susceptible in the household, and
we refer to households of type s. Transmission rates need two subscripts. An infective of type i exerts a
force of infection βi j on each susceptible household member of type j and also exerts a force of infection
on each external susceptible of type j of λi j/νn, where (as before) νn is the total size of the community.

We proceed, as in Section 2.2, by making the pragmatic assumption that susceptible individuals of type
i avoid infection from outside the household with probability qi , which is constant, but now type-specific.
This assumption makes the outcomes in households independent and provides a manageable likelihood
function for inferences. Asymptotically, as the number of households of each size increases and a major
epidemic is initiated by a small number of infectious individuals, we conjecture that the model with this
simplifying assumption produces the same outbreak-size distribution for households as the multi-type
version of the model of Ball et al. (1997), provided the parameters are calibrated by the equations

q j = exp

(
−

∑
i

αiτi ιiλi j

)
, j = 1, . . . , k, (11)

the analogue of equation (1). Here αi denotes the proportion of type-i individuals in the community.
With this pragmatic assumption, the model reduces to that considered by Addy et al. (1991), who give

the analogue of equation (2) as

Ps,a(j) =
(

s
j

) ∏
i

φi

(∑
k

(sk − jk)βik

) ji +ai

qs−j

−
∑
r<j

(
s − r
j − r

)
Ps,a(r)

∏
i

φi

(∑
k

(sk − jk)βik

) ji −ri

, 0 ≤ j ≤ s,

where we have used the compact notation(
a
b

)
=

∏
i

(
ai

bi

)
, ab =

∏
i

ai
bi and

∑
a<b

=
∑

a1≤b1

· · ·
∑

ak≤bk

with strict inequality in at least one index.

6.2. Critical immunity coverage

We now quantify the immunity requirement for preventing major epidemics (more details in a related
set-up are in Becker and Hall, 1996). Let e j denote the k-vector whose j th element is unity, while all
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other elements are zero. We define

µs j =
∑

i

(i + e j )Ps−e j ,e j (i),

which is the multi-type analogue of µs of equation (3). That is, µs j denotes the vector giving the mean
final size of each type in a household with one initial infective of type j and s − e j initial susceptibles of
the various types, assuming there is no infection force acting from outside the household (i.e. computed
with q = 1). Let µs j (m) denote the mth component of µs j and πs the proportion of all households having
s initially susceptibles. Then

κri,s j =
k∑

m=1

µri (m)
ιmλmj

ν
πss j (12)

gives the mean number of households of type s with a primary type- j infective, to get infected by one r
household whose primary infective was of type i , neglecting all other external forces of infection. Equa-
tion (12) defines a mean matrix (κri,s j ) for the multi-type setting and, by approximating the multi-type
epidemic model by a multi-type branching process, one can show that the probability of a major outbreak
is 0 if and only if R0, the largest eigenvalue to this matrix, is ≤ 1.

As the quantification of the critical immunity coverage is closely tied to R0, our task is very much
facilitated by having an explicit expression for R0. This makes the assumption that λi j is separable, in the
form λi j = λiλ

′
j , very attractive. This separability is also attractive for interpreting parameters, because

λi becomes a relative infectivity for type-i individuals while λ′
j is a relative susceptibility for type- j

individuals. The expression on the right-hand side of (12) then has the form

[factor depending on row of (κri,s j )] × [factor depending on column of (κri,s j )],
and the largest eigenvalue of such a matrix is given by the sum of the diagonal terms. Therefore, the
critical immunity coverage vC is specified by the solution of

R0 =
∑

s

∑
i

κsi,si =
∑

s

∑
i

∑
m

µsi (m)
ιmλmλ′

i

ν
πssi = 1, (13)

where only πs and si depend on the way immunity is distributed in the community. In particular, when a
fraction v of households are selected for vaccination under strategy H we require

R(v) = (1 − v)
∑

s

∑
i

∑
m

µsi (m)
ιmλmλ′

i

ν
hssi = 1,

giving
vC = 1 − 1/R(0).

The class of immunization strategies of interest is richer when individuals are of different types, as one
may now choose to vaccinate only certain types of individual. The optimal immunization strategy has no
simple explicit algorithm in the multi-type case. There are several competing factors determining which
choice is optimal. As before one should aim to immunize individuals from larger households, but one
should also select individuals who are effective spreaders of the disease.

6.3. Estimation

The log-likelihood function under the pragmatic assumption is a straightforward multi-type version
of (8). This enables an estimation of the βi j , q and parameters of the distribution of the infectious period,
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as described by Addy et al. (1991). We set the values of the ιi to one, because they cannot be estimated
separately from data of the assumed form. The values of the hr and αi are assumed to be available from
census data. It remains to estimate the λi j . The estimate q̂, together with equation (11), gives estimating
equations for the λi j . However, there are only k equations for the k2 parameters, implying an identifiability
problem that seems to require a reduction in the number of parameters. Here we consider two ways of
expressing the λi j in terms of fewer parameters that provide consistent estimates.

The first reduction assumes that for between-household transmission only susceptibility varies between
individuals, i.e. we assume λi j = λ′

j . This is a particular case of the situation described above, where
R0 has the explicit expression (13) with each λm = 1. A consistent estimator for λ′

j ι is then obtained
from (11) and given by − log(̂q j )/τ̃ , where τ̃ is the overall proportion infected.

The second reduction is λi j = 0 if i �= j , which implies that individuals mix only with individuals of
the same type outside their own household. While this assumption is never entirely true, it can be a useful
approximation for childhood diseases when types consist of age groups. It then follows from equation (11)
that ι jλ j j is estimated consistently by − log(̂q j )/α j τ̃ j . Under this assumption the elements in the mean

matrix become κri,s j = µri ( j)
ι j λ j j

ν
πss j . An estimate R̂(0) is obtained by numerically deriving the largest

eigenvalue of the matrix (κri,s j ), in which parameters are replaced by their estimates.
Parameter estimation requires more detailed data when heterogeneity between individuals is acknowl-

edged. For the data of Table 1, Addy et al. (1991, Table 4) classify individuals into two types, namely
children (ages 0–17 years) or adults. Accordingly, each household has a type determined by the number
of children and the number of adults it contains. For each type of household, the frequency distribution
of reported cases is given, although not in full detail in order to save space (the complete data has been
obtained from Ira M. Longini). Using these data with the assumption that λi j = λ′

j we obtain the estimate

R̂(0) = 1.173, giving an estimated critical immunity coverage of v̂C = 0.147 under strategy H. The stan-
dard error for the estimate is s.e.(v̂C) which has been derived using similar methods as those described
for the case with homogeneous individuals. On the other hand, if we assume that children only have
contact with children (and adults only with adults) outside their own household, the resulting estimates
are R̂(0) = 1.163 and v̂C = 0.140, under strategy H (a standard error for v̂C was not derived due to the
complicated structure of R(0)). Note that both of these estimates are larger than 0.119, the estimate of
vC obtained under strategy H when we assumed individuals are homogeneous. It is not known if, under
the present set-up, it is a general relation that neglecting heterogeneities produces underestimates of the
critical immunity coverage. Such a relation holds when considering several other types of communities
(Becker and Utev, 1998; Britton, 1998, e.g.).

A goodness-of-fit test for the Tecumseh data, to see if the model assuming homogeneous individuals
explains the data adequately, was performed in Addy et al. (1991). The likelihood ratio statistic gives
χ2 = 21.81 when the heterogeneous model is compared with the homogeneous model. There are four
degrees of freedom because there are six estimatable parameters when there are two types, compared with
two parameters in the case of only one type. The conclusion is hence that individual heterogeneity is
significant and should be accounted for, which means that the estimates of vC of the present section are
more in agreement with data.

7. DISCUSSION

Our illustration with the Tecumseh data assumes that the community distribution of household sizes is
the same as the distribution of susceptibles over households in the sample of data. Because the sample data
contained some, but not many, initially immune individuals the community is expected to have slightly
larger households, which affects R0 and vC. In practice, the distribution of those initially susceptible in
households and the household sizes should be distinguished, and in case they are estimated, one should
adjust standard errors to accommodate the extra uncertainty that this induces.
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Methods of statistical analysis provide guidance on the requisite data. The present paper shows that
quite informative inferences can be made about the critical immunity coverage from prospective studies of
infectious diseases in a sample of households. The number of households in the Tecumseh study is large,
but feasible in practice. The requisite number of households in the sample, and their preferred sizes, is
likely to depend on how infectious the disease is, both within and between households. Data on who is
and who is not initially susceptible to the disease are crucial.

Some assumptions simplified the discussion but are not needed to make the methods valid. For exam-
ple, it is not necessary to assume that an individual exerts a constant force of infection over the duration
of the infectious period. The recursive formula (2) actually holds when infectivity varies randomly, sub-
sequent to infection, as long as the infectivity processes for different individuals are independent and
identically distributed. The only change is that φ is defined differently. In particular, a latent period with
arbitrary distribution has no effect on the distribution of the final size.
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