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A Markovian susceptible - infectious - removed (SIR) epidemic model is considered in a com-
munity partitioned into households. A vaccination strategy, which is implemented during the early
stages of the disease following the detection of infected individuals is proposed. In this strategy, the
detection occurs while an individual is infectious and other susceptible household members are
vaccinated without further delay. Expressions are derived for the influence on the reproduction
numbers of this vaccination strategy for equal and unequal household sizes. We fit previously esti-
mated parameters from influenza and use household distributions for Sweden and Tanzania census
data. The results show that the reproduction number is much higher in Tanzania (6 compared with 2)
due to larger households, and that infected individuals have to be detected (and household members
vaccinated) after on average 5 days in Sweden and after 3.3 days in Tanzania, a much smaller
difference.
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1 Introduction

When modelling infectious diseases, it is important to include structures which describe the way in
which individuals interact in the community. To gain a deeper understanding of the real-world
epidemic process, attempts have been made to partition the population (assumed to be large) into
small groups, for example households, workplaces, schools, age groups and so on (e.g. see Longini
and Koopman, 1982; Addy, Longini, and Haber, 1991; Ball, Mollison, and Scalia-Tomba, 1997;
Andersson and Britton, 2000). The social structure we are considering is typically a small unit
(a household), and our model has two levels of mixing: locally within the households and globally in
the population at large according to two rates. That is, each person in the community has both
probabilities of making contacts with other individuals in the population as a whole (global con-
tacts) and within its own household (local contacts). Consequently, the spread of an infectious
disease is greatly facilitated between such households, which have a high level of mixing among
individuals belonging to same household. For example, the rate of transmission for influenza A is
much higher within a household than between households (see e.g. Addy et al., 1991). These results
imply that control strategies such as vaccination can be directed toward reducing the spread of the
disease within households.

Much work has been done on modelling epidemics and control in a community of households.
For example, Becker and Dietz (1995) studied the critical immunity level for preventing epidemics in
a community of households consisting of different individuals. Ball et al. (1997) studied the spread
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of infections in a single type household population, and discussed the effects of different vaccination
strategies. For other important contributions to the theory and practical application of epidemics
and control strategies in a community of households, see also Longini and Koopman (1982), Becker
and Hall (1996), Islam, O’Shaughnessy, and Smith (1996), Becker and Starczak (1997), Andersson
and Britton (1998), Ball and Lyne (2002), Ball and Neal (2002), Lipsitch et al. (2003), Ferguson
et al. (2005), Wu et al. (2006), Fraser (2007).

In the present paper, we consider a Markovian epidemic model of susceptible - infectious -
removed (SIR) in a closed population partitioned into households. Initially all individuals are
assumed to be susceptible except one randomly selected individual who is infected from outside the
community. During the infectious period, an infected individual may infect other susceptible
individuals within the household and in the community as a whole. For this household epidemic, we
investigate the effects of a vaccination strategy, which is implemented during the early stages of
epidemic. The vaccination strategy assumes that infectious individuals are detected after some delay
time, and once detected, other susceptible household members are vaccinated. The term ‘‘vacci-
nation’’ could also mean isolation or some other type of immunization. We assume that whenever
an infectious individual is detected, the spreading of the disease from that household is stopped
(either by isolation, quarantine or vaccination). Ball, O’Neill, and Pike (2007) study a related
vaccination strategy, but then assuming that the detection time is equal to removal time, with the
motivation that removal corresponds to the appearance of symptoms which in turn implies
detection. In the present work, a person may as well be detected before the end of the infectious
period.

For this closed community of households and epidemic model, we derive the reproduction
number of a household epidemic without vaccination by computing the probabilities of final size
outbreak within a household. By the reproduction we will, in this paper, mean the number of
households infected by a (typical) infected person in a totally susceptible population. We also derive
the reproduction number for the case of equal and unequal household sizes when the vaccination
strategy is in place by analyzing the expected force of infection of a household outbreak, and this is
done by studying a weighted time to extinction of a two-dimensional Markov process.

The rest of the paper is organized as follows: In Section 2, we define the household epidemic
model, and then derive the reproduction number for equal and unequal household sizes. Section 3
describes the vaccination model during the early stages of epidemic and the reproduction number is
derived. Numerical illustrations are given in Section 4, and some concluding remarks are presented
in Section 5.

2 A Household Epidemic Model

The model we now describe is a stochastic SIR epidemic for a closed single type population
partitioned into households. That is, at any time, individuals are in one of the three states: sus-
ceptible, infectious or removed. So, a susceptible individual can be infected (and become infectious)
upon contact with an infectious person. An infected individual remains infectious for an
exponentially distributed time, and is then removed meaning recovered and immune to the disease.

2.1 Definition of the model

Initially there is one newly infected individual who is chosen completely at random among all
the individuals in the community. The remaining individuals are assumed to be susceptible to the
disease. During the infectious period, the individual has global contacts with other individuals in the
community according to a homogeneous Poisson process with rate lc, each contact being
independent and chosen completely at random from the whole community. As a result, the global
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contact rate with a given individual is lc/N, where N is the number of individuals in the community.
Also an infectious individual makes ‘‘local’’ contacts independently with each household member at
rate lh. If the (globally or locally) contacted person is still susceptible, she will get infected and
immediately become infectious to other individuals, (so there is no latent period). When the in-
fectious period ends, the individual recovers and becomes immune (a state called removed) and
plays no further role in the epidemic process. Infectious periods of different individuals are assumed
to be independent and identically distributed according to a finite random variable I, which is
exponentially distributed with mean 1/g. The epidemic terminates as soon as there are no more
infectious individuals in the community, because all individuals will then be either susceptible or
removed and immune to the disease. We assume that all Poisson processes describing infectious
contacts and random variables describing infectious periods are mutually independent.

2.2 The reproduction number for equal households sizes

Suppose that the number of households is large and for now that all households have the same
size k. Then, during the early stages of an epidemic initiated by a single infectious individual, most
households are still susceptible to the disease, implying that the probability of making a global
contact with an individual living in a previously infected household is small. This implies that the
initial growth of the epidemic can be approximated by a branching process. The approximation can
be made mathematically fully rigorous by considering a sequence of epidemics and using coupling
arguments as in Ball (1996), but we leave out the details. The initial infectious person contacts
(globally) on average lc/g individuals who belong to distinct households, (recall that E(I) 5 1/g is
the mean of infectious period). Furthermore, all these new infected individuals make global contacts
spreading the disease to new households. Note that, each individual contacted in this way will cause
an outbreak in her own household, so it is of interest to determine the expected size of such an
outbreak. The expected number of individuals infected in that household, including the initial
infectious person, denoted mðkÞ, is given by

mðkÞ ¼ 1þ
Xk�1
j¼0

jP
ð1;k�1Þ
j

where P
ð1;k�1Þ
j is the probability that j out of k�1 susceptible get infected, starting with one in-

fectious individual. That is, mðkÞ denotes the expected number of infected individuals in a household
of size k, starting with one initially infected person and k�1 susceptible individuals, neglecting
infections from outside.

The final size probabilities P
ð1;k�1Þ
j for 0 � j � k� 1 can be determined recursively by using the

following formula (see Andersson and Britton, 2000, Section 2.4 for details):

P
ð1;k�1Þ
j ¼

k� 1
j

� �
½fðlhðk� 1� jÞÞ�jþ1 �

Xj�1
i¼0

k� 1� i
j � i

� �
½fðlhðk� 1� jÞÞ�j�iP

ð1;k�1Þ
i ð1Þ

where fðlhÞ ¼ Eðe�lhI Þ is the Laplace transform of the infectious period I . Because I�Exp(g), i.e. I
is exponentially distributed with mean 1/g, Eq. (1) becomes

P
ð1;k�1Þ
j ¼

k� 1
j

� �
g

ðk� 1� jÞlh þ g

� �jþ1
�
Xj�1
i¼0

k� 1� i
j � i

� �
g

ðk� 1� iÞlh þ g

� �j�i
P
ð1;k�1Þ
i :

ð2Þ
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Note that we must first sequentially determine P
ð1;k�1Þ
0 up to P

ð1;k�1Þ
j�1 in order to compute P

ð1;k�1Þ
j .

This recursive process makes the formula in (2) practically useful for moderately small j. As an
illustration, we solve Eq. (2) for a household of size k5 3 including one initially infected person and
k�15 2 susceptible individuals. The final size probabilities are then given by

fP
ð1;2Þ
0 ;Pð1;2Þ1 ;Pð1;2Þ2 g ¼

g
gþ 2lh

;
2lhg2

ðgþ lhÞ
2
ðgþ 2lhÞ

;
2lhðgþ lhÞ

2
� 2lhg2

ðgþ lhÞ
2
ðgþ 2lhÞ

� �
:

During the early stages of the disease, all of these infected individuals in the household outbreak
have global contacts with other individuals in the community, introducing the disease in other
households and so on, which exhibits the property of a branching process. Hence, the basic re-
production number is given by

R0 ¼
lc
g
mðkÞ ¼

lc
g

1þ
Xk�1
j¼0

jP
ð1;k�1Þ
j

" #
: ð3Þ

The mean value mðkÞ (when only local infectious contacts count) has an amplification effect on R0,
which calls for control strategies to be directed toward reducing mðkÞ (see Ball et al., 1997). Of course,
if we ignore household formations (k5 1) in the community, we arrive at the usual expression of the
basic reproduction number lcE(I) from the global contacts, because mð1Þ ¼ 1.

2.3 The reproduction number for different households sizes

In real-life, households sizes vary. Several studies have been done on modelling epidemics spreading
in populations partitioned into households of varying sizes, the aim being to investigate possible
control measures against epidemic outbreaks (see, e.g. Becker and Dietz, 1995; Becker and Starczak,
1997; Ball et al., 1997). In this section, we derive the reproduction number for the Markovian SIR
epidemic in a closed, large community partitioned into households of different sizes. Consider a
community of size N as before. Let kmax be the size of the largest household in the community.
Suppose for k ¼ 1; 2; . . . ; kmax, that the community contains hk households of size k, implying that
the total number of householdsH say, is given byH ¼

Pkmax

k¼1 hk. Further, the number of individuals
in the community can now be written as N ¼

Pkmax

k¼1 khk.
Because the number of households H is assumed to be large, the probability of a global contact

with an individual living in a previously infected household is small during the early stages of an
epidemic. Thus, the initial behavior of the epidemic can be approximated by a branching process,
where each global contact is with an individual in an otherwise susceptible household. In that
respect, we consider a single household epidemic initiated by one externally infected household
member. This individual will start a realization of a single household epidemic (without external
infection), because we assume that all global contacts are with completely susceptible households.
Recall that the mean number of infected individuals (including the initially infectious individual) in
a household of size k is mðkÞ, and that each infectious individual in this household makes global
contacts at rate lc during the infectious period with mean E(I)5 1/g. The basic reproduction
number R0 (derivation appears in Ball et al., 1997) for households of varying sizes can be calculated
as follows. For k ¼ 1; 2; . . . ; kmax, let pk ¼ hk=H be the proportion of households of size k and
denote ~pk ¼ khk=N ¼ kpk=

Pkmax

j¼1 jpj, as the probability that a randomly selected individual resides
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in a household of size k. If the globally infected person belongs to a household of size k, the mean
outbreak equals lcEðIÞmðkÞ. Thus,

R0 ¼ lcEðIÞ
Xkmax

k¼1

~pkmðkÞ ¼
lc
g

Xkmax

k¼1

~pk 1þ
Xk�1
j¼0

jP
ð1;k�1Þ
j

" #
:

3 Modelling Vaccination with Delay

In this section, we consider vaccination as a control strategy, the aim being to reduce further the
spread of the disease. In any vaccination strategy, the main question is, who and how many
individuals should be vaccinated to prevent epidemic outbreaks. Furthermore, given a particular
vaccination scheme, one may wish to investigate the conditions in which large epidemic outbreaks
can occur. In the household setting, we look into how detection of an infectious individual during
the early stages of the epidemic and then vaccinating other household members, can reduce the
spread of the disease. In practice, it is not easy to detect a person immediately when she/he gets
infected. The time from the point at which a person is infected (and hence infectious) to the point at
which she gets detected and other household members become vaccinated is here referred to as the
delay time, and will be denoted S. We assume that a perfect vaccine is available and the strategy is
that, each infected individual is detected while infectious at rate y. As a consequence, the detection
time S is exponentially distributed with mean 1/y (S�Exp(y)). Once this infectious person is de-
tected, all other household members are vaccinated at the same time. We assume that susceptibles
who are vaccinated have full protection from further infection and that vaccination has no effect on
already infected (infectious or removed) individuals. We also assume that if the detection of an
infectious individual occurs, then further spreading in the household is stopped (which can be
achieved either by isolation of the household, vaccination, quarantine, restricted movement of the
household members or some other method). From now on we use vaccination but the meaning
could vary.

3.1 Force of infection and reproduction number for equal households sizes

Because the detected individual is unable to make global contacts, then its infectious period consists
of two parts: the active infectious period, a length of time during which a person remains infectious
before detection, and inactive infectious period, the length of time the person is still infectious after
detection while other household members are vaccinated. We now consider a single household
epidemic, and only the active infectious period is of interest. The sum of active infectious periods of
all individuals who are infected in that household forms the active force of infection of the epidemic,
(sometimes referred to as active severity as in Ball et al., 2007, Section 2.2). Let T be the sum of
active infectious periods of all individuals who get infected in that household (i.e. the active force of
infection). Because infectious individuals make global contacts at rate lc during their active periods,
the total number of global contacts emanating from that single household conditional on T is also a
Poisson random variable with mean lcT. The mean number of individuals who get infected in the
community by a single household epidemic (i.e. the reproduction number) is hence given by

Ry ¼ lcEðTÞ

where E(T) is the expected active force of infection (severity) from a household. Now, the task that
remains is to compute E(T), because the reproduction number Ry depends on this mean.

412 N. Shaban et al.: Household epidemics

r 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



By assumption, the infectious period I and delay time S are independent and exponentially
distributed with means 1/g and 1/y, respectively, and the active infectious period is the smallest of
the two. At any instant during an isolated household epidemic, three events compete: either an
infectious individual infects another person in the household, or an infectious individual gets de-
tected and all other household members are vaccinated, or an infectious person recovers from the
disease and becomes removed. The competing events and their respective transition rates are given
in Table 1. The transition from (s,i) to (s,0) after detection implies that those who are still sus-
ceptible cannot get infected, thus sort of misusing the letter ‘‘s’’.

Consider a household of size k, which initially consists of i infectious individuals and s5 k�i
susceptible individuals. Because the transitions between states (infection, detection or removal)
follow a Markov process, we then look into different routes for which an outbreak can occur, and
for each such route, we compute the expected active force of infection. Figure 1 shows such possible
routes of the disease dynamics for the households of sizes k5 2 and k5 3, each time starting with
one infectious individual (that is (s,i)5 (1,1) and (2,1), respectively). Let ms;i ¼ EðT jXð0Þ ¼
s; Yð0Þ ¼ iÞ be the expected active force of infection conditioned on the numbers of susceptible
individuals X(0)5 s and the infectious individuals Y(0)5 i at the initial stage (time t5 0) of the
epidemic. For ms;i; i ¼ 1; 2; . . . ; sþ i � k, and using possible jumps of the states of the Markov
process, we are now in a position to compute the expected active force of infection for a given
household (see Fig. 1).

Table 1 Transitions and rates of competing events in a household epidemic.

Event Transition Rates

Infection ðs; iÞ ! ðs� 1; i þ 1Þ lhis
Detection ðs; iÞ ! ðs; 0Þ yi
Removal ðs; iÞ ! ðs; i � 1Þ gi

Figure 1 Schematic graph of
the dynamics in our approx-
imating SIR Markov jump
process for households of size
k5 2 and k5 3, where each
vertex represents (number of
susceptible individuals, number
of infectious individuals).
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For instance, consider (s,i)5 (0,1) (that is a household consisting of one single infected in-
dividual), then it follows immediately from Fig. 1 that m0;1 ¼ 1=gþ y, because the person may only
be removed or detected. Similarly, for (s,i)5 (1,1) (a household of size 2 including an initially
infectious individual), the expected force of infection becomes

m1;1 ¼
1

lh þ gþ y
þ

lh
lh þ gþ y

m0;2 ð4Þ

and

m0;2 ¼
1

gþ y
þ

g
gþ y

m0;1

where m0;1 is as given in Section 3.1. Thus, inserting m0;2 in Eq. (4), m1;1 then equals

m1;1 ¼
1

lh þ gþ y
þ

lh
lh þ gþ y

�
2gþ y

ðgþ yÞ2
:

In general, given that initially the household consists of s susceptible individuals and i infectious
individuals, the expected active force of infection is given by

ms;i ¼ i �
1

islh þ igþ iy
þ

islh
islh þ igþ iy

ms�1;iþ1 þ
ig

islh þ igþ iy
ms;i�1: ð5Þ

(Note that i cancels out in all terms). We describe briefly the right hand terms of Eq. (5). The first
ratio is the mean time to make a jump: the rate of any jump is equal to its denominator. During the
time before the jump, i individuals contribute to the active force of infectious period T. The quantity
which is multiplied by ms�1;iþ1 in the middle term is the probability to jump to state ðs� 1; i þ 1Þ,
whereas the last term contains ms;i�1 and the probability to jump to state (s,i�1). The third type of
jump (detection) gives no further contribution to T. We see that Eq. (5) is a recursive formula,
implying that in order to compute ms;i, one must first compute ms�1;iþ1 and ms;i�1. Note that, for
s � 0, ms;0 ¼ 0 (i.e. absorbing states in Markov process) if the process jumps to (s,0) because there is
no more infectious force. Here, we consider a household of size k including one initially infectious
person and k�1 susceptible individuals (i.e. (s,i)5 (k�1,1)). Thus, Eq. (5) becomes

mk�1;1 ¼
1

ðk� 1Þlh þ gþ y
þ

ðk� 1Þlh
ðk� 1Þlh þ gþ y

mk�2;2 þ
g

ðk� 1Þlh þ gþ y
mk�1;0: ð6Þ

But mk�1;0 ¼ 0, implying that (6) reduces to

mk�1;1 ¼
1

ðk� 1Þlh þ gþ y
þ

ðk� 1Þlh
ðk� 1Þlh þ gþ y

mk�2;2:

showing that we need to compute mk�2;2 and mk�1;0 in order to calculate mk�1;1 (and this also done
using Eq. (5)). Now that we have derived the expected force of infection mk�1;1 ¼ EðT jk� 1; 1Þ, the
reproduction number Ry is hence given by

Ry ¼ lcEðTÞ ¼ lcmk�1;1 ð7Þ

which can be solved numerically in order to determine the effect of the detection parameter y, on the
dynamics of the disease.
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3.2 Reproduction number for households of different sizes

In this section, we investigate the performance of the vaccination strategy in a large community of
households of varying sizes, with the motivation that we now know the form of the reproduction
number (see Eq. (7)) for equal size households. Recall that ~pk is the probability that a randomly
chosen individual resides in a household of size k (Section 2.3), and mk�1;1 is the expected infection
force from a household epidemic initiated by one infectious individual in such a household. If the
globally contacted individual belongs to a household of size k, then the mean outbreak is equal to
lcmk�1;1. Hence, the reproduction number is given by

Ry ¼
Xkmax

k¼1

lc ~pkmk�1;1 ð8Þ

which is used in Section 4 to give a numerical example to assess the effectiveness of the vaccination
strategy.

4 Application to Potential Influenza Outbreaks in Sweden and Tanzania

We now illustrate numerically the performance of the vaccination strategy for pandemic influenza
using Eq. (8). That is, given disease and community parameter values, we illustrate how the re-
production number Ry is affected by the detection rate y. As model parameters, we use estimates
from previous investigations for disease transmission within and between households in a popu-
lation infected by influenza. Several studies have estimated from data the parameters required to
compute the household reproduction number for influenza (e.g. Longini et al., 1982; Cauchemez
et al., 2004; Ferguson et al., 2006).

We use parameter estimates which are derived from Fraser (2007) for the French influenza. Because
our model is somewhat different from the model of Fraser, the results should be interpreted with
caution. The model assumes that all individuals are equally susceptible, and infectious in case of
getting infected. This is a simplification but still reasonable for modelling pandemic influenza, because
there is then no or little pre-immunity. In Fraser’s study, the mean infectious period of an individual is
2.85 days, implying that the removal rate is g5 1/2.855 0.351. The mean household size in the
community of interest is 2:38. The estimate of the within household transmission parameter from
Fraser’s study is 1.35/k, where k is the household size. This parameter is an accumulated infection
force over the whole infectious period, and it is similar to our lhEðIÞ (though not exactly). This means
that lh ¼ 1:35=kEðIÞ. Then we replace k by the mean household size (2.38), yielding lh5 0.199,
because our model assumes that all individuals have the same local contact rate irrespective of
household size. Fraser’s estimate of the mean number of people an individual infects outside the
household (i.e. the out of household reproduction number) is Rc5 1.21. This is equivalent to
Rc ¼ lcEðIÞ, implying that lc ¼ Rc=EðIÞ ¼ 0:425. These parameter values, 1=g ¼ 2:85, lh ¼ 0:199
and lc ¼ 0:425, will be used in Figure 2, Section 4 when estimating Ry as a function of y for two
different communities. We also make a sensitivity analysis to see how sensitive Ry is to uncertainty in
model parameters. Unfortunately, the parameter estimates in Fraser (2007) are not equipped with
standard errors, and to derive such standard errors is a research topic in its own right. Instead our
sensitivity analysis is performed by modifying each parameter (lh, lc and 1=g) by 10% up and down
from the estimates mentioned in Section 4, and for each combination we compute R0 for the com-
munity of interest.

We compare the effectiveness of the vaccination strategy by using household size distributions
from Sweden (taken from Statistical Yearbook of Sweden 2007, Table 78, page 99), and Tanzania
(taken from the Analytical Report of the National Bureau of Statistics 2000/2001, Chapter 10, page
123). The data of household size distributions for Sweden and Tanzania are shown in Table 2.
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The Swedish household size is truncated at size 5 and that from Tanzania is truncated at size 10, and
we simplify by assuming that all households of sizes 5 or greater and 10 or greater have sizes exactly
5 and 10, respectively. This implies that 2.64% of Swedish households have size 5, and 8.9% of
Tanzania households have size 10. The average household sizes for Sweden and Tanzania are 3.2
and 5.7, respectively.

Now inserting the previously obtained values of lh, lc and g, together with the two countries’
household distributions, and using Eq. (3), gives the R0 estimates 1.95 for Sweden and 5.92 for
Tanzania. In Table 3, we have plotted the corresponding R0 estimates when varying the three model
parameters by a factor 10% as described in Section 4.

From the table, we clearly see that uncertainty in the three parameters clearly induce uncertainty
in R0. The smallest R0 value is for the case where the two infectious forces lh and lc, and the
mean infectious period 1/g, all are 10% smaller than the estimates based on Fraser (2007). For this
scenario, the R0 values are 1.45 and 4.32 for Sweden and Tanzania, respectively. The largest R0

values are for the case where the three parameters all are 10% larger than the points estimates
based on Fraser (2007). For this case, the corresponding R0 values are 2.42 and 7.50, respectively.
To conclude, varying all parameter estimates 710% make the R0 values lie in the
intervals (1.45,2.42) and (4.32,7.50) for Sweden and Tanzania, respectively. We have not taken
uncertainty in the household size distribution into account. The reason why not is that we believe
this uncertainty is of smaller magnitude than uncertainty in model parameters for the disease
dynamics.

Table 2 Household size distributions for Tanzania and Sweden.

No. of persons in household Tanzania Sweden

1 0.064 0.5830
2 0.079 0.2703
3 0.103 0.0592
4 0.129 0.0611
5 0.148 0.0264
6 0.130
7 0.109
8 0.089
9 0.060

10 0.089

Table 3 R0 values for different parameter combinations.

lh lc 1/g R0 (Sweden) R0 (Tanzania)

0.179 0.383 2.565 1.85 5.82
0.179 0.383 3.135 1.45 4.32
0.179 0.467 2.565 2.31 7.12
0.179 0.467 3.135 1.89 5.43
0.219 0.383 2.565 2.15 6.21
0.219 0.383 3.135 1.53 4.84
0.219 0.467 2.565 2.42 7.50
0.219 0.467 3.135 1.95 5.91
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We now study effects of vaccination with delay, and in particular, study how the reproduction
number Ry depends on the detection intensity y (recall that higher ymeans that infectious people are
detected quicker with the effect that friends are vaccinated). In Fig. 2 we have plotted Ry as a
function of y, where we use the same parameter estimates as before, for Sweden and Tanzania. The
solid lines correspond to the point estimates of the parameters (and R0) and the dashed upper and
lower curves are computed for the upper and lower bounds discussed in the previous paragraph
(note for instance that the lower and upper curves for Sweden start in R0 5 1.45 and R0 5 2.42,
respectively).

The point estimate of the critical detection rate yc say (for which Ry ¼ 1), for Sweden is
approximately 0.20 and for Tanzania is about 0.30 (see Fig. 2). This means that it is necessary to
detect individuals after 1/0.205 5 days (on average) to surely prevent a major outbreak in Sweden.
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Figure 2 The reproduction number Ry as a func-
tion of the detection rate y for household distribu-
tions from Sweden (above) and Tanzania (below).
Solid lines give point estimates and dashed lines
sensitivity bounds (see text for further comments).
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The corresponding number for Tanzania having larger households (assuming the same transmission
parameters) is 1=0:30 � 3:3 days. We note that the difference in R0 between Tanzania and Sweden is
quite large but the difference in the critical detection rates between the two countries is moderate
(approximately 1.7 days). Using the sensitivity bounds for the curve Ry also gives bounds on yc:
where the lower and upper curves intersect y5 1. The result is that a sensitivity interval for yc equals
(0.16,0.28) for Sweden and (0.26,0.38) for Tanzania, corresponding to (3.6,6.2) days for Sweden and
(2.6,3.8) days for Tanzania.

5 Discussion

We have studied the effects of early stage vaccination for an SIR epidemic among a community of
households. Vaccination of household members takes place after the detection of an infectious
individual in the household. The reproduction numbers for this vaccination strategy were derived
for the case of equal and unequal household sizes. The usefulness of the strategy was assessed
numerically by using some estimated transmission parameters (local and global contact rates) from
the study of influenza data (Fraser, 2007).

The models we developed here are not fully realistic, but we believe that they can capture some
relevant properties also valid in more complex household models. For instance, to make the model
more realistic, the household can be extended to incorporate individuals of different types (Becker
and Dietz, 1995; Becker and Hall, 1996), assuming that disease transmission depends on the type of
individuals. For example, it would be interesting to investigate the performance of the vaccination
strategy in the community of households made up of individuals of varying infectivity and sus-
ceptibility to the disease. Other interesting extensions would be to consider a general distribution for
the infectious period and delay time, and to derive the probability of a major outbreak and the
outbreak size in case of such an outbreak.

The most obvious continuation of the present paper is however to include a latent period on top
of allowing different distributions for infectious periods and delay times. Our model assumes that
the ‘‘per individual’’ transmission rate within households is independent of household sizes. It
would also be important to consider the effects of the dependence of ‘‘per person’’ transmission rate
on the household size (see e.g. Fraser, 2007).
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