GEOMETRIC FUNCTION THEORY GRADUATE COURSE, SPRING 2020

ALAN SOLA AND FREDRIK VIKLUND

HOMEWORK ASSIGNMENTS

Problems are taken from J.B. Garnett and D.E. Marshall, "Harmonic measure," Cambridge University Press, unless otherwise specified.

Problem set 1

Chapter	Problems	Due date
1	1; 2; 5ab; 8	18 September 2020

Problem set 2

Chapter	Problems	Due date
2	3abc; 5abc; 11ab	16 October 2020

Problem set 3

I I COI CIII SCC C			
Chapter	Problems	Due date	
3	1i-1iv; 2; 7a-c	13 November 2020	

Problem set 4

Chapter	Problems	Due date
4	1; 5a,b; 6a; problem below	7 December 2020

Problem: Let \mathbb{D} be the unit disc and K a connected set such that the component of 0 of $\mathbb{D} \setminus K$ is simply connected. Suppose $\operatorname{dist}(0,K) = r \in (0,1)$. Show that there is a universal constant c such that

$$\omega(0,\partial \mathbb{D}\setminus K,\mathbb{D}\setminus K)\leq cr^{1/2}.$$

DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY, 106 91 STOCKHOLM, SWEDEN.

Email address: sola@math.su.se

DEPARTMENT OF MATHEMATICS, KTH, 100 44 STOCKHOLM, SWEDEN.

Email address: frejo@math.kth.se