Quasiconformal maps in the plane, Problem set II

Fredrik Viklund

October 2023

1 Problems

1. Prove Weyl's lemma: If U is an open set and $f: U \rightarrow \mathbb{C}$ is a distribution, then f is analytic in U if and only if $\partial_{\bar{z}} f=0$ in the distributional sense.
2. In this problem you will construct a homeomorphism f such that $\partial_{\bar{z}} f=0$ a.e., yet f is not (quasi-)conformal.
(a) Let $g(x): \mathbb{R} \rightarrow \mathbb{R}$ be the "devil's staircase" aka Cantor function on $[0,1]$ and set $g=0$ for $x<0$ and $g=1$ for $x>1$. (That is, if $C \subset[0,1]$ is the standard Cantor $1 / 3$-set, then for $x \in C$ define $g(x)=\sum_{n=1}^{\infty} a_{n} / 2^{n}$ if $x=\sum_{n=1}^{\infty} 2 a_{n} / 3^{n}$ for $a_{n} \in\{0,1\}$ and if and $x \in[0,1] \backslash C$ we define $g(x)=\sup _{y \leq x: y \in C} g(y)$. There are other constructions that you may look up. This function is continuous, but not absolutely continuous.)
(b) Show that $g^{\prime}(x)=0$ on $\mathbb{R} \backslash C$. Conclude that $g^{\prime}(x)=0$ a.e.
(c) Define a function $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=z+i g(x),(z=x+i y)$.
(d) Show that f is a homeomorphism which is differentiable except on the set $C \times i \mathbb{R}$, that is area-a.e. in \mathbb{C}. Conclude that $\partial_{\bar{z}} f=0$ a.e. in \mathbb{C}.
(e) Show that f is not quasiconformal. What conclusion can you draw about the distributional derivatives of f ?
3. Let $\left(\mu_{n}\right)_{n=1}^{\infty}, \mu$ be Beltrami coefficients such that $\mu_{n} \rightarrow \mu$ a.e. Suppose further that for all $n,\|\mu\|_{\infty},\left\|\mu_{n}\right\|_{\infty} \leq \kappa<1$ and that there is some $R<\infty$ so that the supports of $\mu, \mu_{n}, n \geq 1$, are contained in $B(0, R)$. Let f_{n}, f be the corresponding normal (in the sense of Ahlfors p55) solutions to the Beltrami equation. Prove that (a) there exists $p>2$ such that $\left\|\partial_{z} f_{n}-\partial_{z} f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$ and (b) $f_{n} \rightarrow f$ as $n \rightarrow \infty$ uniformly on compact sets.
4. Optional, but a good exercise: derive the versions of Green's formula in complex coordinates that was stated in Lecture 4:

$$
\int_{\partial D} f d z=2 i \int_{D} \partial_{\bar{z}} f d^{2} z
$$

and

$$
\int_{\partial D} f d \bar{z}=-2 i \int_{D} \partial_{z} f d^{2} z
$$

(You may assume D is a smooth Jordan domain, f is smooth in a neighborhood of D.) Deduce the generalized Cauchy formula for $f \in C_{0}^{\infty}(\mathbb{C})$.

