Quasiconformal maps in the plane, Problem set II

Fredrik Viklund

October 2023

1 Problems

- 1. Prove Weyl's lemma: If U is an open set and $f: U \to \mathbb{C}$ is a distribution, then f is analytic in U if and only if $\partial_{\overline{z}} f = 0$ in the distributional sense.
- 2. In this problem you will construct a homeomorphism f such that $\partial_{\bar{z}} f = 0$ a.e., yet f is not (quasi-)conformal.
 - (a) Let $g(x) : \mathbb{R} \to \mathbb{R}$ be the "devil's staircase" aka Cantor function on [0,1] and set g = 0 for x < 0 and g = 1 for x > 1. (That is, if $C \subset [0,1]$ is the standard Cantor 1/3-set, then for $x \in C$ define $g(x) = \sum_{n=1}^{\infty} a_n/2^n$ if $x = \sum_{n=1}^{\infty} 2a_n/3^n$ for $a_n \in \{0,1\}$ and if and $x \in [0,1] \setminus C$ we define $g(x) = \sup_{y \le x: y \in C} g(y)$. There are other constructions that you may look up. This function is continuous, but not absolutely continuous.)
 - (b) Show that g'(x) = 0 on $\mathbb{R} \setminus C$. Conclude that g'(x) = 0 a.e.
 - (c) Define a function $f : \mathbb{C} \to \mathbb{C}$ by f(z) = z + ig(x), (z = x + iy).
 - (d) Show that f is a homeomorphism which is differentiable except on the set $C \times i\mathbb{R}$, that is area-a.e. in \mathbb{C} . Conclude that $\partial_{\bar{z}}f = 0$ a.e. in \mathbb{C} .
 - (e) Show that f is not quasiconformal. What conclusion can you draw about the distributional derivatives of f?
- 3. Let $(\mu_n)_{n=1}^{\infty}, \mu$ be Beltrami coefficients such that $\mu_n \to \mu$ a.e. Suppose further that for all $n, \|\mu\|_{\infty}, \|\mu_n\|_{\infty} \leq \kappa < 1$ and that there is some $R < \infty$ so that the supports of $\mu, \mu_n, n \geq 1$, are contained in B(0, R). Let f_n, f be the corresponding normal (in the sense of Ahlfors p55) solutions to the Beltrami equation. Prove that (a) there exists p > 2 such that $\|\partial_z f_n - \partial_z f\|_p \to 0$ as $n \to \infty$ and (b) $f_n \to f$ as $n \to \infty$ uniformly on compact sets.
- 4. Optional, but a good exercise: derive the versions of Green's formula in complex coordinates that was stated in Lecture 4:

$$\int_{\partial D} f dz = 2i \int_{D} \partial_{\bar{z}} f d^2 z$$

$$\int_{\partial D} f d\bar{z} = -2i \int_D \partial_z f d^2 z$$

(You may assume D is a smooth Jordan domain, f is smooth in a neighborhood of D.) Deduce the generalized Cauchy formula for $f \in C_0^{\infty}(\mathbb{C})$.

 $\quad \text{and} \quad$