HOMEWORK SET 1 DUE DATE: OCTOBER 11TH 2023

ALAN SOLA AND FREDRIK VIKLUND

Problem 1. For $(\alpha, \beta) \in \mathbb{R}^{2}$, set

$$
f_{\alpha, \beta}(z)=z^{\alpha} \bar{z}^{\beta} .
$$

Are there any choices of (α, β) (other than $(1,0)$) for which $f_{\alpha, \beta}$ is a quasiconformal map of the complex plane?

Problem 2. Prove that the definition of module of a quadrilateral is a conformally invariant quantity. In other words, show that if $f: \Omega_{1} \rightarrow \Omega_{2}$ is a conformal map and $Q\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \subset$ Ω_{1} is a quadrilateral, then $M\left(Q\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right)=M\left(f(Q)\left(f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right)\right.$.

Problem 3. For $0<r<R$, let

$$
A(r, R)=\{z \in \mathbb{C}: r<|z|<R\} \subset \mathbb{C}
$$

be an annulus. Compute the extremal length of the family Γ that consists of smooth arcs that join the circles $\{|z|=r\}$ and $\{|z|=R\}$.

Problem 4. Prove that the standard planar von Koch snowflake based on an equilateral triangle is a quasicircle, in the sense that it satisfies the Ahlfors condition.

Department of Mathematics, Stockholm University.
Email address: sola@math.su.se

Department of Mathematics, KTH
Email address: frejo@kth.se

