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Introduction

These are notes for a summer school taught in June 2022 at Stockholm University. It was a two-
week school for high school students in their penultimate year, and meant to give an impression
of what research in mathematics is like. The notes are meant to give an accessible introduction
to the congruent number problem and several areas of university-level maths. A student learning
about these topics for the first time should probably try to focus on one specific topic and try
to get familiar with this, rather than try to understand everything.

The schedule of the summer school was as follows. In the first week, I taught the material from
these notes, with the time divided roughly equally between lessons and exercise sessions. The
second week was dedicated to projects of the students’ choosing, either in groups or individually,
concluding with a presentation by each group.

I am sharing these notes in the hope that other teachers will find it inspiring or useful for their
own teaching, but perhaps they will also be useful for beginning mathematicians learning about
one or more of the topics covered.
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1. Project description

This chapter can be seen as an introduction to the summer school. I will sketch an idea of
the kind of maths we will be working with, and introduce a particular problem (the congruent
number problem) that could be the subject of your project. On the other hand, if you feel like
this kind of problem isn’t very interesting, or if there is another mathematical problem that
fascinates you, I encourage you to explore that in your project instead. Finally, you don’t need
to understand everything in this project description - but the hope is that you will understand
it after the two weeks are over. Have fun!

1.1 Pythagorean triples

Let’s start off with something familiar. You know from school that a right-angled triangle sat-
isfies Pythagoras’s theorem: if the side lengths are a,b and ¢, with ¢ being the length of the
hypotenuse, then a? + b = ¢2.

This is a very nice equation. In particular, what’s nice about it is that all the coeflicients are
integers. This means that we can look at the equation

X2 4+v?%2=22

and ask what solutions (X,Y, Z) exist, not only when X,Y and Z are any positive real numbers
(that’s not so interesting), but also in the particular case when X,Y and Z are integers. If
we have such an integer solution where all of the numbers are positive, we say (X,Y,7) is a
Pythagorean triple.

Number theorists are often interested in equations of the above form, and they might ask the
following questions:

e Do any Pythagorean triples exist?
e If so, how many? Are there infinitely many?
e Even if there are infinitely many, can we find a formula or algorithm to describe them all?

You probably know some Pythagorean triples: for example, (3,4,5) is a solution, as is (5,12, 13).
So the first question has a positive answer. In fact, it turns out that all of these questions have
a positive answer - and we will see how to get to the solution at a later point in the summer school.

For some reason, it tends to be the case that many easily formulated questions in number theory
are extremely difficult to answer. Sometimes mathematicians simply don’t know how to answer
them, and sometimes it has even been proved that no answer exists! (Google “Hilbert’s tenth
problem” if you're interested.) For example, if you change the above equation to

Xn +Y7L — Z’n7

where now n is a positive integer which is at least 3, you can ask the same questions. Pierre
de Fermat conjectured around 1637 that this equation actually never has any positive integer
solutions. Since then, mathematicians have been trying to prove it - and for centuries, nobody
knew how. In 1994, Andrew Wiles finally completed his proof of Fermat’s conjecture (better
known as Fermat’s Last Theorem), using incredibly complicated and deep mathematics. As of
today, there are many number-theoretic problems which are similarly easy to state, but which
are still wide open.



1.2 The congruent number problem

Let’s move on to a related problem: the congruent number problem. We’'ll begin by defining
what a congruent number is.

Definition 1.2.1. A positive integer n is said to be a congruent number if it can be obtained
as the area of a right-angled triangle with rational side lenghts.

A rational number is nothing else than a fraction, i.e. a number of the form £ for integers p
and ¢, with ¢ # 0. So compared to the Pythagorean setting, we have made a step: whereas first
we considered only triangles with integer side lengths, we now allow them to be rational. The
congruent number problem can now be stated as follows:

Which positive integers are congruent numbers?

In other words, if I give you a number n, say 41, I want you to be able to tell me whether or not
that number can be obtained as the area of a triangle with rational side lengths. If you can do
this for any n, you have solved the congruent number problem.

When you think about it, this really seems like a hard problem. Of course, you can come up with
some congruent numbers: for example, for each Pythagorean triple, you get that the area of the
corresponding triangle is a congruent number. The triple (3,4,5) gives that n = % -3-4=061s
a congruent number. But what about numbers for which you can’t easily find such a triangle?
You can’t just try every possible triangle, because there are infinitely many rational numbers.
Can you still decide whether or not such a triangle exists?

The congruent number problem is actually unsolved at the moment. There is a conjectural solu-
tion - but it depends on one of the Millenium Prize Problems, namely the Birch and Swinnerton-
Dyer conjecture. If you prove this conjecture, you win a million dollars, and you also confirm
that the congruent number problem has a nice solution.

Let’s try to attack the congruent number problem a little. We can rewrite the definition as
follows: n is a congruent number if and only if there exist rational numbers a, b and ¢ such that
the following hold:
a’ + b =% (1.1)
a-b
5
Given such a triple (a, b, ¢) of rational numbers, we can transform it into something else, namely
a triple (s,t,u) with the following properties:

n =

(1.2)

s2 +n=t% (1.3)
2 +n=u’ (1.4)

Conversely, given such a triple (s,¢,u), there is a triple (a, b, ¢) which exhibits n as a congruent
number. Let’s prove this.



Proof. Suppose we have a triple (a, b, ¢) which exhibits n as a congruent number. Define

1
s:zi\a—b\;
b
=5
S(atD)
u:=—(a .
2
Then we get
1 ab  a?+b* 2 c\?2
2 2 2
b2 — 2ab) + & :7:(,) — 2,
sS4+ n= 4( + a)+2 1 1 5
and
Pen="q+2 =

4 2 4

We also claimed that we could go in the other dlrectlon So let (s,t,u) be three positve rational
numbers such that s +n =t and t?> + n = u?. Define

A ab a2+b2+2ab a+b (1a+b> 2
2
(

a:=u-—Ss;
b:=u+s;
c:=2t.

Then we get

a?+ b0 =(u—8)2+ (u+s)?=2w?+s%) =2t> +n+ 1> —n)? = 2(2%) = 41> = ¢,

and 11 1 1
§ab= i(u—s)(u—ks) = §(u2 —s?) = 5 -2n =n.
So (a,b,c) exhibits n as a congruent number. O

It’s not immediately clear that the description in terms of s,¢ and u is easier to work with than
the original setting, but at least we’ve reformulated the problem. Sometimes this makes it easier
to work with: for example, you may have more intuition about triples of squares which differ
by n than about triangles with rational side-lengths. But there is another reformulation of the
problem which is very powerful.

If (a, b, c) exhibits n as a congruent number, then define

n(a+c)
b )

2n2(a + c)

yi=

Then one can show in a similar way to the proof above that triples (a,b,c) are in one-to-one
correspondence with pairs (z,y), where  and y are rational numbers with y # 0, satisfying

Y =a® —n’z.

This is a very special equation: it describes an elliptic curve. Here is a picture of the elliptic
curve 2 = 23 — 9z in the zy-plane:
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Note that the red line consists of all pairs of real numbers (z,y) which satisfy the equation
y? = 2% — n?z. If one of these points has rational coordinates and y # 0, then n is a congruent
number. If no such point exists, n is not a congruent number. It turns out that this is equivalent
to a question about the rank of such elliptic curves: if the rank is zero, no such point exists, and
if the rank is at least 1, such a point does exist. However, determining the rank of an elliptic
curve is a hard problem! On the other hand, there are some tools to study this, and so we can

make progress on the congruent number problem.

Elliptic curves are very rich number-theoretic objects, and in the summer school we will try to
understand why and what this means. Because elliptic curves have been so well-studied, they
give us ways to attack the congruent number problem, and it is possible to explore these in your
project. Here are some examples of (difficult) questions you could try to answer:

e Does there exist a non-congruent number? Do there exist infinitely many?
e Can you show that a particular number, say the number 1, is not congruent?
e What proportion of all numbers is congruent?

e Can you come up with a sufficient condition for a number to be congruent?



2. Set theory

Sets are among the most basic objects mathematicians work with. More fundamentally, set
theory is often used as the foundation of mathematics: everything is a set, and there are certain
rules (the ZFC axioms) for working with them, from which all other mathematics is built up.
For this reason, it is important to know how to work with sets: they will inevitably come up
when you read mathematics, or try to do mathematics yourself.

2.1 Sets

Definition 2.1.1. A set is a collection of elements, denoted inside curly brackets.

For instance, the set
S ={1,55,book}

is a set consisting of the three elements 1,55 and book.

There is a special set called the empty set:

0:=1{ ).

(The notation “:=" means “is defined to be”.) It is a set without elements, and it comes up in
mathematics quite often.

We use the notation @ € S to say that an element a belongs to the set S. For example,
4 € {1,2,3,4,5}. Because the empty set has no elements, the statement a € () is always a con-
tradiction, i.e. a false statement. Similarly, we write a ¢ S to mean that a is not an element of S.

Here are some more examples of sets.

Examples 2.1.2.
1. The natural numbers:
Ny :=4{0,1,2,3,...}

This is a set with infinitely many elements. We could also write it as follows:
No = {z | « is a non-negative integer},

although this feels a little bit less rigorous.! The symbol “|” is to be read as “such that”, i.e. Ny
is the set of all elements = such that x is a non-negative integer.
2. The integers:

Z:={.,-3,-2,-1,0,1,2,3,...}.

This is once again an infinite set of numbers, but in contrast to the natural numbers, it also
contains all negative integers.

Having defined the integers, we can define the natural numbers in a more mathematical way:

No={ne€Z|n2>0}

1Speaking of rigour, we will not worry too much about the definition of numbers in this summer school.



3. The rational numbers:

@::{%|a,bez,b7&o}.

This is the set of all fractions. Technically this definition is not completely correct, because many
expressions ¢ will be identified. In fact, § = ¢ if and only if ad = bc. This is not clear from the
definition of Q given above, but once again, I will rely on your knowledge and intuition about
numbers in order not to overcomplicate notation.
4. The real numbers:

R:={z]| —oo <z < o0}

This set contains the rational numbers, but is strictly larger: it also contains numbers such as
v/2 and 7 which cannot be written as fractions. (Can you prove that v/2 is not a fraction? What
about 77)
5. The complex numbers:

C:={a+bi|abecRi*=—1}.

We won’t talk much about the complex numbers in this summer school, but they are fundamental
to many areas of maths and science, so it’s a good idea to learn about them.

6. Elements of sets don’t need to be numbers. For instance, the set {Stockholm University, KTH}
is a perfectly fine set with two elements.

7. We can also have sets of sets, for example {(}} is a set with one element. However, there is no
set of all sets; this is known as Russell’s paradox. Can you explain why the set of all sets can’t
possibly exist?

There is a notion of containment of sets: for example, the set {1, 3,10} is contained in the set Nj.
We write this as {1,3,10} C Ng or {1,3,10} C Ny. The sign C means the two sets are possibly
equal, whereas C means that the first set is a strict subset of the second set. Let’s make this
into a formal definition:

Definition 2.1.3. Let S be a set. A subset of S is a set A such that a € A = a € S. (The
symbol “ = ” means “implies”.) In other words, it is a set A all of whose elements also belong
to S.

It is important to distinguish between containment (C) and membership (€). The former is
about sets, the latter about elements of sets. For example, {1} C R, but {1} ¢ R; instead, we
have 1 € R.

Note that we have inclusions N CZ C Q C R c C.

Before moving on to operations on sets, we discuss one more property of sets, which is the size
of a set. The mathematical term for this is cardinality.

Definition 2.1.4. Let S be a set. The number of elements of S is called the cardinality of .S,
denoted either |S| or #S. This is either a natural number or infinity.

There are many different kinds of infinity when talking about the cardinality of sets. The smallest
infinity is |Np|, which we call countably infinite. There are also bigger sets, such as R, which
are uncountably infinite. We will not go into detail about this, but we will briefly touch upon it
again when we discuss functions.



2.2 Operations on sets
We will now discuss ways to create new sets out of old ones. There are many ways to do this.
Definition 2.2.1. Let A and B be sets. The product of A and B is defined to be

Ax B:={(a,b) | a € A,bec B}.
The elements (a, b) are called pairs or tuples.
Example 2.2.2. Consider the product of R with itself:

R? ;=R x R = {(x,y) | =,y are real numbers}

This can be pictured as the xy-plane.
Definition 2.2.3. Let S be any set. Define the power set of S to be

P(S):={T | T is a subset of S}.
Example 2.2.4. If S = {0,1}, the power set is

P(S) = {0,{0},{1},{0, 1}}.
Definition 2.2.5. Let A and B be sets. We define the union of A and B as
AUB={z |z € Aorzc B},

and the intersection of A and B as

ANB={x |z € Aand x € B}.

Example 2.2.6.
1. Let A={0,1,2,3} and B ={1,3,5}. Then

AUB=1{0,1,2,3,5}, ANB={1,3)}.
2. Let A = {even integers} and B = {odd integers}. Then
AUB =17, ANB=0.

2.3  Functions

Perhaps the most important way set theory is used in mathematics is for defining functions
between sets. In high school, you spend a lot of time studying functions from R to R, but not
much attention is usually devoted to what a function really is. Set theory makes this precise.
First, here is an informal definition of a function f: S — T, where S and T are sets: it is a rule
which assigns to each element s € S an element f(s) € T. This is often a good way to think
about functions, but it is not very precise: what do we mean by “a rule”? This is why we have
the following definition.

Definition 2.3.1. A function f : S — T is a subset I'y C S x T such that for each s € S, there
is a unique t € T such that (s,t) € I'y. Writet = f(s) or f: s = tif t € T is the unique element
such that (s,t) € T'y.



The set I'y is also called the graph of the function f. According to our definition, a function and
its graph are actually the same thing. Note that this notion generalizes the graph of a function
from R to R: for example, the graph of the function f(z) = 2 is the set of all (z,y) € R? such
that y = 22, which can be drawn as a parabola in the zy-plane.

Examples 2.3.2.

1. S = {*} (a one-element set) and T' = Ny. A function S — T is a rule assigning an element
t € Ny to the element * € S. So f(x) = t. In other words, defining a function f : S — T is
equivalent to choosing a natural number .

We can also see f as T'y = {(*,b)} C {*} x Ny. Note that the set of functions from {*} to Ny is
{{(+,b)} | b e No}.

2. 8§ ={0,1} and T = Ny. Then a function f : S — T is equivalent to choosing a pair of
natural numbers (tg,?1): indeed, any function sends 0 to some ty and 1 to some ;. The graph
is Ff = {(07t0), (1,t1)} CSxT= {O, 1} x Np.

3. S=T =R. A function f : § — T assigns to every real number s another real number
t. For example f(s) = s or f(s) = s®. These can be visualised by drawing the graph 'y =
{(z, f(z)) | z € R} CR x R =: R

4. For any set S, there is the identity function idg : S — S which sends s +— s. Its graph is

Tias = {(s,8) | s€ S} CSxS8S.
We have names for certain special kinds of functions.
Definition 2.3.3. Let f : S — T be a function.
1. We say f is injective if for all t € T, there exists at most one s € S such that f(s) =t.
2. We say f is surjective if for all t € T, there exists at least one s € S such that f(s) = t.

3. We say f is bijective if it is both injective and surjective. If such a bijective function
f S = T exists, we also say S and T are bijective.

There are functions which are neither injective nor surjective. Injective functions are also called
embeddings; the reason is that if f : S — T is injective, one may view S as a subset of T" through
the function f. That is, the subset {f(s) | s € S} C T is a set which is bijective with S, and
two bijective sets can for many purposes be treated in the same way: as long as one doesn’t care
about the specific elements of the sets, bijective sets have the same properties. To illustrate this,
we will prove the following result.

Theorem 2.3.4. Let f: S — T be a bijection, with S and T finite sets. Then |S| = |T).
Proof. We prove the theorem in two steps.

Step 1. Suppose f: S — T is injective. Then |S| < |T7|.

Proof of Step 1. If f is injective, then for every t € T either f=1(t) = 0 or f~%(t) = {s} for a

unique s € S. (Here f=1(t) := {s € S| f(s) =t} is the pre-image of t.) Thus |f~1(¢)| is either
0 or 1 for any ¢t € T. In particular, |f~1(¢)| < 1.

Note also that
s=Ur'e.
teT



Putting this together, we get

S| =

Ur'e

teT

A0S S )

teT teT

Here the second equality follows because the intersection f=1(t) N f=(¢') = 0 for t # t'. Thus,
Step 1 is proven.

Step 2. Suppose f : S — T is surjective. Then |S| > |T|.

Proof of Step 2. We will construct an injective function g : T' — S; then Step 1 will give us the
required inequality.

Because f is surjective, we know that for any ¢ € T, there exists some s € S such that f(s) = t.
Define a function g : T — S by letting g(t) = s for some s such that f(s) = ¢ (there may be
multiple s € S satisfying this criterion, but we just pick one of them). This function ¢ is injective.
Indeed, if g(t) = g(¥') = s, then t = f(s) = t/. This is equivalent to saying that g is injective (see
Exercise 6 on the problem sheet). Thus by Step 1, we have |T| < |S].

Combining Step 1 and Step 2, we see that if f :.S — T is bijective, then |S| < |T| < |S]. Since
|S| = |S], the inequalities must in fact be equalities, so |S| = |T|. O

Bijective functions are also sometimes called invertible functions. We will first define composition
of functions, and afterwards prove Theorem 2.3.6 justifying this name.

Definition 2.3.5. Let f: S — T and g : T'— U be functions. Define the composition of f and
g to be the function

gof:8—U
s — g(f(s)).

Visually, the composition looks as follows:

S f T g U
\/
gof

Theorem 2.3.6. Let f: S — T be a bijective function. Then there exists g : T'— S such that
go f=1idg and fog =1idr. (In other words, g(f(s)) = s for all s € S and f(g(¢)) =t for all
teT.)

Proof. We construct the function g : T'— S in the same way as in Step 2 of the proof of the pre-
vious theorem. What we need to show is that, if f is bijective, then g(f(s)) = s and f(g(¢)) = t.
The fact that f(g(t)) =t is how we constructed g. We still need to show that g(f(s)) = s.

Note that f(g(f(s)) = f(s), by setting ¢ = f(s) in the equality f(g(t)) = t. But f is injective.
Hence g(f(s)) = s. This is what we wanted to show. O

Remark 2.3.7. If f: S — T is bijective, then the function g : T'— S from the above theorem
is also denoted by f~!. One can always define f~1(t), for t € T, as the set {s € S | f(s) = t},
but only when f is bijective will this set always contain one element, and thus only when f is
bijective does f~! define a function T — S.

10



In view of the above theorem, one can philosophically move between bijective sets without losing
information, through the invertible functions f and g. So it’s reasonable to compare sizes of sets
by looking at functions between them: if there is a bijection, the sets have the same size. This is
true for finite sets by Theorem 2.3.4, and if we extend this notion to infinite sets, we can compare
the sizes of different infinite sets.

It turns out that not all infinite sets are in bijection with each other. This means that there are
different kinds of infinity: some are bigger than others. The smallest kind of infinity is called
countably infinite, which is the cardinality of Ny. Many infinite sets are countable: for example,
Z is countable, because there is a bijection Ny — Z, sending

0—0, 1+—1, 2+— -1, 3+—2, 4+— -2, etc.

Can you think of an infinite set which is not countably infinite? Can you prove that there is no
bijection between this set and N7

11



2.4 Exercises

Exercise 1

Two sets are equal if they contain the same elements. For example, Ny ={n € Z | n > 0}.
1. Prove that if SC T and T C S, then S =1T.

2. Prove that {1,1} = {1}. In general, repetition of elements does not change the set.

Exercise 2

Let S and T be finite sets of cardinality n, resp. m.
1. What is the cardinality of S x 17
2. What is the cardinality of P(S) (the power set of S)?

3. Can you say anything about the cardinality of SNT and SUT?

Exercise 3

Write down a function which is
1. injective but not surjective;
2. surjective but not injective;
3. bijective, but not the identity function;

4. neither injective nor surjective.

Exercise 4

Let S be a set with 5 elements and 7" be a set with 7 elements. How many functions f: S — T
are there? How many of these are injective? How many are surjective? How many are bijective?

Exercise 5

The set R? can be seen geometrically as the xy-plane. Subsets X of R? are functions if (by
definition) for any x € R, there exists a unique y € R such that (z,y) € X.

Is there a geometric way of seeing whether a subset X of R? is (the graph of) a function?

Exercise 6

Let f: S — T be a function. Prove that the following are logically equivalent:
1. f is injective.

2. Forall s,s" € S, if f(s) = f(s') then s = ¢'.

12



Exercise 7
Let f: S — T and g: T — U be functions. Prove the following assertions.
1. If f and ¢ are both injective, then g o f is injective.
2. If f and g are both surjective, then g o f is surjective.
3. If go f is injective, then f is injective.
4. If g o f is surjective, then g is surjective.
Moreover, give a concrete example where g o f is bijective but g is not injective and f is not

surjective.

Exercise 8

Prove that for any n € Z~, the following sets are bijective:

b
{(a7bvc) € Q3>0 | (l2—|—b2 = 02 and % —TL}
and ,
((a,y) € Q2 | ¥ = 2 — n%a}.
Exercise 9
Prove the following statements about f: .5 — T

1. f is injective <= for any set U and for any two functions g,¢' : U — S such that
fog=/fog, wehave g=g.

2. f is surjective <= for any set U and for any two functions ¢g,¢’ : T — U such that
gof=g of,wehaveg=g"

13



3. Group Theory

Groups are fundamental objects in mathematics. They form the basis of many other construc-
tions, and they are also used in physics, chemistry, and biology. Group theory is part of the area
of abstract algebra, in which we study sets endowed with additional structure. Understanding
groups allows one to dive deeper into this area and learn about rings, fields, modules, and other
algebraic structures. In these notes, we will simply focus on getting a basic understanding of
what a group is.

To motivate the definition of groups, we need to understand what is meant by “endowing a set
with additional structure”. A set is, by definition, nothing more than a collection of elements.
But sometimes we have an idea of what a set looks like: for instance, R? can be visualised as
the zy-plane. In our minds, the elements (0,0) and (0,1) are closer together than the elements
(0,0) and (5,5), but set-theoretically there is no interplay between any of these elements. What
we can do is endow the set R? with a certain “distance function” d : R? x R? — R, where
d(p1,p2) gives the distance between p; and py. (Can you write down an explicit formula for this
distance function in terms of the coordinates of p; and p?)

This distance function formalizes our intuition about R? as a space, rather than a set, and when
one wants to study R? as a space, it is convenient to study the pair (R?,d) — i.e. to always see
R? not just as a set, but as a set endowed with the additional structure given by the function d.

This is perhaps still a bit vague, but the idea is that sets themselves don’t contain much inform-
ation. Here is another example, which is more in the spirit of group theory. Consider the set
of integers Z. This is a set of numbers, and when we think about numbers, we never just think
about them as being arbitrary elements. Rather, there are relations between different numbers,
for example 1+ 1 = 2. However, when we view Z as a set, mathematically there is no addition
rule. If we want to have the relation 1 + 1 = 2 between the elements 1 and 2 in Z, we need to
endow Z with the additional structure of an addition rule.

So how do we do this? Well, addition is just a function Z x Z — Z: it takes as input two integers
and gives one integer as an output. But it’s not just any function - it satisfies some special
properties. For example, a +b = b+ a for all a,b € Z. Another property is that a + 0 = a for all
a € Z. In fact, the pair (Z,+) is an example of an abelian group. There are so many interesting
mathematical objects which come equipped with a certain “addition rule” or “multiplication
rule” that mathematicians decided to create a name for them, and this is what a group is.

3.1 Definition and examples

So the idea is that we want to define groups as sets endowed with a certain function which
behaves a bit like multiplication or addition. We build up towards the definition step by step.

Definition 3.1.1. Let S be a set. A binary operation on S is a function - : S x S — S. We
write «(s1,82) as s1 - so or simply s15s.

Example 3.1.2. If S = N, some examples of binary operations - : N x N — N are
1. a-b:= ab (standard multiplication);
2. a-b:=a+b
3. a-b:=a+b+10;
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4. a-b:=0for all a,b € N.

What is not a binary operation is subtraction: if a-b:=a —band b > a, then a — b < 0 and
so the result is not a natural number. In other words, subtraction is not a function N x N — N
(but one could define subtraction as a function N x N — Z). One often phrases this as saying
that N is not closed under subtraction.

Binary operations are very general. We want to distinguish certain classes of binary operations
with good properties, which is the purpose of the following definition.

Definition 3.1.3. Let - : S x .S — S be a binary operation.
1. We say - is associative if for all a,b,c € S, we have a- (b-¢) = (a-b) - c.
2. We say - is commutative if for all a,b € S, we have a-b=10-a.

If an operation is associative, it means we don’t have to care about how we place brackets when we
multiply more than two elements. This makes things much easier, and in almost every situation
you will encounter in mathematics, binary operations will be associative. However, note that the
order of multiplication still matters when the binary operation is not commutative: for example,

g1- 9293 # g2 - g3 - 91 in general.

Example 3.1.4. Let S be a set. We define End(S) := {f : S — S} to be the set of endo-
morphisms of S, i.e. functions from S to itself. There is a binary operation on End(S) given
by composition: (f,g) — f og. This operation is associative (the proof is very short), but not
commutative in general. Exercise: demonstrate the failure of commutativity by giving a set S
and two functions f,g:.S — S such that fog=#go f.

We can now give the definition of a group.

Definition 3.1.5. A group is a pair (G, ), where G is a set and - is a binary operation on G,
such that the following conditions are satisfied:

(G1) The binary operation is associative;
(G2) There exists an element e € G such that e-g =g =g-e for all g € G;
(G3) For every g € G, there exists some g~ € G such that g-g ' =e=g"1.g.

If the binary operation is also commutative, we say G is an abelian group.

We call e € G the identity element of G. If g € G is any element, we call g—' the inverse of g.
Note that e™! = e.

In groups, we can perform cancellation in equations. In fact, proving this uses all the group
axioms. Let’s state it as a theorem.

Theorem 3.1.6. Let G be a group, and suppose that g-h = g-h’ for some elements g, h,h’ € G.
Then h = h’. Similarly, if h-g=h'-g, then h = h'.

Proof. Suppose that g-h = g-h'. By (G3), g has an inverse. Multiply both sides by g~ on the
left to get

gt (g-h)=9""(g-h).
By associativity (G1), this is the same as

(g7 -9)-h=(g"9) N,
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i.e.
e-h=e-h.

But by (G2), this just says h = k', which is what we wanted to show. The argument is similar
if we start with h-g=h'-g. O

I stated before that there are many examples of groups. Try to see if you can prove that the
following are really groups.

Examples 3.1.7.

0. The trivial group is the group with one element (equipped with the unique binary operation
on this set).

1. All of Z,Q,R and C are abelian groups under addition, with e = 0. Note that N is not a
group under addition (why not?).

2. The positive real numbers R~ form an abelian group under multiplication. Likewise for Q.
3. Let S be either Q,R or C. Then S\ {0} (i.e. S without the element 0) is a group under
multiplication.

4. Let G be the set {0,1} and define a binary operation + : G x G — G by setting

04+0=0; 0+1=1,; 1+40=1; 1+1=0.

Then G is an abelian group.
5. More generally, let n € Z~ g be a positive integer. Then one can define the integers modulo n
as the set

Z/nZ :={0,1,2,...,n— 1},

which has a binary operation + : Z/nZ x Z/nZ — 7Z/nZ defined as follows:

a+b ifa+b<n;
a+b= .
a+b—p ifa+b>n.

This is an abelian group. The definition above is very ad-hoc and not so intuitive, but we will
come back to this example (and prove that it is a group) when we talk about modular arithmetic.
Note that example 4 actually describes Z/27Z.

6. Let n € Z>1. Define the cyclic group of order n to be the set

Cn={CeC| (" =1}

These are the n-th roots of unity in C. They all lie on the unit circle and form a group under
multiplication.

7. Let X be a finite set. Define the group (Sym(X), o) whose elements are bijections f : X — X
and whose binary operation is given by composition.

If X ={1,2,...,n} is the set of the first n positive integers, then Sym(X) is usually denoted by
Sp. Elements of S,, are denoted by products of cycles: e.g. the cycle (12) € S, is the bijection
sending 1 — 2 and 2 +— 1, and the product of cycles (152)(34) in S5 is the bijection sending
l—=5—=2—=1land 3—4— 3.

8. Define an abelian group G = {e, a,b, ¢} with identity e and multiplication law ab = ¢, ac = b,
bc = a. This is a group called the Klein four group.
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3.1.1 Products of groups

Let (G, 0) and (H,e) be groups. Then we can endow the product G x H with a group structure,
in the following way: we define

(9,h)- (g, 1) = (gog,heh').

The identity element is (eg, e ), and (g,h)~! = (g~ 1, h71).

This gives new examples of groups. For example, Z x Z/2Z or S, x C are groups. Note that
G x H is abelian if and only if G and H are both abelian.

3.1.2 Subgroups and orders

When we study groups, we usually want to break them up into smaller parts which are easier to
study. Subgroups are useful for this.

Definition 3.1.8. Let G be a group. A subset H C G is a subgroup of G if the following hold:
1. e€ H;
2. For all h,h' € H, we have h- h' € H;
3. For all h € H, we have h™! € H.

In other words, H is a subset which is a group in its own right under the same binary operation
as G. We express property 2 in the definition by saying H is closed under the binary operation.

Example 3.1.9. Let G be any group, and let g € G. Then theset (g) :={..., 972,97 },e,9,¢% ...}
is a subgroup of G, called the subgroup generated by g.

We now define the order of an element of a group. Slightly confusingly, the size (cardinality) of
a group is also often called the order of the group.

Definition 3.1.10. Let G be a group and g € G. If (g) is a finite subgroup, define |{g)| to be
the order of g, denoted ord(g). Equivalently, ord(g) is the smallest n > 0 such that ¢" = e. If
such n does not exist, say g has infinite order.

If G = (g) for some g € G, say G is cyclic and g is a generator of G.

Example 3.1.11. The cyclic group of order n is a cyclic group of order n. In other words, the
group C, has a generator, and the order of this generator is n. Let’s prove this. Recall that

C,={CeC|(" =1}

Thus, all elements of C,, are solutions of the equation X™ — 1 = 0. This equation has at most n
distinct solutions, and you can check that each of the complex numbers

2mik

e n 0<k<n

. \k
is a solution. Thus, the above elements make up C,,, and since e™» = (e n ) , we see that

the element (, := e isa generator of C),. Moreover, the smallest positive integer m such that
o' =1 is the integer n, i.e. C,, is a group of order n.

We are now ready to prove an interesting statement about finite groups.
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Theorem 3.1.12. Let G be a finite group, and let g € G. Then g has finite order, and if g" =€
for some n € N, then ord(g) divides n.

Proof. We first show that g has finite order. Let |G| = n. Because the set {e = ¢°,9,9%,...,9"}
has n + 1 elements, there must be two elements which are the same. This gives us ¢ = ¢

for some integers k and I. Without loss of generality, assume that k > [. Then multiplying by

g7 =(g7")" = (g")"" gives

so g has finite order k —[.

Next, suppose that g™ = e. We want to show that ord(g) divides n. By definition, ord(g) is the
smallest integer m > 1 such that g™ = e, so ord(g) < n. Since the statement holds if ord(g) = n,
we may assume that ord(g) < n. Now divide n by ord(g) with remainder to get

n==Fk-ord(g) +r,

for some k € N and 0 < r < ord(g). Thus we get

e = gn _ gk-ord(g)Jr'r _ (gord(g))k‘ . gr — ek . gr _ gr7

so g" = e. But since r < ord(g), this means r = 0, so n = k - ord(g), i.e. ord(g) | n. O

Divisibility is actually a recurring theme in group theory. To demonstrate this, we state a
fundamental result, whose proof is beyond the scope of this course.

Theorem 3.1.13 (Lagrange’s Theorem). Let G be a finite group, and let H C G be a subgroup.
Then |H| divides |G|.

As a consequence, the order of any element divides the order of the group:
Corollary 3.1.14. Let G be a finite group, and let g € G. Then ord(g) divides |G]|.

Proof. If G is finite, then (g) = {e,g,9%,...,9°" 4911 is a subgroup with ord(g) elements. By
Lagrange’s Theorem, we get that ord(g) = |(g)| divides |G|. O

3.2 Group homomorphisms (optional)

It has been said that in mathematics, one gains the most information about an object by seeing
how it relates to other objects. We do this by looking at functions between the objects. However,
we don’t just want any functions - when we work with groups, we want the functions to take
into account the group structure. This leads us to the notion of a homomorphism.

Definition 3.2.1. Let (G, ¢) and (H,-g) be groups. A group homomorphism from G to H is
a function f : G — H such that for all g, ¢’ € G, we have

flg-cg) =19 u fg)
A bijective group homomorphism is called an isomorphism.

Examples 3.2.2.
1. Let G and H be any groups. Then the function f : G — H sending g — e for every g € G is
a group homomorphism: indeed,

Hg-g)=e=c-e=fg)-flg) forall g.g' € G.
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2. Let G = (R,+) and H = (Rsq, x). Then the exponential function f(z) = e” is an isomorphism
from G to H, because it is bijective and

etV =¢® . Y for all z,y € R.

If f is a group homomorphism, it must send the identity element to the identity element and
inverses to inverses (prove this!). Moreover, the order of an element f(g) is related to the order
of g in the following way:

Theorem 3.2.3. Let f: G — H be a homomorphism. Then ord(f(g)) divides ord(g).

Proof. By Theorem 3.1.12, it is enough to show that f(g)ord(g) = e. Because f is a group
homomorphism, it respects multiplication, which allows us to write

F@ D =f(9)- f(9)- - fl@)=flg-g----9) = [(g™9) = fe) =e.
This finishes the proof. O

The notion of isomorphism is very important. It is similar to the notion of bijection for sets. If
two groups are isomorphic, it means that the underlying sets are bijective, and that the group
structures are the same. So group-theoretically, the properties of isomorphic groups are the same.
When encountered with a new group, mathematicians want to find out which familiar group it
is isomorphic to. In the same spirit, they want to find out which possible groups exists, up to
isomorphism. This question has essentially been answered for finite groups over the past century
or so, but the classification is very complicated and the proof of the classification is over 10.000
pages long.

Let’s see some examples of isomorphic and non-isomorphic groups.

Examples 3.2.4.

1. Recall the Klein four group {e, a, b, c}. This is not isomorphic to the cyclic group Cy4. Indeed,
if this were the case, there would have to be an element of order 4 in the Klein four group (why?),
but there is no such element.

2. The Klein four group is isomorphic to Z/2Z x Z/2Z. An isomorphism is given by

{e,a,b,c} — Z/27 x Z/2Z
e— (0,0), a+— (1,0), b—(0,1), c+—(1,1).

3. The symmetric group S5 is isomorphic to the dihedral group Dg of symmetries of an equilateral
triangle.

Proposition 3.2.5. Let G = (g) be a cyclic group. Then any homomorphism f : G — H is
determined by the image of g.

Proof. We need to show that if f and f’ are two homomorphisms G — H such that f(g) = f'(g),
then f = f'.

So suppose f(g) = f/(g). Because G is cyclic with generator g, any element h € G is of the form
h = ¢g" for some n € Z. Hence

Thus f = f'. O
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3.3 Exercises

Exercise 1

For each of the binary operations in Example 3.1.2, decide whether or not the operation is
associative.

Exercise 2
Which of the following are groups?
1. The set R>( with the binary operation z - y := max(zx, y).
2. The set of all rational numbers with odd denominator, with the usual addition.
3. The set {a,b} with the binary operation
a-a=a, b-b=b, a-b=b, b-a=h.

Exercise 3

Let S := R\ {—1}, i.e. the set of real numbers without the element —1. Show that the binary
operation x x y := xy + = + y defines a group structure on S.

Exercise 4

Let G be a group and let g,h € G. Prove the following;:
L (g ) =gy
2. (gh)~t =h"tg7 L

Exercise 5

For every n