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Introduction
Around the 1960’s, a revolution was taking place in algebraic geometry, stimulated primarily
by Weil’s conjectures on the zeta functions of varieties over finite fields. Grothendieck’s school
had just developed the theory of schemes, and used this to attack the problem. It was clear to
those involved that the conjectures could be proven if one could construct a cohomology theory
for varieties over finite fields which behaves just like singular cohomology does in the analytic
setting. Such a cohomology theory, considered as a functor H• : Vk → VecK, where Vk is the
category of smooth projective varieties over k and where K is a field of characteristic zero, is now
called a Weil cohomology theory.

The first Weil cohomology theory to be discovered was étale cohomology, and part of its power
stems from the fact that it admits an action of the Galois group of the base field. For a variety
X/k and any prime l 6= char(k), one can consider the l-adic cohomology

H•l (X) :=
2 dim(X)⊕
r=0

Hr(X̄,Ql) :=
2 dim(X)⊕
r=0

Ql ⊗Zl lim←−
n

Hr(X̄,Z/lnZ),

where Z/lnZ is seen as a constant sheaf on the étale site of X̄ := X ×k k̄. Now Gal(k) acts on
X̄ through the second factor, which induces an action on the étale site. This is possible because,
as Tate puts it [Tat65], the étale topology depends only on X̄ and not on the arrow X̄ → Spec(k̄).

Cohomology provides a link between zeta functions and algebraic cycles. Denote by Zr(X) the
free abelian group on the set of codimension r irreducible closed subvarieties of X. Then there
is for each 0 ≤ r ≤ dim(X) a cycle class map

clr : Zr(X) −→ H2r(X̄,Ql(r)), (1)

where the notation Ql(r) := (Ql ⊗Zl lim←−n µln(k̄))⊗r denotes a Tate twist.

The theme of this thesis will be a conjecture posed by Tate in 1963 about this cycle class map.

Conjecture 0.0.1 (Tate Conjecture). Let k be a field which is finitely generated over its prime
field, and let X/k be a smooth projective variety. Then the kernel of the cycle class map (1)
consists of the cycles numerically equivalent to zero, and induces for each r an isomorphism

CHr
num(X)⊗Ql

∼−−→ H2r(X̄,Ql(r))Gal(k).

For the definition of numerical equivalence, see Example 3.3.2.3.

It is known that the zeta function ζ(X, s) of a d-dimensional variety X over a finite field has
simple poles at s = 1, 2, . . . , d. For k a finite field, the Tate conjecture is equivalent to the
following statement: if the Frobenius of X acts semisimply on the l-adic cohomology, then the
residue of the pole of ζ(X, s) at s = r equals the dimension of CHr

num(X). Thus, much like the
Weil conjectures, the Tate conjecture seeks to answer a natural question about zeta functions.

Deligne famously proved the Weil conjectures in the early 70’s. In contrast, at the time of writ-
ing, the Tate conjecture is still wide open. The first non-trivial case was proven by Tate himself
in 1966: it restricts to the case where r = 1 and X is an abelian variety over a finite field. In
this setting, the Tate conjecture can be phrased without reference to étale cohomology, and is
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now known as Tate’s (isogeny) theorem. This result was extended by Zarhin to function fields
over finite fields [Zar75], and by Faltings to number fields [Fal83], which was enough to deduce
the result for all finitely generated fields. For K3 surfaces, the only non-trivial case is r = 1. The
proof of Tate conjecture in this setting has been a major achievement and was completed only
recently: the final brick was laid in 2016 in the erratum to [KMP16], after proofs in odd char-
acteristic [MP15], [Cha13]. The proof uses a reduction to abelian varieties via the Kuga-Satake
construction. Besides this, only few cases are known.

The topic of this thesis is the Tate conjecture for abelian varieties over finite fields. Aside from
the proof for r = 1 by Tate mentioned above, we will focus on a notable result which relies on
the theory of motives. Grothendieck envisioned the theory of motives as the key to proving the
Weil conjectures, but it has never really gotten off the ground. The reason is that the theory
of motives works well only if one assumes Grothendieck’s standard conjectures, which are deep
conjectures on algebraic cycles which nobody knows how to solve. However, when we work with
abelian varieties over finite fields, we know that the Künneth components of the diagonal are
algebraic, which gives us some room to manoeuvre. We will use the theory of motives to prove
the following theorem by Milne:

Theorem 0.0.2. If the Hodge conjecture is true for CM abelian varieties over Q, then the Tate
conjecture is true for abelian varieties over finite fields.

The outline of the thesis is as follows.

Part I revolves around Tate’s theorem. We give an introduction to the theory of abelian varieties,
focusing on the important concepts and theorems and leaving out most of the technical proofs,
for which the reader is referred to [EvdGM] or [Mum74]. Main results include Riemann-Roch
(1.7.6) and the Riemann hypothesis (1.10.6) for abelian varieties. Afterwards, we go through the
proof of Tate’s theorem in detail.

Part II is devoted to a proof of Theorem 0.0.2. It relies on the theory of motives and the
Tannakian formalism, and we again introduce the necessary theory before delving into the proof,
which follows Milne’s articles [Mil94], [Mil99a], and [Mil99b]. The strategy is to translate the
Tate conjecture into a statement about affine groups arising as fundamental groups of Tannakian
categories (4.1.3 and 4.5.2). We then try to understand these groups, both directly and by work-
ing with the categories. The theory of abelian varieties is sufficiently well-understood to describe
the groups and their characters in detail. If we additionally assume the Hodge conjecture, we
can make use of the category of Hodge motives. Putting these together allows us to prove the
Tate conjecture.

Throughout the thesis, a good knowledge of algebraic geometry and representation theory is
assumed. We will also use standard results on étale cohomology without proof. Otherwise, the
thesis is intended to be as self-contained as possible, with either proofs or references provided
for all results we use.
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Notation
• Unless mentioned otherwise, a scheme will always mean an object in the category Schk of

schemes over a field k of characteristic p ≥ 0, not necessarily algebraically closed.

• By a variety we will mean a separated, geometrically integral scheme of finite type over k.

• The projection morphism from a product onto its ith factor is denoted by pri.

• A vector bundle will always mean a locally free sheaf of finite rank, and line bundles will
mean invertible sheaves.

• The tangent space of a scheme X at a point x will be denoted by Tgtx(X).

• In the context of abelian varieties, the letter g will denote the dimension.

• For an abelian variety A over k, the notation End0(A) will mean Q⊗Z Endk(A).

• If G is an affine k-group, its characters will be denoted by X(G) := Homk(G,Gm). Its
geometric characters are denoted by X∗(G) := Homksep(Gksep ,Gm,ksep), but will often also
be referred to as the characters of G.
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Tate’s Theorem
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1. Abelian varieties
An abelian variety is a projective variety with a group structure. In this chapter, we will explore
some of their properties, as preparation for Tate’s theorem. We will see that just the existence
of a group structure imposes heavy restrictions on the geometry of varieties. It makes abelian
varieties nice objects to work with, but one should always keep in mind that they are a very
special class of varieties.

1.1 Basics
We will start off with the definition of an abelian variety.

Definition 1.1.1. Let k be a field. A group variety is a group object in the category of varieties
over k. An abelian variety is a complete group variety (i.e. for any variety Y , the second
projectionX×Y → Y is closed). We write e ∈ X(k) for the identity element andm : X×kX → X
and i : X → X for the multiplication and inverse morphisms, respectively. A homomorphism of
group varieties is a morphism of varieties respecting the group scheme structure.

Examples 1.1.2.
1. The unique zero-dimensional abelian k-variety is Spec(k). Extensions K/k don’t work, as
these don’t possess any k-points, so they can’t have an identity element. Another way to see
it is that Homk(Spec(k),Spec(K)) = ∅ and thus the functor of points for Spec(K) can’t factor
through Grp.
2. Any one-dimensional abelian variety is an elliptic curve. Let k = R and let E be an elliptic
curve over k. The fact that it is a group object implies that E(R) has a natural group structure.
One can draw these R-points by taking a Weierstrass equation y2 = x3 + ax+ b and drawing its
solutions in the xy-plane; since we are dealing with a projective variety, one should not forget
about the point at infinity.
The group law is now given as follows: given points P and Q on the curve, let Z be the point of
intersection of the line through P and Q with the curve. Then P + Q is the third point on the
line through Z and infinity (a vertical line). Note that the point at infinity acts as the identity
element.
3. For any smooth projective curve C of genus g, its Jacobian Jac(C) is a g-dimensional abelian
variety. If C is an elliptic curve, C ∼= Jac(C).
4. Finite products of abelian varieties are abelian varieties.

More examples of abelian varieties can be obtained through identity components of subgroup
schemes of abelian varieties [EvdGM, Prop. 3.17]:

Proposition 1.1.3. Let X be an abelian variety and let G ⊂ X be a subgroup scheme. Denote
by Y = G0

red the reduced subscheme underlying the connected component of G containing the
identity element. Then Y is an abelian variety.

Lemma 1.1.4 (Rigidity lemma). Let X be an abelian variety and let Y, Z be k-varieties.
Suppose a morphism f : X × Y → Z is constant when restricted to a fibre X × {y} for some
y ∈ Y (k). Then f factors through the projection πY : X × Y → Y .

Proof. Without loss of generality, k = k̄ and we may check the statement on k-points.
Let f |X×{y} = z and pick an affine open neighbourhood U 3 z. The pre-image f−1(Z \ U) is
closed, so by completeness of X, so is the projection πY (f−1(Z \U)). Let V be its complement.
Then by construction, for any closed point y′ ∈ V , we have f(X×{y′}) ⊂ U . But X is complete
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and U is affine, so f is constant on such a fibre.
So f factors through πY on X × V , where V ⊂ Y is an open set. As Y is irreducible, this is
enough.

Definition 1.1.5. Let x ∈ X(k). Define the right translation by x to be the morphism

tx : X ∼−−→ X ×k k
id×x−−−→ X ×k X

m−−→ X.

It is an isomorphism with inverse ti(x).

Proposition 1.1.6. Let X and Y be abelian varieties. Then any morphism X → Y is a
translation of a homomorphism.

Proof. Let f : X → Y be a morphism. Let g := ti(f(eX)) ◦ f . Then g(eX) = eY , and we want to
show that g(x+ x′) = g(x) + g(x′). For this, consider the morphism

ϕ : X ×X (g◦mX)×(iY ◦mY ◦(g×g))−−−−−−−−−−−−−−−−→ Y × Y mY−−→ Y

Then ϕ|X×{eX} = eY = ϕ|{eX}×X . By Lemma 1.1.4, ϕ factors through both the first and the
second projection, so ϕ = eY is constant. So g◦mX = mY ◦(g×g), i.e. g is a homomorphism.

Corollary 1.1.7. The group law on an abelian variety is commutative. That is, m ◦ τ = m,
where τ is the map swapping the two factors of the product.

Proof. By Proposition 1.1.6, i : X → X is a homomorphism.

Corollary 1.1.7 justifies the usage of additive notation for abelian varieties. We will follow this,
and from now on write 0 for the identity element of an abelian variety, + for the multiplication
law, and − for the inversion law.

Proposition 1.1.8. Any abelian variety X is smooth and has trivial tangent bundle.

Proof. Because X is a variety, it contains an open dense smooth subscheme, which we can move
around by the translation isomorphisms, showing that X is smooth at every geometric point.
In a similar way, by translating tangent vectors one can show that π∗Tgt0(X) ∼−→ TX/k, where
π : X → k is the structure morphism [EvdGM, Prop. 1.5].

The next statements are classical results that will allow us to understand the behaviour of line
bundles on abelian varieties. See [EvdGM, Chapter II] for proofs.

Proposition 1.1.9 (See-Saw Principle). Let X be a complete variety and Y any other variety.
Let L be a line bundle on X×Y such that L|X×{y} ∼= OX for all y ∈ Y (k) and that L|{x}×Y ∼= OY
for one x ∈ X(k). Then L is trivial.

Theorem 1.1.10 (Theorem of the Cube). Let L be a line bundle on an abelian variety X, and
let f, g, h : Y → X be morphisms. Then the bundle

Θ(L) := (f + g + h)∗L ⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L ⊗ g∗L ⊗ h∗L

is trivial.

Corollary 1.1.11 (Theorem of the Square). Let L be a line bundle on an abelian variety X.
Then for all x, y ∈ X(k),

t∗x+yL ⊗ L = t∗xL ⊗ t∗yL.

Proof. Apply the Theorem of the Cube with Y = X, f = x, g = y, and h = idX . Indeed,
tx = x+ idX , and the pullback of a line bundle under a constant map is just OX .

3



1.2 Projectivity of abelian varieties
As alluded to before, any abelian variety is in fact projective. The goal of this section is to prove
this. We will quickly recall some generalities on line bundles and their interplay with projectivity.
All the statements quoted without proof can be found in standard texts on algebraic geometry,
e.g. [Har77].

Since abelian varieties are smooth, noetherian, integral and separated, there is an isomorphism
Pic(X) ∼−→ Cl(X), so we can identify line bundles with divisors. This allows us to speak of the
degree of a line bundle and to associate adjectives to it normally related to divisors, such as
effective.

Definition 1.2.1. Let X be a scheme and let F be a sheaf of OX -modules. We say F is globally
generated if there is an indexing set I and a surjective map

⊕
I OX → F .

Let now L be a line bundle on a quasi-compact scheme X. We say L is very ample if there
exist sections s0, . . . , sn ∈ Γ(X,L) such that each D(si) = {x ∈ X | (si)x /∈ mxLx} is affine
and X =

⋃
iD(si). We say L is ample if some power of it is very ample. If X is noetherian,

equivalently L is ample if for all coherent sheavesM, there exists m > 0 s.t. M⊗L⊗m is globally
generated, or equivalently if this holds for all coherent ideal sheaves M.

Proposition 1.2.2. A finite type k-scheme X admits an ample line bundle if and only if it
is quasi-projective. More precisely, if i : X → Pnk is a locally closed immersion, then i∗O(1) is
ample. Conversely if L is an ample line bundle, one may take a very ample power of it. Then
the non-vanishing sections s0, . . . , sn define a locally closed immersion X → Pnk .

Corollary 1.2.3. A proper and finite type k-scheme is projective if and only if it admits an
ample line bundle.

Since abelian varieties are proper by definition, we can show they are projective by finding an
ample line bundle. Our proof of projectivity will rely on the following lemma, which is preceded
by a definition.

Definition 1.2.4. Let D be a divisor on a smooth proper k-scheme X. The complete linear
system defined by D is defined as the set of divisors linearly equivalent to D, and denoted |D|.
Say |D| is basepoint-free if the common support of |D| is empty, i.e. if and only if O(D) is
globally generated.

Note that a base-point free linear system defines a morphism to Pn, where n+1 = dimk Γ(X,O(D)).
The following lemma gives criteria for this to be a closed immersion.

Lemma 1.2.5. Suppose D is a divisor such that |D| is base-point free. Then D is very ample
if and only if it separates points and it separates tangent vectors, i.e.

1) For all x, y ∈ X there exists s ∈ Γ(X,O(D)) such that s(x) = 0 and s(y) 6= 0;

2) For all x ∈ X there exists s ∈ Γ(X,O(D)) such that sx ∈ mx \m2
x.

We can now give a geometric proof that abelian varieties are projective.

Theorem 1.2.6. Any abelian variety is projective.

Proof. Since Spec(k) is projective, we may assume dimX > 0. Take D to be a finite sum of
distinct prime divisors whose common support is {0} and write D =

∑
iDi, defined over k. Since

4



a line bundle is ample if and only if it is ample after a base change to an algebraic closure, we
may now assume k = k̄.

Recall that by the Theorem of the Square, t∗xL ⊗ t∗yL ∼= t∗x+yL ⊗ L. Thus for any divisor D′,
we have nD′ ∼

∑n
i=1 t

∗
xiD

′ whenever
∑
xi = 0. In particular, for any a, b ∈ X(k), we have

t∗aD + t∗bD + t∗−a−bD ∼ 3D.

We use this to show that 3D separates points. Let x 6= y ∈ X; we need to show that there is
some D′ ∼ 3D with x ∈ supp(D′) but y /∈ supp(D′). Since y − x 6= 0, there is some Di such
that y−x /∈ supp(Di), so y /∈ supp(t∗xDi). On the other hand, x ∈ supp(t∗xDi) since 0 ∈ supp(Di).

By dimension arguments we can find b such that y /∈ supp(t∗bDi) ∪ supp(t∗−x−bDi). Now for the
j 6= i, choose aj and bj such that

y /∈ supp(t∗ajD) ∪ supp(t∗bjD) ∪ supp(t∗−aj−bjD);

then for ai = −x and bi = b, we get

3D ∼
n∑
j=1

t∗ajDj + t∗bjDj + t∗−aj−bjDj ,

which is a divisor separating x from y.

Next we need to separate tangent vectors. For this, let 0 6= τ ∈ Tgtx(X) be a tangent vector at
x; so t∗−xτ ∈ Tgt0(X). If t∗−xτ were tangent to all the Di at 0, the intersection multiplicity of
the Di at 0 would be greater than 1, contradicting our assumption. So some Di is not tangent
to t∗−xτ . Then choose ai = −x, and let the other aj and bj be such that x does not lie in the
support of each of the other terms in the sum which will be linearly equivalent to 3D; then this
gives a divisor which contains x in its support, but such that τ is not tangent to it.

Remark 1.2.7. In fact, something even stronger is true: if L is any ample line bundle on an
abelian variety, then L⊗3 is very ample. The proof of this surprising fact is more technical than
our given proof because we can make no choices for the D we start with, but the general idea
is the same. It can be found in [Mum74, §17, p. 163]. There is also a more arithmetic proof
of projectivity of abelian varieties, which uses properties of the Mumford bundle (cf. Remark
1.6.11).

1.3 Isogenies
To prepare for the notion of an isogeny between abelian varieties, we review some facts about
finite group schemes. A finite group scheme over a base S is a group object in SchS whose
structure morphism is finite. When dealing with abelian varieties, finite group schemes naturally
appear, for instance as kernels of morphisms.

Definition 1.3.1. Let f : X → Y be a homomorphism of abelian varieties. The kernel of f is

5



the fibre over 0 ∈ Y , i.e. the pullback

X

YSpec(k)

ker f

f

0

Kernels are projective, since abelian varieties are, but they are in general no longer reduced or
irreducible. Note also that for any y ∈ Y (k), the pre-image f−1(y) is isomorphic to ker f via a
translation.

The following general proposition shows that kernels are indeed group schemes:

Proposition 1.3.2. Let G be a group scheme over some base S, and let S′ → S be a morphism.
Then the base change G′ = G×S S′ is a group scheme over S′.

Proof. The Yoneda point of view tells us that being a group object in a category is equivalent
to the functor of points factoring through Grp. Thus, it suffices to show that HomS′(X,G′)
has a group structure functorial in X. To see this, note that for any S′-scheme X, we have a
natural isomorphism HomS′(X,G′)

∼−→ HomS(X,G) induced by composition with the morphism
G′ → G, using the universal property of the fibre product. Since any S′-morphism X → Y is
also an S-morphism, the functoriality of the group structure is inherited as well.

Explicitly, the multiplication m′ : G′ ×S′ G′ → G′ is induced by m ◦ (ϕ × ϕ) and the structure
morphism, where ϕ : G′ → G is the canonical map. In particular, a subgroup scheme of an
abelian variety is commutative.

Affine group schemes (that is, group schemes of the form Spec(H)) are always represented by
commutative Hopf algebras. A Hopf algebra over k is a ring H (in general not assumed to
be commutative) with unit η : k → H, multiplication m : H ⊗ H → H, co-unit ε : H → k,
comultiplication ∆: H → H⊗H, and antipode I : H → H such that (H,m,∆, η, ε) is a bialgebra
and such that the following diagram commutes:

H k H

H ⊗H H ⊗H

H ⊗H H ⊗H

ε η

∆

∆

I ⊗ id

id⊗ I

m

m

If H is also cocommutative, Spec(H) is a commutative group scheme.
Finite group schemes over affine bases are examples of affine group schemes. In this case we have
the following definition:

Definition 1.3.3. Let G be an affine k-group scheme whose structure morphism is finite. The
rank of G is the dimension of its global sections:

rkG := dimkH
0(G,OG).
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Let now G = Spec(H) for a commutative Hopf algebra H which is finite-dimensional over k.
Then we define the Cartier dual of G to be GD := Spec(H∨), where H∨ = Homk(H, k) naturally
inherits a Hopf algebra structure from H; the multiplication and comultiplication get swapped
after dualising, and so do the unit and co-unit. Dualising defines an endofunctor (−)D on the
category of finite-dimensional affine commutative k-group schemes, and we have a natural iso-
morphism (GD)D ∼= G.

The Hopf algebra H∨ represents the group functor Hom(G,Gm), which is defined through

T 7−→ HomT (GT ,Gm,T ).

Cartier duality exists for general commutative group schemes which are finite locally free over
their base, but we won’t need this amount of generality.

In some ways, finite group schemes behave just like finite groups [Sti09, Thm. 6]:

Proposition 1.3.4 (Deligne). Let G be a commutative k-group scheme of rank n. Then

G = ker(G n−−→ G).

In other ways, though, finite group schemes are more complicated than finite groups. For in-
stance, it is an open question whether the above result holds for finite non-commutative group
schemes. Another way that group schemes are different is that there exist at least three non-
isomorphic group schemes of order p2, at least when char(k) = p:

Examples 1.3.5.
1. There is the constant group scheme associated to G = Z/pZ ⊕ Z/pZ. As a scheme, it is
isomorphic to

⊔
G Spec(k), and the group structure is induced by permuting the components

according to the group law on G.
2. The multiplicative group Gm is the affine group scheme Spec(k[T±1]) whose Hopf algebra
is isomorphic to the group algebra k[Z]. For any integer n, it has an endomorphism given by
T 7→ Tn on global sections. This has kernel is µn ∼= Spec(k[T ]/(Tn − 1)). If n = p2, this has
order p.
3. Suppose char(k) = p > 0. Then the map f 7→ fp

n : k[T ] → k[T ] is a morphism of algebras
for every n, and induces an endomorphism of the additive group Ga = Spec(k[T ]). For n = 2,
its kernel is αp2 ∼= Spec(k[T ]/(T p2)) and has order p2. It is clearly non-reduced.

We can always decompose a finite group scheme as follows [EvdGM, Prop. 4.45]:

Proposition 1.3.6. Let G be a finite k-group scheme. Then there is an exact sequence

0→ G0 → G→ Gét → 0,

where G0 is the connected component of G containing the identity element, and Gét is the étale
group scheme π0(G) of connected components of G.

We will now move on to studying isogenies.

Definition 1.3.7. A homomorphism f : X → Y is said to be an isogeny if dimX = dimY and
ker f is finite. The degree of an isogeny is the degree [k(X) : k(Y )] of the field extension induced
by f .

We can give equivalent definitions using the following lemma:
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Lemma 1.3.8. Let f : X → Y be a flat morphism of k-varieties. Let X ′ be the fibre of f over
a closed point y ∈ Y . Then X ′ is equidimensional and dimX = dimY + dimX ′.

Proof. See [Har77, III.9.5].

Proposition 1.3.9. Let f : X → Y be a homomorphism of abelian varieties. The following are
equivalent:

(i) f is an isogeny.

(ii) dimX = dimY and f is surjective.

(iii) f is finite, flat, and surjective.

Proof. (i) =⇒ (ii): Since f is proper and all fibres are translates of ker f , which is finite, it
follows that f is finite. Moreover, f(X) is closed in Y , and dim f(X) = dimX = dimY , so f is
surjective because Y is irreducible.
(ii) =⇒ (iii): By generic flatness, f is flat over a non-empty open subset U ⊆ Y . Applying
Lemma 1.3.8 to the restriction of f to this locus and using that all fibres are all isomorphic to ker f
via translation, we see that ker f is a finite group scheme. As above, f is finite, so in particular
quasi-finite. In general, a quasi-finite morphism between regular, irreducible noetherian schemes
of the same dimension is flat, which shows (iii).
(iii) =⇒ (i): Since f is finite, the fibre ker f is finite. By Lemma 1.3.8, dimX = dimY .

An isogeny f induces an isomorphism X/ ker f ∼−→ Y ; for a rigorous treatment of quotients by
finite group schemes, see [EvdGM, Chapter IV]. If one is willing to accept that the category of
commutative group schemes of finite type over a field is abelian, one can simply take the quotient
in this category.

Since the identity morphism is an isogeny and compositions of isogenies are isogenies, we see
that the relation “A ∼ B ⇐⇒ there exists an isogeny A→ B” is reflexive and transitive. The
following proposition shows that it is an equivalence relation:

Proposition 1.3.10. Let f : X → Y be an isogeny. Then there exists an isogeny g : Y → X.

Proof. Write Y ∼= X/ ker f , and let n := rk ker f . Then n(ker f) = 0 (Proposition 1.3.4), so [n]X
factors through a morphism g : Y → X:

X X

X/ ker f Y

[n]X

f g

∼

We will see in Theorem 1.5.5 that [n]X is surjective, so g is surjective. Since dimX = dimY , it
is an isogeny by Proposition 1.3.9, so we are done.

Hence isogenies induce an equivalence relation on the category of abelian varieties. Whenever
we talk about isogeny classes, we mean equivalence classes with respect to this relation.

Lemma 1.3.11. Let f : X → Y be an isogeny. Then deg(f) = rk ker f .
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Proof. If f is an isogeny, ker f is a finite group scheme, so in particular affine; hence it makes
sense to talk about its rank. Consider the sheaf f∗OX ; it is coherent since f is finite, and locally
free since the fibres are all translates of ker f . The rank can be computed as the dimension of
the fibre at any point. In particular, taking the generic point gives dimK(Y )K(X) = deg f , and
taking the point 0 ∈ Y gives dimkH

0(ker(f),Oker f ) = rk ker f .

We distinguish two special kinds of isogenies:

Definition 1.3.12. An isogeny X → Y is said to be separable, resp. purely inseparable if the
extension k(Y ) ↪→ k(X) is separable, resp. purely inseparable.

Proposition 1.3.13. Let f : X → Y be an isogeny.

1) f is separable if and only if ker f is étale over k.

2) f is purely inseparable if and only if ker f is connected.

Proof. See [EvdGM, Prop. 5.6].

Proposition 1.3.14. Any isogeny f : X → Y can be written as a composition g ◦ h with g
separable and h purely inseparable.

Proof. By Proposition 1.3.6, any finite k-group scheme is an extension of an étale group scheme by
a connected group scheme (the connected component containing 0). Applying this to K := ker f ,
we can factor f as

X −→ X/K0 −→ X/K
∼−−→ Y,

which has the desired properties.

1.4 Endomorphism algebras
Now that we have introduced isogenies, the study of the endomorphism ring of an abelian variety
becomes rather interesting. The results in this section are of major importance in the study of
abelian varieties.

Definition 1.4.1. An abelian variety A is simple if its only abelian subvarieties are 0 and itself.

Theorem 1.4.2 (Poincaré Splitting Theorem). Let A be an abelian variety. Then A is isogenous
to a product An1

1 × . . . × Anmm , where each of the Ai are pairwise non-isogenous simple abelian
varieties.

Proof. We give the rough idea of the proof; for details, see [EvdGM, Thm. 12.2].
Given an abelian subvariety A1 ↪→ A, we want to construct another abelian subvariety A2 such
that the induced map A1 × A2 → A is an isogeny. We do this by considering a composition
A → At → At1 of a polarisation with the transpose of the inclusion and taking its kernel K.
Then K0

red is an abelian subvariety of A, which is the right choice for A2.

Thus, if we consider abelian varieties up to isogeny, every object decomposes as a product of
simples. If one is only interested in isogeny classes, this reduces most problems to the case of
simple abelian varieties.

The second interesting thing about endomorphism rings is what happens to them after we tensor
with Q. This process kills torsion, so we have to be careful, but luckily Homk(X,Y ) is torsion-
free. Indeed, Suppose nf = 0. Then im(f) ⊆ Y [n], a finite group scheme, and since the image is
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an integral subscheme of Y we get im(f) = 0, i.e. f = 0.

So we may consider now the category AV0
k of abelian varieties over k with morphisms given

by Hom0(X,Y ) := Q ⊗ Homk(X,Y ), without fear of killing anything off. When we do this,
something interesting happens:

Proposition 1.4.3. Let f : X → Y be an isogeny. Then f is invertible in AV0
k.

Proof. This is similar to Proposition 1.3.10. Say f has degree n. Then n(ker f) = 0, so [n]X
factors through a map g : Y → X:

X X

X/ ker f Y

[n]X

f g

∼

Then 1
n ⊗ g ∈ Hom0(Y,X) is the inverse of f . Indeed, gf = [n]X by the above diagram, and

since f [n]X = [n]Y f , we see fgf = [n]Y f . Since f is surjective, also fg = [n]Y .

The first consequence of these facts is the following:

Proposition 1.4.4. For any abelian variety A, End0(A) = Q⊗Endk(A) is a semisimple algebra.

Proof. By Proposition 1.4.3, we may replace A by any variety in its isogeny class. Using the
Poincaré splitting theorem, we can write A ∼ Am1

1 × . . . × Amnn for pairwise non-isogenous Ai.
By simplicity, we have

Homk(Amii , A
mj
j ) =

{
Matmi(Endk(Ai)) i = j;
0 otherwise.

Thus, Endk(
∏
iA

mi
i ) is a product of matrix algebras over rings of the form Endk(Ai) with Ai

simple, and Q⊗Endk(A) ∼=
∏

Matmi(Q⊗Endk(Ai)). Again by general theory, a matrix algebra
over a division ring is semisimple, so it suffices to show that the Q ⊗ Endk(Ai) are division
algebras. But this is again the statement that isogenies become invertible after tensoring with
Q, so we are done.

After proving Tate’s theorem, we will see that we one can say much more about the structure of
endomorphism algebras of abelian varieties when the base field is finite.

1.5 The Tate module
Now let n be a natural number and A an abelian variety. The multiplication-by-n-map is defined
as

[n]A : A
∆(n−1)
A/k−−−−→ A×A× . . .×A m(n−1)

−−−−−→ A.

We will also write the map [n]A as simply n or (n), e.g. for a sheaf of OA-modules F , (−1)∗F :=
[−1]∗AF .
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Definition 1.5.1. Let A be an abelian variety. The n-torsion of A is the subgroup scheme
A[n] := ker[n]A.

The torsion points of an abelian variety form an interesting object of study. We begin with a
useful proposition.

Proposition 1.5.2. Let L be a line bundle on an abelian variety A, and let n ∈ Z. Then

n∗L ∼= Ln(n+1)/2 ⊗ (−1)∗Ln(n−1)/2.

Proof. We use induction. Clearly the formula is correct for n = 0, 1, and −1. Applying the
Theorem of the Cube (1.1.10) with f = n− 1, g = 1 = idA, and h = −1, gives the formulas

(n+ 1)∗L ∼= n∗L2 ⊗ (n− 1)∗L−1 ⊗ L⊗ (−1)∗L, (1.1)
(n− 1)∗L ∼= n∗L2 ⊗ (n+ 1)∗L−1 ⊗ L⊗ (−1)∗L, (1.2)

If we know the formula is true for n and n−1, then (1.1) simplifies to L(n+2)(n+1)/2⊗(−1)∗Ln(n+1)/2.
Similarly, if we know the statement is true for n and n+ 1, (1.2) simplifies to the desired expres-
sion. Thus we get the result for all n.

Definition 1.5.3. A line bundle on an abelian variety is said to be symmetric if L ∼= (−1)∗L,
and antisymmetric if L−1 ∼= (−1)∗L.

To justify the terminology, consider an elliptic curve over R with equation y2 = x3+ax+b. Then a
line bundle is symmetric precisely when the corresponding divisor satisfies ordP (D) = ord−P (D)
for every prime divisor [P ]; and −P is the point P reflected through the x-axis.

Corollary 1.5.4. Let L be a symmetric line bundle on A. Then n∗L ∼= Ln
2 .

Any abelian variety carries a symmetric line bundle: for instance L⊗(−1)∗L is always symmetric.

With these tools under our belt, we can show that the n-torsion is a finite subgroup scheme.

Theorem 1.5.5. Let A be an abelian variety of dimension g over a field of characteristic p. For
n 6= 0, the endomorphism [n]A is an isogeny of degree n2g; moreover, if p - n, it is separable.

Proof. Since A is projective (Theorem 1.2.6), it admits an ample and symmetric divisor D. Thus
n∗O(D) ∼= O(n2D) is ample if n 6= 0, and so restricts to an ample line bundle on ker[n]A. But
this restriction is trivial, as we can see by considering the pullback square

Spec(k)

AA

ker[n]A

0
[n]A

Hence the kernel is finite, so [n]A is an isogeny.
To calculate the degree, we consider the g-fold self-intersection of D:

(D)g = (D1 · . . . ·Dg) =
∑

p∈|D1|∩···∩|Dg|

(D1 · . . . ·Dg)p,
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where Di ∼ D (linear equivalence) and D1, . . . , Dg intersect properly. This is well-defined
[Mil15b, 12.7, 12.8], and since A is smooth, we have

deg[n]A · (D)g = (n∗D)g = (n2D)g = n2g(D)g,

where the first equality is [Mil15b, Thm. 12.10], and the second equality was explained above.
Since D is ample, (D)g > 0 and hence the degree of [n]A equals n2g.

Finally, if p - n then p - n2g = [K(A) : K(nA)], so the field extension K(nA) ↪→ K(A) is
separable.

Theorem 1.5.5 leads to the definition of Tate modules.

Definition 1.5.6. Let A be an abelian variety over a field k of characteristic p ≥ 0, and l 6= p
a prime number. The Tate-l-module of A is defined as

Tl(A) := lim
←−

A[ln](ks),

where ks is a separable closure of k. In positive characteristic, we define

Tp(A) := lim
←−

A[pn](k̄).

Note that for any n, we have a (right) Gal(ks/k)-action on A[ln](ks), and the multiplication-by-
l-maps are equivariant with respect to this action. Hence Tl(A) inherits a Gal(ks/k)-action, and
moreover this action is continuous.

We will usually consider Tl as a functor AVk → RepZl(Gal(k)): a homomorphism of abelian
varieties respects the ln-torsion, so induces a Zl-linear map which is equivariant with respect to
the Galois action.

Theorem 1.5.7. For (p, n) = 1, we have A[n](ks) = A[n](k̄) = (Z/nZ)2g, where g = dimA.

Proof. If (p, n) = 1, the isogeny [n]A is separable. Therefore, Proposition 1.3.13 tells us that
ker[n]A is an étale group scheme of rank deg[n]A = n2g. Hence A[n](ks) = A[n](k̄) is an abelian
group of order n2g. For any d | n, we have that the d-torsion of this group is A[d](ks) which has
order d2g by the same argument, so we must have A[n](ks) ∼= (Z/nZ)2g.

Corollary 1.5.8. If l 6= p, we have Tl(A) ∼= Z2g
l (non-canonically).

It will often be useful to consider the l-adic representation obtained from the Tate module:

Definition 1.5.9. Denote by Vl(A) := Ql ⊗Zl Tl(A). If l 6= p, this is a 2g-dimensional l-adic
representation of Gal(ks/k).

The story of the rank of Tp(A) is more complicated. The result will be that Tp(A) ∼= Znp for some
0 ≤ n ≤ g called the p-rank of A. We will not study this phenomenon, although it gives examples
of abelian varieties with interesting properties. For example, an elliptic curve with p-rank zero is
called supersingular, and over a finite field, this is the only example of a simple abelian variety
whose endomorphism algebra has a one-dimensional centre.

One can view the Tate module as an l-adic analogue of the singular homology group H1(A(C),Z)
in the analytic setting. We will explore this analogy further when talking about the Tate con-
jecture.
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1.6 The dual abelian variety
Let C be a genus g Riemann surface. Then for any choice of a point Q ∈ C, there is the famous
Abel-Jacobi map,

AJQ : C −→ Jac(C), P 7−→ OX(Q− P ).
In genus 1, the Abel-Jacobi theorem implies that this map is an isomorphism.

This demonstrates a much more general phenomenon. A genus 1 Riemann surface is nothing
but a complex elliptic curve (up to the choice of a base point), and Abel-Jacobi says that such
a curve is always isomorphic to its Jacobian variety. For general abelian varieties, we will have
a similar statement: any abelian variety is isogenous to its dual. In the language that we will
develop, the Abel-Jacobi theorem says that any complex elliptic curve is principally polarised.

As in the case of Riemann surfaces, it will turn out that there is a space parameterizing line
bundles on an abelian variety A, and the connected component containing OA is itself an abelian
variety of the same dimension. The space we want to consider is the representing object of the
relative Picard functor.

Definition 1.6.1. Let X be an S-scheme. Define the contravariant functor PicX/S : SchS → Set
on objects via

PicX/S(T ) := Pic(X ×S T )
pr∗T Pic(T )

and on morphisms via the pullback of line bundles.

Theorem 1.6.2. Suppose X is a proper k-variety. Then the relative Picard functor PicX/k is
representable by a separated, locally of finite type k-scheme, denoted by PicX/k. Its universal
family is called the Poincaré bundle, and denoted by PX .

For a discussion, see e.g. [EvdGM, Chapter VI, §1]. Since the Picard functor factors through
the category of abelian groups, so does the functor of points of its representing object, so tauto-
logically, PicX/k is a commutative group scheme. Under our assumptions, it is in general true
that the connected components of such a representing object are projective, but it does not a
priori need to be reduced. However, we have the following result (ibid. Theorem 6.6):

Theorem 1.6.3. The dimension of the tangent space of PicX/k at the identity element equals
dimkH

1(X,OX). In particular, the connected component Xt := Pic0
X/k of PicX/k containing

the identity element is smooth if and only if its dimension equals dimkH
1(X,OX).

In particular, if we can show that dimXt = dimkH
1(X,OX), this group scheme is reduced.

Combining it with the other properties, this means it is an abelian variety, and this is what we
will call the dual abelian variety. The results we want to obtain are summarised in the following
theorem:

Theorem 1.6.4. For an abelian variety X of dimension g, we have that Xt is reduced, hence an
abelian variety. Moreover, for any ample line bundle L, the homomorphism ϕL : X → Xt given
by x 7→ t∗xL ⊗ L−1 is an isogeny, and dimX = dimXt = dimkH

1(X,OX).

The morphism ϕL appearing in the theorem is part of a very important class of homomorphisms,
which we will now define.

Lemma 1.6.5. Let L be a line bundle on an abelian variety X. Then there exists a morphism
ϕL : X → Xt which on points sends x 7→ t∗xL ⊗ L−1.
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Proof. To define the map, note that for any x ∈ X(T ), one can construct a right translation
tx : XT → XT extending Definition 1.1.5. Thus ϕL defines a map of schemes X → PicX/k. It
is a homomorphism by the Theorem of the Square, and its image is contained in Pic0

X/k since
ϕL(0) = OX and X is connected.

One can alternatively describe the Picard functor by considering only line bundles with a cer-
tain rigidification. Doing so leads to the following description of the universal property of the
Poincaré bundle: for every k-scheme T and for every line bundle L on X × T such that L|{0}×T
is trivial, there is a unique morphism f : T → PicX/k such that L = (id× f)∗PX . We call such
a line bundle L a family of line bundles on X parameterized by T .

The morphism ϕL from Lemma 1.6.5 thus gives rise to a family of line bundles on A parameterized
by A. We can describe it explicitly as follows:

Lemma 1.6.6. Let L be a line bundle on X, and let ϕL be the corresponding morphism
X → Xt. Then the pullback of the Poincaré bundle under ϕL is the Mumford bundle Λ(L) on
X ×X, described by

Λ(L) := m∗L ⊗ pr∗1L−1 ⊗ pr∗2L−1.

Note that Λ(L)|{x}×X ∼= t∗xL ⊗ L−1.

Proof. We can view Λ(L) as a line bundle on X parameterized by X. Hence it is the pullback
of the Poincaré bundle under a morphism f : X → Xt. Now let x ∈ X(k) and consider

X × {x} ↪→ X ×X id×f−−−→ X ×Xt.

Considering the pullback of PX under this morphism gives

(id× f(x))∗PX = Λ(L)|X×{x} = t∗xL ⊗ L−1.

But this means precisely that f(x) = t∗xL ⊗ L−1. Indeed, this is how one obtains the natural
isomorphism Hom(−,PicX/k) ∼−→ PicX/k(−): it sends f : T → PicX/k to a family of bundles L
on X × T such that L|X×{t} ∼= f(t). Hence f = ϕL, which is what we wanted.

Definition 1.6.7. For a line bundle L on an abelian variety X, we define K(L) ⊆ X to be the
maximal closed subscheme of X such that Λ(L) restricted to X × K(L) is isomorphic to the
pullback pr∗2M of some line bundle on K(L).

Lemma 1.6.8. The scheme K(L) is well-defined and equal to the fibre of ϕL : X → Xt over
the trivial bundle. Moreover, Λ(L)|X×K(L) ∼= OX×K(L).

Proof. Lemma 1.6.6 implies that Λ(L)|X×{x} is trivial if and only if ϕL(x) = 0 := OX . Hence
K(L) is contained in the kernel of ϕL, and in fact equality holds: by definition of the Picard
functor, the induced morphism S := ker(ϕL) → PicX/k gives a bundle (id × 0)∗PX on X × S.
This is the restriction of the Mumford bundle to X × S. It restricts to the trivial bundle on
horizontal fibres X × {x} since x ∈ ker(ϕL), and to the trivial bundle on the vertical fibre
{0} ×K(L). By the See-Saw Principle (1.1.9), this implies Λ(L)|X×K(L) ∼= OX×K(L).

Note that ϕL(x) = 0 if and only if L is invariant under translation by x. The following theorem
can be interpreted as follows: ample line bundles on abelian varieties are invariant under few
translations.

Theorem 1.6.9. If L is ample, K(L) is a finite group scheme.
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Proof. We may assume k = k̄. We first show that K(L) is a group scheme. Suppose t∗xL ∼= L ∼=
t∗yL. Then by the Theorem of the Square (1.1.11), t∗x+yL ∼= L ⊗ L⊗ L−1 ∼= L.
Next, consider the abelian subvariety Y := K(L)0

red (Proposition 1.1.3). The restriction LY of
L to Y gives an ample line bundle on Y . By Lemma 1.6.8, Λ(LY ) is trivial on Y ×Y , and hence

(1,−1)∗Λ(LY ) = LY ⊗ (−1)∗LY ∼= OY .

On the other hand, since LY is ample, so is the above bundle. Hence Y = Spec(k) and K(L) is
finite.

Definition 1.6.10. A line bundle L on X is non-degenerate if K(L) is finite.

Note that K(L) is the kernel of ϕL, so L is non-degenerate if and only if ϕL is an isogeny.
Moreover, Lemma 1.3.11 says that the rank of K(L) equals degϕ(L).

Remark 1.6.11. The theorem says that ample line bundles are non-degenerate. One can prove
that abelian varieties are projective based on a converse to this statement. The converse does not
hold on the nose, but we have the following statement: any effective non-degenerate line bundle
is ample. Thus projectivity follows once one constructs such an effective line bundle, which is
possible via a clever construction reminiscent of, but simpler than, the proof of projectivity from
the previous section. See [EvdGM, Thm. 2.25] for the details.

We will need one more structural result to prove Theorem 1.6.4.

Theorem 1.6.12 (Borel-Hopf Structure Theorem). Let H• be a graded-commutative bialgebra
over a perfect field k such that Hn = 0 for all n < 0 and H0 ∼= k. Then we have an isomorphism
of bialgebras

H• ∼= H•1 ⊗k . . .⊗k H•n
where each H•i is a graded bialgebra generated by a single element of degree di > 0.

Note that the tensor product of graded algebras has a graded commutative multiplication by
definition. A reference for the case where H• is commutative is [MM65, Thm. 7.11], and the
same argument extends to the graded-commutative case.

Proof of 1.6.4. It remains to show that dimX = dimXt = dimkH
1(X,OX).

Let L be an ample line bundle on X, which exists by Theorem 1.2.6. By Theorem 1.6.9, ϕL :
X → Xt has finite fibres, so dimX ≤ dimXt.
Next, note that the cohomology ring H•(X,OX) of X obtains a comultiplication via

H• := H•(X,OX) m∗−−→ H•(X ×X,OX×X) ∼−−→ H• ⊗H•.

Similarly, the identity e : Spec(k) → X induces a co-unit. Thus, possibly after making a base
change to the perfect field k̄, H• is a graded bialgebra satisfying the criteria of the Borel-Hopf
Structure Theorem, and we may write

H• = H•1 ⊗ . . .⊗H•n

where each H•i is generated by one element xi of degree di. Now we have dimH1 ≤ n ≤
∑
di ≤ g,

where the last inequality follows because x1 ⊗ . . .⊗ xn is a non-zero element of H•, hence must
have degree at most g. But by Theorem 1.6.3, dimXt ≤ dimH1(X,OX) ≤ g = dimX, so we
have equality everywhere. In particular, Xt is smooth, hence reduced and an abelian variety.

We also obtain the following nice corollary about the cohomology of abelian varieties:
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Corollary 1.6.13. If X is an abelian variety, then H•(X,OX) ∼=
∧•
H1(X,OX).

Proof. We have seen that H• := H•(X,OX) is a graded bialgebra with dimH1 = g. Write again
H• ∼= H•1 ⊗ . . . H•n, generated by elements xi of degree di. Since Hn = 0 for n > g, the equality
dimH1 = g implies that n = g and di = 1 for all i. Moreover, we must have x2

i = 0 for all i,
since otherwise the element x1 ⊗ . . . ⊗ x2

i ⊗ . . . ⊗ xg would have degree g + 1. Thus the map∧•
H1 → H• is an isomorphism.

We can now officially define the dual abelian variety.

Definition 1.6.14. Let X be an abelian variety of dimension g. The dual of X is Xt := Pic0
X/k.

From now on, we will denote by PX the Poincaré bundle on X ×Xt, i.e. the restriction of the
universal family of the relative Picard functor to X ×Xt.

Since Xt represents the degree 0 part of the Picard functor, we can also describe PX directly: it
is the image of idXt under the natural isomorphism Homk(Xt, Xt) ∼−→ Pic0

X/k(Xt). We call this
bundle the Poincaré bundle. The universal property can be described as follows.

Definition 1.6.15. Let X be an abelian variety and T a k-scheme. A family of degree 0 line
bundles on X parameterized by T is a line bundle L on X × T such that

1) For any t ∈ T (k), we have L|X×{t} ∈ Pic0(X);

2) L|{0}×T ∼= OT .

Then for every family of degree zero line bundles on X parameterized by T , there is a unique
morphism f : T → Xt such that L = (id× f)∗PX . Explicitly, f(x) = L|X×{x}.

An application of this is the following. For a morphism f : A→ B between abelian varieties, we
can construct a transpose map f t : Bt → At, which is the unique map induced by the family of
degree 0 line bundles (f × idBt)∗PB on A parameterized by Bt. Thus we have by definition

(f × id)∗PB ∼= (id× f t)∗PA.

The term “dual” suggests that the functor (−)t is an auto-equivalence on the category of abelian
varieties. This is indeed true [EvdGM, Chapter VII]:

Theorem 1.6.16. Let X be an abelian variety. Consider the Poincaré bundle PX as a family
of degree 0 line bundles on Xt parameterised by X. It induces an isomorphism

κX : X ∼−−→ (Xt)t,

which induces for any f : X → Y a commutative diagram

(Xt)t X

(Y t)t Y

κX

κY

(f t)t f

Moreover, the duality preserves isogenies, cf. Theorem 1.9.1.

We will regard κX as the canonical way to identify X with (Xt)t.
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1.7 Riemann-Roch for abelian varieties
The main source for the following section is [Jav10], which is a good reference for more back-
ground material and proofs of the quoted results. Another option is [Ful98].

Let X be an n-dimensional smooth projective variety over a field k. Denote by Ar(X) the free
abelian group on irreducible closed codimension r subvarieties modulo rational equivalence; that
is, we say [W ] ∼rat 0 if and only if there exist closed codimension r − 1 subvarieties V1, . . . , VN
of X and elements fi ∈ K(Vi) such that [W ] =

∑
i(fi). The Chow ring of X is the group

A(X) =
⊕n

d=0A
d(X). We will denote by CH(X) the ring Q⊗A(X).

The Chow ring is a graded ring, where multiplication is given by the intersection product.

Given a proper morphism f : X → Y , we have a well-defined ring morphism f∗ : A(X)→ A(Y )
given as follows:

[V ] 7→
{

[K(V ) : K(f(V ))][f(V )] dimV = dim f(V );
0 otherwise.

Given a flat morphism f : X → Y , we have a well-defined ring morphism f∗ : A(Y ) → A(X)
given by [V ] 7→ [f−1(V )]. The degree of f∗ is the relative dimension of f .

Given a vector bundle E of rank r on X, the pullback π∗E of E under π : P(E) → X satisfies
a nice property: it has a filtration with subquotients isomorphic to line bundles. Moreover,
π∗ : A(X) → A(P(E)) is an injection, and this turns A(P(E)) into a free rank r A(X)-module,
spanned by {1, ξ, . . . , ξr−1}, where ξ := OP(E)(1). Thus, we can write

ξr − π∗(a1)ξr−1 + . . .+ (−1)rπ∗(ar) = 0,

and we call ai ∈ A(X) the ith Chern class of E , which we denote by ci(E).
The Chern polynomial of E is defined to be

ct(E) = 1 + c1(E)t+ c2(E)t2 + . . .+ cr(E)tr.

It turns out that ct commutes with pullbacks, and moreover is multiplicative on short exact
sequences. Applying these facts to the morphism π : P(E)→ X, we get

π∗ct(E) = ct(π∗E) = ct(L1) · . . . · ct(Lr) =
r∏
i=1

(1 + c1(Li)t) =
r∏
i=1

(1 + αit).

The αi ∈ A(P(E)) are called the Chern roots of E .
Definition 1.7.1. The Chern character of E is defined to be

ch(E) =
r∑
i=1

exp(αi),

where α1, . . . , αr are the Chern roots, and exp(αi) = 1 + αi + 1
2α

2
i + . . . ∈ CH(X).

We have an equality of formal power series

x

1− exp(−x) = 1 + 1
2x+

∞∑
i=1

B2i

(2i)!x
2i,

where Bi is the ith Bernoulli number.
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Definition 1.7.2. The Todd class of a vector bundle E is defined to be

td(E) =
r∏
j=1

(
1 + 1

2αj +
∞∑
i=1

B2i

(2i)!α
2i
j

)
,

where α1, . . . , αr are the Chern roots of E . The Todd class of X is defined to be td(X) :=
td(TX/k). Given a map f : X → Y , the relative Todd class of f is defined to be td(X)/f∗ td(Y ).

Define the degree map deg : A(X)→ Z to be the composition A(X)→ A(Spec(k)) ∼= Z induced
by the pushforward under the structure morphism. We will also denote it by

∫
.

Theorem 1.7.3 (Riemann-Roch for vector bundles). Let X be a smooth projective curve. For
any vector bundle E , we have that

χ(X, E) = deg(ch(E) td(X)).

Proof. We need the following ingredients:

• Classical Riemann-Roch (for line bundles);

• Both the Euler characteristic and c1 are additive on short exact sequences;

• Each vector bundle E of rank r ≥ 1 can be written as an extension 0→ L → E → E ′ → 0,
where L is a line bundle and E ′ is a rank r − 1 vector bundle.

The proof then follows by induction on r. To see this, note that on a curve, we have ch(E) =∑r
i=1 exp(αi) =

∑r
i=1(1 + αi) = r + c1(E), and td(X) = td(ω∨X) = 1−K/2, giving

deg(ch(E) td(X)) = deg((r + c1(E))(1− 1
2K) = deg(c1(E)) + r(1− g).

The statement holds in general:

Theorem 1.7.4 (Hirzebruch-Riemann-Roch). Let X be a smooth n-dimensional projective vari-
ety and let E be a vector bundle on X. Then

χ(X, E) = deg(ch(E) td(X)).

This follows from the vast generalisation

Theorem 1.7.5 (Grothendieck-Hirzebruch-Riemann-Roch). Let f : X → Y be a proper morph-
ism of smooth quasi-projective varieties over a field k. Then the diagram

K0(X) CH(X)

K0(Y ) CH(Y )

ch · td(X)

f! f∗

ch · td(Y )

commutes.
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Recall that we associated to any line bundle L on X a morphism ϕL : X → Xt such that
ϕL(x) = t∗xL ⊗ L−1.

Theorem 1.7.6 (Riemann-Roch for abelian varieties). Let L be a line bundle on the g-dimensional
abelian variety X. Then χ(L)2 = degϕL, and

χ(L) = c1(L)g

g! .

Proof. The second formula follows from Hirzebruch-Riemann-Roch, since td(X) = 1 by Proposi-
tion 1.1.8. For the first statement we have to work a bit more. We will divide the proof into steps.

Step 1: Let P be the Poincaré bundle on X×Xt, and denote by p2 the projection X×Xt → Xt.
Then

Rnp2,∗P =
{
k0 n = g;
0 otherwise.

Moreover, the sheaf cohomology of the Poincaré bundle is given by

Hn(X ×Xt,P) =
{
k n = g;
0 otherwise.

This can be proven using Grothendieck duality; here we take it for granted. A reference is
[EvdGM, Thm. 9.1].

Step 2.1: Suppose L is non-degenerate, i.e. ϕL is an isogeny. We compute χ(Λ(L)) = (−1)g deg(ϕL)
by applying flat base change and the Leray spectral sequence to exploit the cohomology result
from Step 1. Indeed, Λ(L) = (idX ×ϕL)∗P. Flat base change says that if f : X → Y is qcqs and
g : Y ′ → Y is flat, then

f∗Rig∗F
∼−→ Rig′∗(f ′)∗F .

In our case, the relevant pullback square is

X ×X X ×Xt

X Xt

id× ϕL

p2 p2

ϕL

and flat base change becomes
ϕ∗LR

ip2,∗P
∼−→ Rip2,∗Λ(L).

Now the pre-image of zero under ϕL is precisely K(L), so we obtain

Rnp2,∗Λ(L) =
{
i∗OK(L) n = g;
0 otherwise.

Now we can use the Leray spectral sequence for the morphism p2 : X × X → X and the line
bundle Λ(L). We obtain that Hp+q(X ×X,Λ(L)) has a filtration with subquotients isomorphic
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to Ep+q−i,i∞
∼= Hp+q−i(X,Rip2,∗Λ(L)) which we just saw is non-zero only for i = 0 and p+q = g.

Since moreover dimkH
0(X, i∗OK(L)) = degϕL, we obtain

χ(Λ(L)) = (−1)g degϕL.

Step 2.2: We calculate χ(Λ(L)) in another way, using the definition Λ(L) = m∗L⊗p∗1L−1⊗p∗2L−1.
Recall the projection formula: for f : X → Y a map of ringed spaces and E a locally free OY -
module of finite rank, we have

Rif∗F ⊗ E
∼−→ Rif∗(F ⊗ f∗E).

In our situation, we apply it with f = p2 to obtain

Rip2,∗(Λ(L)) = Rip2,∗(m∗L ⊗ p∗1L−1)⊗ L−1 = Rip2,∗(m∗L ⊗ p∗1L−1),

because Rip2,∗(Λ(L)) is supported on K(L) and L is trivial over K(L). Hence the spectral se-
quence Ep,q2 = Hp(X,Rqp2,∗Λ(L)) converges to bothHp+q(X×X,Λ(L)) andHp+q(X×X,m∗L⊗
p∗1L−1). Thus these cohomology groups are the same.

Next, notice that m× p1 : X ×X ∼−→ X ×X satisfies (m× p1)∗(p∗1L⊗ p∗2L−1) = m∗L⊗ p∗1L−1.
The cohomology of the former can be computed with the Künneth formula, which says that for
F on X and G on Y quasi-coherent sheaves on separated k-schemes, we have

Hn(X × Y,F � G) =
⊕
p+q=n

Hp(X,F)⊗Hq(Y,G),

where F � G := p∗1F ⊗ p∗2G.
Applying this to our situation, we obtained Hn(X ×X,Λ(L)) ∼= Hn(X ×X,L� L−1), so

χ(Λ(L)) =
∑
n

(−1)nhn(X ×X,L� L−1) =
∑
p,q

(−1)p+qhp(X,L)hq(X,L−1) = χ(L)χ(L−1).

Finally, by the Riemann-Roch formula we know χ(L−1) = (−1)gχ(L), so we get

χ(Λ(L)) = (−1)gχ(L)2.

We already knew from Step 2.1 that χ(Λ(L)) = (−1)g deg(ϕL), so in fact deg(ϕL) = χ(L)2.

Step 3: Now suppose L is degenerate, i.e. ϕL is not an isogeny, i.e. K(L) is infinite. Then by
convention deg(ϕL) = 0, so we need to show χ(L) = 0. Similar to Step 2.2, we can show that

χ(m∗L ⊗ p∗2L−1) = (−1)gχ(L)2,

and note that m∗L⊗p∗2L−1 = (id×ϕL)∗(P⊗p∗1L). Now note that for any subscheme G ⊂ K(L)
of order r, we have a factorisation

X ×X

X ×X/G

X ×Xt
id× ϕL

and the projection map is an isogeny. By the next corollary, we get that χ(m∗L ⊗ p∗2L−1) is
divisible by rkG. But rkG can be arbitrarily large, so χ(L) = 0.
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Corollary 1.7.7. Let f : X → Y be an isogeny and L a line bundle on Y . Then

χ(X, f∗L) = deg(f)χ(Y,L).

Proof. Suppose f is an isogeny. Then

χ(f∗L) = c1(f∗L)g

g! = f∗(c1(L)g)
g!

so it suffices to show that
∫
X
f∗[P ] = deg(f) for every closed point P ∈ Y . If f is separable,

f−1(P ) consists of deg(f) points with multiplicity one, so this case works. If f is purely in-
separable, f−1(P ) consists of a single point with multiplicity deg(f), so this case also works.
Decomposing f into its separable and purely inseparable part (Proposition 1.3.14) and using
that the degree is multiplicative gives the general case.

This gives a new way to obtain a standard result about the cohomology of abelian varieties
(which of course we can also deduce from Corollary 1.6.13):

Corollary 1.7.8. Let X be an abelian variety of positive dimension. Then χ(X,OX) = 0.

Proof. The map [n]X has degree n2g > 1 for n > 1. Applying Corollary 1.7.7, we obtain

χ(X,OX) = n2gχ(X,OX),

so χ(X,OX) = 0.

Moreover, the proof of Theorem 1.7.6 lets us deduce an interesting statement about the cohomo-
logy of line bundles:

Corollary 1.7.9. Let L be a non-degenerate line bundle. Then there is a unique 0 ≤ i ≤ g,
called the index of L, such that Hi(X,L) 6= 0.

Proof. Arguing as in the above proof, we find that for L non-degenerate,

hn(X ×X,Λ(L)) =
∑

p+q=n
hp(X,L)hq(X,L−1) =

{
deg(ϕL) n = g;
0 otherwise.

Thus hp and hq are non-zero for some p+ q = n. If there existed p′ 6= p such that hp′(X,L) 6= 0,
hp
′+q(X ×X,Λ(L)) would be non-zero, which contradicts the formula.

1.8 Characteristic polynomials
It might come as a surprise that one can define the notion of a characteristic polynomial for
endomorphisms of abelian varieties, but one can, and it will have all the properties one expects
of it. Before we get to it, let’s recall what it means for a set-function between algebras to be
polynomial.

Definition 1.8.1. Let K be a field, and let V be a free K-module (not necessarily of finite
rank). A set-function f : V → K is said to be a polynomial function if for every n > 0 and any
K-linearly independent set {v1, . . . , vm} ⊂ V , there exists a polynomial P ∈ K[X1, . . . , Xm] such
that for any λ1, . . . , λm ∈ K,

f

(
m∑
i=1

λivi

)
= P (λ1, . . . , λm).
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Similarly, a function V → Kn is called polynomial if its n components are.
We say a polynomial function is homogeneous of degree r if for all λ ∈ K, we have f(λx) = λrf(x).

Remark 1.8.2. The reason for this slightly cumbersome definition is that we can not yet prove
that endomorphism algebras of abelian varieties are finitely generated. We will see this in
Corollary 2.1.3, but this result relies on the theory developed in this section, especially Theorem
1.8.4.

Note that if V is finite-dimensional with basis {e1, . . . , en}, f : V → K is polynomial if and only
if there is a polynomial P such that for any v ∈ V ,

f(v) = f
(∑

λiei

)
= P (λ1, . . . , λn).

The precise polynomial P depends on the choice of basis, but the property of being (homo-
geneous) polynomial does not. One proof of this is that compositions of polynomial functions
are polynomial, and one can check that the identity map V → V is a homogeneous degree 1
polynomial no matter which bases are chosen on the left and on the right.

Examples 1.8.3.
1. Any linear map is a homogeneous polynomial function of degree 1, as can be seen by choosing
a matrix representing it.
2. Let L/k be a degree n field extension. Then the norm NmL/k and trace TrL/k are polynomial
functions L→ k. Indeed, after choosing a k-basis for L, they are the compositions of the linear
map L → Mn×n(k) sending α 7→ ·α, with the determinant, resp. trace function Mn×n(k) → k,
both of which are clearly polynomial.
3. Given a bilinear map B : S × S → T , the composition S

∆−→ S × S B−→ T is homogeneous of
degree 2, as is easily verified by a calculation with an explicit basis.

Theorem 1.8.4. Let A be an abelian variety. Then there exists a homogeneous polynomial
function of degree 2g on the endomorphism ring End0(A) which sends 1⊗ f 7→ deg f .

Proof. Since A is projective, there exists an ample line bundle L on A. We may assume without
loss of generality that it is symmetric; if not, replace it with L⊗ (−1)∗L. By Riemann-Roch and
Corollary 1.7.7, we have

χ(A,L) = c1(L)g

g! and χ(A, f∗L) = deg(f)χ(A,L),

and hence
deg(f) = c1(f∗L)g

c1(L)g .

Consider the map γ : Endk(A) → CH1(A), f 7→ c1(f∗L). We can write this as γ = BL(f, f)/2,
where BL : Endk(A)× Endk(A)→ CH1(A) is given by

BL(f, h) = c1((f + h)∗L ⊗ f∗L−1 ⊗ h∗L−1);

here we use that 2∗L ∼= L4 (Corollary 1.5.4).

It follows from the Theorem of the Cube (1.1.10) that BL is bilinear: calculating BL(f + f ′, h)
and expanding (f + f ′ + h)∗L gives BL(f, h) + BL(f ′, h). This says that in some sense, γ is a
homogeneous degree 2 polynomial function. More explicitly, we verify that

f 7−→ deg f = γ(f)g

c1(L)g
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is homogeneous of degree 2g. Let f1, . . . , fn be Z-linearly independent endomorphisms and
a1, . . . , an ∈ Z. Then

γ(
∑
aifi)g

c1(L)g = 1
2c1(L)g

∑
i,j

aiajBL(fi, fj)

g

= P (a1, . . . , an),

where P ∈ Q[X1, . . . , Xn] is the polynomial given by

1
2c1(L)g

∑
k1,1+...+kn,n=g

(
g

k1,1, . . . , kn,n

)∏
i,j

(BL(fi, fj)XiXj)ki,j ,

by the multinomial theorem. Throughout this calculation, we’ve neglected to write the degree
map CHg(A) → Z, but doing so makes clear that the polynomial has Q-coefficients. It is also
seen to be homogeneous of degree 2g. Thus, the extension of deg : Endk(A)→ N to End0(A) by
declaring

q ⊗ f 7→ q2g deg f
gives a homogeneous degree 2g polynomial function on the endomorphism algebra.

Definition 1.8.5. Let f ∈ End0(A). The characteristic polynomial of f is defined to be

Pf (t) = deg(t− f) ∈ Q[t].

That is, Pf (t) is the unique polynomial which interpolates the points (n, deg([n]A − f)), n ∈ Z.
The minimal polynomial is monic and has degree 2g by Theorem 1.8.4. Indeed, since n and f
both lie in the Q-span of {idA, f}, we see that P can be represented by a two-variable polynomial
P (X,Y ) (the case where idA and f are linearly dependent is left as an exercise). Then P (n,−1)
is monic of degree 2g because the X2g-coefficient of P is deg(idA) = 1. We will also see that for
f ∈ Endk(A), we have Pf (t) ∈ Z[t].

1.9 Weil pairings
The dual abelian variety bears a relationship to the theory of Cartier duals for finite group
schemes. We saw that finite group schemes naturally occur as kernels of isogenies between
abelian varieties, and in this setting the two dualities interact as well as possible [EvdGM, Thm.
7.5]:
Theorem 1.9.1. Let f : X → Y be an isogeny. Then f t : Y t → Xt is an isogeny as well, and

ker f t ∼= (ker f)D.

We use this theorem to construct for each isogeny f a perfect pairing

ef : ker f × ker f t −→ Gm.

To do this, recall that the Cartier dual GD represents the functor Hom(G,Gm), so that we can
define the pairing on T -points via

ef (x, y) = α(y)(x),
where α : ker f t ∼−→ (ker f)D. In particular, taking f = [n]X we get the Weil pairings

en : X[n]×Xt[n] −→ µn ⊂ Gm,k.

To relate the Weil pairings for varying n, we need the following statement [EvdGM, Prop.
11.21(ii)]:
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Proposition 1.9.2. Let f : X → Y and g : Y → Z be isogenies, and denote h = g ◦ f . Then
for all x ∈ (ker f)(T ) and y ∈ (kerht)(T ), we have

ef (x, gt(y)) = eh(x, y).

We apply this to the case where X = Y = Z and f = [n]X , g = [m]X . Then we obtain, for
x ∈ X[n](ks) and y ∈ Xt[nm](ks),

enm(x, y) = en(x,my) = en(x, y)m.

From this we can deduce that the Weil pairings eln for varying n are compatible up to a twist (the
so-called Tate twist), which we now explain. Consider the Tate modules Tl(X) = lim←−X[ln](ks)
and Tl(Xt). Let x = (0, x1, x2, . . .) ∈ Tl(X) and y = (0, y1, y2, . . .) ∈ Tl(Xt) be elements, so
lxi+1 = xi for all i. Then the above says that

eln(xn, yn) = eln+1(lxn+1, yn+1) = eln+1(xn+1, yn+1)l.

This means that we can extend the Weil pairing to the Tate modules, and tensoring with Q gives

〈−,−〉 : Vl(X)× Vl(Xt) −→ Vl(Gm) =: Ql(1).

To finalise the construction, we can replace the duals by homomorphisms:

Definition 1.9.3. Let f : X → Xt be a homomorphism. Denote by efn the pairingX[n]×X[n]→
µn given by

efn(x, y) = en(x, f(y)).
This extends to a pairing Hf (x, y) := 〈x, f(y)〉 : Vl(X)× Vl(X)→ Ql(1).

We summarise the most important properties of this pairing in the following theorem:

Theorem 1.9.4. Let f : X → Xt be a homomorphism. Then the pairing Hf is bilinear,
alternating, and Gal(ks/k)-equivariant. If f is an isogeny, it is non-degenerate.

As we will see, Weil pairings will play a crucial role in the proof of Tate’s theorem. They will
also appear again in Part II. It is sometimes useful to consider Weil pairings from the following
point of view: one can associate to any ample divisor D the polarisation f := ϕO(D), which gives
rise to the non-degenerate alternating pairing Hf ∈ Hom(

∧2
Vl(X),Ql(1)). On the other hand,

we have a chain of isomorphisms

H2(X,Ql(1)) ∼−→ (
∧2
H1(X,Ql))(1) ∼−→ Hom(

∧2
H1(X,Ql)∨,Ql(1)),

and since H1(X,Ql)∨ ∼= Vl(X), we again get a non-degenerate alternating pairing eD associated
to the element cl(D) ∈ H2(X,Ql(1)). This eD is precisely the pairing Hf .

1.10 Polarisations
The last notion we need for Tate’s theorem is that of a polarisation. Recall that we defined for
any line bundle L a homomorphism ϕL : X → Xt sending x 7→ t∗xL ⊗ L−1.

Definition 1.10.1. A homomorphism f : X → Xt is symmetric if f = f t under the canonical
isomorphism κX : (Xt)t ∼= X from Theorem 1.6.16.
A homomorphism ϑ : X → Xt is called a polarisation if it is symmetric and there exists a field
extension K/k such that ϑK is of the form ϕL : XK → Xt

K for an ample line bundle L on XK .
A polarisation is called principal if it is an isomorphism. In this case we say A is principally
polarised.
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Remark 1.10.2.
1. The line bundle L may not be defined over k, but if ϑ is a polarization, then there exists
already a finite separable field extension K/k such that L is defined over K [EvdGM, Prop.
11.2].
2. Not every abelian variety is principally polarised, but elliptic curves always are (by the Abel-
Jacobi theorem). However, any abelian variety over an algebraically closed field is isogenous to
a principally polarised abelian variety [EvdGM, Cor. 11.26].
3. By Riemann-Roch (Theorem 1.7.6), the degree of an isogeny is always a square. Indeed, since
the rank of a group scheme is invariant under base change, we have deg ϑ = deg ϑK = degϕL =
χ(L)2. Moreover, we see that deg ϑ = 1 if and only if ϑ is principal.

To a polarisation ϑ : X → Xt we can always associate an ample line bundle M on X, even if ϑ
is not of the form ϕL:

Proposition 1.10.3. Let ϑ : X → Xt be a polarisation. Then the line bundleM := (id, ϑ)∗PX
is ample on X.

Proof. Suppose K/k is an extension such that ϑK = ϕL. We have ϕM = ϑ + ϑt = 2ϑ, so
ϕMK

= 2ϕL = ϕL⊗2 . Thus M is non-degenerate if and only if L is. Moreover, by the theory of
indices of line bundles, one can show that M is effective if and only if L is effective if and only
if L⊗2 is effective [EvdGM, Prop. 9.18(ii), Cor. 9.23]. Since being ample is equivalent to being
effective and non-degenerate, the result follows.

Proposition 1.10.4. Suppose f : X → Y is an isogeny and ϑ : Y → Y t is a polarisation. Then
f∗ϑ := f tϑf is a polarisation of degree deg(f)2 deg(ϑ).

Proof. By Theorem 1.9.1, f∗ϑ is a symmetric isogeny of degree deg(f)2 deg(ϑ). To see that it
is a polarisation, let K/k be such that ϑK = ϕL. Note that f tϕMf = ϕf∗M, since t∗xf∗M =
f∗t∗f(x)M. Hence

(f tϑf)K = f tKϕLfK = ϕf∗
K
L,

and f∗KL is ample since f is finite.

As a final application, we will define the Rosati involution on the endomorphism algebra of an
abelian variety, which will play a role in Part II.

Definition 1.10.5. Let ϑ : X → Xt be a polarisation. Since ϑ becomes invertible in End0(X),
we have a ring endomorphism of End0(X) given by

f 7−→ f† := ϑ−1f tϑ,

called the Rosati involution associated to ϑ.

It is clear from the definition that the Rosati involution depends on the choice of ϑ only up to a
conjugation. In particular, the restriction of (−)† to the centre of the endomorphism algebra is
well-defined.

An important fact about the Rosati involution is that it is positive [EvdGM, Thm. 12.26]. Thus,
endomorphism algebras of abelian varieties are semisimple Q-algebras equipped with a positive
involution, which leads to a classification of abelian varieties into four types called the Albert
classification. Unfortunately we will not go into this in more detail. However, we do have the
tools at hand to prove another important application of the positivity of the Rosati involution,
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namely the Riemann hypothesis for abelian varieties over finite fields.

Suppose k = Fq, and let X/k be an abelian variety. Then X has a Frobenius endomorphism πX ,
which is topologically the identity and on sections sends s 7→ sq.

Theorem 1.10.6 (Riemann hypothesis for abelian varieties). Let X/Fq be an abelian variety,
and let fX denote the characteristic polynomial of πX . Then fX has Weil q-numbers as roots.

Proof. Fix a polarisation ϑ : X → Xt. It is clear that πX lies in the centre of End0(X), so π†X
does not depend on the choice of polarisation. We first show that π†XπX = q.
By definition,

π†XπX = ϑ−1πtX ϑπX .

By Proposition 1.10.3, the bundle L := (id, ϑ)∗PX is ample on X, and we have ϕL = 2ϑ. Hence
also

π†XπX = ϕLπ
t
X ϕLπX .

Thus, it suffices to show that πtX ϕLπX = ϕL [q]X . We check this on points. For x ∈ X(T ), we
have

(πtX ϕLπX)(x) = π∗X(t∗πX(x)L ⊗ L
−1) = t∗xπ

∗
XL−1 ⊗ π∗XL−1.

Now since π∗XL = L⊗q, this equals ϕL⊗q (x) = qϕL(x), as required.

Next, we use the positivity of the Rosati involution. We may assume that X is simple, in which
case Q[πX ] ⊂ End0(X) is a number field preserved by the positive involution (−)†, since we
just showed that π†X = q/πX . Hence Q[πX ] is either totally real and (−)† = id, or Q[πX ] is
an imaginary quadratic extension of a totally real field and (−)† is complex conjugation. Since
the roots of fX are precisely the complex numbers occurring as ι(πX) for some ι : Q[πX ] ↪→ Q
(we will prove this in Proposition 2.4.4.1), the fact that π†XπX = q means that ||ι(πX)||2 = q
for any ι. Moreover, fX is monic with integer coefficients, so the roots of fX are indeed Weil
q-numbers.

The above theorem deserves the name Riemann hypothesis (in the sense of the Weil conjectures)
because as we will see, the roots of fX are precisely the eigenvalues of Frobenius acting on the Tate
module. Moreover, for abelian varieties, H1(X,Ql) ∼= Vl(X)∨, and H•(X,Ql) ∼=

∧•
H1(X,Ql),

so this determines the eigenvalues of Frobenius on the whole cohomology.

We now have the prerequisites needed to understand Tate’s theorem.
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2. Tate’s theorem
In 1966, Tate published the beautiful paper “Endomorphisms of Abelian Varieties over Finite
Fields” [Tat66], in which he proved the simplest case of the Tate conjecture. In this chapter, we
will study the proof in detail.

2.1 Statement of the theorem
Setting: A is an abelian variety of dimension g over a finite field k of characteristic p > 0, and
G = Gal(k) ∼= Ẑ, topologically generated by the Frobenius π. The theorem we want to prove is
the following.

Theorem 2.1.1. Suppose k is a finite field of characteristic p, and let A′, A′′ be two abelian
varieties defined over k. For any prime l 6= p, the map

Zl ⊗Homk(A′, A′′) −→ HomG(Tl(A′), Tl(A′′)) (2.1)

is an isomorphism.

The content of this statement is that the Tate module retains so much information about
an abelian variety that G-equivariant morphisms between them always come from morphisms
between the abelian varieties themselves. In particular, as we will see in Corollary 2.4.1, two
abelian varieties are k-isogenous if and only if their Tate modules are G-isomorphic.

Half of the theorem is in fact doable without too much machinery:

Proposition 2.1.2. The map (2.1) is injective.

Proof. First note that H := Homk(A′, A′′) is torsion-free. We have remarked this before, but
here is another argument: For n > 0, we have nf = f ◦ [n]A′ and [n]A′ is surjective. So
nf = 0 =⇒ f = 0.

To prove the proposition, we factor the map through the l-adic completion of Homk(A′, A′′):

Zl ⊗Homk(A′, A′′) (1)−−→ ̂Homk(A′, A′′) (2)−−→ HomG(Tl(A′), Tl(A′′))

We will show injectivity of both maps.

(2): Since injections commute with inverse limits and since the right-hand side of (2) is its own
l-adic completion, it suffices to show that

Homk(A′, A′′)/(ln) −→ HomG(Tl(A′), Tl(A′′))/(ln)

is injective for all n. Suppose ϕ ∈ Homk(A′, A′′) such that Tl(ϕ) = lnf ∈ HomG(Tl(A′), Tl(A′′)).
Then Tl(ϕ) vanishes on A[ln](ks), i.e. ϕ|A[ln] = 0. Thus we get a factorisation

A

AA/A[ln]

A
ϕ

g

∼
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Here the composition A→ A/A[ln] ∼−→ A is [ln]A. Hence ϕ = lng, i.e. ϕ ≡ 0 mod ln.

(1): Suppose we have an element x =
∑
xi ⊗ fi in the kernel of (1). Let M = 〈fi〉Z be the free

Z-module generated by the fi. Suppose for a moment that

M sat := {f ∈ Homk(A′, A′′) | nf ∈M for some n ≥ 1}

is also finitely generated. Then Zl ⊗M sat ∼−→ M̂ sat, since both sides can be identified with Znl
for some n = rk(M sat). Moreover, the map M̂ sat → ̂Homk(A′, A′′) is injective. To see this, we
consider again the maps

M sat/(ln) −→ Homk(A′, A′′)/(ln).

Suppose m ∈M sat satisfies the equation m = lnϕ in Homk(A′, A′′). Then by definition of M sat,
we have ϕ ∈M sat, so already m ≡ 0 mod ln.

Now x already lies in Zl ⊗M sat, and maps to zero in ̂Homk(A′, A′′); hence x = 0 and (1) is
injective.

It remains to show that if M is finitely generated, then so is M sat.
By the Poincaré splitting theorem (1.4.2), we have an injection Homk(A′, A′′) ↪→

∏
Homk(A′i, A′′j )

for some simple abelian varieties A′i, A′′j . If the saturation of M inside this product is finitely gen-
erated, we are done (since subgroups of finitely generated abelian groups are finitely generated);
equivalently the saturation of the image of M in each factor of the product is finitely generated.
So we may reduce to the case where A′ and A′′ are simple. But then Homk(A′, A′′) = 0 unless
A′ and A′′ are isogenous, in which case we get an injection Homk(A′, A′′) ↪→ Endk(A′). This
reduces us to the case where M is a finitely generated subgroup of Endk(A′).

Now consider the finite-dimensional Q-vector space Q⊗M . We can see M sat as a sublattice: if
nf = g ∈M , then f = 1

n ⊗ g ∈ Q⊗M .

By Theorem 1.8.4, there exists a polynomial P which represents f 7→ deg f after choosing a
generating set for M . Then U = {|P (a⊗ f)| < 1} ⊂ Q⊗M is an open neighbourhood of 0 such
that M sat ∩U = 0, since the degree of a non-zero endomorphism of a simple abelian variety is a
non-zero integer. Thus M sat is discrete in Q⊗M and hence finitely generated.

Since the right-hand side of (2.1) is finite-dimensional over Zl, we obtain the following remarkable
fact:

Corollary 2.1.3. Let A and B be abelian varieties over a field k of positive characteristic. Then
Homk(A,B) is a finitely generated abelian group.

Before we go on with the proof of Tate’s theorem, it is natural to wonder how it relates to the
Tate conjecture as described in the introduction. The connection is as follows:

Proposition 2.1.4. Tate’s theorem is equivalent to the Tate conjecture (0.0.1) for abelian
varieties over finite fields for r = 1.

Proof. We sketch a proof which relies on a number of identifications in étale cohomology.
Firstly, there is a natural identification H1(A,Ql) ∼= Vl(A)∨. The Weil pairing

H1(A,Ql)×H1(At,Ql) −→ Ql(−1)
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then gives the identification H1(At,Ql) ∼= Vl(A).
Using this, we have the following commutative diagram with G-equivariant maps:

Ql ⊗ Endk(A)

Ql ⊗ Pic0(A×At)

H2(A×At,Ql(1)) H1(A,Ql)⊗H1(At,Ql(1))

(Vl(A))∨ ⊗ Vl(A)

EndQl(Vl(A))

(1)

(2)
(3)

∼

∼

Here the maps are as follows:

• (1): Induced by Endk(A) 3 f 7−→ (f × id)∗PA;

• (2): Induced by the cycle class map on Pic0(A×At) ⊂ CH1(A×At);

• (3): Induced by the Künneth isomorphism.

In Lemma 2.2.2, we will see that Tate’s theorem is equivalent to the upper horizontal map being
an isomorphism after taking G-equivariant endomorphisms on the target, which holds if and only
if (3) ◦ (2) ◦ (1) is an isomorphism after taking G-invariants on the target, which is equivalent to
the Tate conjecture for A×At and r = 1.

2.2 Reduction steps
It remains to show surjectivity of (2.1). In order to prove this, we start with some preliminary
reduction steps.

Lemma 2.2.1. Consider the map

Ql ⊗Zl Homk(A′, A′′) −→ HomG(Vl(A′), Vl(A′′)). (2.2)

Then (2.2) is injective, and bijective if and only if (2.1) is.

Proof. The map (2.2) is obtained by tensoring (2.1) with Ql and then composing with the natural
map

Ql ⊗Zl HomG(Tl(A′), Tl(A′′)) −→ HomG(Vl(A′), Vl(A′′)).

This is an isomorphism because Tl(A′) is a free Zl-module of rank 2g, so both sides can be identi-
fied with the G-invariant elements of Vl(A′′)2g. A map of this form is in general an isomorphism
if whatever is in place of Tl(A′) is finitely presented.
Now injectivity of (2.2) is just flatness of Ql over Zl. For the converse, denote by C the cokernel
of the map (2.1); then we want to show that Ql ⊗ C = 0 ⇐⇒ C = 0. For this it suffices that
C is torsion-free (as in any case it is finitely generated over a PID). Elements of C can only be
annihilated by elements of the form ln, so we will check that there is no l-torsion.
Suppose ϕ : Tl(A′) → Tl(A′′) is such that lϕ =

∑
ai ⊗ Tl(fi). Then lϕ is a limit of elements in

HomG(Tl(A′), Tl(A′′)) of the form Tl(f (n)) for f (n) =
∑
ai,nfi, where ai,n = ai (mod ln). Hence
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Tl(f (n)) ∈ lHomG(Tl(A′), Tl(A′′)) for large enough n. Thus A[l] ⊂ ker f (n) for large n, meaning
f (n) factors through l, i.e. we can write f (n) = lg(n) for some g(n). If we denote by f the limit
of the f (n) in Zl ⊗Homk(A′, A′′), then also f is a multiple of l, say f = lg. But by construction
Tl(f) = lϕ, so Tl(g) = ϕ, i.e. ϕ = 0 ∈ C.

Next, we will see that we can restrict to endomorphism rings and a single prime l.

Lemma 2.2.2. To prove bijectivity of (2.2) for any pair of abelian varieties and any prime l 6= p,
it suffices to show that there exists one l such that for any abelian variety A, the map

Ql ⊗ Endk(A) ↪→ EndG(Vl(A)) (2.3)

is surjective, and that the dimension of the right-hand side does not depend on l.

Proof. To compare the statement with endomorphism rings to the statement with Hom-spaces,
consider the product variety A′ ×A′′. This is a biproduct, so

Endk(A′ ×A′′) ∼= Endk(A′)×Homk(A′, A′′)×Homk(A′′, A′)× Endk(A′′).

Similarly, Vl(A′ × A′′) ∼= Vl(A′) × Vl(A′′), and this is a biproduct too (in the category of G-
modules). By naturality, we get a commutative square

Ql ⊗ Endk(A′ ×A′′) Ql ⊗
(

Endk(A′) Homk(A′, A′′)
Homk(A′′, A′) Endk(A′′)

)

EndG(Vl(A×A′′))
(

EndG(Vl(A′)) HomG(Vl(A′), Vl(A′′))
HomG(Vl(A′′), Vl(A′)) EndG(Vl(A′′))

)

∼

∼

If either of the vertical maps is an iso, so is the other one. The right vertical map is a product
of maps of the form (2.1), and is an isomorphism if and only if all its components are.

For the l-independence, note that the dimension of the left-hand side of (2.3) does not depend on
l. If the right-hand side also has l-independent dimension, we see that the map is an isomorphism
for all l 6= p as soon as it is for one, because it is always injective by Proposition 2.1.2.

As a final reduction step, we consider two subalgebras of End(Vl(A)) (Ql-linear endomorphisms):

• El := the image of the injection (2.3);

• Fl := the subalgebra generated by G.

The following classical theorem is our main ingredient:

Theorem 2.2.3 (Double Centraliser Theorem). Let R be a semisimple algebra over a field k,
and let V be a faithful R-module which is finite-dimensional over k. Then

CEndk(V )(CEndk(V )(R)) = R,

where CEndk(V )(R′) denotes the centraliser of R′ in Endk(V ).
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The last reduction step is as follows:

Lemma 2.2.4. If Fl is semisimple (as an algebra), the bijectivity of (2.3) is equivalent to Fl
being the centraliser of El in End(Vl(A)).

Proof. By general theory, semisimplicity is preserved under tensoring with characteristic 0 field
extensions. Thus by Proposition 1.4.4, El ∼= Ql ⊗ Endk(A) is semisimple. Then we can apply
the double centraliser theorem in the case k = Ql, V = Vl(A), and R = Fl, resp. El to obtain

CEnd(Vl(A))(CEnd(Vl(A))(Fl)) = Fl, (2.4)
CEnd(Vl(A))(CEnd(Vl(A))(El)) = El. (2.5)

The key observation is that by definition,

CEnd(Vl(A))(Fl) = {f ∈ End(Vl(A)) | f ◦ ϕ = ϕ ◦ f ∀ϕ ∈ Fl} = EndG(Vl(A)),

as Fl is generated by G.

Now suppose (2.3) is bijective. Then El = CEnd(Vl(A))(Fl), so equation (2.4) gives that Fl is the
centraliser of El, as required.

Conversely, suppose that Fl is the centraliser of El. Then equation (2.5) says that El is the
centraliser of Fl, i.e. El = EndG(Vl(A)), i.e. (2.3) is surjective.

2.3 The proof
After the reduction steps, it suffices to show that the dimension of EndG(Vl(A)) does not depend
on the prime l, and that there exists an l such that Fl is semisimple and equals the centraliser
of El in EndQl(Vl(A)).

One of the main actors in the proof will be the Frobenius endomorphism of an abelian variety.
If k = Fq, this is simply the endomorphism πA of A sending x 7→ xq on sections. It is a
homomorphism, so it acts on the Tate module. Denoting by F an algebraic closure of k, we have
for all n a commutative diagram

Spec(F)

Spec(F)

A[ln]

A[ln]

π πA

and hence the action of πA is the same as the action of π−1 ∈ Gal(Fq).

Lemma 2.3.1. Let A be an abelian variety over a finite field. Then Q[πA] ⊆ End0(A) is a
semisimple algebra. In particular, if πA acts on a K-algebra with K a field of characteristic zero,
then it acts semisimply.

Proof. From the definition of the Frobenius endomorphism, we see that it lies in the centre of
the endomorphism algebra. Now a commutative Q-algebra is semisimple if and only if it is
reduced. In our case, End0(A) is a product of matrix rings over division algebras, so the centre is
a product of fields, hence reduced. For the last statement, note that semisimplicity is preserved
under tensoring with characteristic zero field extensions, and a K-algebra is semisimple if and
only if it acts semisimply on any representation.

31



After Tate’s theorem, we will be able to prove that in fact Q[πA] = Z(End0(A)).

The next observation is a finiteness statement. In our case, we obtain it because we work over a
finite field, but a variant of this finiteness hypothesis is also what makes Faltings’ proof of the
analogue of Tate’s theorem over number fields work. We briefly recall the definition of Hilbert
polynomials:

Let L be an ample line bundle on a projective scheme X. Then for any coherent OX -module F ,
the Euler characteristic of F ⊗ L⊗n is polynomial in n. More precisely, we have

ΦF,L(n) = χ(F ⊗ L⊗n) ∈ Q[n].

This is called the Hilbert polynomial of F with respect to L. Given an embedding i : X ↪→ PNk ,
the Hilbert polynomial of X is defined as ΦX := ΦOX ,i∗O(1).

Lemma 2.3.2. Let A be an abelian variety over a finite field k, and let d ≥ 1 be an integer.
Then there are only finitely many isomorphism classes of abelian varieties B which carry a degree
d2 polarisation over k and are isogenous to A.

Proof. This follows from the theorem of Grothendieck that the Hilbert scheme of subschemes of
PNk with given Hilbert polynomial is of finite type over k and thus has finitely many k-points
[FGI+00, Chapter 5], Chapter 5. Assuming this, let λ be a degree d2 polarisation on B, and let
L be the corresponding ample line bundle. As mentioned in Remark 1.2.7, L⊗3 is very ample,
and by Riemann-Roch and Corollary 1.7.9,

h0(L⊗3) = χ(L⊗3) = c1(L⊗3)g

g! = 3gc1(L)g

g! = 3gd,

so we obtain an embedding of B into PNk , where N = 3gd− 1. Moreover, the Hilbert polynomial
of this embedding is given by

ΦB(n) = χ(L⊗3n) = c1(L⊗3n)g

g! = (3n)gd.

Thus, both N and ΦB depend only on g and d. This proves the lemma.

Since we are studying centralisers, the following lemma will be useful.

Lemma 2.3.3. Let K be a field of characteristic zero, and let V and W be a finite-dimensional
K-vector spaces. Suppose ϕV ∈ EndK(V ), ϕW ∈ EndK(W ) act semisimply. Then

dim{f ∈ EndK(V ) | ϕW ◦ f = f ◦ ϕV } = r(ϕV , ϕW ),

where
r(ϕV , ϕW ) :=

∑
P

a(P )b(P ) deg(P )

and fV =
∏
P P

a(P ), fW =
∏
P P

b(P ) are the decomposition of the characteristic polynomials of
ϕV and ϕW into irreducible factors.

Proof. The situation clears up when we regard V and W as K[X] modules, with X acting
through ϕV , resp. ϕW . Then the semisimplicity assumption implies that V and W decompose
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according to the characteristic polynomials. More precisely, we write MP := K[X]/(P (X)) for
the simple K[X]-module corresponding to the irreducible polynomial P . Then we have

V ∼=
⊕
P

M
a(P )
P , W ∼=

⊕
P

M
b(P )
P .

Now dimK HomK[X](MP ,MQ) is zero unless P = Q, in which case it is deg(P ) (consider the
image of 1 ∈MP ). Thus indeed HomK[X](V,W ) = r(ϕV , ϕW ).

Note that the value r(f, g) does not depend on the field over which f and g are factorised, because
irreducible polynomials have no repeated factors in characteristic zero.

Proposition 2.3.4. The dimension of EndG(Vl(A)) is independent of the prime l.

Proof. The Frobenius πA acts on Vl(A) via a matrix. Let fA be its characteristic polynomial.
Then fA has Q-coefficients which do not depend on l (see Theorem 2.3.5 for a proof), and we
can factorise it over any extension K of Q as

fA =
∏
P

P a(P )

where the product is over all irreducible polynomials in K[X].

We want to determine r := dim EndG(Vl(A)). Since G is topologically generated by the Frobenius
element, which acts on Vl(A) as the inverse to πA, we obtain

r = dim{f ∈ EndQl(Vl(A)) | πA ◦ f = f ◦ πA}.

By Lemma 2.3.1, the Frobenius morphism acts semisimply, so by Lemma 2.3.3, r = r(fA, fA).
This is independent of l, as required.

It remains to show that there exists some l for which Ql ⊗ Endk(A) ∼−→ EndG(Vl(A)), or equi-
valently, for which Fl is semisimple and equals the centraliser of El in Endk(Vl(A)).

Let ϑ : A→ At be a polarisation of A defined over k, and denote deg ϑ = d2. Then the function

Hϑ : Vl(A)× Vl(A) −→ Ql(1), (x, y) 7−→ 〈x, ϑ(y)〉

where 〈−,−〉 denotes the Weil pairing, defines a non-degenerate alternating bilinear form (cf.
Theorem 1.9.4). Recall that a subspace W ⊂ V is called isotropic with respect to a form if
〈W,W 〉 = 0.

The rest of the proof now goes as follows:

1. There exists an l for which Fl is isomorphic to a direct sum of copies of Ql.

2. For any such l, let D denote the centraliser of El. Let W be an isotropic subspace of Vl(A)
which is stable under G. By descending induction on dimW , show that W is stable under
D.

3. Applying this result with dimW = 1, we see that every eigenvector of Fl in Vl(A) is an
eigenvector of D: indeed, if Flv ⊆ 〈v〉, then 〈v〉 is stable under G and so also Dv ⊆ 〈v〉.
Now Fl ∼=

⊕
Ql decomposes Vl(A) ∼=

⊕
Vi as an Fl-algebra, on each of whose summands

Fl acts by a scalar. So D acts on every summand by a scalar too.
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4. An endomorphism d acting on each non-zero element of a vector space Vi by a scalar must
be a scalar. Indeed, for any v, w non-zero, d(v + w) = λ(v + w) = µ1v + µ2w, so µ1 = µ2.
So D ⊆ Fl which implies D = Fl, so we are done.

Proof of 1. Consider again Q[πA] ⊆ End0(A). We saw that this is a semisimple subalgebra
contained in the centre, hence is a product of fields, say

∏
Ki. We also know Fl = Ql ⊗Q[πA],

so we can write
Fl =

∏
v|l

(Ki)v,

so it is a product of l-adic fields. We now want to show that there exists a prime l such that
(Ki)v ∼= Ql for all i and all v | l. For this, we need l to split completely in all the Ki, i.e. (l)
needs to be a product of distinct prime ideals in OKi . This is the case for infinitely many primes
l: by Chebotarev, the primes that split completely in a finite Galois extension K/Q have positive
density, and any such prime must be split in any subextension; so take for K the Galois closure
of the compositum of the Ki.

Proof of 2: Base case. Suppose W is a G-stable subspace which is maximal isotropic for Hϑ (this
exists because Fl acts by diagonal matrices, hence we can pick a basis of G-stable elements).
Consider for n ≥ 0

Xn := (Tl(A) ∩W ) + lnTl(A)

which is an index lng Zl-submodule of Tl(A).

Let X ′n be the image of Xn in Tl(A)/lnTl(A) ∼= A[ln](ks). Since X ′n is a G-stable subset, it in
fact defines a finite subgroup scheme of order lng, so we can take the quotient B(n) := A/X ′n and
get a separable isogeny A → B(n). Since lnTl(A) ⊂ Xn, the map ln : A → A factors through a
map fn : B(n)→ A. Its kernel is X ′n, so deg fn = lng.

We now want to show that imTl(fn) = Xn. The factorisation

Tl(A)→ Tl(B(n)) Tl(fn)−−−−→ Tl(A)

is multiplication by ln. This implies that imTl(fn) contains lnTl(A), and we have

imTl(f)
lnTl(A)

∼= im(f : B(n)[ln](ks)→ A[ln](ks)). (2.6)

Since B(n) = A/X ′n, we have B(n)[ln](ks) = [ln]−1
A (X ′n)/X ′n, and under this identification, f

simply sends a + X ′n 7→ lna + X ′n. In other words, the image from (2.6) is precisely X ′n, so the
image of Tl(f) is precisely Xn.

Now B(n) has a degree d2 polarisation l−nf∗nϑ defined over k. To see this, note that f∗nϑ = f tnϑfn
is a polarisation of degree (deg fn)2 deg ϑ = l2gnd2 (cf. Proposition 1.10.4). Considering now the
alternating bilinear form Hf∗nϑ

: Tl(B(n))× Tl(B(n))→ Zl(1), we have

Hf∗nϑ
(x, y) = 〈x, f tnϑfny〉 = 〈fnx, ϑfny〉 = Hϑ(fnx, fny).

Now fnx, fny lie in Xn and W is isotropic for Hϑ, so Hϑ(Xn, Xn) = Hϑ(lnTl(A), Xn) ⊂ lnZl(1).
This implies that the polarisation f∗nϑ can be written as ψn ◦ ln, where ψn is a polarisation of
degree d2. This shows that B(n) has the claimed polarisation.
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Since each B(n) is isogenous to A, Lemma 2.3.2 implies that infinitely many of the B(n) are
isomorphic. Say I ⊂ N is an infinite index set such that B(i) ∼= B(j) for all i, j ∈ I. Let n be the
minimal element in I and let vi : B(n)→ B(i) be an isomorphism. Let ui := fivif

−1
n ∈ End0(A).

Then Vl(ui)(Xn) = Xi ⊂ Xn. By compactness of EndZl(Xn) there is a convergent subsequence
(Vl(uj))j∈J of (Vl(ui)), say with limit u : Xn → Xn. Since the Vl(ui) live in El, which is closed,
also u ∈ El.

Putting everything together, u(Xn) =
⋂
j∈J Xj = Tl(A) ∩W , so u(Vl(A)) = W . So if D is the

centraliser of El, we have DW = Du(Vl(A)) = u(DVl(A)) ⊆ u(Vl(A)) = W , which is what we
wanted.

Proof of 2: Inductive step. Suppose W is a G-stable isotropic subspace with dimW < g. The or-
thogonal complement W⊥ is G-stable too, because ϑ and the Weil pairing are both G-equivariant.
Hence both W and W⊥ are stable under Fl, which we assumed to be a product of copies of Ql.
Therefore

W⊥ = W ⊕
m∑
i=1

Li,

where each Li is a one-dimensional Fl-stable Ql-vector space. Since the bilinear form is non-
degenerate, W⊕W⊥ ∼= Vl(A), som = 2(g−dimW ) ≥ 2, so we can writeW = (W⊕L1)∩(W⊕L2).
Each of the W ⊕Li is isotropic since W and the Li are isotropic subspaces with Li ⊂W⊥. They
are also G-stable, so by induction D preserves W ⊕ L1 and W ⊕ L2, hence W .

We have one fact left to prove, which we used in Proposition 2.3.4:

Theorem 2.3.5. The characteristic polynomial of the Frobenius action on Vl(A) is independent
of l 6= p.

Proof. More generally, we will show that if f : A→ A is any endomorphism, then

deg f = detVl(f).

From this we can deduce that the characteristic polynomial P (t) of Vl(f) coincides with the
characteristic polynomial of f . Indeed, for any n ∈ Z, we have

P (n) = det(n · 1− Vl(f))
= det(Vl([n]A − f))
= deg([n]A − f).

It follows moreover that P (t) has Z-coefficients. Indeed, its coefficients lie in Q because this
is true for the characteristic polynomial of f . Moreover, Endk(A) is free of finite rank over Z,
so any endomorphism f satisfies a monic polynomial Q ∈ Z[t]; hence so does Vl(f). Since the
minimal polynomial of Vl(f) divides Q, its roots are algebraic integers, and therefore so are its
coefficients. So these coefficients are rational algebraic integers, so rational integers. Incidentally,
this shows that the characteristic polynomial of any endomorphism lies in Z[t].

So let’s show that deg f = detVl(f). By a norm form on a K-algebra R we mean a non-zero
polynomial function N : R → K such that N(ab) = N(a)N(b). The functions f 7→ deg f and
f 7→ detVl(f) are multiplicative and polynomial, so both extend uniquely to norm forms of
degree 2g on Ql ⊗ Endk(A). We denote them by N1 and N2, respectively.

35



We first show that |deg f |l = |detVl(f)|l. To determine |deg f |l, we have to know what power
of l divides f , and we see that this power of l is the (2g)−1-power of the order of the cokernel of
f : A[ln](ks) → A[ln](ks) for n � 0. Passing to the limit, this is the same as the order of the
cokernel of Vl(f), but at the same time this measures how many times l divides Vl(f). Finally,

deg(lnf) = l2gn deg(f), det(lnVl(f)) = l2gn det(Vl(f)),

so the l-adic orders are equal.

Since polynomials and the l-adic norm are continuous and Z is dense in Zl, we also have
|N1(α)|l = |N2(α)|l for all α ∈ Zl ⊗ Endk(A), and finally since N(l−nα) = N(l)−nN(α) we
have |N1(α)|l = |N2(α)|l for all α ∈ Ql ⊗ Endk(A).

An important fact about norm forms is that for a simple finite-dimensional K-algebra A, there
exists a canonical norm form N on A such that any other norm form on A is a power of N
[Mum74, §19]. Thus, taking Ql ⊗ Endk(A) ∼=

∏r
i=1Ai as a product of simple algebras, we can

write N1 and N2 as a product of norm forms on the individual factors, so that

N1(α1, . . . , αr) =
r∏
i=1

Ni(αi)n1,i ,

where each of the norms Ni is the canonical norm form on Ai. Similarly we can decompose N2.

Now let 1 ≤ j ≤ r. Setting αi = 1 for all i 6= j, we see that

|Nj(αj)n1,j−n2,j |l = 1

for all αj ∈ Aj . Since Nj is homogeneous of positive degree, this means n1,j = n2,j , and since j
was arbitrary, we obtain N1 = N2.

This finishes the proof of Tate’s theorem.

2.4 Consequences
Tate’s theorem has some interesting corollaries. In a vague sense, we now know that any Tate
l-module contains lots of information about the abelian variety. Let’s make this more precise.

Corollary 2.4.1. Let A and B be abelian varieties over a finite field, and denote by fA and fB
the characteristic polynomials of their Frobenius endomorphisms. Then the following statements
are equivalent:

1) A and B are isogenous;

2) Vl(A) and Vl(B) are G-isomorphic;

3) fA = fB ;

4) A and B have the same zeta functions.

Proof. 1) =⇒ 2): An isogeny ϕ : A→ B has finite kernel, and dim kerVl(ϕ) = 2 dim ker(ϕ) (use
Poincaré splitting). Hence Vl(ϕ) is a G-equivariant isomorphism Vl(A) ∼−→ Vl(B).
2) =⇒ 1): Given a G-equivariant isomorphism ψ : Vl(A) → Vl(B), we can find by Theorem
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2.1.1 a sequence (ϕi)i∈N of morphisms A → B such that (Vl(ϕi)) approximates ψ. Since ψ is
injective, dim ker(ϕi) = 0 for large enough i, and such ϕi will be an isogeny.
2) =⇒ 3): This holds because fA and fB are determined by the action of the Frobenius element
in G on Vl(A) ∼= Vl(B).
3) =⇒ 2): We saw in the proof of the theorem that the Frobenius element acts semisimply
on the Tate module, and hence the isomorphism class of a representation is determined by its
characteristic polynomial.
3) ⇐⇒ 4): By the Weil conjectures, the zeta function is determined by the eigenvalues
of Frobenius acting on the étale cohomology, which are determined by the eigenvalues of the
Frobenius acting on the Tate modules (remember Vl(A) ∼= H1(A,Ql)∨), which are determined
by the characteristic polynomials fA, resp. fB .

One can also say more about endomorphism algebras. For instance:

Corollary 2.4.2. Suppose A is a g-dimensional abelian variety over a finite field. Then we have
2g ≤ dim End0(A) ≤ 4g2.

Proof. Let fA be the characteristic polynomial of the Frobenius of A, and suppose it factors into
irreducibles as

∏
P P

a(P ). Then we have seen that

dim End0(A) = dim EndG(Vl(A)) =
∑
P

a(P )2 deg(P ).

Since the degree of fA is 2g, we have dim End0(A) ≥ 2g with equality if and only if P has all
distinct roots, and dim End0(A) ≤ 4g2 with equality if and only if fA is a power of a linear
polynomial. In the latter case, the centre of the endomorphism algebra is trivial and A is
isogenous to the gth power of a supersingular elliptic curve.

Corollary 2.4.3. Let A be an abelian variety over a finite field. Then Z(End0(A)) = Q[πA].

Proof. We already saw Q[πA] ↪→ Z(End0(A)). By Lemma 2.2.4 and Tate’s theorem,

Ql ⊗Q[πA] = Fl = CEnd(Vl(A))(El) = Ql ⊗ Z(End0(A)),

so Q[πA] = Z(End0(A)).

Classification of isogeny classes over Fq

If A is simple (or a power of a simple), End0(A) is a division algebra, so Q[πA] is a field which
we can study abstractly.

Proposition 2.4.4. Let A be a g-dimensional simple abelian variety over a finite field, and let
f be the characteristic polynomial of its Frobenius endomorphism. Let Q[πA] be the centre of
End0(A), and let h be the minimal polynomial of πA over Q.

1) f is a power of the minimal polynomial h.

2) The reduced degree [End0(A) : Q]red = [End0(A) : Q[πA]]1/2[Q[πA] : Q] equals 2g.

Proof. 1) By Theorem 2.3.5, we know that f equals the characteristic polynomial of Vl(πA) acting
on the Tate module, which has Q-coefficients. Thus, f(α) = 0 if and only if α is an eigenvalue of
Vl(πA), in which case h(α) is an eigenvalue of h(Vl(πA)) = Vl(h(πA)) = 0, i.e. h(α) = 0. Thus,
all roots of f are roots of h, and since h is irreducible, f = hn for some n.
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2) Tate’s proof showed that we can calculate the dimension of the endomorphism algebra as

[End0(A) : Q] = r(f, f) = n2 deg(h).

On the other hand, deg(h) = [Q[πA] : Q], and hence n = [End0(A) : Q[πA]]1/2. Now comparing
degrees in the equation f = hn gives 2g = [End0(A) : Q]red.

By the Weil conjectures, the roots of the characteristic polynomial of the Frobenius endomorph-
ism are the eigenvalues of the q-Frobenius acting on the Tate module, which are Weil numbers.
We recall the definition.

Definition 2.4.5. An algebraic number α is a Weil pn-number of weight m if the following two
properties hold:

• For all conjugates α′ of α, we have ||α′||2 = pnm;

• There exists N ∈ N such that pNα is an algebraic integer.

Denote the group of Weil pn-numbers by W (pn), and the subset of weight 1 Weil numbers which
are algebraic integers by W1,+(pn).

It follows immediately from the definition and the product formula for norms that for a Weil
number π, the only prime l 6= ∞ satisfying ||π||l 6= 1 is l = p. Moreover, any Weil number of
weight zero is a root of unity.

By Corollary 2.4.1, the isogeny class of an abelian variety over Fq is determined by the char-
acteristic polynomial of its Frobenius endomorphism, and by Proposition 2.4.4.1, its roots are
precisely the roots of the minimal polynomial of πA. Thus, the Weil numbers associated to an
isogeny class of abelian varieties occur as the images of πA under embeddings Q[πA] ↪→ Q. This
leads to a beautiful classification theorem:

Theorem 2.4.6 (Honda-Tate). There is a bijection{
Isogeny classes of simple
abelian varieties over Fpn

}
1:1←→

{
Gal(Q)-orbits in

W1,+(pn)

}
Proof. The map is defined by sending A 7→ {τ(πA) | τ : Z(End0(A)) ↪→ Q}. Each τ(πA) is a
weight 1 Weil pn-number by the Weil conjectures, and an algebraic integer because End(A) 3 πA
is a finite Z-algebra. As explained above, the map is injective by Corollary 2.4.1.
It remains to show surjectivity. For this, one needs to construct an abelian variety for any given
Weil number in W1,+(pn). This was proven by Honda in [Hon68] and is beyond the scope of this
thesis; a reference is [Oor].

We can get a similar classification for abelian varieties over Fp. For any such abelian variety,
there exists some q = pn such that A and all its endomorphisms are defined over Fq. We call
such A0/Fq a model for A. However, the eigenvalues of the Frobenius of A0 depend on the choice
of model: for instance, the complex norm of πA0 will be √q, so certainly depends on q.

To get rid of this dependency, we construct a modified group of Weil numbers as follows.

Definition 2.4.7. For a prime number p, define W (p∞) := lim−→W (pn), where the limit is over
the maps π 7→ πk : W (pn)→W (pnk) for all n, k ≥ 1.
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Thus, an element ofW (p∞) is given by a class [(π, n)] such that π ∈W (pn). Note that it no longer
makes sense to talk about, say, p ∈ W (p∞), because p can be considered as a Weil p-number of
weight 2, but also as a Weil p2-number of weight 1. However, the elements [(p, 1)] and [(p, 2)] do
make sense, and are distinct in W (p∞). In fact, one easily checks that [(π1, n1)] = [(π2, n2)] if
and only if πn2

1 and πn2
2 differ by a root of unity.

Note that taking the image in W (p∞) of a Weil number coming from an abelian variety removes
the dependency on the choice of model. Denoting W1,+(p∞) := lim−→W1,+(pn), we obtain the
following classification theorem:

Theorem 2.4.8. There is a bijection{
Isogeny classes of simple
abelian varieties over Fp

}
1:1←→

{
Gal(Q)-orbits in

W1,+(p∞)

}
Proof. Since the transition maps W (pn)→ W (pnk) are Gal(Q)-equivariant, the right-hand side
makes sense. The map is given by sending A to the set {[τ(πA0), n] | τ : Q[πA0 ] ↪→ Q}, where
A0/Fpn is a model for A. As explained in the preceding paragraph, this is well-defined, and a
bijection by Honda-Tate.

Remark 2.4.9. We even have that the Galois orbit corresponding to A is in bijection with
Hom(Q[πA],Q), i.e. the map

Hom(Q[πA0 ],Q) −→ Θ, (2.7)

where Θ is the Galois orbit of Frobenius eigenvalues of A0 in W1,+(p∞), is bijective. This is
obvious if we take the Galois orbit in W1,+(q) with A0/Fq, but since roots of unity are identified
in the colimit, we need to be careful. Recall however that our definition of model requires that
End(A) ∼= End(A0), and in particular Z(End(A)) ∼= Z(End(A0)) ∼= Q[πA0 ]. If now πA0 were
conjugate to ζmπA0 for some root of unity ζm, then A′ := A0 ×Fq Spec(Fqm) has Frobenius
πA′ = πmA0

. But πA′ has fewer conjugates than πA0 , hence Q[πA′ ] ( Q[πA0 ], contradicting the
fact that A0 was a model of A. Hence (2.7) is indeed injective as well as surjective.

Examples 2.4.10.
1. By the theorem, there is a unique isogeny class of simple abelian varieties over Fp whose
endomorphism rings have trivial centre (corresponding to the Galois orbit of [√p]). One can
show that this is the class of a supersingular elliptic curve, i.e. an elliptic curve whose p-adic
Tate module is zero.
2. Honda-Tate over Fq, q = pn tells us we have two cases:

• if n is even, there exist two non-isogenous simple abelian varieties whose Frobenius eigen-
values are √q, resp. −√q;

• if n is odd, there exists a simple abelian variety whose Frobenius eigenvalues are {±√q}.

In the first case, these are again supersingular elliptic curves which become isogenous after a
degree two base extension. However, there will always be one supersingular elliptic curve over
Fq2 which can’t be defined over a smaller field (the one corresponding to −q).
In the second case, one can show that this must be a surface. Since (±√q)2 = q, a degree two
base extension will split this surface into a product of elliptic curves (up to isogeny), both of
which lie in the same isogeny class.
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Part II

Motives and the Tate conjecture
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3. Preliminaries
In this part of the thesis, we will study the series of papers [Mil94], [Mil99a] and [Mil99b]. The
main result we will work towards is the following:

Theorem 3.0.1. The Hodge conjecture for CM abelian varieties over Q implies the Tate con-
jecture for abelian varieties over finite fields.

The proof relies heavily on the machinery of motives, Tannakian categories, and affine group
schemes. In this preliminary chapter, we will revise the parts of the theory we need in order to
understand the proof.

3.1 Affine groups
By an affine group, we will mean an affine k-group scheme G for some field k. Its global sections
OG(G) form a commutative Hopf algebra, and if it is finitely generated as a k-algebra, we call G
an affine algebraic group. Any affine group is the limit of its algebraic quotients, which allows
one to reduce to affine algebraic groups in many situations.

3.1.1 Representations
One example of an affine algebraic group is GL(V ) for some n-dimensional k-vector space V . By
definition, GL(V ) is the group functor on k-algebras sending

R 7−→ GL(V ⊗k R) = AutR(V ⊗k R),

and is represented by the Hopf algebra k[X1,1, X1,2, . . . , Xn,n, T ]/(T · det = 1).

A representation of G on a vector space V is a natural transformation G → GL(V ). To give a
representation of G on V is the same as to give a co-action of OG(G) on V . The category of
finite-dimensional representations of G is denoted Repk(G).

Example 3.1.1. A one-dimensional representation is the same as a morphism G → Gm, i.e. a
character of G. Indeed, Gm(R) = R× ∼= GL(k ⊗k R).

Groups of multiplicative type
Let A be an abelian group (not necessarily finitely generated). One can associate to it a group
scheme D(A) via the rule

D(A)(R) = Hom(A,R×).

The groups above are called diagonalisable. The name is justified by the following proposition
[Mil15a, Thm. 14.12]:

Proposition 3.1.2. An affine group G is diagonalisable if and only if all its representations are
diagonalisable, i.e. all its representations decompose as a direct sum of eigenspaces, where G
acts through a character on each eigenspace.

Next, we show that the functor D is fully faithful:

Proposition 3.1.3. The functor D : Ab→ AffGrpdiag
k is an equivalence of categories.
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Proof. Note that D(A) is represented by the group algebra k[A]. Hence, we can reconstruct A
from D(A) by taking characters:

X(D(A)) = Homk(D(A),Gm) ∼= HomHopfk(k[T±1], k[A]) ∼= A,

where the last isomorphism follows because the image of T must be a group-like element of k[A].
One can check that taking characters gives a quasi-inverse to D.

We will now extend this equivalence by considering abelian groups as Gal(k)-modules with trivial
action.

Definition 3.1.4. For any affine group G, we define its geometric characters to be X∗(G) :=
Hom(Gksep ,Gm,ksep). It is a Gal(k)-module with action σ · f = σfσ−1.
An affine group G is of multiplicative type if Gksep is diagonalisable.

Proposition 3.1.3 in combination with Galois descent gives us:

Proposition 3.1.5. There is an equivalence of categories

X∗ :
{

Affine groups of
multiplicative type over k

}
∼−→
{

Abelian groups with
continuous Gal(k)-action

}
given by sending a multiplicative type group to its geometric characters.

Explicitly, if G is a group of multiplicative type and if K ⊂ ksep, we have

G(K) = Hom(X∗(G), ksep,×)Gal(K).

The above proposition is important because once we know we are working with multiplicative
groups, we can reduce to working with their characters.

Examples 3.1.6.
1. The diagonalisable group associated to Zn is Gnm, since Gnm(R) = (R×)n ∼= Hom(k[Zn], R×).
In particular, the multiplicative group is a group of multiplicative type.
2. Let K/k be a finite separable extension, and consider ZGal(K/k) with Galois action defined by
permuting the factors. Then the corresponding multiplicative group is (Gm)K/k, the restriction
of scalars of Gm,K to k. This is the group whose points are

(Gm)K/k(R) = Gm,K(R⊗k K).

By Proposition 3.1.2, a group is of multiplicative type if and only if it is reductive (i.e. any
representation is semisimple) and over an algebraic closure, every simple representation has rank
one. If char(k) = 0, equivalently G is commutative and reductive [Mil15a, Thm. 14.24, 17.17].

3.1.2 Tannakian categories
A Tannakian category is a category which is equivalent to the category of representations of
some affine group scheme. It can be defined intrinsically as follows.

Definition 3.1.7. A k-linear rigid symmetric monoidal category (T ,⊗) with End(1) = k is
called Tannakian if it admits a fibre functor, i.e. an exact k-linear tensor functor ω : C → R-Mod
for some k-algebra R 6= 0. If we can take R = k, we say C is neutral.

The terminology means that T is:
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• k-linear: abelian and HomC(X,Y ) is a k-vector space for all X,Y ;

• monoidal: there exists a k-bilinear tensor product ⊗ : C × C → C with unit object 1,
satisfying associativity and commutativity constraints;

• symmetric: the natural morphisms cX,Y : X ⊗ Y ∼−→ Y ⊗X obey c−1
X,Y = cY,X ;

• rigid: any object X admits a dual X∨ = Hom(X,1), where Hom(X,−) is the right adjoint
to the functor −⊗X.

For more details on the terminology, see [Del90, §2] or [DM18, §1].

When the base field has characteristic zero, one can obtain a fibre functor once one extends
scalars to an algebraic closure [Del]:

Theorem 3.1.8 (Deligne). Let T be a Tannakian category over an algebraically closed field.
Then T is neutral.

The following theorem characterizes Tannakian categories.

Theorem 3.1.9. Let T be a neutral Tannakian category over k with fibre functor ω. Then T
is equivalent to the category Repk(G), where G =: π1(T ) is an affine group. In fact, we have an
isomorphism G ∼= Aut⊗(ω), where

Aut⊗(ω) = {Φ: ω ∼−→ ω | ΦV⊗W = ΦV ⊗ ΦW and Φ1 = idk},

which we can consider as a functor Algk → Grp sending R 7→ Aut⊗(ωR), where

ωR : C ω−−→ Veck
−⊗R−−−→ ModR.

Note that ω induces a monoidal functor C → Repk(Aut⊗(ω)); the theorem is proven by showing
that this functor is an equivalence. This leads to duality statements between T and π1(T ): for
instance, if char(k) = 0, T is semisimple if and only if π1(T ) is reductive.

Taking the fundamental group of a Tannakian category is functorial in some sense. To make this
precise, we define the category of Tannakian categories as follows.

Definition 3.1.10. Let k be a field. Denote by Tannk the category whose objects are neutral
Tannakian categories (T , ω) over k, and whose morphisms (T , ω) → (T ′, ω′) are those exact
k-linear tensor functors T → T ′ for which the diagram

T T ′

Veck
ω′ω

commutes.

Proposition 3.1.11. The fundamental group π1 defines a contravariant functor Tannk →
AffGrpk. Moreover, given a morphism F : (T , ω) → (T ′, ω′), the induced map π1(T ′) → π1(T )
is injective if every object of T ′ appears as a subquotient of direct sums of tensor products of
objects of the form F (X) with X ∈ T .
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Proof. Let F : T → T ′ be an exact k-linear tensor functor commuting with the fibre functors.
Then for any Φ ∈ Aut⊗(ω′)(R) and any X ∈ T , define π1(F )(Φ)X := ΦF (X). This is an element
of Aut⊗(ω)(R) by the conditions on F , and since (Φ◦Ψ)F (X) = ΦF (X) ◦ΨF (X), π1(F ) is a group
homomorphism. It is clear that π1(idT ) = idπ1(T ) and that π1(F ◦ G) = π1(G) ◦ π1(F ). Hence
π1 defines a functor.
Next, it is clear from the definition that any Φ ∈ Aut⊗(ω) is determined by its action on a tensor
generating family of T , which is the condition spelled out in the statement of the proposition.
So if the essential image of F contains a tensor generating family, π1(F ) is injective.

Theorem 7.1 of [Del90] provides a useful way to determine whether a tensor category over a field
over characteristic zero admits a fibre functor. To state it, we need to generalise the notion of
traces and exterior powers to Tannakian categories:

Definition 3.1.12. Let cX,Y : X ⊗ Y ∼−→ Y ⊗X denote the commutativity constraint. For any
morphism f : X → Y , define

δ(f) : 1 coevX−−−−→ X ⊗X∨
cX,X∨−−−−→ X∨ ⊗X idX∨⊗f−−−−−→ X∨ ⊗ Y.

If X = Y , we define the trace of f to be Tr(f) = evX ◦ δ(f) ∈ End(1) = k.
Define the rank of X to be rk(X) = Tr(idX).
The nth exterior power of X, denoted

∧n
X, is the image of the antisymmetrization map

aXn =
∑
σ∈Sn

(−1)sgn(σ)σ : X⊗n −→ X⊗n.

Note that if F is a k-linear tensor functor, we have rk(X) = rk(F (X)) and F (
∧n

X) =
∧n

F (X).

Theorem 3.1.13 (Deligne). Suppose char(k) = 0. Let (C,⊗) be a k-linear rigid symmetric
monoidal category with End(1) = k. Then the following are equivalent:

1) C is Tannakian;

2) For any X ∈ C, we have rk(X) ∈ N0;

3) For any X ∈ C, there exists some n ≥ 0 such that
∧n

X = 0.

Remark 3.1.14. Note that the rank one objects in any Tannakian category T form a group
under the tensor product, isomorphic to X(π1(T )). Indeed, under the equivalence ω : T →
Repk(π1(T )), the rank one objects correspond to the one-dimensional representations, which can
be identified with the characters of π1(T ) by Example 3.1.1.
This gives a categorical description of the characters of an affine group.

As a final application of the above definitions, we can generalise the notion of characteristic
polynomial of an endomorphism to Tannakian categories.

Definition 3.1.15. Let (T ,⊗) be Tannakian with End(1) = k. Let X ∈ C and ϕ ∈ End(X)
and suppose rk(X) = d ∈ N. The characteristic polynomial of ϕ is defined to be

fϕ(t) :=
d∑
i=0

Tr
(
ϕd−i :

∧d−i
X →

∧d−i
X
)
ti.

This is a monic polynomial of degree d with coefficients in k.
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Remark 3.1.16. We can define the characteristic polynomial of an endomorphism in any Ka-
roubian rigid symmetric monoidal category with End(1) = k and char(k) = 0. Indeed, we only
need to have traces and exterior powers, and if char(k) = 0, we have that the fractional multiple
aXn /n! of the antisymmetrization map is an idempotent. Thus if T is Karoubian, the image of
this map is a well-defined object.

Note that for any k-linear tensor functor F , we have fϕ(t) = fF (ϕ)(t), by naturality of the
constructions. Moreover, if C is the category of k-vector spaces, the above definition simplifies
to the usual characteristic polynomial.

Remark 3.1.17. If T is a Tannakian category over k and R is a k-algebra, there is a natural
way to obtain an R-linear category T ⊗ R such that π1(T ⊗ R) ∼= π1(T ) ⊗ R. It comes with a
k-linear functor T → T ⊗R, and for all X,Y ∈ T ,

Hom(X ⊗R, Y ⊗R) ∼= R⊗Hom(X,Y ).

For details on this construction, see [Sta08]. As an application, we see that the fundamental
group of T is of multiplicative type if and only if π1(T ⊗ k) is diagonalisable, if and only if (by
Proposition 3.1.2) T ⊗ k is a semisimple category all of whose simple objects are of rank 1, and
if char(k) = 0, if and only if T is semisimple and π1(T ) is commutative.

3.2 CM abelian varieties

3.2.1 Complex multiplication
We have already seen that the structure of the endomorphism algebra of abelian varieties over
finite fields is well understood. For abelian varieties over general fields, one thing we can do
is bound the dimension. We start with some general facts on representations of semisimple
(possibly non-commutative) algebras over a field K of characteristic 0, of which endomorphism
algebras are examples. Recall that by Wedderburn’s theorem, any such algebra is isomorphic to
a product of matrix algebras over division K-algebras. For more background on the theory, see
[GS06, Chapter 2].

Definition 3.2.1. Let E be a finite-dimensional semisimple K-algebra, and write E ∼=
∏n
i=1Ei

as a product of simples. The reduced degree of E is defined as

[E : K]red =
n∑
i=1

[Ei : Z(Ei)]
1
2 [Z(Ei) : Z].

The definition makes sense because any central simple algebra Ei/Z(Ei) has a splitting field
F/Z(Ei), so that Ei ⊗Z(Ei) F becomes a matrix algebra over F . In particular, the dimension of
Ei over Z(Ei) is a square.

Lemma 3.2.2. Let M be a faithful representation of a semisimple K-algebra E. Then

[E : K]red ≤ dimM,

and equality holds if and only if the simple factors of E are matrix algebras over fields (rather
than general division algebras).
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Proof. This follows from the classification of representations of simple K-algebras: if E ∼=
Mn×n(D) is simple, then any simple representation of E is isomorphic to Dn. Hence M ∼=
(Dn)⊕m, so

dimKM = mn[D : Z(D)][Z(D) : k] ≥ n[D : Z(D)] 1
2 [Z(D) : k] = [E : K]red,

with equality if and only if m = 1 and D = Z(D). If E is a product of simples, M is a faithful
representation only if M contains at least one simple representation for each of its factors, and
the result follows from a similar computation.

Corollary 3.2.3. Let A be an abelian variety. Then the reduced degree satisfies

[End0(A) : Q]red ≤ 2g.

Proof. If l 6= char(k), l-adic étale cohomology is a Weil cohomology theory, and H1
l (A) has

dimension 2g (which follows from Corollary 1.5.8, and in a different way from the motive of an
abelian variety, cf. Theorem 3.3.9). This is a faithful representation of Ql ⊗ End0(A), so by
Lemma 3.2.2,

[Ql ⊗ End0(A) : Ql]red = [End0(A) : Q]red ≤ 2g.

CM abelian varieties are those abelian varieties for which equality holds.

Definition 3.2.4. A g-dimensional abelian variety A/k is of CM type or a CM abelian variety
if [End0(A) : Q]red = 2g.

Note that an abelian variety is CM if and only if each of its isogeny factors is CM. We have
already seen examples of CM abelian varieties:

Proposition 3.2.5. Any abelian variety over a finite field is of CM type.

Proof. This is Proposition 2.4.4.2.

Recall that a CM field is a field K/Q which is an imaginary quadratic extension of a totally real
subfield.

Proposition 3.2.6. A simple abelian variety is of CM type if and only if there exists an em-
bedding K ↪→ End0(A), where K is a degree 2g number field.

Proof. This follows from the following general fact on division algebras: if E is a division K-
algebra with [E : Z(E)] = d2, then any maximal subfield of E has degree d over Z(E).
Hence, if A is CM, such a subfield has degree 2g over Q. Conversely, if End0(A) contains a degree
2g subfield L, we may assume without loss of generality that it contains the centre (if not, we
take the compositum). Hence the above fact implies

[End0(A) : Q]red = [End0(A) : Z(End0(A))]1/2[Z(End0(A)) : Q]
≥ [L : Z(End0(A))][Z(End0(A)) : Q] = 2g.

Since the reverse inequality holds in general, A is of CM type.
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We will be interested in CM abelian varieties defined over Q. When we base change to C, we
get access to many powerful tools: for example, AC is a quotient of Cg by a lattice Λ, which
can be intrinsically described as Λ ∼= H1(A(C),Z). The induced representation of End0(A) on
the 2g-dimensional vector space H1(A(C),Q) is faithful. It is also called the Hodge structure
associated to A; we have

H1(A(C),Q)⊗ C ∼= T0(A)⊕ T0(A), (3.1)

where in fact this is an isomorphism of representations, with T0(A) ∼= Cg being the tangent space
at 0, so that A ∼= T0(A)/Λ [SD74, Lem. 39].

Corollary 3.2.7. If A/Q is a simple g-dimensional CM abelian variety, then End0(A) is a CM
field of degree 2g.

Proof. We have a faithful representation of End0(A) on H1(A(C),Q), so by Lemma 3.2.2,
End0(A) is a matrix algebra over its centre. Since A is simple, End0(A) is a division algebra,
so End0(A) is a field. By Proposition 3.2.6, it has degree 2g. Moreover, the Rosati involution
defines a positive involution on the field, so either it is a CM field or it is totally real. But the
totally real case is impossible: one can show that if L ⊂ End0(A) is a totally real subfield, then
[L : Q] ≤ dim(A) [Mil20, Lem. 3.7].

Remark 3.2.8. There exist simple CM abelian varieties in positive characteristic whose en-
domorphism algebras are not fields. The argument above fails, because in characteristic p, we
only have a 2g-dimensional faithful representation of Ql ⊗ End0(A) for l 6= char(k). In fact,
the existence of CM abelian varieties over k whose endomorphism algebra is not a field shows
that there cannot exist a Weil cohomology theory with Q-coefficients for varieties over k, since
otherwise we could argue as in the above corollary.
However, the l-adic representation does give (by Lemma 3.2.2) that the endomorphism algebra
is split over l for all l 6= char(k), so the possible endomorphism algebras are still quite restricted.

CM abelian varieties over Q can be classified based on their CM-types. Let us define what we
mean by this.

Definition 3.2.9. Let E be a CM field of degree 2g. A CM-type on E is a function

ϕ : Hom(E,Q) −→ {0, 1} ↪−→ Z

such that for any τ : E → Q, we have ϕ(τ) + ϕ(ιτ) = 1. A CM type is primitive if it is not of
the form τ 7→ ϕ0(τ |E0) for some CM-type ϕ0 on a CM subfield E0 ( E.
We say two CM-types (E,ϕ) and (E′, ϕ′) are isomorphic if there exists an isomorphism of fields
σ : E ∼−→ E′ such that ϕ′ = σ∗ϕ.

Conceptually, one may think of a CM-type as a partition of the set of embeddings E ↪→ Q:
namely, if we let Φ = {τ : E ↪→ Q | ϕ(τ) = 1}, we have Hom(E,Q) = Φ t ιΦ. Note that Gal(Q)
acts on the set of CM-types via (σϕ)(τ) = ϕ(σ−1τ).

We will now associate a CM-type to any simple abelian variety over Q.

If A is of CM type with endomorphism algebra E, the action of E on T0(A) decomposes T0(A)
into a sum of 1-dimensional eigenspaces. Hence for some multiset Φ, we have

T0(A) ∼=
⊕
τ∈Φ

Cτ ,
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where E acts on Cτ via τ ∈ Hom(E,C). Equation (3.1) now says that

T0(A)⊕ T0(A) ∼= H1(A(C),Q)⊗ C ∼= E ⊗ C ∼=
⊕

τ :E↪→C
Cτ ,

and hence Φ must contain g distinct elements and in fact be a primitive CM-type on E.

The following theorem states that this CM-type already classifies the abelian variety up to
isogeny.

Theorem 3.2.10. Associating an abelian variety to its CM-type as above gives a bijection{
Isogeny classes of simple

CM abelian varieties over Q

}
1:1←→

{
Isomorphism classes of

primitive CM-types (E,ϕ)

}
Proof. We construct an inverse. Let (E,ϕ) be a primitive CM-type, and let

Φ = {τ ∈ Hom(E,Q) | ϕ(τ) = 1}.

There exists a complex abelian variety Aϕ whose C-points are CΦ/OE , where OE is embedded
into Cg via a 7→ (τ(a))τ∈Φ. By construction, its associated CM-type is ϕ, which will also be the
case for any specialisation of Aϕ to Q. This specialisation exists because up to isogeny, any CM
abelian variety over a field of characteristic zero can be defined over a number field [ST61, Prop.
26, p. 109].

We will modify this theorem slightly to better suit our purposes. We first define the reflex field
of a CM-type.

Definition 3.2.11. Let ϕ be a CM-type on E. Its reflex field K is the fixed field of the stabiliser
of ϕ in Gal(Q) (so if E is Galois, we have K ⊆ E). The reflex field of a simple CM abelian
variety over Q is the reflex field of its associated CM-type.

Theorem 3.2.12. Let K be a Galois CM number field. There is a natural bijection{
Isogeny classes of CM abelian varieties over Q

with reflex field contained in K

}
1:1←→

{
Gal(Q)-orbits

of CM-types on K

}
Proof. After Theorem 3.2.10, all we need to see is that the isomorphism classes of CM-types
on K are in bijection with Gal(Q)-orbits of CM-types on K. This is just a reformulation of
what it means for CM-types to be isomorphic: if σ : (K,ϕ) ∼−→ (K,ϕ′), then ϕ′ = σ̃−1 · ϕ
for any σ̃ ∈ Gal(Q) lifting σ. Conversely, if ϕ = σ · ϕ′, then σ−1|K induces an isomorphism
(K,ϕ′)→ (K,ϕ).

3.2.2 Reduction of CM abelian varieties
Besides the classification of isogeny classes, abelian varieties have another excellent property:
they have potential good reduction. This result is due to Serre and Tate [ST68]. We will not go
into the proof, but we will at least explain what the statement means.
Let K be a field, and denote by v a discrete valuation on K. Denote its valuation ring by Ov
and its residue field by k.
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Definition 3.2.13. Let X be a proper smooth K-scheme. We say X has good reduction at v if
there exists a proper smooth Ov-scheme X ′ whose generic fibre X ′ ×Ov Spec(K) is isomorphic
to X. We say X has potential good reduction at v if XL has good reduction at all valuations
dividing v for some finite extension L/K.
In both cases, the reduction of X at v is the special fibre Xk := X ′ ×Ov Spec(k) of X ′.

It is not immediately obvious that the construction is functorial, i.e. that a K-morphism X → Y
induces a k-morphism Xk → Yk. This is true, however; it follows from the Néron mapping
property, and the fact that X ′ is indeed a Néron model of X, if it exists. In particular, using
this, one can show that an abelian variety (X,m, i, e) over K gives rise to an abelian variety
(Xk,mk, ik, ek). The interested reader is referred to [BLR90, Chapter 1], where Néron models
are defined and the above claims are proved.

We apply this to the case where X is an abelian variety, K is a number field, and v is the p-adic
valuation for a prime number p.

Example 3.2.14. Let E/Q be an elliptic curve. Write down a Weierstrass equation for it, and
consider its discriminant ∆. Then E has good reduction at a prime p if and only if ∆ 6≡ 0
mod p. Hence, E has good reduction at every prime over Q if and only if ∆ = ±1. But it turns
out that this diophantine problem has no solutions over Q, so there are no elliptic curves with
good reduction everywhere.

In contrast to the above example, we have the following remarkable theorem:

Theorem 3.2.15 (Serre-Tate). Let A be an abelian variety of CM type over a number field.
Then A has potential good reduction everywhere.

3.3 Motives

3.3.1 Motivation
Around the 1960’s, Grothendieck envisioned a theory of motives which would lead to a proof of
the Weil conjectures. Philosophically, motives capture the cohomological essence of a projective
variety. Let k be a base field. Denote by Vk the category of smooth projective k-varieties and
by Mot(k) the (yet undefined) category of motives over k. The main property of the category of
motives is that for every Weil cohomology theory H• : Vk → VecK, there should exist a diagram

Vk VecK

Mot(k)

H•

Thus, motives are something in between varieties and vector spaces. This is in many ways true,
as we will see: motives are defined as (twists of pieces of) varieties, but behave in many ways
like vector spaces do.

The category of motives should explain some phenomena that arise in cohomology. For instance,
there are several different notions of cohomology in algebraic geometry, say singular and de Rham
cohomology in the complex setting. The fact that these cohomology theories agree on smooth
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projective varieties is explained by the fact that the cohomological structure is already determ-
ined on a motivic level.

Problematically, though, the category of motives is not known to exist in general. A satisfying
candidate would satisfy several good properties: for instance, it should be a semisimple Tannakian
category, and Weil cohomology theories should factor through it as above. So far, nobody has
been able to construct such a category for general base fields. However, if the base field is
finite and the motives come from abelian varieties, we can construct a category satisfying the
requirements. In the next sections, we will construct this category and use it to study the Tate
conjecture.

3.3.2 Construction of the category of motives
The main idea in the construction of the category of motives is to replace morphisms of varieties
by algebraic cycles, which in this context are called correspondences.

Definition 3.3.1. Let X/k be a noetherian scheme whose irreducible components are projective
varieties. Let Zr(X) denote the free abelian group on codimension r closed integral subvarieties
of X, and we write for any field K of characteristic zero,

Zr(X)K := Zr(X)⊗Z K, Z•(X)K :=
dimX⊕
r=0
Zr(X)K.

If K = Q, we usually drop it from the notation.
An adequate equivalence relation on cycles is an equivalence relation ∼ on Z•(X)K for each X,
satisfying the following properties:

1. ∼ is compatible with the K-linear structure and respects the grading on Z•(X)K;

2. For each α, β ∈ Z•(X)K, there exists β′ ∼ β such that β′ intersects α properly;

3. If α ∼ 0 in Z•(X)K and β ∈ Z•(X × Y )K intersects p∗Xα properly, then pY,∗(p∗Xα∩ β) ∼ 0
in Z•(Y )K.

Given an adequate equivalence relation ∼, we denote by CH•∼(X)K the graded K-vector space
Z•K(X)/ ∼.

Note that condition 2 implies that the intersection product is well-defined on CH•∼(X)K, turning
it into a K-algebra.

Examples 3.3.2.
1. Rational equivalence is an adequate equivalence relation on cycles, and in this case CH•∼(X)
is the usual Chow ring. It is the finest possible adequate equivalence relation [And04, Lem.
3.2.2.1], so for any adequate equivalence relation ∼, the algebra CH•∼(X) is a quotient of the
Chow ring.
2. Fix a Weil cohomology theory H• with coefficient field K. Then homological equivalence
is the adequate equivalence relation ∼hom defined by α ∼hom β ⇐⇒ cl(α) = cl(β), where
cl : Zr(X)K → H2r(X) denotes the cycle class map.
3. Define numerical equivalence, denoted ∼num, as follows: for α, β ∈ Zr(X)K, say α ∼num β if
and only if for all γ ∈ ZdimX−r(X)K, we have∫

α ∩ γ =
∫
β ∩ γ.
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Numerical equivalence is the coarsest possible adequate equivalence relation. To see this, let ∼
be any other one; then we want to show that if Zr(X)K 3 α ∼ 0 and β ∈ CHdimX−r

∼ (X)K, we
have

∫
α ∩ β = 0.

By property 2, we may assume β intersects α properly. Then applying property 3 with Y =
Spec(k) gives the desired result.

The Theorem of the Base says that for a proper smooth variety X, the algebra CH1
∼(X) is fi-

nitely generated when ∼ is at least as coarse as algebraic equivalence. If ∼ is at least as coarse
as homological equivalence, CH•∼(X) is finitely generated because its dimension is bounded by
H•(X). In general, no precise statement is known about when these groups are finitely gen-
erated. One cannot expect this to hold in general: for example, if ∼ is rational equivalence,
consider the Chow group of an elliptic curve E/C. Then CH•∼(E) ∼= Q ⊕ Pic(E)(C), which is
not finitely generated as the uncountable group E(C) injects into it via the Abel-Jacobi map.

Fix an adequate equivalence relation on cycles. Define a category M0
∼(k) whose objects are

smooth projective k-varieties, and whose morphisms are given by

HomM0
∼(k)(X,Y ) := Corr0

∼(X,Y ) := CHdimX
∼ (X × Y ),

which we call degree zero correspondences from X to Y . The composition law is given as follows:
for α : X → Y , β : Y → Z, we have

β ◦ α := pXZ,∗(p∗XY α ∩ p∗Y Zβ) ∈ CHdimX
∼ (X × Z),

where the maps are all projections to the indicated two factors of X × Y × Z. For example, the
identity morphism on X is the diagonal ∆X . The category M0

∼(k) is also easily seen to admit
biproducts, with X ⊕ Y ∼= X t Y . Note thatM0

∼(k) is Q-linear by definition, and tensoring the
Hom-spaces by K gives a K-linear category M0

∼(k)⊗K for any characteristic zero field K.

Remark 3.3.3. This construction gives a contravariant functor h : Vk → M0
∼(k), sending a

morphism ϕ : X → Y to the graph Γϕ ∈ CHdimY
∼ (Y ×X). This is a choice, and the reason for it

is that one usually studies the category of motives (which we still haven’t defined yet) through
its realisation functors, such as the functors Mot∼(k) → VecK coming from Weil cohomology
theories. With the above convention, these functors will be covariant.

We will keep the notation hX = h(X) for the motive coming from the variety X ∈ Vk, regardless
of what (intermediate) category of motives the target category is; it should in all situations be
clear from the context.

We will perform a few more steps before arriving at the category of motives. The first is to take
the Karoubi envelope of M0

∼(k).

Definition 3.3.4. Let C be a pre-additive category. The Karoubi envelope of C is the category
Kar(C) whose objects are pairs (X, p) where X ∈ Ob(C) and p ∈ EndC(X) is a projection, i.e.
p ◦ p = p. The morphisms are given by

HomKar(C)((X, p), (Y, q)) = q ◦HomC(X,Y ) ◦ p.

Note that C embeds fully faithfully into Kar(C) by sending X 7→ (X, idX).

Taking the Karoubi envelope is a way of formally adding images and kernels of projections, and
one should think of (X, p) as the image of p. The following lemma justifies this:
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Lemma 3.3.5. Let C be a pre-additive category and p : X → X a projection. Then X ∼=
(X, p)⊕ (X, 1− p) in Kar(C).

Proof. One readily checks that the maps

X
(p,1−p)−−−−−→ (X, p)⊕ (X, 1− p) (X, p)⊕ (X, 1− p) (p,1−p)T−−−−−−→ X

are mutual inverses.

Taking the Karoubi envelope thus gives us a category M∼(k) := Kar(M0
∼(k)). Already at this

stage, we see something interesting happen. Pick a point x ∈ P1
k, and consider the constant

morphism x : P1
k → P1

k. It is clearly a projection, and so its graph defines an endomorphism of
P1
k ∈M∼(k) which decomposes the object. Since the image of x is just a point, we get

P1
k
∼= Spec(k)⊕ L,

where L is the direct complement of x. As we will see later, this motivic decomposition reflects
the fact that the cohomology of P1

k is one-dimensional in degrees 0 (coming from Spec(k)) and 2
(coming from L), and zero otherwise.

We want our category of motives to be Tannakian. There is a monoidal structure on M∼(k)
such that hX ⊗ hY = h(X × Y ), but it does not admit duals. For this reason, we have to admit
“twists” of our objects, which alter the degrees of the correspondences. More precisely, we define

Corrn∼(X,Y ) := CHdimX+n
∼ (X × Y ).

Next we define the category Mot∼(k) to be the category with objects (X, p,m) where (X, p) ∈
M∼(k) and m ∈ Z, and

Hom((X, p,m), (Y, q, n)) = p ◦ Corrn−m(X,Y ) ◦ q.

This is a monoidal category with duals, namely

(X, p,m)⊗ (Y, q, n) = (X × Y, p× q,m+ n), (X, p,m)∨ = (X, p,dimX −m).

It is now a good exercise to check that L ∼= (Spec(k), id,−1) and hence every object of Mot∼(k)
can be written as (X, p, 0)⊗L⊗n for some n ∈ Z. We will see later that this twist by L is closely
related to Tate twists on l-adic cohomology. The definition of the dual should remind one of
Poincaré duality.

In summary, we can construct, without any assumptions, an additive, Karoubian, rigid tensor
category of “motives” over any field for a chosen adequate equivalence relation. To get a Tan-
nakian category, however, we need to make further assumptions on the equivalence relation ∼.
In fact, if ∼ is rational equivalence and k 6⊆ Fp, the category Mot∼(k) is never abelian [Sch94,
Cor. 3.5]. The right choice is numerical equivalence:

Theorem 3.3.6 (Jannsen, 1992). Let k be any field, and let ∼ be an adequate equivalence
relation on cycles. Then for any field F of characteristic zero, the F -linear category of motives
Mot∼(k) is a semisimple abelian category if and only if ∼ is numerical equivalence.

Proof. First, suppose Mot∼(k) is semisimple and abelian. To show ∼ = ∼num, it suffices to show
that if γ 6∼ 0 then γ 6∼num 0: this implies that ∼ is coarser than ∼num, but numerical equivalence
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is the coarsest equivalence relation.
So suppose γ ∈ CHr

∼(X) is non-zero. Then γ defines a non-zero morphism 1 → hX(r), which
must be a monomorphism, because Spec(k) is simple (its endomorphisms form a field). By
semi-simplicity, γ is split, so there exists δ ∈ CHdim(X)−r(X) such that δ ◦ γ = idSpec(k). But
δ ◦ γ =

∫
δ ∩ γ 6= 0, so γ 6∼num 0.

Next, assume ∼ = ∼num. We will show that the endomorphism ring of any motive is semisimple.
Since the endomorphism rings for numerical equivalence are finite-dimensional F -vector spaces,
they are Artinian as left modules over themselves, and hence semisimplicity is equivalent to
having vanishing Jacobson radical. Now CH•num(X)F ∼= CH•num(X) ⊗ F because the intersec-
tion product is a perfect pairing on cycles modulo numerical equivalence; see also [And04, Prop
3.2.7.1], . Hence the Jacobson radical of CHdim(X)

num (X ×X)F is trivial if and only if it is trivial
for some choice of characteristic zero field K replacing F .

Now fix a Weil cohomology theory H• with coefficient field K. Then we have a Lefschetz trace
formula: for any f, g ∈ CHdim(X)

hom (X ×X)K, we have

〈f · gt〉 =
2 dim(X)∑
i=0

(−1)i Tr(f ◦ g | Hi(X)).

Fix a variety X. Since ∼num is coarser than ∼hom, we have a quotient map

B := CHdim(X)
hom (X ×X)K � CHdim(X)

num (X ×X)K =: A. (3.2)

Because the rings are Artinian, their Jacobson radicals are nilpotent, so equal the nilradical (the
largest nilpotent two-sided ideal; all its elements are nilpotent). Moreover, an Artinian ring is
semisimple if and only if its Jacobson radical is trivial. Let JA, JB denote the Jacobson radicals
of A,B respectively. The map (3.2) induces a map JB → JA because the image S(JB) of JB
is a nilpotent two-sided ideal. On the other hand, B/JB � A/S(JB) shows that A/S(JB) is
semisimple, so S(JB) ⊃ JA. Thus JB � JA.

Now consider f ∈ JA, and pull it back to f ′ ∈ JB . Since JB is an ideal consisting of nilpotent
elements, f ′ ◦ g is nilpotent for any g, so by the trace formula, 〈f ′ · gt〉 = 0. Hence f ′ ∼num 0 i.e.
f = 0. So the Jacobson radical of A is trivial, as we wanted.

So we have shown that Motnum(k) is an F -linear pseudo-abelian category with semisimple endo-
morphism rings. But this is equivalent to the category being semisimple [Jan92, Lem 2].

3.3.3 Realisation functors
Consider now a Weil cohomology theory H• : Vk → VecK. What does it mean for it to factor
through Mot∼(k)?

Suppose we have a factorisation H• = F ◦ h. Since hP1
k = hSpec(k) ⊕ L, we see that F (L) =

H2(P1
k) =: K(−1) (the cohomology of P1

k is non-zero only in degrees 0 and 2 for any Weil
cohomology theory). If we are to obtain a tensor functor, we then have to set

F (X, p,m) = F ((X, p, 0)⊗ L−m) = im(H•(p))⊗K(m).
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Defining F on morphisms comes down to defining natural maps

CH•∼(X × Y ) −→ HomK(H•(X), H•(Y ))

for all X and Y . If we let X = Spec(k), we see that we need to define a cycle class map on this
quotient of the Chow group. Moreover, if we have such a cycle class map, we can use it to define

CHi
∼(X × Y ) −→ H2i(X × Y )

∼−−→
2i⊕
j=0

Hj(X)⊗H2i−j(Y )

∼−−→
2i⊕
j=0

HomK(Hj(X), Hj(Y )),

so giving a factorisation F is really the same as giving such a cycle class map. Of course, H•
comes with a cycle class map on CH(X) for any X, but this factors through CH∼(X) only if ∼
is finer than homological equivalence.

This is where we see a discrepancy: the category of motives only satisfies the universal property
we want it to have if we impose at most homological equivalence, but we only get a semisimple
category of motives if ∼ is numerical equivalence. The hope is that ∼hom = ∼num for any Weil
cohomology theory; this is known as Standard Conjecture D.

In summary, if ∼ = ∼num, the only question we need to answer to determine if Mot∼(k) is
Tannakian is whether it admits a fibre functor. For this, recall Theorem 3.1.13, which says that
a pre-Tannakian category admits a fibre functor if and only if the rank of every object is a natural
number. However, if we look at the rank of a variety in Mot∼(k), we get

rk(hX) = 〈∆X ·∆X〉 = χ(X) =
dim(X)∑
i=0

(−1)i dimkH
i(X,OX),

which may be negative. However, this would be fixed if the sum on the right was not alternating.
To make this happen, we need the Künneth components of the diagonal to be algebraic; that is,
for every X, we want the morphisms H•(X) → Hi(X) ↪→ H•(X) to be induced by algebraic
cycles pi ∈ CH∼(X ×X). It follows that we obtain decompositions

hX =
2 dimX⊕
i=0

hi(X) :=
2 dimX⊕
i=0

(X, pi, 0).

If we have this, we can modify the commutativity constraint on the category of motives: where
before we had cX,Y : X ⊗ Y ∼−→ Y ⊗X, we can now define

c̃X,Y := X ⊗ Y =
⊕
n,m

hnX ⊗ hmY
⊕

(−1)nmcn,m
−−−−−−−−−−→

⊕
n,m

hmY ⊗ hnX = Y ⊗X,

where we denote the restriction of cX,Y to hnX ⊗ hmY by cn,m. Calculating rk(hX) now gives∑
dimkH

i(X,OX) ∈ N. This proves:

Corollary 3.3.7. Suppose that for every X, the Künneth components of the diagonal are
algebraic. Then Motnum(k) is a semisimple Tannakian category.
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We will still denote the category of motives with its modified commutativity constraint by
Mot∼(k). We stress again that this is not known to be possible in general: the Künneth compon-
ents of the diagonal being algebraic is Standard Conjecture C. It is known for abelian varieties
[Kü93] and when k is a finite field:

Theorem 3.3.8. Suppose k = Fq. Then the Künneth components of the diagonal are algebraic,
and hence Motnum(k) is Tannakian.

Proof. This follows from Deligne’s proof of the Weil conjectures; see [KM74, Thm. 2] or [Mil94,
§1].

3.3.4 Motives of abelian varieties
We will now focus on motives of abelian varieties over finite fields and their algebraic closures.
When writing Mot∼(k), we from now on mean the Tannakian subcategory of motives
generated by abelian varieties. In particular, L ∈ Mot∼(k). An important fact about motives
of abelian varieties is Künnemann’s theorem [Kü93]:

Theorem 3.3.9. Let A be an abelian variety. Then there is an isomorphism hr(A) ∼=
∧r
h1(A)

in the category of motives.

Thus, for any Weil cohomology theory, the Betti numbers of an abelian variety are the same as
those of a complex torus. Moreover, h1(A) generates the same Tannakian category as hA. As a
corollary we obtain the following:

Proposition 3.3.10. Let A be an abelian variety over a finite field. Then its Frobenius πA acts
semisimply on the l-adic étale cohomology.

Proof. Since l-adic cohomology is a Weil cohomology theory, we have Hr(A,Ql) =
∧r
H1(A,Ql).

Since H1(A,Ql) is the dual of the Tate module, and we proved that πA acts semisimply on the
Tate module (Tate’s theorem), πA acts semisimply on the whole cohomology.

3.3.5 Lefschetz motives
The category of Lefschetz motives is a slightly modified version of the motives defined above, for
which we can actually prove the standard conjectures. More precisely, following [Mil99a], we will
construct a category of Lefschetz motives, which will be semisimple, Tannakian, and for which
∼hom = ∼num.

Definition 3.3.11. Let k be a field, and let ∼ be an adequate equivalence relation on cycles.
For a smooth projective variety X/k, denote by D∼(X) the subalgebra of CH•∼(X) generated by
divisors: that is, D∼(X) := Q[CH1

∼(X)].
Define the degree 0 Lefschetz correspondences from X to Y as LCorr0

∼(X,Y ) := D∼(X × Y ).
Denote by LMot(k) the category of Lefschetz motives for numerical equivalence, constructed in
the usual way, and with objects generated only by the motives of abelian varieties.

For this definition to make sense, we actually need to know some facts about Lefschetz classes,
for instance:

• Pullbacks of Lefschetz classes are Lefschetz;

• Pushforwards of Lefschetz classes are Lefschetz;

• Graphs of regular maps are Lefschetz.
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The first of these is obvious, as the pullback of a divisor is a divisor and ϕ∗ is a ring homomorph-
ism, but neither of the other two are immediate. In fact, suppose Z ⊂ X is a closed subvariety
which is not a Lefschetz class. Then i∗[1] = [Z] is not Lefschetz. However, if A and B are abelian
varieties and ϕ : A→ B is a morphism, then ϕ∗ sends Lefschetz classes to Lefschetz classes. The
above properties are shown to hold in [Mil99a, §5]. In particular, if k = Fq, the graph of the
Frobenius endomorphism on any k-variety is Lefschetz.

Note that Janssen’s proof goes through and we obtain that LMot(k) is semisimple abelian.
Moreover, if k is the algebraic closure F of a finite field, we write LMot(k) for the semisimple
Tannakian category obtained by modifying the commutativity constraint.

Theorem 3.3.12. For Lefschetz motives, numerical equivalence equals homological equivalence.

Proof. We will see in Theorem 3.3.20 that the Lefschetz group L(A) of an abelian variety is
reductive, so its finite-dimensional representations are semisimple. Examples of such repres-
entations are the l-adic cohomology groups of A. Hence, the non-degenerate pairing inducing
Poincaré duality

H2r(Ā,Ql(r))⊗H2g−2r(Ā,Ql(g − r)) −→ H2g(Ā,Ql(g)) ∼−−→ k

induces a non-degenerate pairing

H2r(Ā,Ql(r))L(A) ⊗H2g−2r(Ā,Ql(g − r))L(A) −→ k.

In the course of the proof of Theorem 3.3.20, we will see that the cohomology classes fixed by
L(A) are precisely those generated by the image of the cycle class map applied to the Lefschetz
classes of A. What this says is that if α is a Lefschetz class and α 6∼hom 0, there exists a Lefschetz
class β on A such that α · β 6= 0. This is what we wanted to show.

Corollary 3.3.13. Let F = Fp. Then for any l 6= p, we have a fibre functor ωl : LMot(F)→ VecQl
induced by l-adic cohomology.

Proof. This follows from the section on realisation functors and Theorem 3.3.12.

3.3.6 The Frobenius endomorphism of a motive
Fix a prime number p. We write q = pn for some n, and F := Fp.

Suppose X is a smooth projective variety over Fq. Then the q-Frobenius (or absolute Frobenius)
is an endomorphism of X, which we denote by πX . We can extend this to motives as follows.
If hX is a pure motive, the Frobenius is simply the graph of πX , which we also denote by πX . We
define the Frobenius of (X, p, 0) as p ◦ πX ◦ p (composition as correspondences). To extend the
definition of Frobenius to all motives, we impose the condition that πX⊗Y = πX⊗πY . Then since
(X, p,m) = (X, p, 0) ⊗ L−m, we only need to define it on L. Now we know that hP1 ∼= h1 ⊕ L,
and Frobenius acts through multiplication by q on the Chow group, whereas the Frobenius of a
point is trivial. So we define πL := q.

We can now generalise Proposition 3.3.10 as follows:

Proposition 3.3.14. Let X be a motive generated by abelian varieties, and let ω : Mot∼(Fq)→
VecK be an exact Q-linear tensor functor. Then πX acts semisimply on ω(X).
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Proof. Write X = (A, p,m) for some abelian variety A. Then hA(m) ∼= X ⊕ X ′, where X ′ =
(A, 1− p,m). Now πA acts semisimply on ω(hA) by Lemma 2.3.1, so the scalar multiple πA(m)
acts semisimply on ω(hA(m)). This vector space decomposes as ω(X)⊕ω(X ′) under the action
of πA(m), so πA(m) acts semisimply on both factors. But the action on the first summand is the
action of πX , by definition of the Frobenius endomorphism.

The following surprisingly non-trivial lemma shows that the Frobenius endomorphisms are central
elements [Sou84, Prop. 2.ii]:

Proposition 3.3.15. Let f ∈ Corr•∼(X,Y ). Then f ◦πX = πY ◦f . That is, Frobenius commutes
with algebraic cycles.

Now that we have defined the Frobenius endomorphism for any motive over Fq, we can consider its
characteristic polynomial (as we can do in any rigid monoidal k-linear category). This polynomial
is preserved under exact k-linear tensor functors, so using the diagram

LMot(Fq) Motnum(Fq)

RepQl(Gal(Fq)) VecQl

where the downward arrow is the l-adic realisation functor, we get the following result:

Proposition 3.3.16. The characteristic polynomial of the Frobenius endomorphism of a motive
(X, p,m) ∈ Motnum(Fq) has Weil q-numbers as eigenvalues.

Proof. Since the Frobenius endomorphism is the graph of a regular map, it is Lefschetz. Hence
the characteristic polynomial of πX ∈ Motnum(Fq) can be calculated in LMot(Fq), and via the
realisation functor, it can be calculated in VecQl , where the abstract definition coincides with
the usual characteristic polynomial.

If hX is a pure motive, the image of πX ∈ LCorr0(hX, hX) in EndQl(H•l (X)) equals the image
of πX ∈ Endk(X,X) in EndQl(H•l (X)). By the Weil conjectures, the eigenvalues of Frobenius
acting on H•l (X) are Weil numbers. Hence the statement holds for pure motives.

Since (X, p, 0) ⊕ (X, 1 − p, 0) ∼= hX, the characteristic polynomial of (X, p, 0) is a factor of the
one for hX. Hence its roots are Weil numbers too. Finally, (X, p,m) ∼= (X, p, 0) ⊗ L−m, so the
eigenvalues of (X, p,m) are those of (X, p, 0) multiplied by q−m, and hence still Weil numbers.

3.3.7 Some fundamental groups
Recall from Definition 2.4.5 that the Weil q-numbers form a Gal(Q)-module W (q), and that
W1,+(p∞) is in bijection with isogeny classes of abelian varieties over F. We know that we can
construct affine groups corresponding to Galois modules: these are the groups of multiplicat-
ive type. We define P (q), resp. P to be the multiplicative groups with characters W (q), resp.
W (p∞).

We can describe the Tannakian category RepQl
(P (q)) explicitly as follows: its objects are pairs

(V,Φ) where V ∈ VecQl and Φ is a semisimple automorphism of V whose eigenvalues lie in
W (q). Indeed, P (q) is of multiplicative type, hence diagonalisable over Ql, and the action on
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each eigenspace is through a character.

From this description, Proposition 3.3.16 allows us to define a functor

Motnum(Fq)⊗Ql −→ RepQl
(P (q)).

Indeed, Motnum(F) admits an abstract fibre functor ω over Ql by Theorem 3.1.8. Hence we can
define the functor by sending a motive X to the pair (ω(X), ω(πX)). Restricting it to Lefschetz
motives gives a commutative diagram

LMot(Fq)⊗Ql Motnum(Fq)⊗Ql

RepQl
(P (q))

The composition of the downward functors with the functor RepQl
(P (q))→ VecQl gives the fibre

functor ω, which is exact and faithful; therefore the downward functors are exact and faithful.
Thus we can apply Proposition 3.1.11 to the above diagram to get a commutative diagram of
fundamental groups:

L(q) M(q)

P (q)

Let us see what happens when we replace Fq by F. For any m ≥ 1, we have functors

Motnum(Fq) −→ Motnum(Fqm)

induced by base change. Moving to the algebraic closure, we have Motnum(F) = lim−→Motnum(Fq)
as the 2-colimit over these functors. The reason is that for any two abelian varieties A and A′ over
F, there is a finite subfield over which both of them have models and such that HomFq (A0, A

′
0) ∼=

HomF(A,A′). To see this, note that homomorphism groups are finitely generated, so there is a
finite field over which all finitely many generators are defined.

The base change functor does not commute with fibre functors, since it raises the eigenvalues of
Frobenius to the mth power, but it respects the classes of the eigenvalues in W (p∞). The same
arguments apply as in the classification of isogeny classes of abelian varieties over F, but in this
setting we can rephrase them as follows: we have commutative diagrams (for all q = pn and
m ≥ 1)

Motnum(Fq) Motnum(Fqm)

RepQl
(P (q)) RepQl

(P (qm))

where the bottom morphism sends a representation (V,Φ) to (V,Φm).

Phrased yet another way, we can take the limit over the maps P (q) → M(q) to get an induced
map P →M , where we defined P through X∗(P ) := W (p∞). We can apply the same arguments
to the groups L(q).
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Proposition 3.3.17. We have a commutative diagram with injective maps:

L M

P

Proof. The construction of the diagram was discussed above. To show that the maps are in-
jective, we need to show that every object in RepQl

(P ) is a subquotient of an object coming
from Motnum(F). But this is Honda’s theorem: for every Weil number in W (p∞), there exists
an abelian variety over F whose Frobenius acting on the Tate module has those eigenvalues (cf.
Theorem 2.4.8). We obtain the Weil numbers which are not of weight 1 because the l-adic real-
isation functor ωl on LMot(F) sends a variety to its entire l-adic cohomology, not just its Tate
module, and the twists by L allow for non-algebraic integers to occur.

The map M → L is induced by the natural inclusion functor LMot(F) → Motnum(F) which is
faithful (but in general not full), Q-linear and exact. It is injective because the image of the
functor generates all abelian motives.

From now on, we identify P with a subgroup of M via the inclusion P ↪→ M we constructed
above.

3.3.8 The Lefschetz group
Definition 3.3.18. Let A be an abelian variety over k. Denote by 〈A〉⊗ the smallest subcategory
of LMot(k) containing L and A, and which is closed under subquotients, direct sums, tensor
products, and duals. Note that it is again a Tannakian category.
The Lefschetz group of A, denoted L(A), is defined to be the fundamental group of 〈A〉⊗.

Fix a Weil cohomology theory H• with coefficient field K. For an abelian variety A, denote by
H1(A) the dual of H1(A). Define C(A) to be the centraliser of End0(A) in EndK(H1(A)).

Lemma 3.3.19. Let A be a CM abelian variety. Then C(A) ∼= Z(End0(A))⊗K. In particular,
C(A) is commutative.

Proof. If A is of CM type, we have [End0(A) ⊗ K : K]red = [End0(A) : Q]red = 2g. Because
H1(A) is a 2g-dimensional faithful representation of End0(A) ⊗ K, Lemma 3.2.2 tells us that
End0(A)⊗K is a product of matrix algebras over fields Li, and H1(A) is isomorphic to a direct
sum

⊕
Lnii . Hence the centraliser of End0(A) in EndK(H1(A)) ∼= End0(A)⊗K is just the centre

Z(End0(A)⊗K) ∼= Z(End0(A))⊗K.

C(A) has a well-defined Rosati involution (−)†. We recall the construction. Let D be any ample
divisor on A. Then we have

cl(D) ∈ H2(A)(1) ∼= (
∧2
H1(A))(1) ∼= Hom(

∧2
H1(A),K(1)), (3.3)

so we can associate a skew-symmetric bilinear form eD to D. Because D is ample, eD is non-
degenerate. Hence there exists an involution (−)† such that for all a, b ∈ H1(A) and for any
f ∈ EndK(H1(A)), we have

eD(f(a), b) = eD(a, f†(b)).
The restriction of (−)† to C(A) is the Rosati involution defined by D, and depends on the choice
of D only up to a conjugation.
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Theorem 3.3.20. Let A be an abelian variety. Then for any K-algebra R,

L(A)(R) ∼= {γ ∈ C(A)⊗R | γ†γ ∈ R×}.

Proof. Let ω : LMot(k)→ VecK denote the fibre functor induced by the Weil cohomology theory
H•. By definition,

L(A) = Aut⊗(ω|〈A〉⊗).

Thus, L(A)(K) consists of those automorphisms Φ such that for any f : B → C in 〈A〉⊗,

ω(B) ω(B)

ω(C) ω(C)

ΦB

ΦC

ω(f) ω(f)

commutes (and such that ΦX⊗Y = ΦX ⊗ ΦY , Φ1 = idK).

We have an embedding L(A) ↪→ GL(ω(h1(A)))×Gm by sending Φ 7→ Φh1(A)×ΦL, and its image
consists of the automorphisms with the above property. But the square above commutes if and
only if for any α ∈ LCorr•∼(X × Y ), the class cl(α) is fixed by ΦX⊗Y . Indeed, the action of
correspondences on cohomology is given via the cycle class map composed with the isomorphism

H2i(X × Y ) −→
2i⊕
j=0

HomK(Hj(X), Hj(Y )),

which commutes with the action of algebraic cycles. Thus, cl(α) is fixed by ΦX⊗Y if and only if
ΦX(cl(α)Φ−1

Y ) = cl(α).

This realizes L(A) as the biggest algebraic subgroup of GL(H1(A)) × Gm fixing all Lefschetz
classes. Denote by L′(A) the affine algebraic group from the statement, i.e.

L′(A)(R) = {γ ∈ C(A)⊗R | γ†γ ∈ R×}.

Define a map L′(A) → GL(H1(A)) × Gm on points by sending γ 7→ (γ, γ†γ). This is clearly
injective; we want to show that its image is L(A). Since both groups are of multiplicative
type, it suffices to show that they fix the same vectors in any representation, i.e. we want that
HomL′(A)(1, V ) = HomL(A)(1, V ) for any representation V of GL(H1(A))×Gm.

Since L(A) by definition fixes the Lefschetz classes, it suffices to show that for every embedding
f : 1 ↪→ Tm,n := (h1(A))⊗m(n), the group L′(A) is the maximal subgroup fixing the image of
ω(f). Here we use that any finite-dimensional representation of L(A) is contained in a direct
sum of those of the form Tm,n (see [DM82, Prop. 3.1(a)], for the more general statement, and
note that in this case, h1(A)∨ ∼= h2g−1(A)(g)).
In our case, Hom(1, Tm,n) = LCorrn∼(Spec(k) × h1(Am)), so the image of ω(f) consists of the
divisor classes in H2n(Ar)(n). Milne showed that the Serre group of A, given by

S(A)(R) = {γ ∈ C(A)⊗R | γ†γ = 1} ⊂ L′(A),
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fixes precisely the divisor classes in H•(Ar) for all r, disregarding Tate twists [Mil99a, Thm. 3.2].
On the other hand, the second entry of L′(A) ensures that a fixed divisor class in H2n(Am)(n′)
is non-zero only if n = n′. Indeed, let γ ∈ L′(A)(R). Then for any a, b ∈ H1(A),

eD(γa, γb) = eD(a, γ†γb) = γ†γeD(a, b),

and hence (γ, γ†γ) ∈ (GL(H1(A)) × Gm)(R) fixes cl(D) ∈ H2(A)(1), as one can see by tracing
the isomorphism (3.3). This is enough to deduce that γ fixes all divisor classes on Ar for all r.
Thus L′(A) = L(A), as required.

Theorem 3.3.21. An isogeny A→
∏
Anii of A onto its simple isogeny factors realizes L(A) as

a subgroup of
∏
L(Ai).

Proof. We first prove the statement with L replaced by C. Recall that we defined

C(A) = {M ∈ EndK(H1(A)) | M ◦H1(f) = H1(f) ◦M ∀f ∈ End0(A)}.

Then for any n ∈ N, since End0(An) ∼= Mn×n(End0
k(A)) and H1(An) = H1(A)⊕n, we see that

C(A) ∼= C(An) via the diagonal embedding.

In a similar way, we see that if A ∼=
∏
Ai, then C(A) ⊆

∏
C(Ai) by projecting an endomorphism

M onto its factors; this is injective because the projections occur as H1(πi) and elements in C(A)
commute with these. If Hom(Ai, Aj) = 0 for i 6= j, this is an isomorphism, because then any
endomorphism M of H1(A) is determined by its projections, which have to lie in C(Ai) if M is
to be in C(A). Thus, if A→

∏
Anii is an isogeny, we get an isomorphism

C(A) ∼= C(A1)× . . .× C(An).

Moreover, the involutions agree: if Di is the divisor on Ai defining the involution on C(Ai), then∏
i(Di ×

∏
j 6=iAj) defines the same involution on C(A).

By Theorem 3.3.20, this implies that for any R, we have

L(A)(R) ∼= {(γi) ∈
∏

L(Ai)(R) | γ†i γi = γ†jγj ∈ R
× ∀i, j}

and hence L(A) ⊂
∏
L(Ai).

Corollary 3.3.22. Write L for the fundamental group of LMot(k). Then

L ↪−→
∏
A

L(A),

where A ranges over the isogeny classes of abelian varieties over k. In particular, if k is a finite
field or an algebraic closure of a finite field, L is commutative.

Proof. Combine Theorem 3.3.21 with the fact that LMot(k) = lim−→A
〈A〉⊗ as a 2-colimit over the

abelian varieties A/k. The commutativity statement follows from Lemma 3.3.19 and the fact
that any abelian variety over a finite field is of CM type.

The corollary shows that we can very explicitly describe the fundamental group of Lefschetz
motives if we have a classification of the isogeny classes. We have seen such classifications for
CM abelian varieties and abelian varieties over Fp, and we will apply the corollary in those
situations.
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Remark 3.3.23. In this section, we argued in a circular way: we defined the Lefschetz group
as the fundamental group of 〈A〉⊗, but we needed properties of the Lefschetz group to deduce
that this category was Tannakian in the first place. The correct way to argue is to first define
the Lefschetz group abstractly; then show that its fixed vectors are the Lefschetz classes, and use
this to define a Tannakian category of Lefschetz motives; and finally show that this Lefschetz
group coincides with the fundamental group of 〈A〉⊗. This was done properly in [Mil99a] and
[Mil99b], whereas our aim was to introduce the reader to these concepts with as few requirements
as possible.
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4. Hodge implies Tate
4.1 Overview
We denote by p a prime number, and by F the algebraic closure of Fp. The main theorem we
want to prove is the following [Mil99b, Thm. 7.1]:
Theorem 4.1.1. Suppose the Hodge conjecture holds for all CM abelian varieties over Q. Then
the Tate conjecture holds for all abelian varieties over F.
The Tate conjecture is a statement about finitely generated fields, so “the Tate conjecture over
the algebraic closure of a finite field” does not really make sense. What we really mean is the
following:
Conjecture 4.1.2 (Tate conjecture over F). Let X/F be a smooth projective variety. Then for
each 0 ≤ r ≤ dim(X), the kernel of the cycle class map

clr : Zr(X) −→ H2r(X,Ql(r))

consists of the cycles numerically equivalent to zero, and induces an isomorphism

CHr
num(X)⊗Ql

∼−−→
⋃

Xq/Fq

H2r(X,Ql(r))Gal(Fq),

where the union is over all models of X over a finite field, i.e. those Xq such that Xq×Fq F ∼= X.
Since X and its cycles are all defined over some finite subextension of F, we see that the Tate
conjecture over F is equivalent to the Tate conjecture over any Fpn .

Assuming the Hodge conjecture, we will construct a commutative square of exact Q-linear tensor
functors between Tannakian categories, which induces a commutative square of fundamental
groups:

LCM(Q) CM(Q)

LMot(F) Motnum(F)

T S

L M

The dependency on the Hodge conjecture comes from the existence of the functor CM(Q) →
Motnum(F): to construct it, we need to assume that all absolute Hodge cycles are algebraic.

As it turns out, all the groups appearing in the diagram on the right are of multiplicative type (i.e.
determined by their geometric characters as Galois modules), and we can compute all of them,
except possibly M (without assuming the Tate conjecture). We have, however, constructed an
injection P ↪→M of the Weil-number pro-torus into M (Proposition 3.3.17), and we understand
the characters of P very well. When we precompose with this inclusion, we will be able to prove:
Theorem 4.1.3. There is a commutative square of affine groups

T S

L P
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such that all maps are injective, and which realizes P = S ∩ L inside T .

Since the above affine groups are of multiplicative type, we can study this square through the
induced commutative square of character groups:

X∗(T ) X∗(S)

X∗(L) W (p∞)

The Tate conjecture implies that P = M . Conversely, Theorem 4.1.3 implies the Tate conjecture
for abelian varieties over F, which will prove the main theorem.

We will start by defining the categories and functors that make up the square, and explicitly
describe their action on character groups. Once this is done, we will proceed to prove Theorem
4.1.3.

4.2 Construction of the commutative square

4.2.1 The categories
In what follows, all our categories will in the end be defined over Ql for some l 6= p, even though
we do not include this in the notation and even define and compute with them over smaller base
fields, where possible. Then in the end, we may simply extend scalars to Ql. This choice of base
field ensures that all our categories have fibre functors: Theorem 3.1.8 implies that Motnum(F)
has a fibre functor over Ql, and we have a functor LMot(F) → RepQl

(P ) induced by the l-adic
realisation functor. Finally, extending scalars does not change the characters of the groups of
multiplicative type which occur as the fundamental groups of the categories.

Define LCM(Q) to be the Tannakian subcategory of LMot(Q) whose objects are generated by
abelian varieties of CM type over Q. We denote the fundamental group of LCM(Q) by T . Be-
cause we only use CM abelian varieties, Lemma 3.3.19 and Corollary 3.3.22 imply that T is
commutative, and since its category of representations is semisimple by Jannsen’s theorem, it is
a group of multiplicative type over Q, taking singular cohomology as our Weil cohomology theory.

The category LMot(F) is the Tannakian category of Lefschetz motives of abelian varieties over
F. We denote its fundamental group by L. It is of multiplicative type, again by Jannsen and
Corollary 3.3.22, and defined over Ql, l-adic cohomology as Weil cohomology theory. Because it
is of multiplicative type, L is also defined over Q, although we won’t need this.

For the last category, CM(Q), we need the notion of absolute Hodge cycles. These are defined as
follows: if X/Q is an abelian variety, one can consider its algebraic deRham cohomology H•dR(X)
and its étale cohomology H•ét(X) :=

(
lim←−H

•(Xét,Z/nZ)
)
⊗ Q. An embedding σ : Q ↪→ C

determines a canonical morphism

H•A(X) := H•dR(X)×H•ét(X) −→ H•A(Xσ,C).

64



A cohomology class in H2r
A (X)(r) is called Hodge relative to σ if its image under the above map

lies in the subspace H2r
A (Xσ,C,Q)(r) and is of type (0,0). It is called absolutely Hodge if it is

Hodge relative to every embedding Q ↪→ C.

Like Lefschetz classes, absolute Hodge cycles have good properties: for instance, they are pre-
served under pushforwards and pullbacks by regular maps; they contain the algebraic classes;
and the Künneth components of the diagonal are absolute Hodge cycles. Moreover, for abelian
varieties it is known that a cycle is absolutely Hodge as soon as it is Hodge relative to a single
embedding. All these statements can be found in [DM82]. For our purposes, it is enough to
know that absolute Hodge cycles have good enough properties to act as correspondences in a
category of motives.

More precisely, define CM(Q) to be the category whose objects are motives of CM abelian vari-
eties over Q, and whose correspondences are absolute Hodge cycles. It is constructed completely
analogously to how we constructed the categories Mot∼(k), and we can modify the commutativ-
ity constraint because the Künneth components of the diagonal are absolutely Hodge. Twists
are given by tensoring with h2(P1)∨. Moreover, it is a semisimple category because the endo-
morphism rings are semisimple [DM18, Prop. 6.3]. We denote its fundamental group by S, and
we call this the Serre group.

Remark 4.2.1. In [Mil99a], Milne defines the Serre group S(A) of an abelian variety in a similar
way as we defined the Lefschetz group. It is a reductive group over the coefficient field K of a
Weil cohomology theory. Its points are given by

S(A)(R) = {γ ∈ C(A)⊗R× | γ†γ = 1},

where C(A) is the centraliser of End0(A) in EndK(H1(A)). Thus L(A) is an extension of Gm
by S(A), and S(A) is isomorphic to the product of S(Ai) for each simple isogeny factor Ai of A
(even better than Theorem 3.3.21). Milne proves that the Serre group of an abelian variety fixes
precisely the divisor classes on H2r(A) (ibid. Theorem 3.2), but S(A) crucially does not see the
Tate twists, unlike the Lefschetz group.

We stress that the Serre group S(A) is not in general to S what the Lefschetz group L(A) is to
L. Indeed, S(A) fixes the divisor classes (on the subcategory 〈A〉⊗ ↪→ CM(Q)), whereas S fixes
the Hodge classes in the cohomology of A. This does give a relationship between S and S(A),
namely: the Serre group S(A) of A fixes precisely the Hodge classes of A if and only if no power
of A supports an exotic Hodge class (cf. ibid. Proposition 4.8). When we talk about the Serre
group in this chapter, we will always mean S or its variant SK defined below, and not S(A).

4.2.2 The functors
Viewing algebraic cycles as absolute Hodge cycles gives a faithful functor LCM(Q)→ CM(Q).

The functor LMot(F) → Motnum(F) is the identity on objects. On morphisms, it is induced by
the inclusions 〈CH1

num(X)〉 ↪→ CH•num(X).

It remains to define reduction functors. We have already seen that we can reduce CM abelian
varieties over Q. This extends to motives:

Proposition 4.2.2. There exists an exact Q-linear tensor functor LCM(Q) → LMot(F) which
sends hA to hAF.
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Proof. First of all, we fix an embedding i : Q ↪→ Qp.
We first define the functor (call it R) on motives hA where A is a CM abelian variety over Q. Let
A0 be a model of A over a number field K, and L be a finite extension of K over which A0 has
good reduction at p, which exists by Theorem 3.2.15. Then an embedding L ↪→ Q determines a
valuation vL of L lying over p, given by the composition

vL : L ↪−→ Q i−−→ Qp
vp−−−→ Q ∪ {∞}.

Since vp takes the same values on Galois conjugates, this valuation does not depend on the choice
of embedding. Now A0 ×K Spec(L) has good reduction at vL. Its reduction Ak is an abelian
variety over k = Fq for some q = pn. Finally, define R(hA) = hAF := h(Ak ×Fq F).

To describe the functor on morphisms, we use the morphisms

CHr(A) ∼←−− CHr(A′) −→ CHr(Ak),

given by intersection with the generic, resp. the special fibre. Clearly, this procedure sends
divisors to divisors and respects intersection products, so Lefschetz classes in CH•(A) get sent
to Lefschetz classes in CH•(Ak).

This shows that if M = (A, p,m) is a general motive, the assignment R(M) = (AF, pF,m) is
well-defined. From this description it follows easily that R defines a Q-linear tensor functor; it
is exact because it is additive.

In a similar way, we obtain:

Proposition 4.2.3. Suppose the Hodge conjecture holds for CM abelian varieties over C. Then
there exists a Q-linear exact tensor functor CM(Q)→ Motnum(F) which sends hA to hAF.

Proof. On objects, we can argue as in the previous proposition. To define the functor on morph-
isms, we need that every absolute Hodge cycle is algebraic. By [DM82, Prop. 2.9], absolute
Hodge classes on A/Q are in bijection with absolute Hodge classes on AC, and algebraic cycles
on A are in bijection with algebraic cycles on AC. Hence, the Hodge conjecture for abelian
varieties of CM type over C implies that there are morphisms

CH•AH(X × Y ) −→ CH•num(XF × YF),

and for the rest we can argue as in the previous proposition.

4.2.3 A filtration by CM fields
We want to construct a filtration on our categories which will allow us to work with simpler
groups. We do this as follows. Fix a Galois CM field K of finite degree over Q. Denote by
LCMK(Q) the Tannakian subcategory of motives generated by abelian varieties whose reflex
field is contained in K. Similary define CMK(Q), and denote their fundamental groups by TK ,
resp. SK . Then T = lim←−T

K and S = lim←−S
K . To get a similar description of the other

fundamental groups, we need to say something about the essential image of the above categories
under the reduction functors.
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LMotK(F) and WK(p∞)

Fix a CM field K ⊂ Q which is Galois over Q. We want LMotK(F) to be the essential image of
LCMK(Q). What we need to understand for this is which eigenvalues of Frobenius can occur for
the reduction of a CM abelian variety over Q with reflex field contained in K. This is explained
by the theorem of Shimura and Taniyama. We can state it as follows [Mil20, Thm 8.1, Cor. 8.3,
Rem. 8.6]:

Theorem 4.2.4. Let A be a CM abelian variety over Q with good reduction at p and with
reflex field contained in a Galois CM field K. Then there exists an endomorphism π ∈ End(A)
whose reduction is the Frobenius of AF. Moreover, if ϕ is a CM-type corresponding to A under
Theorem 3.2.12 and if A0/Fq is a model for AF, then for any prime w | p of K, we have

fπA0
(w) := ordw(πA0)

ordw(q) [Kw : Qp] =
∑

τ−1(wK)=w

ϕ(τ),

where wK is the prime of K over p used to define the reduction functor, and the sum on the
right ranges over the embeddings τ : K ↪→ Q such that τ−1(wK) = w.

The important thing to take away from this theorem is that there exists an explicit relationship
between the CM-type of a CM abelian variety over Q and the Frobenius of its reduction. Since
we already know this Frobenius is a Weil q-number, it can be determined by its v-adic orders for
any v | p, and the theorem gives us the information to calculate these.

We see that for abelian varieties over F coming from LCMK(Q), we will always have fπ(v) ∈ Z
for any v | p of K. Motivated by this, we define

WK(pn) := {π ∈ K ∩W (pn) | fπ(v) ∈ Z for all v | p},

and WK(p∞) := lim−→WK(pn). This is a Gal(Q)-submodule of W (p∞), and we denote the
multiplicative group with characters WK(p∞) by PK . Then since X∗(P ) = W (p∞), we have
P = lim←−P

K .

We define LMotK(F) to be the Tannakian subcategory generated my motives of abelian varieties
whose Frobenius lies in WK(p∞). Denote its fundamental group by LK . Then L = lim←−L

K .
Hence we have constructed for any K satisfying our criteria a commutative diagram

LCMK(Q) CMK(Q)

LMotK(F) RepQl
(PK)

and if we let K grow, we get back our original diagram.

4.3 Calculation of the character groups
The next step is to calculate the character groups corresponding to the fundamental groups in
the above diagram. We already know the characters of PK : by definition, they are given by
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WK(p∞). It remains to calculate the other three. There are two ways one could go about
this: one is by working with the categories directly, and identifying the group of rank 1 objects
under ⊗. The other is by working with the fundamental groups. We will follow Milne and take
the second approach: we have good descriptions of the fundamental groups involved, whereas
determining the group of rank 1 motives seems tricky: proving that a motive is of rank 1 comes
down to constructing algebraic cycles which cut out this motive, but constructing algebraic cycles
is a notoriously difficult problem.

4.3.1 X∗(T K)
For a Galois CM field K/Q of degree 2g, denote by LCMK(Q) the Tannakian subcategory of
motives generated by CM abelian varieties over Q whose reflex field is contained in K. Denote
its fundamental group by TK . By the classification theorem 3.2.12, the isogeny classes of abelian
varieties whose motives generate this category are indexed by Galois orbits of CM-types on K.
Let Φ be such a CM-type. Since the Lefschetz group of an abelian variety is determined by its
isogeny class, we can define TΦ := L(AΦ), where AΦ is any abelian variety whose associated
CM-type corresponds to Φ.

Proposition 4.3.1. Let Φ be as above. Then

X∗(TΦ) = {f : Φ→ Z}
{f | f = fι and

∑
ϕ∈Φ f(ϕ) = 0} .

Proof. By Lemma 3.3.19 and Theorem 3.3.20, the geometric points of the Lefschetz group of
A = AΦ are given by

L(A)(Q) = {γ ∈ Z(End0(A))⊗Q | γ†γ ∈ Q×}.

Since A is a simple CM abelian variety over Q, its endomorphism algebra is a field of degree 2g,
which we denote EΦ. Thus we realise L(A) ⊂ (Gm)EΦ/Q. This inclusion induces a surjection of
character groups

X∗((Gm)EΦ/Q) ∼= ZHom(EΦ,Q) −→ X∗(L(A)). (4.1)

We can identify Hom(EΦ,Q) with Φ: the left-hand side is Gal(Q) modulo the stabiliser of some
chosen ϕ ∈ Φ, which is isomorphic to Φ as Gal(Q)-sets via σ 7→ σϕ. With this notation, we
want to show that the kernel of (4.1) equals {f : Φ → Z | f = fι and

∑
ϕ∈Φ f(ϕ) = 0}. Write

Φ = {ϕ0, . . . , ϕg−1, ιϕ0, . . . , ιϕg−1}.

The kernel of (4.1) consists of those characters χ such that for all a ∈ L(A)(Q), we have χ(a) = 1.
Now because the Rosati involution restricts to complex conjugation on C(A), we see that γ†γ ∈
Q× ⊂ (Q×)Φ if and only if γiιγi is independent of i, where γi = ϕ∗i (γ) denotes the ϕi-component
of γ. Hence a character χ =

∑
aiϕ
∗
i + biιϕ

∗
i evaluates to 1 on L(A)(Q) if and only if for all

γ ∈ L(A)(Q),
χ(γ) =

∏
γaii ιγ

bi
i = 1.

This is clearly satisfied if ai = bi for all i and
∑
ai = 0. Conversely, evaluating such a χ on the

elements ϕi + ιϕi gives ai = bi for all i, and on
∑
ϕi + ιϕi gives

∑
ai = 0. This is what we

wanted.

Proposition 4.3.2. The character group X∗(TK) is a quotient of
⊕

ΦX
∗(TΦ), where the

product ranges over all Galois orbits of CM-types on K.
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Proof. Combine Theorem 3.2.12 and Corollary 3.3.22.

We will see that the above proposition is enough for our purposes: we don’t need to know the
exact structure of X∗(TK).

4.3.2 X∗(LK)
Let Θ denote a Galois orbit in WK

1,+(p∞). Let AΘ be an abelian variety over F corresponding to
Θ, well-defined up to isogeny. Define LΘ := L(AΘ). We can explicitly describe the characters of
this group:

Proposition 4.3.3. The characters of LΘ are given by

X∗(LΘ) = {f : Θ→ Z}
{f | f = fι and

∑
α∈Θ f(α) = 0}

with the natural Galois action.

Proof. Analogous to Proposition 4.3.1. In this case, we use the following identification: if A is a
simple abelian variety over F and A0 is a model for A, we have a Gal(Q)-equivariant bijection

Hom(Q[πA0 ],Q) −→ Θ,

where Θ is the Galois orbit of Frobenius eigenvalues of A0 in W1,+(p∞) (cf. Remark 2.4.9).

Proposition 4.3.4. The character group X∗(LK) is a quotient of
⊕

ΘX
∗(LΘ), where the

product ranges over all Galois orbits of elements from WK
1,+(p∞).

Proof. Combine Theorem 2.4.8 and Corollary 3.3.22.

4.3.3 X∗(SK)
We defined CMK(Q) to be the Tannakian subcategory of Hodge motives generated by CM abelian
varieties with reflex field contained in K. The category of Hodge motives of CM abelian varieties
is equivalent to the category of Hodge structures of CM type (induced by singular cohomology),
which has a forgetful fibre functor. As an example of this, consider an abelian variety A of CM
type over Q: in this case we have a Hodge structure of CM type on H1(A,Q), which we used in
the classification of isogeny classes of such varieties.
The characters of SK have the following description ([Mil99b, §3], or [Mil20, §4] for more details):

Proposition 4.3.5. The characters of the Serre group SK are given by

X∗(SK) = {f : Hom(K,Q)→ Z | f(τ) + f(ιτ) does not depend on τ}

with the natural Galois action.

Remark 4.3.6. The proposition can be understood by looking at the example where A/Q is
simple of CM type with reflex field contained in K. Let E = End0(A) be its field of endomorph-
isms. Denote by ϕ the CM-type defining the isogeny class of A as in Theorem 3.2.10, and define
for each σ : E ↪→ Q a map ψσ : Hom(K,Q)→ Z, given by

ψσ(τ) := τ̃ϕ(σ) = ϕ(τ̃−1σ),
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where τ̃ ∈ Gal(Q) is any extension of τ . This is well-defined by definition of the reflex field
K ′ ⊂ K: indeed, τ̃ϕ = ϕ ⇐⇒ τ |K′ = id. Since ϕ is a CM-type, we have ψσ(τ) + ψσ(ιτ) = 1
for all τ , and these ψσ are precisely the characters of SK acting on H1(A,Q).
Note that the ψσ can be viewed as the elements of the Galois orbit of CM-types associated to A
in Theorem 3.2.12. Thus, this gives a new interpretation of this theorem: two simple CM abelian
varieties are isogenous if and only if S acts on their cohomology through the same characters.

4.3.4 The maps between the character groups
Finally, it remains to describe the maps between the character groups which are induced by the
functors between the Tannakian categories.
Lemma 4.3.7. Let Φ be a Galois orbit of CM-types on K. Then the function ZΦ → X∗(SK)
sending

f 7−→
∑
ϕ∈Φ

f(ϕ)ϕ

factors through X∗(TΦ), and is the map on characters corresponding to the functor LCM(Q)→
CM(Q).
Proof. The map ZΦ → X∗(SK) is well-defined: as each ϕ ∈ Φ is a CM-type, we have ϕ(τ) +
ϕ(ιτ) = 1 for all τ ∈ Hom(K,Q). Hence∑

f(ϕ)ϕ(τ) +
∑

f(ϕ)ϕ(ιτ) =
∑

f(ϕ)

is independent of τ . Next, suppose f = fι and
∑
f(ϕ) = 0. Then for any τ : K → Q, we have

2
∑

f(ϕ)ϕ(τ) =
∑

f(ϕ)ϕ(τ) +
∑

f(ϕ)ϕ(ιτ) =
∑

f(ϕ) = 0,

so this is the zero function. Hence the map factors through X∗(TΦ). To see that it is the map
on characters corresponding to the functor, it suffices to check what happens to the Galois orbit
of CM-types Φ of a simple abelian variety. By Remark 4.3.6, the CM-types in the orbit define
the characters of SK , so the given map is indeed correct.

Combining these maps for all Galois orbits of CM-types on K gives a map X∗(TK)→ X∗(SK).

The map corresponding to LMotK(F)→ RepQl
(PK) has the following description: we associated

motives over F to the Galois orbit of their Frobenius, which we then sent to the representation
with those eigenvalues. Thus, the LΘ →WK(p∞) which is simply induced by sending α ∈ Θ to
α ∈WK(p∞). We check that it is well-defined:
Lemma 4.3.8. Let Θ be a Galois orbit in WK

1,+(p∞). Then the function ZΘ →WK(p∞) sending

f 7−→
∏
α∈Θ

αf(α)

factors through X∗(LΘ).
Proof. We need to show that if f = fι and

∑
α∈Θ f(α) = 0, then the product

∏
αf(α) equals

1 ∈ WK(p∞). For this, it is enough to show that its square is 1. Let n ∈ N be big enough so
that every element in Θ lies in WK(pn). They all have the same weight w, and so∏

α∈Θ
α2f(α) =

∏
α∈Θ

αf(α)+f(ια) =
∏
α∈Θ
||α||2f(α) = p

nw
∑

α∈Θ
f(α) = 1.

70



Combining these maps for all Galois orbits of CM-types on K gives the map X∗(LK)→ X∗(PK).

Characters of the reduction functor

To describe the vertical character maps, we are again back to the following question: given a
CM-type on K, what is the Galois orbit of the Frobenius of the reduction of the associated
abelian variety over Q? We will use the theorem of Taniyama and Shimura (4.2.4) to give an
explicit construction of the maps.

Let’s have a closer look at the function fπ appearing in Theorem 4.2.4. Let Y denote the set of
primes of K lying over p. Then for any n ≥ 1, we have a Gal(Q)-equivariant map

WK(pn) −→ Z[Y ]

π 7−→ fπ : w 7→ ordw(π)
ordw(pn) [Kw : Qp]

which induces a well-defined map WK(p∞)→ Z[Y ].

Lemma 4.3.9. The map WK(p∞)→ Z[Y ] given by [(π, n)] 7→ fπ is injective.

Proof. In general, two elements of a number field K differ by a root of unity if and only if their
quotient has norm 1 under every norm on K. For Weil p-numbers, this is trivially the case for
norms coming from primes not lying over p.
Let [(π, n)], [(π′, n′)] ∈ WK(p∞), so that they have representatives πn′ , π′n ∈ WK(pnn′). Then
fπ = fπ′ implies that ordw(πn′) = ordw(π′n) for all w | p, so πn′ and π′n differ by a root of unity,
which implies [(π, n)] = [(π′, n′)].

We now construct a map g 7→ [g($)] : X∗(SK) → WK(p∞) and prove that it is well-defined;
afterwards we will show that this is the map on characters. Recall that X∗(SK) is the set of
functions g : Hom(K,Q) such that g(τ) + g(ιτ) is independent of τ . Fix a prime wK of Q lying
over p. Let h be the order of wK in the class group of K, and let ($) = whK .

Given any g ∈ X∗(SK), we can consider g as a function K → Q by defining

g(a) =
∏

τ :K→Q

τ(a)g(τ).

Lemma 4.3.10. Fix g ∈ X∗(SK). Then g($) ∈WK(pn) for n = fh, where f denotes the inertia
degree of wK . Moreover, [g($)] ∈ WK(p∞) has weight wt(g) := g + ιg and is independent of
the choice of generator $.

Proof. Let σ ∈ Gal(K/Q). We compute the norm of σ(g($)) as follows:

||σ(g($))||2 = σ(g($) · ιg($)) = σ
∏

τ :K↪→Q

τ($)g(τ)+ιg(τ) =

= NmK/Q($)wt(p) = pfh·wt(g).

Thus g($) is a Weil pfh-number of weight wt(g). To show that it lies in WK(pfh), we compute,
for any prime w | p of K,

fg($)(w) = ordw(g($))
ordw(pfh) [Kw : Qp] =

∑
g(τ)ordw(τ($))

ordw(pfh) [Kw : Qp].
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Now note that ordw(p) = e, the ramification index of wK (= the ramification index of any w | p),
and that

ordw(τ($)) =
{
h τ(wK) = w;
0 otherwise.

Moreover, [Kw : Kur
w ] = e and [Kur

w : Qp] = f , and hence [Kw : Qp] = ef . Thus the formula
simplifies to

efh
∑
τ(wK)=w g(τ)
efh

=
∑

τ(wK)=w

g(τ) ∈ Z. (4.2)

From this last expression, it follows that [g($)] ∈ WK(p∞) is well-defined. Indeed, the map
WK(p∞)→ Z[Y ], π 7→ fπ is injective, and clearly the above expression does not depend on the
choice of $.

Thus, we get a morphism X∗(SK) → WK(p∞) sending g 7→ π(g) := [g($)]. To see that it is
the map on character groups corresponding to the reduction functor, we need to see that for any
embedding ρ : K ↪→ Q, we have [g($)] = [ρ(π)]. Note that both are Weil numbers of weight 1.

Proposition 4.3.11. The map g 7→ π(g) := [g($)] is the induced map on characters of the
functor CMK(Q)→ RepQl

(PK).

Proof. Let wK | p be the prime of K used to define the reduction functor, and let A/Q be a CM
abelian variety such that E := End0(A) ⊂ K. In particular, the reflex field of A is contained in
K. Let ϕ be the CM-type on E which corresponds to A as in Theorem 3.2.12. Fix an embedding
ρ : E ↪→ Q. By Theorem 4.2.4, there is some π ∈ E realizing the Frobenius of the reduction of
A, and at the same time, ρ induces a CM-type ϕρ on K. We want to show that [ρ(π)] = [ϕρ($)].

By Lemma 4.3.9, it suffices to show that fρ(π) = fϕρ($). We have, for any w | p of K,

fρ(π)(w) = [Kw : ρ(E)v]fρ(π)(v) = [Kw : ρ(E)v]
∑

τ−1(wK)=v

ϕ(τ ◦ ρ),

where v equals wK restricted to ρ(E), and where the last equality is the theorem of Shimura and
Taniyama.
On the other hand, we saw in (4.2) that

fϕρ($)(w) =
∑

τ(wK)=w

ϕρ(τ) = [Kw : ρ(E)v]
∑

τ(wK)=v

ϕρ(τ),

and since by definition ϕρ(τ) = ϕ(τ |E) = ϕ(τ−1 ◦ ρ), this finishes the proof.

This completes the construction of the map of characters associated to the reduction of abelian
varieties. The calculations from the previous sections are summarised in Figure 4.1.
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Figure 4.1: Overview of the character groups and maps between them.

4.4 P = S ∩ L

Recall that we want to prove the following theorem:
Theorem 4.4.1. In the commutative square with injective maps

T S

L P

the image of P equals S ∩ L ⊂ T .
There are convenient reformulations:
Lemma 4.4.2. The following are equivalent:

1) P = S ∩ L ⊂ T .

2) The induced map coker(P → L)→ coker(S → T ) is injective.

3) The induced map coker(P → S)→ coker(L→ T ) is injective.
Proof. We first extend the diagram to one with exact rows by taking cokernels:

T S

L P

0

0

Q′

Q

0

0
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Now 1) =⇒ 2) is a diagram chase starting at Q (after taking R-points, if one wishes). Conversely,
if Q ↪→ Q′, we find that any t ∈ S ∩ L comes from P .
The equivalence of 2) and 3) is seen immediately after applying the snake lemma to the above
diagram.

After moving to character groups, we want to show the dual statements. For that sake, we make
the following definition:

Definition 4.4.3. A commutative square of abelian groups

A B

C D

h1

v1 v2

h2

is said to be almost cartesian if all maps are surjective and ker(v1) � ker(v2), or equivalently,
ker(h1) � ker(h2).

Thus, we can reformulate Theorem 4.1.3 as follows:

Theorem 4.4.4. Let K be a sufficiently large CM field of finite degree over Q. Then the diagram

X∗(TK) X∗(SK)

X∗(LK) X∗(PK)

is almost cartesian.

The next few pages are devoted to the proof of this theorem. In a sense, the heavy theory
is behind us: we have used this to describe the groups and maps appearing in the square of
characters. The next step is to make everything explicit enough to calculate with. After that,
the proof of the theorem comes down to elementary linear and homological algebra.

4.4.1 Set-up and notation
We make the following assumptions on K: it is a Galois CM field of degree 2g over Q, which
properly contains an imaginary quadratic extension E/Q in which p splits, and which contains a
real subfield of degree at least 3 in which p is inert. Since the union of such fields K is Qcm, this
is justified. Moreover, we fix an embedding Q ↪→ Qp so that for varying such K, we get primes
wK | p in a compatible way.

We now make very explicit descriptions of our objects in order to calculate with them. Write
Γ := Gal(K/Q) ∼= Gal(K/E)× 〈ι〉 = {τ0, . . . , τg−1, ιτ0, . . . , ιτg−1}. Denote by D ⊂ Γ the decom-
position group of wK , and let d = |D|. Since p splits in E, we have d | g. On the other hand,
d > 2 because we assume p is inert in a degree > 2 subfield.
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We will assume that the elements of Γ are ordered such that

D = {τ0, . . . , τd−1} and τkd+iD = τkdD ∀k = 0, . . . , g
d
− 1, ∀i = 1, . . . , d− 1.

Note that we have a bijection Γ/D ∼−→ {primes of K lying over p} given by [τ ] 7→ τwK .

Lemma 4.4.5. We have a commutative diagram

X∗(SK) Z[Γ]

WK(p∞) Z[Γ/D]

g 7→ [g($)]

π 7→ fπ

Here the vertical arrow on the right sends g to the map [τ ] 7→
∑
σ∈[τ ] g(σ).

Proof. Comparing the two compositions, want to show that

fg($) : w 7−→
∑

τwK=w
g(τ).

But this is exactly what we showed in the proof of Lemma 4.3.10.

Corollary 4.4.6. Suppose f, g ∈ X∗(SK) are in the same D-orbit. Then π(f) = π(g).

Proof. By Lemma 4.4.5, the images of f and g are equal in Z[Y ]. But the map WK(p∞)→ Z[Y ]
is injective, so π(f) = π(g).

We can now also describe the map X∗(TΦ) → X∗(LΘ): the map g 7→ [g($)] from above is
Galois equivariant, so it sends an orbit Φ surjectively to an orbit π(Φ). The map on characters
X∗(TΦ)→ X∗(Lπ(Φ)) then becomes the following:∑

ϕ∈Φ
f(ϕ)ϕ 7−→

∑
ϕ∈Φ

f(ϕ)α(ϕ).

In order to calculate more efficiently with the characters of S, we prove the following easy lemma:

Lemma 4.4.7. A Z-basis for X∗(SK) = {f : Γ→ Z | f(τ) + f(ιτ) is independent of τ} is given
by the following CM-types on K:

ϕi := τ∗i +
∑
j 6=i

ιτ∗j for i = 0, . . . , g − 1;

ϕ̄ :=
g−1∑
j=0

ιτ∗j .

Here τ∗ : Γ→ Z denotes the function sending τ to 1 and everything else to 0.

Proof. We can explicitly write any function f : Γ→ Z such that n = f(τ) +f(ιτ) is independent
of τ as the sum

f =
g−1∑
i=0

f(τi)ϕi +
(
n−

g−1∑
i=0

f(τi)
)
ϕ̄.

For Z-linear independence, note that
∑
niϕi + nϕ̄ = 0 implies ni = 0 for all i (evaluating at τi)

and thus also n = 0.
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We see that the Galois orbits of CM-types Φ := {ϕ0, . . . , ϕg−1, ιϕ0, . . . , ιϕg−1} and Φ̄ := {ϕ̄, ιϕ̄}
together cover the basis from the lemma.

Lemma 4.4.8. Let Ψ be either Φ or Φ̄, and let Θ = π(Ψ) be the Γ-orbit of Weil numbers
obtained by applying π = X∗(SK → PK). Then the bottom map in the commutative square

X∗(TΨ) X∗(SK)

X∗(LΘ) WK(p∞)

is injective.

Proof. We first consider the case Ψ = Φ̄. Let a := π(ϕ̄) ∈ Θ. Suppose f : {a, ā} → Z gets sent
to 1 ∈WK(p∞), i.e.

af(a) · āf(ā) = 1.

By Lemma 4.3.10 and the fact that ϕ̄ has weight 1, we see that the complex norm of any repres-
entative of a is not 1. Thus, after replacing a, ā and 1 by representatives in some WK(pn) and
taking norms, the equation gives f(a) = −f(ā) and hence (again using the equation) a and ā
differ by a root of unity. This implies that a = ā in WK(p∞), and hence f ≡ 0.

Next, we consider the case Ψ = Φ. In order to show injectivity of the bottom map, we use some
linear algebra. We will show that we have a bijection Γ/D ∼−→ Θ by showing that

Θ = {π0, . . . , π g
d−1, ιπ0, . . . , ιπ g

d−1},

where πi := π(ϕdi). Note that Corollary 4.4.6 and our ordering on the τi imply that these ele-
ments cover Θ = π(Φ), but it is for the moment not clear that they are distinct.

Consider now the composite map

A : Z[Γ/D] −→ X∗(LΘ) −→WK(p∞) −→ Z[Γ/D],

where the first map is defined using the function Γ/D → Θ, [τdi] 7→ πi. By Lemma 4.4.5, A
sends [τdi]∗ to the function

[τdj ]∗ 7−→ fπi(τjwK) =
∑

τwK=τjwK

ϕdi(τ).

Recalling the definition of ϕi, we see that we get a contribution of 1 to this sum for every
τ = ιετk ∈ τjD such that either ε = 0 and k = di, or ε = 1 and k 6= di. In other words, A is
given by a matrix, and the ith entry of the jth row is

Aji = A([τdi]∗)([ιετdj ]∗) =


0 ε = 0 and i 6= j;
1 ε = 0 and i = j;
d− 1 ε = 1 and i = j;
d ε = 1 and i 6= j.
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The Γ-equivariance gives a similar result for the columns A([ιτdi]∗). Thus, with respect to the
basis {[τ0]∗, [τd]∗, . . . , [τg−d]∗, [ιτ0]∗, [ιτd]∗, . . . , [ιτg−d]∗}, the matrix A looks as follows:

A =
(

I g
d

dE g
d
− I g

d

dE g
d
− I g

d
I g
d

)
where En denotes the n× n matrix all of whose entries are 1.

We can now conclude first of all that Γ/D → Θ is a bijection. Indeed, the fact that the columns of
A are pairwise distinct means that the elements of Θ all represent different elements in WK(p∞).
This is the point where we need the assumption on K that d > 2.

Next, we consider the kernel of A. Using elementary row operations, we reduce it to

A′ =
(
I g
d

dE g
d
− I g

d

0 M

)
, M =


(2− g)d (2− g)d · · · (2− g)d

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Thus, one easily checks that

ker(A) = ker(A′) =
{∑

ai[τdi]∗ + bi[ιτdi]∗ |
∑

ai = 0 and ai = bi ∀i
}
.

But the first map in the composition defining A was

Z[Γ/D] ∼−→ Z[Θ] � X∗(LΘ) = {f : Θ→ Z}
{f | f = fι and

∑
α∈Θ f(α) = 0} ,

so the kernel of this map is precisely the kernel of A. Hence X∗(LΘ)→ X∗(PK) is injective, as
claimed.

Lemma 4.4.9. In the commutative diagram below, the outer square is almost cartesian.

X∗(TΦ)⊕X∗(T Φ̄) Z[Γ]ϕ0 ⊕ Z[Γ]ϕ̄

X∗(Lπ(Φ))⊕X∗(Lπ(Φ̄)) Z[Γ/D]π0 ⊕ Z[Γ/D]π̄

X∗(SK)

WK(p∞)

γ δ

Proof. The previous lemma implies that the left-hand square is a direct sum of almost cartesian
squares, since the kernel of the bottom map is zero. It remains to show that the right-hand
square is almost cartesian. By Lemma 4.4.7, the top right map is surjective; hence so is the
bottom right map. We will show that the map of kernels ker(γ)→ ker(δ) is surjective.

Suppose
∑
aiϕi + aϕ̄ ∈ ker(δ). Then

∑
aiπ(ϕi) + aπ̄ = 0. Note however that the elements

{π1, . . . , π g
d−1, π̄} are Z-linearly independent, since their images in Z[Γ/D] are: with notation

from the previous proof, the column vector representing fπi is the only one with a non-zero
entry (namely 1) in the ith entry, and fπ̄ has as jth entry a zero for 0 ≤ j ≤ g

d − 1 and a d for
g
d ≤ j ≤

2g
d − 1.
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Since π(ϕi) = π[i/d]d, we obtain from this that a = 0 and

d−1∑
j=0

adi+j = 0, i = 0, . . . , g
d
− 1.

But this means exactly that
∑
aiϕi + aϕ̄ ∈ ker(γ), as we wanted.

Corollary 4.4.10. The square

X∗(TK) X∗(SK)

X∗(LK) WK(p∞)

is almost cartesian.

Proof. Let I = {Γ-orbits of CM-types on K} and let I ′ = {Γ-orbits of weight one Weil numbers
in K}. The outer rectangle in the diagram

X∗(TK) X∗(SK)

X∗(LK) WK(p∞)

⊕
Φ∈I X

∗(TΦ)

⊕
Θ∈I′ X

∗(LΘ)

β δα

is almost cartesian, by Lemma 4.4.9 and the fact from Honda-Tate theory that any isogeny class
over F lifts to an abelian variety over Q. Hence kerα � ker δ, so kerβ � ker δ is surjective
too.

This completes the proof of Theorem 4.1.3.

4.5 Proof of the main theorem
Theorem 4.1.1 now follows from the following two statements:

Proposition 4.5.1. If the Hodge conjecture holds for abelian varieties of CM type over C, then
P = M .

Proof. If the Hodge conjecture holds, we have Proposition 4.2.3 and can hence deduce Theorem
4.1.3. The existence of the square

T S

L M

implies that M ⊆ S ∩ L = P . On the other hand, P ↪→M (Proposition 3.3.17), so P = M .
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Theorem 4.5.2. The following are equivalent:

1) The Tate conjecture holds for abelian varieties over the algebraic closure of a finite field.

2) P = M .

Proof. 1) =⇒ 2): This is [Mil94, Prop. 2.38]. The idea is as follows: suppose the Tate conjecture
(0.0.1) holds. Then numerical equivalence equals l-adic homological equivalence, by definition of
∼hom. Hence we obtain an l-adic fibre functor ωl : Motnum(F), which one can exploit to deduce
that the simple motives are all of rank one, and are classified by W (p∞). In conjunction with the
fact that Motnum(F) is semisimple (Jannsen’s theorem), this implies that M is of multiplicative
type and X∗(M) = W (p∞), i.e. P = M .

2) =⇒ 1): Suppose that P = M . We first show that then numerical equivalence equals l-
adic homological equivalence. To do this, consider the category Mothom(F)l of motives whose
correspondences are the graded pieces of CH•hom(X × Y )Ql (cf. 3.3.1). Then there is a natural
functor

F : Mothom(F)l −→ Motnum(F)⊗Ql (4.3)

which is the identity on objects, and is defined on morphisms via the composition

(CH•(X)⊗Ql)/ ∼hom� (CH•(X)⊗Ql)/ ∼num
∼−→ CH•num(X)⊗Ql;

here the last isomorphism follows from [And04, Prop. 3.2.7.1]. We are using here that the
categories Motnum(F)l and Motnum(F) ⊗ Ql are equivalent, which follows from the above iso-
morphism, the fact that both categories are semisimple, and that Motnum(F)l is generated by
the motives of abelian varieties; cf. [Sta08, Prop. 1.1.4].

We will show that the functor F from (4.3) is faithful. Note that this suffices: it would imply
that for any abelian variety A and integer r, the quotient map

(Ql ⊗ CHr(A))/ ∼hom−→ (Ql ⊗ CHr(A))/ ∼num

is injective. Thus if α ∈ CHr(X) is numerically equivalent to zero, then so is 1⊗α ∈ Ql⊗CHr(X),
so 1⊗ α is homologically equivalent to zero, which means 1 · clr(α) = 0.

Because of the diagram

Hom(X,Y ) End(X × Y )

Hom(F (X), F (Y )) End(F (X × Y ))

we may reduce to endomorphism rings. Let X ∈ Mothom(F)l. Since the l-adic realisation functor
is faithful and the Frobenius endomorphism commutes with correspondences, we have

dimQl End(X) ≤ dimQl EndQl[πX ](ωl(X)).

As we saw in Lemma 2.3.3, we may compute the dimension of the right-hand side via the formula

dimQl EndQl[πX ](ωl(X)) =
∑
P

a(P )2 deg(P ) =: r(πX),
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where
∏
P P

a(P ) is the decomposition of the characteristic polynomial of πX into irreducible
factors (cf. Remark 3.1.16). Here we use semisimplicity of the Frobenius action.

Now suppose Y is a motive in Motnum(F)⊗Ql, and consider the composition

Motnum(F)⊗Ql −→ Motnum(F)⊗Ql
ω−−→ VecQl ,

where ω was our abstract fibre functor. Then

Ql⊗End(Y ) ∼= EndQl
(ω(Y ))M .

If P = M , the right-hand side is the space fixed by the Frobenius endomorphism of Y , or more
precisely, the class of the Frobenius endomorphism of a model of Y . By Proposition 3.3.14,
Frobenius again acts semisimply, so the dimension of this space equals r(πY ).

Now let X ∈ Mothom(F)l, and let F (X) be its image in Motnum(F)⊗Ql. The above shows that

r(πF (X)) = dimQl
End(F (X)) ≤ dimQl End(X) ≤ r(πX),

but r(πF (X)) = r(πX) because the characteristic polynomials of X and F (X) are equal. Hence
equality holds, so we conclude that ∼hom = ∼num.

Since ∼num = ∼hom, we get an l-adic realisation functor ωl : Motnum(F) ⊗ Ql → VecQl , and a
commutative diagram

Motnum(F)⊗Ql RepQl
(P )

VecQl

where now the horizontal functor is defined by sending a motive X to the class of representations
[(ωl(X), ωl(πX))]. Since P and M depend on their fibre functors only up to an isomorphism,
we still have P = M under the map P → M induced by this diagram. In particular, a motive
is fixed by M if and only if its image in RepQl

(P ) is fixed by P . Now for any object X in a
Tannakian category T , the largest subobject of X fixed by π1(T ) is isomorphic to 1⊗Hom(1, X).
In particular, we obtain for every r ∈ Z and every abelian variety X/F,

Ql⊗CHr
num(X) = Hom(1, hX(r)) ∼= (hX(r))M

∼= [(H•(X,Ql(r)), πXq(r))]
P

∼=
⋃

Xq/Fq

H2r(X,Ql(r))Gal(Fq).

The last isomorphism holds because the space fixed by P is the largest subspace of H•(X,Ql(r))
which becomes a trivial subrepresentation in the colimit; that is, the space of elements fixed by
some power of Frobenius. Equivalently, the Frobenius of some finite base extension acts trivially,
which is the same as the Galois-theoretic Frobenius acting trivially. The twist by r ensures that
this space is contained in H2r(X,Ql(r)): indeed, πXq(r) = πXq ⊗ π−rL acts on Hn(X,Ql)⊗Ql(r)
through some Weil qn-number on the first factor, and through q−r on the second factor. Of
course this yields a trivial action if and only if πXq acts by qr, which in particular forces n = 2r.
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To conclude, we showed that the cycle class map

Ql ⊗ CHr
num(X) −→

⋃
Xq/Fq

H2r(X,Ql(r))Gal(Fq) (4.4)

is an isomorphism after tensoring with Ql. Since this is faithfully flat over Ql, (4.4) was an
isomorphism already. Thus the Tate conjecture holds for abelian varieties over F.
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