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1. Introduction

1.1. Motivations. — It is often stated that the Carlitz module is to the ring of univariate
polynomials over a finite field what the multiplicative group is to the ring of integers. This
analogy extends to the case of “rank 2", where Drinfeld modules play a role similar to that
of elliptic curves. This work was born with the aim of finding a common definition for these
objects, dependent only on the coefficient ring, and thus, elevating this analogy to a common
theory.

Let A be a Dedekind ring (1) finitely generated over Z. Let G be a scheme of A-modules
over a field L; by a scheme of A-modules, we mean a functor

G : AlgL −→ModA

from the category of L-algebras to the category of A-modules represented by the points of an
L-scheme. We will impose G to be algebraic (2), connected, and smooth, which means imposing
the eponymous conditions on the underlying scheme. We can consider the ℓ-adic Tate modules
of G defined as follows: for ℓ a maximal ideal of A, Tℓ G is the inverse limit of the ℓn-torsion
points of G over a separable closure Ls of L:

Tℓ G := lim←−G[ℓn](Ls) = lim←−
(
G[ℓ](Ls)←− G[ℓ2](Ls)←− · · ·

)
.

It is naturally a module over the ring Aℓ, obtained by completing A along ℓ. The ℓ-adic Tate
module does not depend on the choice of Ls, up to isomorphisms of Aℓ-modules.

*English translation of the article Pour une définition commune des courbes elliptiques et modules de
Drinfeld. For personal use only. For comments on the translation, please e-mail sjoerd.devries@math.su.se.

1. ↑ By convention, a Dedekind ring is a ring of Krull dimension 1 (i.e., we exclude the case of fields).
2. ↑ This means that the associated scheme morphism X → SpecL is of finite type.

https://arxiv.org/abs/2306.13160
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Let r be a positive non-zero integer. We will say that G is of rank r if, for every maximal
ideal ℓ ⊂ A, the module Tℓ G is free of rank r over Aℓ (cf. definition 2.2).

By means of introduction, and for stating the results, we assign a name to such objects:

Definition 1.1. — A connected, smooth algebraic scheme of A-modules over L of dimension
1 and rank r is called an elementary pre-A-module over L. We will refer to A as the (ring of)
coefficients.

Example 1.2. — Here, we provide some examples of elementary pre-modules that motivate
our definition. We refer to Section 2 for further details.

− The multiplicative group Gm over Q is the simplest example with A = Z and rank 1. We
will show that, in fact, the forms of Gm are the only elementary pre-modules for these
parameters (see Theorem 1.7 below).

− Elliptic curves are also examples of elementary pre-modules with coefficients Z, this time
with rank 2. Elliptic curves with complex multiplication by OK , where K is an imaginary
quadratic field, viewed as elementary pre-modules with coefficients OK , have rank 1.

− Let F = Fq be a finite field with q elements. The Drinfeld modules of rank r are also
examples of elementary pre-modules of rank r, with coefficients in A, the ring of regular
functions on a smooth projective F-curve with one closed point removed. Recall that for
L a finite extension of F(C), a Drinfeld module of rank r over L is a functor

E : AlgL −→ModA

which associates to an L-algebra R the A-module E(R) constructed as follows: as a
vector space over F, E(R) is simply R itself, and the action of a ∈ A is determined by
the existence of coefficients (a)i ∈ L such that:

For all x ∈ R : a · x := (a)0x+ (a)1x
q + (a)2x

q2 + · · ·+ (a)rdx
qrd

where d = deg(a) and (a)rd ̸= 0. The map a 7→ (a)0 defines a ring homomorphism
δE : A → L called the characteristic morphism of E. We say that E is generic if δE
coincides with the inclusion A ⊂ L (see subsection 2.4).

− The Carlitz module C is the simplest example of a generic Drinfeld module for A = F[t],
where t acts by t · x := tx+ xq.

Although they may appear distinct, the two functors Gm and C play analogous roles
in arithmetic when following the analogy (Z,Q) ∼ (F[t],F(t)). For example, finite abelian
extensions of Q are obtained by adjoining the torsion elements of Gm(Q̄) (Kronecker-Weber
theorem); the same holds for finite abelian extensions of F(t) by adjoining the torsion of the
Carlitz module (3) (see [Ca35, Ca38]). In rank 2, it is also customary to compare elliptic
curves and Drinfeld modules of rank 2.

We are thus seeking a common definition for Gm and C, and more generally for elliptic
curves and Drinfeld modules, that depends only on the global field. Unlike the case of the coef-
ficient ring Z, there exists a plethora of elementary pre-modules of rank 1 with coefficient ring
F[t] that are not forms of C. The notion of elementary pre-modules is therefore insufficient to
achieve the desired classification in characteristic p > 0, and an additional hypothesis satisfied
simultaneously by the listed objects is welcome. In this text, we will study the following two
conditions independently.

3. ↑ By adjoining the torsion of C(F(θ)s), we would obtain only the maximal abelian extension that is
totally ramified at the point ∞ of P1

F. To obtain the maximal abelian extension, one would also need to add
the torsion of the Carlitz module associated with the coefficients F[1/t], for example.
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Elementary module of type (1). — Let K be the field of fractions of A, and let L be a finite
extension of K. Let G be an elementary pre-A-module over L. Its tangent space LieG(L) is an
L-vector space of dimension 1 equipped, by functoriality, with the structure of an A-module
that commutes with the L-vector space structure. This is called the tangential action of A.
Since EndL(LieG(L)) canonically identifies with L as a ring, we obtain a ring homomorphism
δG : A → L which is called the characteristic morphism of G. We propose the following
definition:

Definition 1.3 (cf. definition 2.5). — We say that G is an elementary module of type (1)
if δG coincides with the inclusion A ⊂ L.

Remark 1.4. — It is worth noting that the introduced condition is trivially satisfied when
A = Z because Z is an initial object. Furthermore, it is satisfied by any generic Drinfeld
module, where the tangential action of a ∈ A is given by

∂(x 7→ a · x) := ∂x(ax+ (a)1x
q + · · · ) = a.

Elementary module of type (2). — Let OL be the integral closure of A in L. Let G be an
elementary A-module over L. We will say that G is an elementary module of type (2) if the
Galois representation Tℓ G is independent of ℓ in the following sense:

Definition 1.5 (cf. definition 2.9). — We will say that G is an elementary module of type
(2) if there exists a finite set S of maximal ideals of OL such that for every maximal ideal P
of OL outside of S, and for every maximal ideal ℓ of A different from p := P∩A, the following
conditions hold:

(a) The representation Tℓ G is unramified at P, i.e., the inertia group IP ⊂ GL at P acts
trivially on Tℓ G, and

(b) The determinant s(P) ∈ Aℓ of the action of FrobP ∈ GL/IP on Tℓ G belongs to A and
is independent of ℓ.

1.2. Presentation of the results. — The existence of elementary modules is highly restric-
tive in the ring A. This is what we will show through the following result:

Theorem 1.6. — Suppose that there exists an elementary module with coefficient ring A.
Then,
(I) If A has characteristic 0, then either A = Z or A = OK where K is an imaginary

quadratic field.
(II) If A has characteristic p > 0, there exists a smooth projective curve (C,OC) over Fp and

a closed point ∞ on C such that A = OC(C \ {∞}).

In particular, the existence of an elementary module forces K to be a global field with at
most one infinite place (which is only restrictive for number fields).

We then focus on the classification of elementary modules of type (1) and (2). Our main
result states that the mentioned elementary modules are essentially the only ones:

Theorem 1.7. — Let G be an elementary module of type (1) or (2), with coefficient ring A
and rank r. Then:
(I) If the characteristic of A is zero,

− If r = 1 and A = Z, then G is a form of Gm.
− If r = 1 and Z ⊊ A, then A = OK where K is an imaginary quadratic field, and

G is an elliptic curve with complex multiplication by OK .
− If r = 2, then A = Z and G is an elliptic curve.

(II) If the characteristic of A is p > 0, then A is as in Theorem 1.7(II), and
− If G is of type (1), then G is a generic Drinfeld module with coefficient ring A and

rank r.
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− If G is of type (2), then G is a Drinfeld module of characteristic δ, where δ : A→ L
is a raising-to-a-p-th power map.

Remark 1.8. — The converse of the above theorem is almost true, with the exception that an
elliptic curve with complex multiplication by OK is an elementary module of type (1) only if its
only CM-type in the sense of Shimura [Sh98] (or characteristic morphism in our terminology)
is the inclusion OK ⊂ L (c.f. proposition 2.8).

Remark 1.9. — If G is an elementary module over a field L of characteristic p > 0, and
Frobp : L→ L denotes the pth power Frobenius map, then G′ := Frob∗p G is still an elementary
module. This is because the Galois group does not see the pth roots, so we have Tℓ G ∼= Tℓ G′

as representations of GL. This explains why, in (II), we can have non-generic Drinfeld modules
(i.e., those whose characteristic morphism differs from the inclusion).

1.2.0.1. Future work: — Throughout this text, we have assumed G to be of dimension 1.
It would be highly desirable to remove this assumption and include in this study the case of
Anderson modules on one hand and semi-abelian varieties on the other. However, in higher
dimensions, one encounters A-module schemes whose Tate modules are trivial (e.g., unipotent
groups when K = Q), and the project becomes significantly more complicated.

1.3. Article Outline. — We establish the definitions of elementary modules and present
the main examples in Section 2. In Section 3, we recall key results on algebraic groups that
are necessary for our study. The proofs of Theorems 1.6 and 1.7 differ significantly depending
on the characteristic of A (zero or positive). Therefore, in Section 4, we have decided to treat
them in two separate subsections.

1.4. Acknowledgements. — The two authors would like to express their heartfelt gratitude
to the Mathematisches Forschungsinstitut Oberwolfach, where the ideas presented in this paper
were conceived.

2. Elementary Modules

In this section, we define elementary modules of type (1) and (2) and present the examples
of these objects.

2.1. Terminology. — Let A be a Dedekind ring and let L be a field that is an A-algebra.
Let Ls be a separable closure of L with absolute Galois group denoted by GL. Let G be a
scheme of A-modules over L.

Recall that LieG is the functor from the category of L-algebras to the category of A-modules,
which assigns to an L-algebra R:

LieG(R) := kerG
(
R[ε]/ε2

ε 7→0−−−→ R
)
.

The module LieG(R) is also an L-vector space, where scalar multiplication by l ∈ L is derived
from the endomorphism a + εb 7→ a + εlb of the ring R[ε]/ε2. In particular, LieG(R) is
naturally an A ⊗Z L-module. If G is smooth of dimension d, then LieG(L) is of dimension d
over L [Mi17, cor. 1.23].

Suppose G is smooth of dimension d = 1.

Definition 2.1. — The unique ring homomorphism δG : A → L for which the action of
a ∈ A on LieG(L) coincides with scalar multiplication by δG(a) ∈ L, is called the characteristic
morphism of G. The characteristic ideal, denoted by cG, is defined as the kernel of δG.
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For ℓ ⊂ A an ideal, the Tate module at ℓ, denoted by Tℓ G, is defined as the inverse limit of
the ℓ-torsion elements:

Tℓ G := lim←−
n

G[ℓn](Ls).

By denoting Aℓ as the ℓ-adic completion of A, Tℓ G is an Aℓ-module equipped with a compatible
action of the group GL.

Definition 2.2. — For an integer r ≥ 1, we say that G is of rank r if, for every maximal
ideal ℓ ⊂ A distinct from the characteristic ideal c, the module Tℓ G is free of rank r over Aℓ.

Example 2.3. — For A = Z, the multiplicative group Gm over L has the characteristic
morphism given by the map Z→ L. The characteristic ideal of Gm corresponds to the charac-
teristic of L, which motivates the terminology. For ℓ a prime distinct from the characteristic,
the polynomials Xℓk − 1, k > 0, are separable, and therefore

Tℓ Gm
∼= lim←−

x 7→xℓ

(Ls)×

is free of rank 1 over Zℓ. This shows that Gm is of rank 1. More generally, every elliptic curve
over L is of rank 2; we refer the reader to [Si09, III.7.1] for this well-known result. From the
same reference, we deduce that for A = OK where K is an imaginary quadratic extension of
Q and OK is its ring of integers, every elliptic curve over L with complex multiplication by A
is of rank 1 as a scheme of A-modules over L.

By the A-module structure on G, there is a canonical morphism

φ : A −→ Endgrp /L(G)

from the ring A to the ring of endomorphisms of G viewed as a group scheme over L. Here is
a simple but useful lemma that appears at various places in the classification.

Lemma 2.4. — Suppose G has rank r ≥ 1. Then the kernel of φ is contained in c.

Proof. — Let a ∈ A \ c. Since A is Dedekind, the ideal (a) of A decomposes into a product
of prime ideals ℓc11 · · · ℓ

ct
t , where the ℓi are pairwise prime and not contained in c. We have

G[a](Ls) ∼= G[ℓc11 ](Ls) × · · · ×G[ℓctt ](Ls) by the Chinese Remainder Theorem. By definition,
the module G[a](Ls) is isomorphic to (A/a)r. Thus, since (a) ̸= (a2), the inclusion G[a](Ls) ⊂
G[a2](Ls) is strict. Therefore, the same holds for the inclusion G[a](Ls) ⊆ G(Ls), and hence
φ(a) is nonzero.

2.2. Elementary modules of type (1). — Suppose now that L is a finite extension of K,
the field of fractions of A. Let G be a smooth connected scheme of A-modules of dimension 1
and rank r over L.

Definition 2.5. — We say that G is an elementary A-module over L of type (1) if the char-
acteristic morphism of G coincides with the inclusion A ⊂ L. In particular, the characteristic
ideal of G is zero.

Remark 2.6. — If A = Z, then, since Z is initial, every A-module scheme over L of rank
r ≥ 1 is an elementary module of type (1).

In view of this remark and the examples 2.3, we obtain:

Proposition 2.7. — Forms of the multiplicative group and elliptic curves over L are elemen-
tary Z-modules of type (1).

To an abelian variety A of dimension d defined over a number field k and with complex
multiplication by a field K, Shimura associates its CM-type, which is a set of d embeddings
K → kalg. If K is an imaginary quadratic extension of Q with ring of integers OK , and E
is an elliptic curve with complex multiplication by K, it follows from the definitions that the
type of E is the singleton consisting of the characteristic morphism of E. In particular:

Proposition 2.8. — The elliptic curve E is an elementary OK-module of type (1) if its only
CM-type according to Shimura coincides with the inclusion OK ⊂ L.
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2.3. Elementary modules of type (2). — Let G be a smooth connected algebraic scheme
of A-modules over L of dimension 1 and rank r ≥ 1. To define elementary modules of type
(2), we use the following independence property in ℓ:

Definition 2.9. — We say that G is an elementary A-module of type (2) over L if there
exists a finite set S of maximal ideals of OL such that for every P a maximal ideal of OL

outside S and ℓ a maximal ideal of A different from p := P ∩A,

(a) The representation Tℓ G is unramified at P, i.e., the inertia group IP ⊂ GL at P acts
trivially, and

(b) The determinant s(P) ∈ Aℓ of the action of FrobP ∈ GL/IP on Tℓ G belongs to A and
is independent of ℓ.

Example 2.10. — It is well known that, for A = Z, the multiplicative group and elliptic
curves satisfy these conditions. When A = OK where K is an imaginary quadratic extension
of Q, the same is true for elliptic curves with complex multiplication by OK . We refer the
reader to [Si09, Prop. V.2.3].

2.4. Drinfeld modules. — Let us conclude this section with a reminder of the theory of
Drinfeld modules and show that they are elementary modules of type (1) and (2).

Let p be a prime number, and Fp the finite field with p elements. Let (C,OC) be a
smooth projective curve over Fp, and ∞ a closed point of C. Let A be the ring of regular
functions on C except at {∞}, i.e., A = OC(C \ {∞}). It is a Dedekind ring. For a nonzero
element a ∈ A, we denote by deg(a) the degree of a, i.e., the (finite) dimension of A/(a) over Fp.

Let L be a field of characteristic p. We denote by L{τ} the non-commutative ring of finite
sums p(τ) =

∑
i ciτ

i, ci ∈ L for i ≥ 0, where the multiplication is given by τc = cqτ . We
denote by degτ p(τ) the integer given by the maximum of i ≥ 0 such that ci ̸= 0. If Ga

denotes the additive group over L, we have a ring morphism L{τ} → Endgrp/L(Ga), where
c ∈ L acts by homothety x 7→ cx on Ga, and τ acts by raising to the p-th power, x 7→ xp. It
can be verified that this is an isomorphism of rings (see, for example, [DG70, II.§3, 4.4]).

Given an A-module scheme G over L, the group M(G) := Homgrp/L(G,Ga) is equipped
with a left L{τ}-module structure by precomposition. M(G) also has an A-module structure,
with A acting on G, which commutes with the action of L{τ}. These actions coincide over
Fp, and thus M(G) is canonically a left A ⊗Fp L{τ}-module. Let us recall the definition of a
Drinfeld module :

Definition 2.11 (Drinfeld A-module). — An A-module scheme E over L is called a Drin-
feld A-module over L of rank r if it is isomorphic to Ga as a group scheme over L, and the
A⊗Fp

L-module M(E) is locally free of rank r.

Since every Drinfeld module over L is a 1-dimensional scheme of A-modules, we can associate
to it a characteristic morphism δE (definition 2.1). One could demonstrate that there is no
conflict with our definition of rank (definition 2.2) by using [Dr74, prop. 2.2]. However, we
will show it using the A-motive associated with a Drinfeld module.

Associated A-motive. — Let σ be the endomorphism of A-algebras that acts as raising to the
power p on L. Let δ : A → L be a ring homomorphism. The following definition is due to
Anderson [An86] :

Definition 2.12. — An (effective, abelian) A-motive of rank r and characteristic δ is the
data of a locally free module M of rank r over A⊗Fp

L and a σ-linear morphism τM : M →M
whose cokernel is annihilated by a power of the ideal

jδ := ker(A⊗Fp L→ L, a⊗ b 7→ δ(a)b) ⊂ A⊗Fp L.
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Given a Drinfeld module E, we obtain an A-motive with the same characteristic mor-
phism and rank. The underlying module is M(E) and the morphism τM is obtained by post-
composition with τ ∈ Endgrp/L(Ga) on M(E) (we refer to [Ha19, Thm. 3.5] for the details of
this construction).

Definition 2.13. — The data M(E) of (M(E), τM ) is called the associated A-motive of E.

According to the theorem 3.6 below, the A-motif M(E) determines the Drinfeld module
E (although not all A-motives are necessarily of the form M(E)). We recover E using the
formula:

(1) E : AlgL −→ModA, R 7−→ HomL{τ}(M(E), R).

Let Ls be a separable closure of L with absolute Galois group GL. Let Tℓ E be the ℓ-adic Tate
module of E relative to Ls and the maximal ideal ℓ ⊂ A. As a consequence of this description,
we have an isomorphism of Aℓ-linear representations of GL:

(2) Tℓ E ∼= HomL{τ}
(
M(E)∧ℓL , L

s
)
,

where M(E)∧ℓL denotes the ℓL-adic completion of M(E), and ℓL is the ideal ℓ⊗Fp
L ⊂ A⊗Fp

L.
In particular, we deduce from this isomorphism that:

Proposition 2.14. — If ℓ is different from c = ker δE, then Tℓ E is a free Aℓ-module of
rank r.

Proof. — This is a well-known result for which we provide a sketch of the proof. Let n ≥ 1.
If ℓ ̸= c, then the p-linear map on finite-dimensional L-vector spaces M(E)/ℓnL → M(E)/ℓnL
induced by τ is semisimple (cf. [Kat73]). In particular, by the Lang Isogeny Theorem (cf.
prop. 1.1 in loc. cit.), we deduce that the multiplication map

(M(E)/ℓnL ⊗L Ls)τ ⊗Fp
Ls −→M(E)/ℓnL ⊗L Ls

is an isomorphism. Consequently, (M(E)/ℓnL⊗LL
s)τ is a free A/ℓn-module of rank r. Moreover,

using (1), we obtain isomorphisms of A/ℓn-modules:

E[ℓn](Ls) ∼= HomL{τ}(M(E)/ℓnL, L
s) ∼= HomLs{τ}(M(E)/ℓnL ⊗L Ls, Ls)

∼= HomFp
((M(E)/ℓnL ⊗L Ls)τ ,Fp).

Thus, E[ℓn](Ls) is a free A/ℓn-module of rank r. Since we can choose compatible bases at each
step, we conclude that Tℓ E is a free Aℓ-module of rank r by passing to the limit.

Drinfeld modules and elementary modules. — Assume that L is a finite extension of K, the
fraction field of A. Let E be an A-module of Drinfeld over L of rank r, and let δ = δE : A→ L
be its characteristic morphism.

Definition 2.15. — A Drinfeld A-module E over L is called generic (or of generic charac-
teristic) if δE coincides with the inclusion A ⊂ L.

Then we have:

Proposition 2.16. — Let E be a generic Drinfeld A-module over L. As an A-module scheme,
E is an elementary module of rank r of type (1) and (2).

Proof. — The fact that E is connected and smooth follows from its isomorphism with Ga, and
the fact that it has rank r according to Definition 2.2 follows from Proposition 2.14. Since it is
generic, it is elementary of type (1). That it is of type (2) follows from [Go91, cor. 3.2.4].

Let G be an A-module scheme over L. Let Frobp : L→ L, x 7→ xp be the p-Frobenius and
let Frob∗p G be the A-module scheme over L given by R 7→ G(R(1)), where R(1) is the L-algebra
equal to R as rings and where the multiplication by L is through Frobp. If G is algebraic (resp.
connected or smooth), then so is Frob∗p G. We deduce:

Corollary 2.17. — Let E be a Drinfeld A-module over L whose characteristic morphism
coincides with a raising-to-a-p-th power map. Then E is an elementary module of type (2).
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Proof. — Let k ≥ 0 such that δ = Frobkp. We have E ×L L1/pk ∼= (Frobkp)
∗E0, where L1/pk

is the field obtained by adjoining the pk-th roots of elements of L and where E0 is a Drinfeld
module over L1/pk

with characteristic morphism given by the inclusion A → L1/pk

. As an
A-module scheme, E0 is an elementary module of type (2) according to Proposition 2.16, and
therefore E ×L L1/pk

is also elementary of type (2). Since Frobp commutes with the Galois
action, it follows that E is elementary of type (2).

We conclude this section with further generalities on the determinant of a Drinfeld module,
which will be useful in Section 4 for reduction to the case of rank 1.

Determinant of a Drinfeld module. — Let E be a Drinfeld module of rank r with characteristic
δE . Let M(E) = (M(E), τM ) be its A-motive. Denote by D the maximal exterior power∧max

M(E) =
∧r

M(E) taken as an A ⊗Fp L-module. Then D is locally free of rank 1. The
action of τM , acting diagonally on D, induces a σ-linear map

τD : D −→ D, m1 ∧ · · · ∧mr 7→ τ(m1) ∧ · · · ∧ τ(mr).

It is easy to verify that the data D = (D, τD) is also an A-motive with characteristic δE , this
time of rank 1. The following result is due to Drinfeld (see [An86, §0]):

Theorem 2.18. — The A-motive D arises from a Drinfeld module of rank 1 with character-
istic δE. This Drinfeld module is unique up to isomorphism, and we denote it by detE.

According to (2), we have an isomorphism of Aℓ-linear representations of GL:

(3) Tℓ(detE) ∼=
r∧
Aℓ

Tℓ E.

The above identity will allow us to restrict our proof to the case of rank 1.

3. Generalities on algebraic groups and schemes of modules

In this section, we recall some classical results from the theory of algebraic groups that will
be used in our study. We will make use of two powerful theorems: the Barsotti-Chevalley
theorem (Theorem 3.1) and the classification of algebraic groups annihilated by Verschiebung
in nonzero characteristic (Theorem 3.6).

3.1. Barsotti-Chevalley theorem and a consequence. — The following theorem plays
a major role in our classification (see [Mi17, thm. 10.5] for a proof):

Theorem 3.1 (Barsotti-Chevalley). — Every connected algebraic group G over a perfect
field fits into an exact sequence of algebraic groups:

(4) 1 −→ H −→ G −→ E −→ 1,

where E is an abelian variety and H ⊂ G is a connected affine normal subgroup.

Let A be a commutative ring with unity. When G is equipped with an A-module scheme
structure, one can say more:

Proposition 3.2. — Let G be a connected scheme of A-modules over a perfect field. Then
each term (H or E) of the sequence (4) can be canonically equipped with the structure of scheme
of A-modules.

Proof. — Given a ∈ A, the structure of G as a scheme of A-modules yields an endomorphism
φ(a) of the algebraic group G. The composition

H −→ G
φ(a)−−−→ G −→ E

is a morphism of algebraic groups between a linear group and an abelian variety, and is therefore
zero according to [Co04, lem. 2.3]. The exactness of (4) means that φ(a) factors through
H → G as a unique morphism φH(a) : H → H. Since the category of commutative algebraic
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groups is abelian, there exists a unique morphism φE(a) : E → E such that (4) completes into
a commutative diagram:

1 H G E 1

1 H G E 1.

φH(a) φ(a) φE(a)

By uniqueness, it is easy to see that the assignment of (φH(a))a∈A and (φE(a))a∈A endows H
and E respectively with structures of schemes of A-modules.

3.2. Unipotent groups in nonzero characteristic. — Recall that an algebraic group is
called unipotent if and only if it admits a normal central series whose successive quotients are
closed subgroups of Ga.

Remark 3.3. — This definition is equivalent to the existence of invariant vectors in faithful
representations, as usually given in the literature (cf. [Mi17, prop. 15.23]).

Let k be a field of characteristic p > 0 and let kperf be its perfection. Let G be an affine
commutative algebraic group over k with Verschiebung VG.

In the class of unipotent algebraic groups, we distinguish the closed subgroups of Gd
a, which

are classified by the following result (cf. [DG70, Thm. 6.6]).

Theorem 3.4. — G is isomorphic to a closed subgroup of Gd
a for some integer d > 0 if and

only if its Verschiebung VG is zero.

Definition 3.5. — Let G be an algebraic group over k. We denote by

M(G) := Homgrp/k(G,Ga)

the left k{τ}-module obtained by pre-composing with elements of Endgrp/k(Ga).

Recall that Endgrp/k(Ga) is isomorphic to the non-commutative ring k{τ}, giving M(G) a
structure of a left k{τ}-module. The construction G 7→ M(G) is promoted to an equivalence
of categories (e.g. cor. 6.7 loc. cit.):

Theorem 3.6. — The assignment G 7→ M(G) defines an equivalence between the category
of commutative affine algebraic groups over k annihilated by Verschiebung and the category of
finite-type left k{τ}-modules. A pseudo-inverse is given by

M 7→ U(M) :
(
R 7→ Homk{τ}(M,R)

)
where the homomorphisms are taken in the category of left k{τ}-modules, and the k-algebra R
is viewed as a left k{τ}-module via τ · r = rp.

Remark 3.7. — Note that under this equivalence, the free left modules over k{τ} correspond
to the powers of Ga. For simplicity, we will refer to these groups as free unipotents.

A first consequence of this classification is the following result:

Corollary 3.8. — If G is a smooth connected algebraic group of exponent p, then it is iso-
morphic to a form of Gd

a for some d > 0, which splits over kperf .

Proof. — By the Barsotti-Chevalley theorem, we know that Gkperf is a commutative affine
algebraic group: indeed, in the exact sequence (4) associated with Gkperf , the abelian variety
E has exponent p and is therefore trivial. Thus, Gkperf = H is commutative affine.

Since G has exponent p, the same is true for H, and we have the equality FHVH = p = 0.
Since H is smooth, FH is bijective, which implies VH = 0. Therefore, H is annihilated by
Verschiebung, and by Theorem 3.4, we conclude that H is a closed subgroup of Gd

a,kperf .
Hence, G is unipotent [Mi17, Cor. 15.9].

The left kperf{τ}-module Homgrp/kperf (Gkperf ,Ga,kperf ) is of finite type and can be decom-
posed into the direct sum of a free module and a torsion module (by the structure theorem for
kperf{τ}-modules, e.g., [An86, Prop. 1.4.4]). Since G is connected, the same is true for Gkperf ,
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which implies the vanishing of the torsion part. By Theorem 3.6, we conclude that Gkperf is a
free unipotent group.

A second consequence is the following result initially proved by Russell (we refer to [Ru70,
thm. 2.1 & 3.1] for the proof of the proposition below, which is a consequence of Theorem
3.6).

Proposition 3.9. — If G is a form of Ga, then there exist two integers n and m and elements
a0, ..., am in k, with am ̸= 0, such that G is isomorphic to the subgroup of G2

a = Spec k[x, y]
given by the equation yp

n

= a0x+ a1x
p + ...+ amxpm

. If G ̸∼= Ga, then Endgrp/k(G) is a finite
field.

3.3. Affine algebraic groups. — We consider two classes of affine algebraic groups: those
of multiplicative type and those that are unipotent. On a perfect field, these two classes are
sufficient to describe all affine algebraic groups (see Theorem 3.12).

Recall that an algebraic group M over L is of multiplicative type if and only if, for a separable
closure Ls of L, there exists a finite abelian group Γ such that MLs represents the functor
R 7→ HomZ(Γ, R

×). Algebraic groups of multiplicative type over L are uniquely determined
by their character group (e.g., [Mi17, §14.f]):

Theorem 3.10. — The functor

M 7→ Γ := Homgrp /Ls(MLs ,Gm,Ls)

defines an equivalence of categories between the category of algebraic groups of multiplicative
type over L and the Z-modules of finite type equipped with a continuous action of the profinite
group GL = Gal(Ls|L). A pseudo-inverse is given by

Γ 7→M(Γ) := Spec(Ls[Γ]GL)

where GL acts diagonally on the group algebra Ls[Γ].

We draw inspiration from this equivalence to describe the Tate module of a group M of
multiplicative type:

Proposition 3.11. — Let p be a prime number, M an algebraic group over L of multiplicative
type, and Γ its character group. As representations of GL,

Tp M ∼= HomZ

(
lim−→Γ/pnΓ, (Ls)×

)
where σ ∈ GL acts on the right as f 7→ σ ◦ f ◦ σ−1. In particular,

(a) If Γ has p-torsion, then so does Tp M .

(b) The rank of Tp M over Zp is the same as the rank of Γ over Z.

Proof. — According to Theorem 3.10, we have an isomorphism of groups

(5) θ : HomL(L
s[Γ]GL , Ls) = M(Ls) ∼= MLs(Ls) ∼= HomZ(Γ, (L

s)×)

given by φ 7→ (φ ⊗ idLs[Γ])|Γ, where Γ is seen as a subgroup of (Ls[Γ],×). Denoting by
M [pn](Ls) the pn-torsion of M(Ls) for a positive integer n, we have

M [pn](Ls) ∼= {f ∈ HomZ(Γ, (L
s)×) | ∀γ ∈ Γ : f(γ)p

n

= 0}
∼= HomZ(Γ/p

nΓ, (Ls)×)

and the expression for Tp M follows by taking the limit as n tends to infinity.
It remains to determine the action of GL on Tp M . We seek the unique action of GL on
HomZ(Γ, (L

s)×) that makes θ equivariant for the action of GL (the action on M [pn](Ls) and
Tp M will be obtained by restriction and passing to the limit). By definition, an automorphism
σ ∈ GL acts on (φ : Ls[Γ]GL → Ls) ∈M(Ls) as σ ◦ φ. On the other hand, the map

σ ◦ (φ⊗ idLs[Γ]) ◦ σ−1,
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where GL acts diagonally on Ls[Γ], is an Ls-linear function that coincides with σ ◦ φ on
(Ls[Γ])GL . Such a function is unique, so we have

(σ ◦ φ)⊗ idLs[Γ] = σ ◦ (φ⊗ idLs[Γ]) ◦ σ−1,

and then
θ(σ ◦ φ) = σ ◦ θ(φ) ◦ σ−1

by restriction to Γ.

Using [Mi17, Thm. 17.17 + Cor. 15.17-18], we obtain the announced theorem:

Theorem 3.12. — Every affine algebraic group H over a perfect field decomposes as H ∼=
U ×M , where U is unipotent and M is of multiplicative type. If H is moreover a scheme over
A-modules, then the same holds canonically for U and M .

4. Proofs

In this section, we prove the theorems stated in the introduction. The proofs are highly
sensitive to the characteristic of A, so we will begin with the case of characteristic zero in
subsection 4.1, followed by the more sophisticated case of nonzero characteristic in subsection
4.2.

4.1. The case of characteristic zero. — Let A be a finitely generated Dedekind ring of
characteristic zero. Let K be its field of fractions, which is a number field with ring of integers
A. Let L be a perfect field. Here, we prove Theorems 1.6.(I) and 1.7.(I). Specifically:

Theorem 4.1. — Let G be a scheme of A-modules over L that is smooth, connected, of
dimension 1, and of rank r ≥ 1. Then,

1. either A = Z, in which case either r = 1 and G is a form of Gm, or r = 2 and G is an
elliptic curve;

2. or A = OK , where K is an imaginary quadratic extension of Q, in which case r = 1 and
G is an elliptic curve with complex multiplication by OK .

Proof. — By applying Proposition 3.2, we obtain an exact sequence of schemes of A-modules
over L:

1 −→ H −→ G f−→ E −→ 1.

The fibers of f are the classes of H in G, which all have the same dimension. Therefore,

(6) dimH = dim f−1({1E}) = dimG− dimE

(see, for example, [GW10, cor. 14.119]). Since dimG = 1, we have dimH ≤ 1. To determine
H, we start by noticing that:

Proposition 4.2. — H is either trivial or a form of Gm.

The above proposition follows from the following lemma:

Lemma 4.3. — Let p be a prime number. Then Tp G is torsion-free.

Proof. — If Tp G has torsion, then G(Ls) has p-torsion. Therefore, there exists an ideal ℓ of
A lying above pA such that G(Ls) has ℓ-torsion. However, this is impossible because Tℓ G is
free of rank r ≥ 1 over Aℓ.

Proof of proposition 4.2. — Without loss of generality, we assume that H is nontrivial. Since
H is an affine algebraic group over a perfect field, it decomposes as U×M , where U is unipotent
and M is of multiplicative type (Theorem 3.12).

We claim that U is trivial. Indeed, if dimU = 1, then dimH = 1, and hence dimM =
dimE = 0 (by (6)), which implies that G = H. For a prime number p, we have Tp G =
Tp U ⊕Tp M = Tp M . However, since dimM = 0, Tp G would be a torsion Zp-module, which
is absurd by Lemma 4.3. Thus, dimU = 0, and being unipotent over a field of characteristic
0, U is trivial.
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Therefore, we know that H is of multiplicative type, and we denote ΓH as its character
group. Moreover, we have an inclusion Tp H ↪→ Tp G, and since Tp G is torsion-free, so is
Tp H. Since rankZ ΓH = dimH = 1, Proposition 3.11 implies that ΓH

∼= Z. Thus, H is a form
of Gm.

There are two remaining cases to consider: since dimG = 1, we have dimE ≤ 1. Thus,
either E is trivial or E is an elliptic curve.

If E is trivial: then G = H. By Proposition 4.2, G is a form of Gm. In particular,
EndL(G) ∼= Z, and since A ↪→ EndL(G) by Lemma 2.4, this implies A = Z.

If E is an elliptic curve: then dimH = 0, and thus H is trivial by Proposition 4.2. Hence,
G is an elliptic curve. Since L has characteristic zero, EndL(E) is isomorphic either to Z or to
an order in an imaginary quadratic field F . By Lemma 2.4, we have A ↪→ EndL(E), and since
A is Dedekind, this implies A = Z or A = EndL(E) ∼= OF , in which case K ∼= F .

Remark 4.4. — As mentioned in Remark 1.8, the converse of Theorem 4.1 is almost true,
except that an elliptic curve with complex multiplication is an elementary module of type (1)
if and only if its characteristic morphism coincides with the inclusion. This almost converse
follows from Propositions 2.7 and 2.8.

4.2. The case of nonzero characteristic. — Now, and until the end of this article, we
assume that A is a finitely generated Dedekind ring of characteristic p > 0. Let K denote its
field of fractions. Let L be a field that is also an A-algebra via a morphism δ : A → L. Let
Fq be the algebraic closure of Fp in A. By assumption, Fq is a finite extension of Fp, and we
denote by q its number of elements.

Completion of the proof of Theorem 1.6. — We now complete the proof of Theorem 1.6, which
states:

Theorem 4.5. — Let G be a smooth connected scheme of A-modules over L of rank r ≥ 1
and dimension 1. Then there exists a smooth projective curve (C,OC) over Fp and a closed
point ∞ of C such that A is isomorphic to OC(C \ {∞}).

First, we state an equivalent characterization of being the ring of regular functions on a
smooth projective curve minus a point. We say that an element a ∈ A is constant if it is
algebraic over Fp. We consider the following property:

(PA) For every non-constant a ∈ A, A is a finitely generated Fp[a]-module.

Then we have:

Lemma 4.6. — The ring A satisfies (PA) if and only if there exists a smooth projective curve
(C,OC) over Fp and a closed point ∞ of C such that

A = H0(C \ {∞},OC).

Proof. — One direction is well-known: Let (C,OC) be a smooth projective curve over Fp and
∞ be a closed point of C. Let B = H0(C \{∞},OC). Then property (PB) is satisfied. Indeed,
let b ∈ B be a non-constant element, i.e., the map Fp[t] → B sending t 7→ b is injective.
We have an inclusion of fields Fp(t) ⊂ K = Frac(B) which, by the equivalence of categories
between function fields over Fp and smooth projective curves over Fp [0BY1], gives rise to a
morphism C → P1 of schemes over Fp. Since P1 is separated, this morphism is automatically
proper [01W6], and note that the unique point of C that is not mapped to SpecFp[t] is the
point∞. Since the property of being proper is stable under base change [01W4], the morphism

SpecB = C ×P1 SpecFp[t] −→ P1 ×P1 SpecFp[t] = SpecFp[t]

is itself proper. Being affine as well [01SH], it is finite [01WN].
Now let’s prove the converse. Since A is not a field, there exists a non-constant element

a ∈ A. The ring A⊗Fp[a]Fp(a) is a domain (by flatness) and, by (PA), finite over the field Fp(a).
Hence, A⊗Fp[a] Fp(a) = K, where K is the field of fractions of A. Thus, K is a finite extension

https://stacks.math.columbia.edu/tag/0BY1
https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/01W4
https://stacks.math.columbia.edu/tag/01SH
https://stacks.math.columbia.edu/tag/01WN


A UNIFIED DEFINITION OF ELLIPTIC CURVES AND DRINFELD MODULES∗ 13

of Fp(a) = Fp(P1), which implies the existence of a smooth projective curve (C,OC) over Fp

such that Frac(A) = Fp(C). Let s be a closed point of C in the complement of S = Spec(A)
(the complement is non-empty since otherwise A would be the field of constants). The ring
B = H0(C \ {s},OC) is a subring of A that is Dedekind, and for b ∈ B non-constant, the
inclusion Fp[b] ⊂ A is finite by (PA). Thus, B ⊂ A is finite, and since B is integrally closed in
K, we have A = B.

To prove Theorem 4.5, it suffices to establish property (PA). Let G be as in Theorem 4.5.
Proposition 4.7. — As algebraic groups over L, G is isomorphic to Ga.
Proof. — By Corollary 3.8, G is a form of Ga. By Lemma 2.4, we have that EndL(G) is
infinite. In particular, G ∼= Ga by Proposition 3.9.

Let □ : G ∼→ Ga be an isomorphism of algebraic groups over L. The composition

Endgrp/L(G) Endgrp/L(Ga)
∼−→ L{τ}f 7→□f□−1

induces a (non-canonical) morphism A→ L{τ}. We denote

(7) Φa(τ) = Φ□
a (τ) ∈ L{τ}

the polynomial in τ associated to a ∈ A in this way.
Lemma 4.8. — The invertible elements of A are the non-zero constant elements.

Proof. — Since A is an integral domain, every non-zero constant element is invertible. Suppose
there exists an invertible element a ∈ A that is not constant. We claim that there exists a
non-constant polynomial P (x) ∈ Fp[x] such that P (a) ̸∈ A×. Indeed, if this were not the case,
then Fp(a) would be a subfield of A. However, since A is of finite type over Fp, we would have
Fp ⊂ Fp(a) ⊂ A/m for some maximal ideal m ⊂ A, where A/m is a finite extension of Fp. This
is a contradiction, since Fp(a) is not finite over Fp.

For such a polynomial P (x), the group

(8) G[P (a)](Ls) ∼=
{
x ∈ Ls | ΦP (a)(τ)(x) = 0

}
is finite and non-trivial (we used the isomorphism in Proposition 4.7). However, since Φa ∈
(L{τ})× = L×, we have ΦP (a) = P (Φa) ∈ L×, which contradicts the finiteness (or non-
triviality) of the group (8).

Proof of theorem 4.5. — Let a ∈ A be a non-constant element. We want to show that Fp[a]→
A is finite. By Lemma 4.8, a is not invertible, and therefore G[a](Ls) is finite and non-trivial.
Thus, degτ Φa > 0.

We equip L{τ} with a structure of L ⊗Fp
A-module, where L acts on the left and b ∈ A

acts on the right by multiplication with Φb(τ). For a certain ρ ∈ Gal(Fq|Fp), this module
structure factors through the L⊗ρ,Fq

A-module structure. Since degτ Φa > 0, we can perform
left Euclidean division in L{τ} and conclude that it is a finitely generated L[a] = L⊗ρ,Fq Fq[a]-
module. In particular, we have L-algebra morphisms:

L[a] −→ L⊗ρ,Fq
A

h−→ L{τ}

where the composition is of finite type. To show that the first morphism is of finite type, it
suffices, by noetherianness, to show that the second one is injective. This is clear because if
kerh ̸= (0), then L⊗ρ,Fq A/(kerh) would be of finite dimension over L, which contradicts the
fact that the image of h has infinite dimension over L (since it contains Φa(τ) and its powers).

We have shown that L[a] → L ⊗ρ,Fq
A, and hence L[a] → L ⊗Fp

A, are finite morphisms.
The finiteness of A over Fp[a] follows from faithful flatness.
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Proof of theorem 1.7 for elementary modules of type (1). — We now conclude the proof of
Theorem 1.7.(II). Let G be as in Theorem 4.5. We fix a smooth projective curve (C,OC) over
Fp and a closed point ∞ of C such that

A = OC(C \ {∞}).

Let Fq ⊂ A be the field of constant elements, and let q be its number of elements. Let e = logp q.
In the proposition below, we list some properties of the polynomials Φa(τ) := Φ□

a (τ) defined
in (7). Let δG be the characteristic morphism of G (Definition 2.1).

Proposition 4.9. — (i) For any a ∈ A, Φa(τ) ∈ L{τe}.
(ii) The constant term of Φa(τ) is δG(a).

(iii) There exists t ∈ {0, ..., e− 1} such that for any c ∈ Fq, Φc(τ) = cp
t

.

(iv) For any nonzero a ∈ A, degτ Φa(τ) = redeg(a).

Proof. — If we restrict the action of A to Fq, it induces a structure of smooth connected Fq-
vector space scheme on G, where the endomorphisms of φ(A) are Fq-linear. Assertion (i) is
then a direct consequence of the relation Φa(τ)Φc(τ) = Φc(τ)Φa(τ) for all a ∈ A and c ∈ Fq.

Point (ii) follows from the commutativity of the following diagram of rings:

(9)
Φ□ : A Endgrp /L(G) Endgrp /L(Ga) L{τ}

EndL -vs /L(LieG) EndL -vs /L(Ga) L

δG

□

Lie

∼

Lie ∂

Lie□ ∼

which is obtained by functoriality of G 7→ LieG, and where the vertical arrow ∂ : L{τ} → L
sends a polynomial P (τ) = a+ bτ + ... to its constant term a.

For (iii), it suffices to note that δG(F×
q ) ⊂ (L{τ})× = L×. Thus, by (ii), Φa(τ) = δG(a)

for all a ∈ Fq. Moreover, δG induced by restriction a field homomorphism Fq → Fq ⊂ L and
coincides with a power t of the p-Frobenius by the Galois Theory of finite fields.

Let us prove (iv). Let a ∈ A be a nonzero element of degree d > 0. By (iii), we know
that for any c ∈ Fq, we have degτ Φa(τ) = degτ Φa+c(τ) and deg(a + c) = deg(a) (since
[K : Fq(a)] = [K : Fq(a + c)]). By replacing a with a + c, we can assume that the constant
coefficient of Φa(τ) is nonzero. The solutions in the field Ls of

(10) Φa(x) = a0x+ a1x
q + ...+ asx

qs = 0 (x ∈ Ls)

coincide with the elements of G[a](Ls). On the one hand, the assumption a0 ̸= 0 shows that
the equation (10) has qs solutions. On the other hand, the set G[a](Ls) has qrd elements, and
therefore s = rd. Indeed, G[a](Ls) is isomorphic to G[ℓc11 ](Ls)× · · · ×G[ℓcss ](Ls), and by the
definition of elementary modules, it has qrc1 deg ℓ1 · · · qrcs deg ℓs elements. This follows from the
additivity of degrees.

The following proposition corresponds to the statement of Theorem 1.7, part (II) for ele-
mentary modules of type (1).

Proposition 4.10. — G is a Drinfeld module over L with coefficient ring A, of rank r, and
with characteristic δG.

Proof. — Let us show that the module M(G) = Homgrp /L(G,Ga), equipped with its canon-
ical structure as an A ⊗Fp

L-module, is locally free of rank r. After choosing coordinates □,
M(G) becomes isomorphic to L{τ} where l ∈ L acts on p(τ) ∈ L{τ} by l · p(τ) and a ∈ A acts
by p(τ) · Φa(τ).

Following the decomposition of A⊗Fp L by idempotents,

(11) A⊗Fp
L ∼=

⊕
s∈Z/eZ

A⊗Fq,c7→cps L,
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the module M(G) ∼=□ L{τ} decomposes uniquely as a direct sum of submodules M(G)s,
s ∈ Z/eZ, where M(G)s is the submodule of elements m ∈ M(G) on which c ∈ Fq ⊂ A acts
as cp

s ∈ Fq ⊂ L. As c ∈ Fq ⊂ A acts by p(τ) 7→ p(τ)cp
t

(Proposition 4.9.(iii)), we find

For s ∈ {t, ..., t+ e− 1}, M(G)s̄ ∼=□ L{τe}τs−t.

Let a ∈ A be a non-constant element. By Euclidean division by Φa(τ) in L{τe}τs−t,
we deduce that M(G)s̄ is a free Fq[a] ⊗Fq,x 7→xps L-module of rank r deg(a), with basis
(τs−t, τe+s−t, ..., τ (r deg(a)−1)e+s−t) (proposition 4.9.(iv)). Thus, M(G)s̄ is a finitely generated
torsion-free module over the Dedekind ring A ⊗Fq,c7→cps L; in particular, it is locally free of
constant rank. Since A ⊗Fq,c7→cps L is a free Fq[a] ⊗Fq,c7→cps L-module of rank deg(a), we
conclude that M(G)s̄ has rank r over A⊗Fq,c 7→cps L.

Therefore, the module M(G) is locally free of rank r over A ⊗Fp L. Consequently, G is a
Drinfeld module. Its characteristic being δG follows from the definition.

4.2.1. Proof of theorem 1.7 for elementary modules of type (2). — We conclude here the proof
of Theorem 1.7 for elementary modules of type (2). We assume that L is a finite extension
of K. Let OL be the integral closure of A in L. For P a maximal ideal of OL, we denote by
O(P) ⊂ L the subring of L consisting of the P-integral elements:

O(P) := {x ∈ L | vP(x) ≥ 0},

where vP denotes a valuation on L associated with P. The notation OP is reserved for the
completion of OL (resp. O(P)) at the ideal P, with residue field FP. We also denote by LP

the fraction field of OP. Finally, let Ls and Ls
P be separable closures of L and LP respectively,

and let ŌP be the integral closure of OP in Ls
P.

Now let us assume that G is an elementary module of type (2) of dimension 1, with coefficient
ring A, base field L, and rank r. Recall that this imposes the following properties: there exists
a finite set S of maximal ideals of OL such that for any maximal ideal P of OL outside S, and
for any maximal ideal ℓ of A different from p := P ∩A,

(a) The representation Tℓ G is unramified at P, i.e., the inertia group IP ⊂ GL at P acts
trivially, and

(b) The determinant s(P) ∈ Aℓ of the action of FrobP ∈ GL/IP on Tℓ G belongs to A and
is independent of ℓ.

Let δ = δG : A→ L be the characteristic morphism of G (Definition 2.1). To complete the
proof of Theorem 1.7, we need to show that δ coincides with a power of the Frobenius map.
For the remainder of the proof, we can assume without loss of generality that r = 1. Indeed,
by Proposition 4.10, we know that G is a Drinfeld module. If necessary, we can replace G with
its determinant module detG, which, by Theorem 2.18, is a Drinfeld module of rank 1 with
the same characteristic.

4.2.2. The heart of the argument. — The proof proceeds in two steps: first, we show (Propo-
sition 4.11) that δ : A → L is P-integral for almost all finite places P of L, and then for any
a ∈ A and all such P, there exists a positive integer k = ka,P such that

δ(a) ≡ ap
k

(mod P).

In the second step, we establish a general result which shows that this condition on δ is sufficient
to conclude that it is a power of the Frobenius map (Theorem 4.13).

Proposition 4.11. — For almost all prime ideals P of OL and every element a ∈ A, there
exists a positive integer k (depending on P and a) such that δ(a) ≡ ap

k

modulo P.

The proof of this proposition will rely on the following lemma 4.12.

Let ST , "T" standing for total, be the set of maximal ideals P of OL for which there exists
a ∈ A such that one of the coefficients of Φa(τ) is not P-integral. Since A is finitely generated
as a ring, ST is finite. In particular, for P outside of ST , the image of δ is contained in O(P).
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For a non-zero element a ∈ A, let ε(a) ∈ L× denote the leading coefficient of Φa(τ). We use
the convention that ε(0) = 0. The commutation relations of Φa(τ) and Proposition 4.10 (iv)
imply that:

∀a, b ∈ A, ε(a)ε(b)q
r deg a

= ε(b)ε(a)q
r deg b

.

In particular, the prime support of ε(a) (i.e., the set of maximal ideals P of OL such that
vP(ε(a)) ̸= 0) is independent of a ̸= 0. Let’s denote it by SD, "D" for dominant.

Given a maximal ideal P of OL outside of ST , and an ideal a of A, we introduce the functor:

ZP[a] : AlgO(P)
−→ Sets

which assigns to a O(P)-algebra R the finite subset of R:

ZP[a](R) := {x ∈ R | ∀a ∈ a : Φa(τ)(x) = δ(a)x+ ...+ ε(a)xqdeg a

= 0}.

When restricted to the category of L-algebras, ZP[a](R) is equivalent to the functor R 7→
G[a](R).

Lemma 4.12. — Let P be a maximal ideal of OL outside the finite set S ∪ ST ∪ SD, and let
ℓ be a maximal ideal of A such that deg ℓ > degP. Then,

1. If λ ∈ A and n ≥ 1 are such that ℓn = (λ), then vP(δ(λ)) = 0.

2. For infinitely many integers n ≥ 1, the arrows obtained by naturality:

ZP[ℓn](Ls) −→ ZP[ℓn](Ls
P)←− ZP[ℓn](ŌP) −→ ZP[ℓn](F̄P)

are bijections.

3. We have deg s(P) = degP and vP(δ(s(P))) > 0.

Proof. — For point 1, the kernel of the composition δP : A
δ→ OP → FP defines a maximal

ideal of A of degree ≤ degP. If vP(δ(λ)) > 0, then λ ∈ ker δP, which means (ker δP)|ℓc for
some c > 0, and hence ℓ = ker δP by primality. This contradicts our assumption on the degree
of ℓ.
Let’s prove point 2 when n is a multiple of h, the cardinality of Cl(A). Let λ ∈ A be a generator
of the principal ideal ℓh. According to point 1, the polynomial Φλ(τ) can be written as

Φλ(τ) = δ(λ) + (λ)1τ
e + ...+ ε(λ)τ re deg λ ∈ O(P){τ},

where δ(λ) and ε(λ) are invertible in O(P). In particular, the polynomial

Φλ(τ)(x) = δ(λ)x+ (λ)1x
q + ...+ ε(λ)xqdeg λ

is separable, which implies that ZP[ℓn](Ls) = ZP[ℓn](Ls
P), and its roots are P-integral in any

separably closed extension of L. Hence, we deduce that ZP[ℓn](Ls
P) = ZP[ℓn](ŌP). For the

last equality, it suffices to observe that Φλ(τ)(x) has simple roots both in ŌP and F̄P, and the
irreducible factors of Φλ(τ)(x) over F̄P come from those over ŌP.
Finally, let’s prove point 3. Let ℓ ⊂ A be a maximal ideal of degree greater than degP. Since
G is of rank 1 and P is outside S, the automorphism FrobP acts on Tℓ G by multiplication
by s(P). According to point 2, this means that Φs(P)(τ) acts on ZP[ℓn](F̄P) by x 7→ xqdeg P

.
Consequently, for any γ ∈ ZP[ℓn](F̄P) ⊂ F̄P, we have the congruence:

Φs(P)(τ)(γ) ≡ γqdeg P

in F̄P. By choosing ℓ with sufficiently large degree, we observe that this identity holds for
enough γ ∈ F̄P to be lifted to a polynomial identity:

Φs(P)(τ)(X) ≡ Xqdeg P

.

Since P is chosen outside SD, ε(s(P)) is a unit of OP, and we find deg(s(P)) = degP. It also
follows that vP(δ(s(P))) > 0.
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Proof of proposition 4.11. — Let P be outside S ∪ SD ∪ ST (finite), and let p := P ∩ A. We
claim that δ(p) ⊂ P. First, let’s observe that there exists l > 0 such that (s(P)) = pl as ideals
of A: by definition, s(P) is invertible in Aℓ for every ℓ different from p. In particular, the
ideal (s(P)) is a power of p. If this power were zero, then s(P) would be a unit in A, which is
absurd according to point 3. Thus, we have δ(s(P)) = δ(p)l ⊂ P, and by maximality of P, we
conclude that δ(p) ⊂ P.

Let a ∈ A be fixed, and let ā be its image in Fp ⊂ FP. Let π(X) ∈ Fq[X] be the minimal
polynomial of ā over Fq. Since π(a) ∈ p, we have δ(π(a)) = πpt

(δ(a)) ∈ P (cf. Proposition
4.9). But since āp

t

is also a root of πpt

modulo P, there exists c = cP,a ∈ {0, ...,deg π} such
that

δ(a) ≡ ap
tqc (mod P),

which concludes the proof.

We still need to prove that the map δ is a power of Frobenius. For this, let’s work in a more
general setting and study triplets (B,C, f) that satisfy the following properties (Pi):

(P1) B ⊂ C are two finite-dimensional integral domains over Fp of dimension 1,

(P2) f : B → C is a ring homomorphism such that for all but finitely many prime ideals p of
C and all b ∈ B, there exists k ∈ N (which may depend on p and b) such that

f(b) ≡ bp
k

(mod p).

According to Proposition 4.11, the triplet (A,OL[S
−1], δ) satisfies properties (P1) and (P2),

so we reduce the proof to:

Theorem 4.13. — Let (B,C, f) satisfy (P1) and (P2). Then f is the k-th power of the
Frobenius, where k is an integer that may be negative (4).

Remark 4.14. — — The finiteness assumption on Fp for B and C is necessary to ensure
that we have enough prime ideals in C. For example, if C is a local ring of dimension 1,
condition (P2) is vacuous, and f can be any morphism.

— In the particular case of interest to us, namely the triplet (A,OL[S
−1], δ), if there exists

an element in A that does not have p-th roots in L, this forces the integer k in the
previous statement to be positive. Since δ coincides with raising to the power pt over the
field Fq, we also have k ≡ t (mod e).

The proof, which will unfold in the final pages of this text, essentially amounts to proving
the following two intermediate results:

Lemma 4.15. — Let (B,C, f) satisfy (P1) and (P2), where B is a polynomial algebra Fp[X]

and C = B[f(X)]. Then f(X) = Xpk

for some integer k, which may be negative.

Lemma 4.16. — Let B ⊂ C be two integral domains over Fp, and let f : B → C be a ring
homomorphism such that for every b ∈ B, there exists kb ∈ Z satisfying f(b) = bp

kb . Then f

is of the form Frobk for some integer k, which may be negative.

Remark 4.17. — Note that in the statement of Lemma 4.16, we did not assume that the
triplet (B,C, f) satisfies property (P1): there is no need to assume that B or C is of finite type
over Fp or of dimension 1.

Let us finish the proof of Theorem 4.13 assuming the two lemmas.

Proof of Theorem 4.13. — According to Lemma 4.16, it suffices to show that f(b) is of the
form bp

kb for every element b ∈ B, where kb ∈ Z. The arrow f preserves constants (i.e.,
algebraic elements over Fp) and therefore restricts to an endomorphism of Fq, which is a power
of the Frobenius by the Galois theory of finite fields. When b is not a constant, it suffices to

4. ↑ Note that in the case where k is negative, the statement implies the existence, for any b ∈ B, of a
p−k-th root in C (necessarily unique since C is an integral domain) which is the image of b under the map f .
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show that the triple (Fp[b],Fp[b, f(b)], f |Fp[b]) still satisfies properties (P1) and (P2) by virtue
of Lemma 4.15.

The algebras Fp[b] and Fp[b, f(b)] are of finite type over F by construction, and are integral
subdomains of C. Fp[b] has dimension 1, and the same is true for Fp[b, f(b)]: indeed, we
have the chain of inclusions Fp(b) ⊂ Fp(b, f(b)) ⊂ FracC, showing that Fp(b, f(b)) is a finite
extension of Fp(b).

It remains to show that property (P2) is satisfied. According to Lemma 4.19 (stated below),
all but finitely many prime ideals p of Fp[b, f(b)] are of the form P ∩ Fp[b, f(b)] with a prime
ideal P of C and satisfy (P2) for (B,C, f). Thus, f(b) ≡ bp

k

(mod P), hence f(b)− bp
k ∈ P∩

Fp[b, f(b)] = p. We deduce (P2) for (Fp[b],Fp[b, f(b)], f |Fp[b]), which completes the proof.

It remains to show Lemmas 4.15, 4.16, as well as Lemma 4.19 stated below.

Proof of Lemma 4.15. — Let (B,C, f) be as stated in the lemma. Let P (X,Y ) ∈ Fp[X,Y ] be
a two-variable polynomial that annihilates f(X) over Fp(X) and whose content (5) (regarded
as a polynomial in Y ) is assumed to be 1. The kernel of the map

Fp[X,Y ] −→ Fp[X, f(X)], Y 7→ f(X),

is P (X,Y )Fp(X) ∩ Fp[X,Y ], which is equal to P (X,Y )Fp[X,Y ] by the assumption on the
content. Thus,

(12) C ∼= Fp[X,Y ]/(P ).

The identity (12) and property (P2) imply the following assertion:

(A) For all but finitely many x ∈ F̄p, the roots of P (x, Y ) ∈ F̄p[Y ] are all of the form xpk

for
some integer k ∈ Z.

We now show that (A) implies:

(B) There exists an integer k such that either P (X,Y ) = Xpk − Y or P (X,Y ) = Y pk −X.
The following result is a crucial step in the proof:
Lemma 4.18. — Let R(X) ∈ Fp(X) be such that, for almost every x ∈ F̄p, there exists an
integer nx such that R(x) = xnx . Then there exists n ∈ Z such that R(X) = Xn.

Proof. — Let’s write R(X) = R1(X)/R2(X) for two polynomials R1(X) and R2(X) ̸= 0. Let
F be a finite extension of Fp such that |F| − 1 has two distinct prime odd divisors ℓ1, ℓ2 >

2max(degR1,degR2). For ℓ ∈ {ℓ1, ℓ2}, let’s choose ζℓ ∈ F \ (F)ℓ such that ζℓ
m

ℓ = 1 for
some m. Let x be an ℓ-th root of ζℓ in F̄. By enlarging F if necessary, we can assume that
R(x) = xnx for some non-negative integer nx ≥ 0. Since Xℓ − 1 splits into distinct linear
factors in F by assumption, Xℓ − ζℓ is the minimal polynomial of x over F, and the field F(x)
has degree ℓ over F by Kummer theory. Writing nx = sx + rxℓ with −ℓ/2 < sx < ℓ/2, we
have R(x) = ζrxℓ xsx . By swapping R1 and R2 if necessary, we can assume that 0 ≤ sx < ℓ/2.
Now, the representation ζrℓ x

s ∈ F(x) with 0 ≤ r < ord ζℓ and 0 ≤ s < ℓ/2 is unique for the
pair (r, s), hence we obtain the polynomial congruence R1(X) ≡ ζrxℓ XsxR2(X) (mod Xℓ−ζℓ).
This implies R1(X) = ζrxℓ XsxR2(X) and R(X) = ζrxℓ Xsx by comparing degrees. In particular,
we have sx = degR and ζrxℓ is independent of ℓ ∈ {ℓ1, ℓ2}. Since ζrxℓ is both an ℓm1 -th and an
ℓm2 -th root for sufficiently large m, we have ζrxℓ = 1, which concludes the proof.

Let us write the polynomial P in the form P (X,Y ) = Q(X,Y pN

) with N maximal for this
property. We observe that property (A) for P implies property (A) for Q. We will determine
Q in order to recover P afterwards.

By choice of N , we have ∂Y Q ̸= 0. Moreover, Q is irreducible in Fp(X)[Y ] because P is,
and by Bézout’s theorem we can find S1(X,Y ), S2(X,Y ) ∈ Fp(X)[Y ] such that:

S1(X,Y )Q(X,Y ) + S2(X,Y )(∂Y Q)(X,Y ) = 1.

5. ↑ Recall that the content (regarded as a polynomial in Y ) of P (X,Y ) =
∑

i Pi(X)Y i is the greatest
common divisor of the Pi.
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We deduce that, for almost every x ∈ F̄p (more precisely, when x is not a pole of any term of
S1(X,Y ), S2(X,Y )), Q(x, Y ) and (∂Y Q)(x, Y ) are coprime, and the polynomial Q(x, Y ) seen
in F̄p[Y ] has distinct roots. For such x, we have:

Q(x, Y ) = c(x)

d∏
i=1

(Y − xpni,x
)

in F̄p[Y ], where d is the degree of Q in Y , and c(X) ∈ Fp[X] is the leading coefficient of Q(X,Y )
(resp. P (X,Y )) viewed as a polynomial in Y . The constant term of (−1)degY QQ(x, Y )/c(x)
is xn, where n ∈ Z is independent of x according to Lemma 4.18.

Let m > d + |n| be an integer. By choosing m sufficiently large, we can assume that the
cyclic group F×

pm has a generator x for which Q(x, Y ) ∈ F̄p[Y ] has distinct roots xpk1
, . . . , xpkd

with 0 ≤ k1 < k2 < · · · < kd < m. We obtain the congruence:

n ≡
d∑

i=1

pki (mod pm − 1).

Furthermore, ∣∣∣∣∣n−
d∑

i=1

pki

∣∣∣∣∣ ≤ |n|+
d∑

i=1

pki <

m∑
k=0

pk ≤ pm − 1,

because d+ |n| < m. Therefore, n =
∑

i p
ki .

By the uniqueness of the base-p representation, we see that the values of (ki)i do not depend
on the choice (6) of the element x satisfying the previous constraints. In particular, since the
polynomials Q(X,Y ) and c(X)

∏
i(Y − Xpki

) in X over Fp[Y ] coincide for infinitely many
values of X in F̄p, these polynomials are equal. Due to the irreducibility of Q and the fact
that ∂Y Q ̸= 0, we obtain c(X) = 1 and d = 1. Thus, Q(X,Y ) = Y −Xpk1 , and consequently,
P (X,Y ) = Y pN − Xpk1 . Finally, the irreducibility of P implies N = 1 or k1 = 1, which is
equivalent to

P (X,Y ) = Xpk

− Y or P (X,Y ) = Y pk

−X.

This completes the proof!

Proof of 4.16. — For x, y ∈ B, we want to show that (7) kx = ky. We reason on the sub-
Fp-algebra Fp[x, y] of B generated by x and y, where the restriction of f still satisfies the
property stated in the theorem. Similarly, it suffices to prove the result when replacing f by
f ◦ Frobm with sufficiently large m. Thus, we can assume that kx, ky ≥ 0, and f becomes an
endomorphism of Fp[x, y]. We distinguish the following three cases, which are exhaustive by
the integrality of Fp[x, y]:

1. Both x and y are algebraic over Fp. In this case Fp[x, y] is a finite field, and f is a power
of the Frobenius by Galois theory over Fp.

2. If y is transcendental over Fp(x), we write

xpkxy
yp

kxy
= f(xy) = f(x)f(y) = xpkx

yp
ky
,

which implies ky = kxy and xpkx
= xpkxy

= xpky .

3. If x and y are transcendental over Fp, but y is algebraic over Fp(x).
For any ideal b of B, we have f(b) ⊂ b by assumption. Thus, for any maximal ideal

m ⊂ B with residue field κm, f induces an endomorphism f̄ of κm. Let dm be the degree
of m, i.e., the dimension of κm over Fp, and let nx̄ and nȳ be the dimensions over Fp

6. ↑ Here, we crucially use the fact that the ki are distinct. For example, the equality p2 = p + · · · + p
provides a counterexample when some exponents are repeated.

7. ↑ Here, we made a slight abuse as the integers are not necessarily unique. We rather mean to have the
equalities f(x) = xpkx

= xpky (the same applies to f(y)).
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of the subfields of κm generated by x̄ and ȳ, respectively. Since κm = Fp[x̄, ȳ], we have
dm = [nx̄, nȳ].

Since κm is a finite field and f̄ is an endomorphism of κm, there exists an integer
0 ≤ km < dm such that f̄(b̄) = b̄km for all b ∈ B. In particular, kx ≡ km (mod nx̄) and
ky ≡ km (mod nȳ). We obtain kx ≡ ky (mod (nx̄, nȳ)). To conclude, it suffices to show
that the gcd (nx̄, nȳ) can be arbitrarily large (by varying m).

Let Px(Y ) ∈ Fp[x][Y ] be the minimal polynomial of y over Fp(x) (normalized). Choos-
ing a pair (x̄, ȳ) ∈ F̄2

p such that Px̄(ȳ) = 0 yields a maximal ideal

m(x̄,ȳ) = ker(Fp[x, y]→ F̄p : (x, y) 7→ (x̄, ȳ)),

and all maximal ideals of Fp[x, y] are of this form.
Let d be the degree of Px(Y ) in Y . Let m be a maximal ideal of B arising from a

geometric point (x̄, ȳ). Since ȳ is a root of Px̄(Y ), we have dm ≤ d · nx̄. Then we have
the inequality

(nx̄, nȳ) =
nx̄nȳ

dm
≥ nȳ

d
.

According to Lemma 4.19, the complement of the image of the map SpmFp[x, y] →
SpmF[y] is a finite set, and we can choose (x̄, ȳ) such that nȳ can be arbitrarily large.

This completes the proof.

The proofs of the theorem and lemma used the following classical statement:

Lemma 4.19. — Let B ⊂ C be two finite-type integral domains over a field k of dimension
1. Then all but finitely many prime ideals of B are of the form P ∩ B, where P is a prime
ideal of C.

Proof. — Since the closed sets V (λ) are the finite sets in |SpecB| for any non-invertible
element λ in B by dimension reasons, it suffices to find an element λ for which the natural
map |SpecC[1/λ]| → |SpecB[1/λ]| is surjective. To find such an element, we observe that C
is of finite type over B and choose a finite family (xi)i of generators. Since all algebras are of
dimension 1, we can find a polynomial that annihilates each generator in B, and we denote
by λi the leading coefficient of each polynomial. By construction, the inclusion B[1/

∏
i λi]→

C[1/
∏

i λi] is finite and induces a surjective map on the level of spectra. Therefore, the element
λ =

∏
i λi satisfies the desired property.
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