
The Class Number 1 Problem
Sjoerd de Vries

1 Introduction and history
These are notes written for a seminar talk at the university of Bonn. It introduces the class
number 1 problem and sets the stage for Baker’s solution using transcendental number theory.
The proof is completed in the next seminar talk.

In a first course on algebraic number theory, one encounters the class group and shows that it
is finite. In modern language then, the class number of a number field K is the size of its class
group, which in turn is defined as

Cl(K) = {fractional ideals of K}
{principal fractional ideals of K} .

Here a fractional ideal of K is an additive subgroup of K which is closed under multiplication
from OK ; it is principal if it is of the form xOK for some x ∈ K. Then |Cl(K)| = 1 if and only
if OK is a PID if and only if OK is a UFD.
Class numbers have a rich history and weren’t always thought of the way they are now. They
originally arose from the theory of quadratic forms; this point of view is explained further below.
Aside from the difference in (mathematical and written) language, Gauss conjectured in his
Disquisitiones (1801) that there are only finitely many imaginary quadratic number fields having
a given class number. In fact, he made the following very precise conjecture (now known as the
class number problem (for n = 1)):
Theorem 1.1. Let d > 0 be square-free. The only number fields of the form Q(

√
−d) with class

number 1 are the ones with d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.
Several decades earlier, Euler noticed that x2−x+41 is prime for x = 1, 2, . . . , 40. This probably
makes one wonder two things:

1. Why does this happen?

2. Are there other polynomials of a similar form which have such a property?
In 1905, Rabinovitch (not the same as the one from the Rabinowitsch trick in algebraic geometry)
stated the following theorem which goes a long way towards answering these questions:
Theorem 1.2. Let −d < 0 and −d ≡ 1 mod 4. Then x2 − x + (1 + d)/4 is prime for x =
1, 2, . . . , (d− 3)/4 if and only if Q(

√
−d) has class number 1.

Since d = 163 satisfies the requirements, the polynomial x2 − x + 41 is special; and if theorem
1.1 is true, no “more successful” quadratic prime-generating polynomials of this form exist.
The aim of these notes is to relate the notions of quadratic forms, class numbers, and L-functions.

Last edited: 04 December 2019.
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1.1 Quadratic forms
Consider a binary quadratic form f(x, y) = ax2 + bxy + cy2 ∈ Z[x, y]; we will also denote it by
(a, b, c). Define its discriminant to be ∆ = b2 − 4ac, i.e. -4 times the determinant of the matrix
form of f .
Two forms f and g are called equivalent if they can be obtained from each other by applying an
integral unimodular substitution; i.e. g(x, y) = f(X,Y ) for (X,Y )T = M(x, y)T for some matrix
M ∈ SL2(Z). Since determinants are multiplicative, the discriminant descends to equivalence
classes of forms.

Definition 1.3. An integer r ∈ Z is said to be represented by a quadratic form f if f(m,n) = r
for some m,n ∈ Z.

Proposition 1.4. Equivalent forms represent the same integers.

Proof. Suppose M ∈ SL2(Z) sends f to g; that is, if

f(x, y) =
(
x y

)(a b
2

b
2 c

)(
x
y

)
,

then
g(X,Y ) =

(
X Y

)
MT

(
a b

2
b
2 c

)
M

(
X
Y

)
.

Then if f(m,n) = r, it follows that g(M−1(m,n)) = r, and M−1 has integer coefficients since
detM = 1.

Example 1.5. There can (and often do) exist inequivalent forms with the same discriminant.
For instance, let ∆ = −20, and

f(x, y) = x2 + 5y2;
g(x, y) = 2x2 + 2xy + 3y2.

For f and g to be equivalent, we need an integer matrix such that(
α γ
β δ

)(
1 0
0 5

)(
α β
γ δ

)
=
(

2 1
1 3

)
,

so in particular α2 + 5γ2 = 2; but of course this has no integer solutions.

1.2 The link with the class group
The theory of quadratic forms is equivalent to the theory of quadratic number fields. The
correspondence is already hinted at in the terminology: the discriminant of a form corresponds
to the discriminant of a quadratic number field. The class number h(∆) for forms is the number
of inequivalent forms of discriminant ∆, and this is the same as the size of the ideal class group
of the quadratic field of discriminant ∆ (assumed to be square-free).
We know from algebraic number theory that the ideal class group is finite, and indeed we can
prove it in an elementary way for quadratic forms:

Proposition 1.6. There are only finitely many equivalence classes of forms for a given discrim-
inant −d < 0.
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Proof. We first show that every form has a canonical representative.
We define for

M =
(
m n
o l

)
∈ SL2(Z), the map ϕM : z 7→ mz + n

oz + l

which maps the complex upper-half plane H̄ = H ∪ {∞} to itself. Moreover, to any form
f = (a, b, c) of discriminant −d < 0, we associate the complex number wf := (−b+

√
−d)/2a ∈ H.

Suppose now that f and g are equivalent forms under the transformation M , i.e. g(x, y) =
f(M(x, y)T ). A calculation shows that then ϕM (wg) = wf . This gives us our canonical repre-
sentative: given a class of forms, we pick the unique representative f such that wf lies in the
fundamental domain F of SL2(Z), i.e. the area of H̄ where −1/2 < <(z) < 1/2 and |z| > 1,
plus half the boundary of this domain. Then F contains a unique point for each SL2(Z)-orbit of
points in H̄, as is proved in any introductory textbook on modular forms.
We call forms f with wf ∈ F reduced. For a reduced form (a, b, c), since =(wf ) = d/2a, we get
a bound on a. Since <(wf ) = −b/2a, we get a bound on |b|. Finally, c is determined by a, b and
d, so there are only finitely many reduced forms for a given discriminant, and hence only finitely
many equivalence classes of forms.

The above proposition allows us to define the classical class number:

Definition 1.7. Let ∆ < 0 be square-free. The class number of ∆ is the number of inequivalent
forms of discriminant ∆.

Of course, we all know that the number field Q(
√
−5) has class number two and discriminant

−20. It is no coincidence that in Example 1.5, the discriminant in question was also −20. We
will briefly sketch how the two theories relate.
Gauss showed that equivalence classes of quadratic forms of a given discriminant form an abelian
group; the exact formulas are rather complicated, but essentially the construction of the group
structure is a generalisation of the formula

(x2 + cy2)(X2 + cY 2) = (Xx+ cY y)2 + c(xY − yX)2,

where the right-hand side is a form in the variables Xx + cY y and xY − yX. Details can be
found in [3], section 4.2.
So how do we move between groups of forms and ideal class groups? The dictionary is quite
simple: consider the map of sets

{forms of discriminant ∆ < 0} −→ {ideals in OQ(
√

∆)}

(a, b, c) 7−→
(
a,
−b+

√
∆

2

)
.

It turns out that equivalent forms get sent to equivalent ideals, i.e. ideals differing by a scalar
from Q(

√
∆). Quotienting out equivalence of forms on the left and equivalence of ideals on the

right, we then get an induced map

{reduced forms of discriminant ∆ < 0} −→ Cl(Q(
√

∆)),

and this is a bijection. Hence, the classical and modern notions of class numbers agree.

In 1801, Gauss conjectured that for any n ∈ N, there are only finitely many negative discriminants
with h(−d) = n; moreover, he made tables of discriminants with class numbers 1, 2 and 3, and
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conjectured that they were complete. The class number problem is the problem of finding a
complete list of discriminants for any given class number. Today, we have complete lists of all
negative discriminants with class number ≤ 100. In 1966, Baker and Stark (independently) were
the first to solve the class number 1 problem by proving Gauss’ table was indeed complete, and
in 1971 they solved the class number 2 problem as well. We now proceed to introduce the tools
needed to understand Baker’s proof.

2 Preparations for the proof
2.1 The Kronecker symbol
Let K be a quadratic number field of discriminant ∆. The Kronecker symbol is the multiplicative
character on Z defined on primes p as

(
∆
p

)
=


1 p splits in K;
−1 p is inert;
0 p is ramified.

On units, we set (
∆
1

)
= 1;

(
∆
−1

)
= sign(∆).

Another, more ad-hoc definition is that the Kronecker symbol extends the Legendre symbol on
odd primes: more precisely, we define(

∆
n

)
=
(

∆
u

)∏
p|n

(
∆
pi

)ai

,

where n = upa1
1 . . . pak

k . The symbol is then defined as above on units, as the Legendre symbol
on odd primes, and as (

∆
2

)
=


0 2 | ∆;
1 ∆ ≡ ±1 mod 8;
−1 ∆ ≡ ±3 mod 8.

Depending on the situation, one description is often easier to use than the other. We note that
the Kronecker symbol is multiplicative in the numerator and the denominator (except in some
exceptional cases we will not consider).

Remark 2.1. In fact, the Kronecker symbol is a primitive Dirichlet character of modulus ∆. We
know (for instance by the Kronecker-Weber theorem, but there are more elementary ways to show
this) that any quadratic field can be embedded into a cyclotomic field; in fact Q(

√
∆) ↪→ Q(ζ∆).

Galois theory gives a map

(Z/∆Z)× ∼= Gal(Q(ζ∆)/Q)→ Gal(Q(
√

∆)/Q) ∼= {±1},

inducing a primitive Dirichlet character; this is precisely the Kronecker symbol.
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2.2 L-functions
Let χ : (Z/nZ)× → C be a Dirichlet character. We can extend it to Z by setting χ(x) := χ(x̄)
for (x, n) = 1, and zero otherwise. For any such character, we define the Dirichlet L-function as

L(s, χ) =
∞∑
n=1

χ(n)n−s =
∏
p

(1− χ(p)p−s)−1,

which is defined for <(s) > 1 and can be extended to all of C by analytic continuation.
Dirichlet proved that if χ is the Kronecker symbol for Q(

√
−d) (0 > −d ≡ 1 mod 4), then

L(1, χ) = 2πh(−d)
w
√
d

,

where w denotes the number of units in Q(
√
−d). This relates L-functions and class numbers,

and the strategy for the proof of the class number one problem relies on finding bounds for
specific products of L-functions.
We will use the following later:

Lemma 2.2. Let ζ denote the Riemann zeta function and let p ∈ R>0. Then

lim
s→1

ζ(2s− 1)(1− p2s−2) = − log p.

Proof. Expanding ζ(2s− 1) as a Laurent series about s = 1 gives

ζ(2s− 1) = 1
2s− 2 +O(1),

and expanding 1− p2s−2 as a Taylor series about s = 1 gives

1− p2s−2 = (s− 1) · −2p2s−2 log p+O((s− 1)2).

When multiplying the two, in the limit only one term survives, and evaluates to

lim
s→1

−2(s− 1)p2s−2 log p
2(s− 1) = − log p.

2.3 Prerequisite facts
As a final preparation, we collect some facts which we will use in the next section. We will not
give an elaborate justification for these; the integrals can be looked up in integration tables or
verified numerically.

Fact 1: For 0 > −d ≡ 1 mod 4, we have∑
n|l

(
−d
n

)
= 1

2 ·#{representations of l by f}

as f runs over a complete set of reduced forms of discriminant −d. The reason is that the
Kronecker symbol is related to ramification of primes, and there is a relationship between repre-
sentations of l by a form of discriminant −d and an ideal of norm l in OK for K = Q(

√
−d).
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Fact 2: Let r ∈ Z and consider the integral

Ir(s) =
∫ ∞
−∞

exp(−iπur
√
d/ka)

(u2 + 1)s du

where s > 1 is a real number. Then Ir(1) = π exp(−π|r|
√
d/ka), and in fact

I0(s) =
√
π

Γ(s− 1/2)
Γ(s) .

Fact 3: For χ(n) =
(
k
n

)
and f = (a, b, c) a quadratic form,

k∑
j=1

χ(f(j, y)) = χ(a)
k∑
j=1

χ(j2) exp(2πijy/k).

The right-hand side is known as a Gauss sum, a sum of a product of two characters.
The formula arises from the fact that the set {n 7→ exp(2πinl/k) | 1 ≤ l ≤ k} forms an
orthonormal basis for functions Z/kZ→ C. Thus we can write

χ(f(j, y)) =
k∑
l=1
〈χ, exp(2πil/k)〉 exp(lf(j, y)/k),

and manipulating the sum on the right gives the required expression.

3 Baker’s solution
We now start the proof of the class number 1 problem following Baker. This will consist of the
calculation of an expression of a product of L-functions evaluated at s = 1, and next week this
will be used along with linear forms in logarithms to provide an upper bound for the discriminant
when Cl(K) = 1.
From now on, let k > 0 and −d < 0 be coprime integers, both square-free and congruent to 1
mod 4. Denote by χ and χ′ the Kronecker symbols for k and −d, respectively. Denote by F the
finite set

F := {reduced forms ax2 + bxy + cy2 | b2 − 4ac = −d},

and consider the product of L-functions L(s, χ)L(s, χχ′). We calculate

L(s, χ)L(s, χχ′) =
∞∑
m=1

∞∑
n=1

(
k

m

)
m−s

(
−kd
n

)
n−s

=
∞∑
m=1

∞∑
n=1

(
k

mn

)(
−d
n

)
(mn)−s

=
∞∑
l=1

∑
n|l

(
k

l

)
l−s
(
−d
n

)
using the substitution l = mn. From Fact 1, we have that∑

n|l

(
−d
n

)
= 1

2 ·#{representations of l by f ∈ F},
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and so the expression simplifies to

1
2
∑
f∈F

∑
x,y∈Z

′
χ(f)f−s, (1)

where the choice of representatives in F does not matter, and the ′ indicates that (x, y) 6= (0, 0).
Next we isolate the y = 0-sum and use that f(x, y) = f(−x,−y) to obtain

(1) =
∑
f∈F

∞∑
x=1

χ(ax2)(ax2)−s +
∑
f∈F

∞∑
y=1

∞∑
x=−∞

χ(f)f−s. (2)

The first term becomes
∞∑
x=1

χ(x2)x−2s
∑
f∈F

χ(a)a−s,

and since χ(x2) = 0 whenever (x, k) > 1 and equals 1 otherwise, the first sum is just ζ(2s)
without the terms n−2s with (n, x) > 1, so we get for this first term

ζ(2s)
∏
p|k

(1− p−2s)
∑
f∈F

χ(a)a−s.

The second term will be rewritten also, using a Fourier series. To do so, we consider the functions
(where f ∈ F ranges over representatives of classes)

gf (v) := a(x+ vy)2 + d

4ay
2 (3)

which obey gf (b/2a) = f , and define

Ff (v) :=
∞∑
y=1

∞∑
x=−∞

χ(f)g−sf .

Note that Ff (v) = Ff (v + k) for all v:

Ff (v + k) =
∞∑
y=1

∞∑
x=−∞

χ(f)
gf (v + k)s =

∞∑
y=1

∞∑
x=−∞

χ(f(x, y))
(a((x+ ky) + vy)2 + dy2/4a)s

=
∞∑
y=1

∞∑
X=−∞

χ(f(X − ky, y))
(a(X + vy)2 + dy2/4a)s = Ff (v),

since χ is k-periodic and k | f(X − vk, y)− f(X, y).
We now take the Fourier series of the Ff on [0, k] to obtain

F̂f (ω) =
∞∑

r=−∞
Ar(s) exp(2πiωr/k),

where the Fourier coefficients are by definition

Ar(s) = 1
k

∫ k

0

∞∑
y=1

∞∑
x=−∞

χ(f)g−sf exp(−2πivr/k)dv,
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and hence the Fourier series of the second term in (2) is∑
f∈F

F̂f (b/2a) =
∑
f∈F

∞∑
r=−∞

Ar(s) exp(πirb/ka).

We proceed by introducing some more substitutions. First, making the substitution x + vy =
uy
√
d/2a in (3) gives

g(u) =
(√

d

2a

)2

a(u2 + y2),

so

Ar(s) = k−1a−s

(√
d

2a

)1−2s ∫ k

0

∞∑
y=1

∞∑
x=−∞

χ(f) exp(−πiur
√
d/ka)

(u2 + y2)s du.

For any y, we can divide x by ky with remainder to write x = m+ kyn. Introducing this change
of variables and simplifying further, and writing m = j + kl with 1 ≤ j ≤ k in the expression for
σ, we find finally that

Ar(s) = k−1a−s

(√
d

2a

)1−2s

Ir(s)
∞∑
y=1

σ(y)y−2s,

where

Ir(s) =
∫ ∞
−∞

exp(−πiur
√
d/ka)

(u2 + 1)s du, and σ(y) =
{
y
∑k
j=1 χ(f(j, y)) exp(2πirj/ky) y | r;

0 o/w.

So σ(y) is non-zero for only finitely many values of y for non-zero r. For r = 0, however, we have
to do some work to show this. Following Baker’s notation, we write Ar := Ar(1) for non-zero r,
and A0 := lims→1A0(s). Using our previously obtained expression, we get

L(1, χ)L(1, χχ′) = π2

6
∏
p|k

(1− p−2)
∑
f∈F

χ(a)
a

+
∑
f∈F

∞∑
r=−∞

Ar exp(πirb/ka).

We want to bound this sum. More precisely:

Theorem 3.1. For non-zero r, we have

|Ar| ≤
2π√
d
|r| exp(−π|r|

√
d/ka), (4)

and we have

A0 =
{
−2π
k
√
d
χ(a) log p k is a power of the prime p;

0 otherwise.
(5)

Before we start the proof, we briefly recall the Möbius function: for p a prime number, it is
defined as

µ(pk) =


1 k = 0;
−1 k = 1;
0 otherwise,

and it is multiplicative on coprime integers. If f(n) =
∑
d|n g(d), then by Möbius inversion, we

have g(n) =
∑
d|n µ(n/d)f(d).

We now prove the theorem.
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Proof. First consider the case r 6= 0. Simply substituting s = 1 everywhere in the expression for
Ar(s) gives

Ar = (k
√
d/2)−1Ir(1)

∑
y

k∑
j=1

y−1χ(f(j, y)) exp(2πirj/ky).

Fact 2 now says that Ir(1) = π exp(−π|r|
√
d/ka). Since the sum over y runs only over positive

divisors of r, it has absolute value at most k|r|, so (4) follows.
So let now r = 0. By definition, we get

A0(s) = k−1as−1(
√
d/2)1−2sI0(s)

∞∑
y=1

y1−2s
k∑
j=1

χ(f(j, y)). (6)

Fact 2 again says that I0(s) =
√
πΓ(s− 1/2)/Γ(s), so it remains to estimate the sum over y.

First by Fact 3, we have that

k∑
j=1

χ(f(j, y)) = χ(a)
k∑
j=1

χ(j2) exp(2πijy/k).

This is a Ramanujan sum, which we can simplify: firstly,

k∑
j=1

χ(j2) exp(2πijy/k) =
∑

(j,k)=1

exp(2πijy/k). (7)

Let F (x) = exp(2πixy), f(n) =
∑

(j,n)=1 F (j/n), and g(n) =
∑n

1 F (j/n). Then g(n) =∑
d|n f(d) (any fraction can be expressed uniquely in lowest terms), and Möbius inversion gives

(7) = f(k) =
∑
d|k

µ

(
k

d

)
g(d) =

∑
d|k

µ

(
k

d

) d∑
j=1

exp(2πijy/k) =
∑
d|(y,k)

dµ

(
k

d

)
,

where the last equality follows because the sum of exponentials is d if k|y and zero otherwise.
Thus, returning to equation (6), we have

∞∑
y=1

y1−2s
k∑
j=1

χ(f(j, y)) = χ(a)
∑
d|k

dµ

(
k

d

)∑
d|y

y1−2s

= χ(a)
∑
d|k

kµ(d)
d

∑
k
d |y

y1−2s

= χ(a)
∑
d|k

k2s−2µ(d)
d2s−2 ζ(2s− 1)

= χ(a)k2−2sζ(2s− 1)
∑
d|k

µ(d)
d2−2s

= χ(a)ζ(2s− 1)k2−2s
∏
p|k

(1− p2s−2),

where we used that d is square-free in the last equality.
This essentially shows that A0 exists: the zeta function has a simple pole at s = 1, and if k is
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divisible by more than one prime, the product gives a zero of order greater than one, giving the
second case of (5). We only get a non-zero limit if k is a prime power, namely − log p by our
previous lemma.
In this case, we plug everything we obtained into (6), and get

A0 = lim
s→1

A0(s) = 2
k
√
d

√
πΓ(1/2)χ(a)(− log p),

and since Γ(1/2) =
√
π, this is what we wanted.
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