Fall 2009 MATH 833 — Random Matrices B. Valké

Lectures 2 — 3 : Wigner’s semicircle law

Notes prepared by: M. Koyama

As we set up last week, let M, = [X;;]7';_; be a symmetric n X n matrix with Random entries such
that
o Xij=Xji

e X; ;s are 7id for all 7+ < j, and X; are iid for all j with
21 _ A=
E[Xij] =1, FE[X;j]=0

e All moments exists for each entries.

We considered the eigenvector of this random matrix;
A< A< <A,
which turns out to be random elements depending continuously on M,;

Lemma 1. If H, is a topological space of n x n matriz with topology derived from the usual metric
on product Lebesque measurable space, then \i(H) is a continuous function on H,,.

Proof. Let H = [h;j]};_; be an element in H,. We know that

|H|l = §/Tr(0) = /30

So for example, ||H||2 = />, A\? Note that therefore ||H |2 > maz(An, —A1). Our goal is to obtain
A in terms of H. So it is good if we can say

lim ||H|x — A\
k—o0

because A, dominates all the other eigen vectors, maybe except ;. Clearly, this logic might not
work because of the presence of negative eigen values including A;. To fix this problem we may
just shift the matrix by ||H||. In particular, we can claim

Jim STr((H + ||H|[ ) — Ay + | H|
—00



To be more precise,

An(H) + || H < {/TT((HJr I 1)¥) (1)
< Vn(An(H) + || HI]) (2)
< A(H) + (| H]| (3)

Having obtained \,...\r, we can inductively obtain the A\;_; by simply taking the limit of

k
S Tr((H + [[HD?) = > " (An(H) + [ HI|)k
=1

This allows us to induce the random measure
1
The Wigner’s semicircle law claims that this v, has a nice distributional limit.
Theorem 2.
1
— Z 0 =V
n 7

where 7= = ﬁ\/él — 221 (|3)<2)-

We will use Borrel Cantelli lemma and Carleman’s condition for moment problem to show this fact.

Consider the random variable

Xnk = /wkdun.
We will show
1.
EXpx — Ck = / x*dv (4)
2.
Ck
Var(X, k) < 2 (5)

How do they help? Suppose these two statements are true. Then we can use Borrel Cantelli lemma,
to show that

! ) < E(Xn,k - EXn,k)z\/ﬁ (6)

Vn
=Var(X,r)vn (7)
— 0(1/n*?) ®)

P(| Xy, — EXpi| >



Thus P(| X, — EXp | > %\/ﬁ i.0) =0 and | X, — EX,| < 4%/77 for some large n almost surely.
If this is the case, then v, can be shown to be tight because this means X, ; is bounded by some
constant C' and hence by Chebyshev

C
vn({z: || >m}) < e

We can therefore choose a converging subsequence v, ;) of measures that converge to v*. We would
now like to show that any of these subsequencial limits v* of converging subsequences equals to v.
In this way, we can establish that any subsequence v,,(;) has further subsequence that converges to
v. This can be done if we can characterize v by its moments, because we know that »*’s moments
for all subsequence agrees by the claim (1). This can be done using the following useful criterion.

Theorem 3. (Carleman’s condition: ) Suppose

o0

1
> i =

k=1 Mg
. Then there is at most one measure F' such that fwde(a:) = ui for all positive integer k. This
criterion can be made stronger: in fact, the conclusion above holds if

1/2k
2k

lim sup =7 < 00.

The logic behind the proof of this claim follows from the fact that the characteristic function
Elexp(iXt)] charaterizes the distribution of X. We can consider the Taylor polynomial of exp(i Xt).
If Elexp(iXt)] =5 %, then the moment indeed determines the characteristic function.

Let’s hence check if the Carleman’s condition applies to our case. Put
21
Cp = — k4 — 22dx.
-2 2
If £ is odd, then ¢; = 0. Therefore put k = 2n. Then

cL = 711'/ z*\/4 — x2dx (9)
[0,2]

_ / Sin2"(£) cos? (£)22 2 dt (10)
T J[0m/2)
_ 1 / 22"%2 (sin®"(t) — sin®"T2 ¢) dt (11)
T J[0m/2)
|
v nl22n 2 4(n+1)2
2n 1
- qn 1
( n ) n+1 < (13)

We used the fact

20 _ (20)! ™
/0,7r/2] sin“*(t)dt = (017202 2



1/2k k/2\1/2k 4
Hoj (4%/%) _ V4 :
25— < % = 5 and the claim follows.

Therefore

Therefore, it remains to show (1) and (2) in (0.4) and (0.5).

Proof of (1)

Let us begin with (1). We will achieve this by a way of ”controlled brute force”. Note that

1 A \”

E [ 2*dv, = E- AL 14

/ ot =EC D <ﬁ> )

= n" "2 E(TrMF) (15)

k
= n_1_§ Z E(Xil,i2Xi27i3Xi37i4 s Xikﬂ'l) (16)
To organize this, whenever we have k-tuple (i1, 42, ...1;) = I, put
E(I) = E(Xi17i2Xi2,i3Xi37i4 .- 'Xik,i1)~

First, observe that F(I) is bounded by some constant Bj. This can be seen by applying Cauchy
Shwartz inequality inductively.

Let us represent each I by a directed closed path with vertices {1,2,3,...n} = V(I) and edges
E(I) =A{(igyiat+1);a =1,.. .k, i1 = 11} For example, if [ = (2,3,1,2,2,1) then this will correspond
to the directed adjacency matrix !

(17)

_= = O
S = N
o = O

Now, skeleton of a directed graph is a undirected graph induced by the directed graph by replacing
all the multiedges by edges. For example, the skeleton of the graph above is given by the adjacency

matrix 2

011
11 1]. (18)
110

entries in the a;; represents the number of edges from vertex i to vertex j.
2entries in the a;; represents the number of edges between vertex i to vertex j.



Here, remark that that E[I] = 0 unless every edge in the skeleton is used at least twice. If, for
example, an edge (7,j) happens only once, then

E[l]l = E[X, ;]E II x|=o0
e€g(D\{(i,4)}
This implies that if
E(I)#0 then ¢(I)<

|

This bound let us also put a bound on V(I) ;

Lemma 4. Given any graph G, denote the vertex set by V(G) and edge set by E(G). Then
V(G| < |EG)] +1.

Proof. To see this, first assume that G is a tree. Note that removing a leaf from the graph removes
one edge and one vertex. We may continue removing leaves from the Graph until Kj(complete
graph of 2 vertices) remains. Removing a leaf from K5 results in K;. Thus V(G) = E(G) + 1
in this case. For a generic graph G, we may remove edges from the graph until we obtain its
spanning tree G”. If we removed m edges in this process, then V(G) = E(G’) + 1 + m and the
claim follows. O

Thus, we have

E(I)#0 then V(I)géh—l.

We are now in position to bound the expectation of X, ;.

[0

Lemma 5.

Proof.

E/xkdyn = nk/lsz:E(I) (19)
= ) E() (20)

V(D<|E]+1
By

<2 lmvin s 151+ 1)

Temporarily, consider V' (I) = ¢ for a fixed ¢. How many ways can we choose I? Most naive bound
on this number is indeed n’ % ¢*. It turns out that this naive bound suffices. From the inequality
that we obtained above, we see that if £ < £ + 1 then the terms with V/(I) = ¢ will vanish in limit.
Thus we can ignore the odd k all together in the limit. Let us therefore consider the case of even



k. When k is even , we see that V(I) < % + 1. If the inequality is strict, again E [2*dv,, — 0 in
the limit. Therefore, asymptotically, we can restrict our case to when V(I) = % + 1 and
£(I) < % . Because V(I) < £(I)+1, we have £(I) = £ necessarily. We are thus considering directed
graphs for which the skeletons are trees, and there are exactly two edges between two adjacent
vertices. This kind of directed graph is called a double tree. Below is a directed adjacency matrix

for an example of a double tree;

_ = = O
o O O =
oS O O =
S O O =

Now, if I is a double tree, clearly

EM=k£( J] x2|= ][ Bx2) =1
) )

ect(I ect(I

Thus, all together, we obtain the following statement;

Proposition 6.

1
lim F </ xkdyn> = lim -k (Number of double trees with n vertices)
n—00 n—00 n1+§

Our proof of (1) is therefore simplified to the counting of the number of double trees with n vertices.
To answer this, first let us answer the following question; ”If I fix a shape of a tree, just how many
double trees of that shape exist?” We may achieve this by making a bijection between the shape
of a double tree and a random walk on N beginning from 0 and returning in exactly k-step. For
example, suppose that a double tree is given by the directed adjacency matrix above; then fixing
the vertex 1 as the starting point of the walk, the shape of this double tree corresponds to the
random walk (0,1,2,1,2,1,0) (the kth entry is the distance of the walker from the vertex 1 at kth
step). Counting this way, we will show next week that the shape of a double tree with g edges are

<k> ;
k .
k) k+1

Now, given a fixed shape, the number of double trees of that shape is given by

n k
— 41!
<’5+1) <2+>

choosing the vertices permutation

given by

Thus at last, we obtain that

1 k 1 1 k
. k T
k 1 2 1
_ (k)k _ < ”) (24)
3/ 5 +1 n/)n+1
and the claim follows. O



Fall 2009 MATH 833 — Random Matrices B. Valké

Lectures 4 — 5 : Wigner’s semicircle law

Notes prepared by: H. Lin

Following from last week, we let k is an even number, say, k = 2[. we first briefly show how to
derive the number of paths from (0,0) to (k,0) while not allowed to go below the z—axis.

For any path from (0,0) to (2[,0) which intersects with y = —1, we can let (a,—1) be the last
intersection, and reflect the part after (a, —1) with respect to y = —1, and get a path from (0, 0)
to (21,—2). On the other hand, given a path from (0,0) to (2[, —2), we can reflect similarly and
obtain a path (0,0) to (2{,0). Since a path from (0,0) to (2/,—2) takes | — 1 steps upward, and
1+ 1 steps downward, we have (1311) such paths. Therefore we have (1311) paths from (0,0) to (27, 0)
which intersects with y = —1. Now we can claim that there are

(-4

paths from (0,0) to (k,0) without going below the z-axis.

Proof of (2)

We follow the notation used in the proof of (1). Let I = (i1, ia,...,i,) € [n]*¥ be a k—tuple, and
write X7 for the product of the entries Xj i, Xiyiy...Xii, .- From (16), we have

/:rkdun :n_l_g Z X7.

I€[n]k

So

Var(/ aFdv,) =n=27F Z cov(Xr1, X ). (25)
I,J€[n]k

Now we again represent I and J as closed directed path as in the proof of (1), and give the following
facts:

1. If there are no common ”edges” in I and J, then X; and X; are independent and hence
cov(Xr, Xy)=0.



2. If there is an edge which only appears once in I or J, say, the edge i1i2, then X, ;, is
independent of rest of the terms in X; and X;X;. Since EX;;, = 0, we know EX; =
EX[X] = 0, SO COU(X[,XJ) = EX[X] — EX[EXJ = 0.

Let m = |V(I U J)| be the size of the set corresponding to the union of I and J. For a given m, we
at most have C'n™ ways to select the k—tuples I and J, where is C is a constant independent of n.

If m < k, then we see the contribution of these term in (25) is of order ;.

Now we consider the terms with m > k + 1. From the two facts we just mentioned, I and J give
a connected graph, with each edge used at least twice, and hence in the skeleton of the graph of
I'U J we only have at most k edges. However, m > k + 1, in this situation we know we must have
m=k-+1and I UJ is actually a double tree.

By erasing vertices not belonging to I, we can see that I is also a double tree, and so is J. We
now look at a ”common edge” in both I and J, it appears twice in I and twice in J, and thus four
times in I U J, which contradicts with the observation that I U J is a double tree.

To sum up, all terms in (25) satisfy m < k and are O(#), which proves (2).

Before proceeding to the next theorem, we prove the following lemma:

Lemma 7. (Hoffman — Wielandt) Let A and B be two n xn symmetric (or Hermitian) matrices
with eigenvalues A\1(A) < Aa(A) < ... < M(A), and A\ (B) < Aa(B) < ... < \(B), then

> Ni(A) = Ni(B)| < Tr((A - B)?] (26)
i=1

Proof. Since Y_; \?(A) = Tr(A?), we only need to prove

Tr(AB) < 3 MAN(B). (27)
=1

Because A and B are symmetric, we can write
A=UDsUT and B=VDgV’

for some diagonal matrices D4, Dp and orthogonal matrices U, V.



Then let W = [wy;]};_; = =UTV, we get

Tr(AB) = Tr(UDAUTVDRVT)
= Tr(DAUTVDRVTU)
= Tr(DaWDW7T) (28)

D> A(A)A

1<i,j<n

So now we try to maximize >, ; Ai(A)A;(B)v;; with the constraints that vi; > 0,371, vi; = 1 for
j=1,..,n, and Z;”Zl vij=1fori=1,..,n

Suppose v11 < 1, then there must exist ¢ and j such that v;; > 0 and vy; > 0. Let v = min{v;1,vj1 }.
Then define v{; = v11 + v, Ullj =15 — v, U = vi1 — v, and Ugj = vi; + 0.

Since
A(A)A(B)(vyy — vi1) + A (A)Aj(B)(vh; — viy)
i(A)A(B)(vjy — vir) + Xi(A)Aj(B) (v — vij) (20)
=v(A(4) = Ai(A4))(Ai(B) = \j(B))
>0

9

we see that if we repeat the same argument, we maximize ), ; Aj(A)\;(B)v;; when all v;; = 0 for
i # jand vy = 1 for i = 1,2,...,n. Therefore (27) is proved and we conclude the proof of the
lemma.

Now we look at a more generalized version of Wigner’s theorem without assuming finiteness of
higher moments:

Theorem 8. Let M,, = [X;;]?;_; be a symmetric n x n matriz with Random entries such that

o X;; arei.i.d., with EX;; =0 and EXZ»QJ- =1 foralli<j.

o X, are i.id., with EX; =0 and EXiQi is finite for 1 <i <n.

Let v, and v be defined as before, then we have

Up =V (30)



Proof. Fix C' > 0, for i # j define
o*(C) = Var(Xij1(x,,1<0))
and for all 7 and j define

Xijl(x,,1<0) — EXijl(x,,<0)
a(0)

C_

Let M, = [XS]7,_,, ~
have bounded support and thus M, satisfy all conditions of theorem 2 (we actually didn’t use the

condition EX% = 1 in the proof of theorem 2, we only need finiteness), so

and define the corresponding \; and 7, as before, then we see all entries

Up =V a.s. (31)
From the definition of Xg , we have
o 1 1
Xig = X = oy Kalaxyzop = BXiglgxy>ep) + (1= 2r5) X
By lemma (7) and Cauchy-Schwarz inequality, we have
I N\
n ; | N \/ﬁ’
1 .
< Tr(My — My)?)
1 )2
=7 2 (X5 — Xij) (32)
1/7]
S0 %:(Xijl(xijzcn — BXylixgzep)”+ (- 2gy) ZZ;XU
(1-0(C)?) 1 2
=——"°0(1 1-—)70(1
(C)? ()+( O‘(C)) (1) asn— o0

The last step comes from the observation that as n — oo,

1 2
— > (XL, 20 — BXijlx,20p)” = Var(Xilix,zcp — EXijl(x,zcp) =1 - 0(C)?
0,
and 1
ﬁ ZX% - VCLTXZ']‘ =1
1,J

10



Now we look at any bounded and Lipschitz continuous function f(z). There exists a constant

K > 0 such that for all z and y,

[f(z) = f(y)] < Klz —yl.

Hence

| [ s~ [ fa|
Ai

< S GE - 150

for some constant K'.
So

lim sup | fdun—/fdu|

n—odo

<limsup| | fdo, — /fdy|+hmsup| fdvy, — /fdﬁn|

n—o0 n—oo

, [(L=0(C)?) 2
Swa«m”l‘am)'

This holds for any C > 0, so we let C go to infinity, and obtain
hm | /fdyn /fdz/| a.s.
Take an arbitrary function that is Lipschitz continuous with the following conditions

1. f(x) =1 for|]z| <2 and z =0 for |z| > 3.

2. 0 < f(x) <1 for all real number z.

Immediately from (35) we have

lim fdyn:/fdu

n—oo

11

(33)

(34)



Recall that v is a measure with support [—2,2], and we can also get [ fdv = 1. Since we let
0 < f(x) < 1 have support [—3, 3], it follows that v,([-3,3]) — 1 as n approaches infinity. Now
define a new measure v, (A4) = v,(AN[-3,3]).

Now we claim 7, = v a.s.. It suffices to show that

/xkdﬂn — /mkdu

for all k € Z;. This is clear from previous argument because [ zkdp, = i :rkl(mgg)dl/n, and
z* 1(jz|<3) is bounded and Lipschitz continuous.

So for any bounded and continuous function f(z),

Tim. |/fdvn—/fd7/|
Sllm\/fdvn /den!+11m\/de_/de”| (36)

<[ fllo lim vy (R\[—
=0
This concludes the proof of the theorem.
O

Remark 9. When we proved (35) for Lipschitz functions, we could get that for each ¢, the cor-
responding characteristic function ¢, (t) = [ €"*dv,, converges to c(t) = [e"®dy almost surely.
Another fact is that there is a countable selection of bounded Lipschitz funcitons on R which
determines the convergence in distribution. So in this way we can prove the theorem.

We can relax the conditions even further and give the following two theorems:

Theorem 10. For eachn € Z, let M, = [Xl(]n)]” 1 be a symmetric n X n matriz with Random

entries such that

° Xi(j) are independent with mean zero and variance 1.

o sup; i, E\X}?\‘l < C for some constant C.

If we define v, and v as before, then

Up =V G.S.

The second condition could also be replaced by some sort of uniform integrability of variance.

12



Theorem 11. For each n € Z4, let M,, = [X-(TL)]” be a symmetric n x n matriz. Assume the

ij li,g=1
T(g) = 0. If also assuming VarXZ-(;L) =1 and

matriz EM, has rank r(n), with lim,_,

sup B|XY — EX{|* < oo,

2,J,M

then for any bounded and continuous function f(x),

/fdyn:/fdu

With some tightness on v, the above conditions imply v, = v. Note that when all entries have the
same mean, then r(n) = 1, which gives a special case of the theorem.

Another note is that if A is symmetric matrix, then the eigenvalues of A and A+ \ee” are interlaced
for A € R,e € R™.

For matrices with complex entries, we have the following theorem:

Theorem 12. M,, = [X;;]{',_; be an n x n matriz with Random entries such that

o X;;js arei.i.d for all i < j, and Xy are i.i.d for all i. For all1 <1i,j <mn,

E|X;>=1, E[Xi]=0

o All moments exists for each entry.

Define v, and v as before, then
Vp = V.

This is analogue of theorem 2, and the proof is very similar, with the only difference X;; = Xiji, SO
we will have X;;X;; = \Xij|2 in our computation.

13



