
Fall 2009 MATH 833 – Random Matrices B. Valkó

Lectures 2 – 3 : Wigner’s semicircle law

Notes prepared by: M. Koyama

As we set up last week, let Mn = [Xij ]ni,j=1 be a symmetric n×n matrix with Random entries such
that

• Xi.j = Xj,i

• Xi,js are iid for all i < j, and Xjj are iid for all j with

E[X2
ij ] = 1, E[Xij] = 0

• All moments exists for each entries.

We considered the eigenvector of this random matrix;

λ1 ≤ λ2 ≤ · · · ≤ λn

which turns out to be random elements depending continuously on Mn;

Lemma 1. If Hn is a topological space of n×n matrix with topology derived from the usual metric
on product Lebesgue measurable space, then λi(H) is a continuous function on Hn.

Proof. Let H = [hij ]ni,j=1 be an element in Hn. We know that

‖H‖k = k

√
Tr(Hk)) = k

√∑
λk

i

So for example, ‖H‖2 =
√∑

i λ
2
i Note that therefore ‖H‖2 ≥ max(λn,−λ1). Our goal is to obtain

λ in terms of H. So it is good if we can say

lim
k→∞

‖H‖k → λn

because λn dominates all the other eigen vectors, maybe except λ1. Clearly, this logic might not
work because of the presence of negative eigen values including λ1. To fix this problem we may
just shift the matrix by ‖H‖. In particular, we can claim

lim
k→∞

k

√
Tr((H + ‖H‖I)k) → λn + ‖H‖
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To be more precise,

λn(H) + ‖H‖ ≤ k

√
Tr((H + ‖H‖I)k) (1)

≤ k
√

n(λn(H) + ‖H‖) (2)

≤ λn(H) + ‖H‖. (3)

Having obtained λn...λk, we can inductively obtain the λk−1 by simply taking the limit of

k

√√√√Tr((H + ‖H‖I)k)−
k∑

i=1

(λn(H) + ‖H‖)k

This allows us to induce the random measure

νn =
1
n

∑
δ λi√

n

.

The Wigner’s semicircle law claims that this νn has a nice distributional limit.

Theorem 2.
1
n

∑
δ λi√

n

⇒ ν

where ν
dx = 1

2π

√
4− x21(|x|≤2).

We will use Borrel Cantelli lemma and Carleman’s condition for moment problem to show this fact.
Consider the random variable

Xn,k =
∫

xkdνn.

We will show

1.

EXn,k → ck =
∫

xkdν (4)

2.

Var(Xn,k) ≤ ck

n2
(5)

How do they help? Suppose these two statements are true. Then we can use Borrel Cantelli lemma
to show that

P (|Xn,k −EXn,k| > 1
4
√

n
) ≤ E(Xn,k − EXn,k)2

√
n (6)

= V ar(Xn,k)
√

n (7)

= O(1/n3/2) (8)
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Thus P (|Xn,k − EXn,k| > 1
4√n

i.o) = 0 and |Xn,k − EXn| < 1
4√n

for some large n almost surely.
If this is the case, then νn can be shown to be tight because this means Xn,k is bounded by some
constant C and hence by Chebyshev

νn({x : |x| > m}) <
C

mk
.

We can therefore choose a converging subsequence νn(j) of measures that converge to ν∗. We would
now like to show that any of these subsequencial limits ν∗ of converging subsequences equals to ν.
In this way, we can establish that any subsequence νn(k) has further subsequence that converges to
ν. This can be done if we can characterize ν by its moments, because we know that ν∗’s moments
for all subsequence agrees by the claim (1). This can be done using the following useful criterion.

Theorem 3. (Carleman’s condition: ) Suppose

∞∑

k=1

1

µ
1/2k
k

= ∞

. Then there is at most one measure F such that
∫

xkdF (x) = µk for all positive integer k. This
criterion can be made stronger: in fact, the conclusion above holds if

lim sup
µ

1/2k
2k

2k
= r < ∞.

The logic behind the proof of this claim follows from the fact that the characteristic function
E[exp(iXt)] charaterizes the distribution of X. We can consider the Taylor polynomial of exp(iXt).
If E[exp(iXt)] =

∑ (it)kE[Xk]
k! , then the moment indeed determines the characteristic function.

Let’s hence check if the Carleman’s condition applies to our case. Put

ck =
∫ 2

−2

1
2π

xk
√

4− x2dx.

If k is odd, then ck = 0. Therefore put k = 2n. Then

ck =
1
π

∫

[0,2]
x2n

√
4− x2dx (9)

=
1
π

∫

[0,π/2]
sin2n(t) cos2(t)22n+2dt (10)

=
1
π

∫

[0,π/2]
22n+2

(
sin2n(t)− sin2n+2 t

)
dt (11)

=
1
π

22n+2 (2n)!
n!22n

π

2

(
1− (2n + 2)(2n + 1)

4(n + 1)2

)
(12)

=
(

2n

n

)
1

n + 1
< 4n (13)

We used the fact ∫

[0,π/2]
sin2`(t)dt =

(2`)!
(`!)222`

π

2
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Therefore µ
1/2k
2k
2k < (4k/2)1/2k

2k =
4√4
2k and the claim follows.

Therefore, it remains to show (1) and (2) in (0.4) and (0.5).

Proof of (1)

Let us begin with (1). We will achieve this by a way of ”controlled brute force”. Note that

E

∫
xkdνn = E

1
n

∑ (
λi√
n

)k

(14)

= n−1−k
2 E(TrMk

n) (15)

= n−1−k
2

∑
E(Xi1,i2Xi2,i3Xi3,i4 . . . Xik,i1) (16)

To organize this, whenever we have k-tuple (i1, i2, . . . ik) = I, put

E(I) = E(Xi1,i2Xi2,i3Xi3,i4 . . . Xik,i1).

First, observe that E(I) is bounded by some constant Bk. This can be seen by applying Cauchy
Shwartz inequality inductively.

Let us represent each I by a directed closed path with vertices {1, 2, 3, . . . n} = V (I) and edges
ξ(I) = {(ia, ia+1); a = 1, ...k, ik+1 = i1} For example, if I = (2, 3, 1, 2, 2, 1) then this will correspond
to the directed adjacency matrix 1




0 2 0
1 1 1
1 0 0


 (17)

Now, skeleton of a directed graph is a undirected graph induced by the directed graph by replacing
all the multiedges by edges. For example, the skeleton of the graph above is given by the adjacency
matrix 2




0 1 1
1 1 1
1 1 0


 . (18)

1entries in the aij represents the number of edges from vertex i to vertex j.
2entries in the aij represents the number of edges between vertex i to vertex j.
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Here, remark that that E[I] = 0 unless every edge in the skeleton is used at least twice. If, for
example, an edge (i, j) happens only once, then

E[I] = E[Xi,j ]E


 ∏

e∈ξ(I)\{(i,j)}
Xe


 = 0

This implies that if

E(I) 6= 0 then ξ(I) ≤ k
2

.

This bound let us also put a bound on V (I) ;

Lemma 4. Given any graph G, denote the vertex set by V (G) and edge set by E(G). Then
|V (G)| ≤ |E(G)|+ 1.

Proof. To see this, first assume that G is a tree. Note that removing a leaf from the graph removes
one edge and one vertex. We may continue removing leaves from the Graph until K2(complete
graph of 2 vertices) remains. Removing a leaf from K2 results in K1. Thus V (G) = E(G) + 1
in this case. For a generic graph G, we may remove edges from the graph until we obtain its
spanning tree G”. If we removed m edges in this process, then V (G) = E(G′) + 1 + m and the
claim follows.

Thus, we have

E(I) 6= 0 then V(I) ≤ bk
2
c+ 1.

We are now in position to bound the expectation of Xn,k.

Lemma 5. ∣∣∣∣E
[∫

xkdνn

]∣∣∣∣ ≤
ck√
n

Proof.

E

∫
xkdνn =

1
nk/2+1

∑

I

E(I) (19)

=
∑

V (I)≤b k
2
c+1

E(I) (20)

≤ Bk

n1+k/2

∣∣∣∣{I;V (I) ≤ bk
2
c+ 1}

∣∣∣∣ (21)

Temporarily, consider V (I) = ` for a fixed `. How many ways can we choose I? Most naive bound
on this number is indeed n` ∗ `k. It turns out that this naive bound suffices. From the inequality
that we obtained above, we see that if ` < k

2 + 1 then the terms with V (I) = ` will vanish in limit.
Thus we can ignore the odd k all together in the limit. Let us therefore consider the case of even
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k. When k is even , we see that V (I) ≤ k
2 + 1. If the inequality is strict, again E

∫
xkdνn → 0 in

the limit. Therefore, asymptotically, we can restrict our case to when V(I) = k
2 + 1 and

ξ(I) ≤ k
2 . Because V (I) ≤ ξ(I)+1, we have ξ(I) = k

2 necessarily. We are thus considering directed
graphs for which the skeletons are trees, and there are exactly two edges between two adjacent
vertices. This kind of directed graph is called a double tree. Below is a directed adjacency matrix
for an example of a double tree;




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 (22)

Now, if I is a double tree, clearly

E(I) = E


 ∏

e∈ξ(I)

X2
e


 =

∏

e∈ξ(I)

E(X2
e ) = 1

Thus, all together, we obtain the following statement;

Proposition 6.

lim
n→∞E

(∫
xkdνn

)
= lim

n→∞
1

n1+ k
2

∗ (
Number of double trees with n vertices

)

Our proof of (1) is therefore simplified to the counting of the number of double trees with n vertices.
To answer this, first let us answer the following question; ”If I fix a shape of a tree, just how many
double trees of that shape exist?” We may achieve this by making a bijection between the shape
of a double tree and a random walk on N beginning from 0 and returning in exactly k-step. For
example, suppose that a double tree is given by the directed adjacency matrix above; then fixing
the vertex 1 as the starting point of the walk, the shape of this double tree corresponds to the
random walk (0, 1, 2, 1, 2, 1, 0) (the kth entry is the distance of the walker from the vertex 1 at kth
step). Counting this way, we will show next week that the shape of a double tree with k

2 edges are
given by (

k
k
2

)
1

k + 1
.

Now, given a fixed shape, the number of double trees of that shape is given by
(

n
k
2 + 1

)

︸ ︷︷ ︸
choosing the vertices

(
k

2
+ 1

)
!

︸ ︷︷ ︸
permutation

Thus at last, we obtain that

lim
n→∞

∫
xkdνn = lim

n→∞
1

nk/2 + 1

(
k
k
2

)
1

k + 1
1

k
2 + 1

n(n− 1) · · ·
(

n− k

2

)
(23)

=
(

k
k
2

)
1

k
2 + 1

=
(

2n

n

)
1

n + 1
(24)

and the claim follows.
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Fall 2009 MATH 833 – Random Matrices B. Valkó

Lectures 4 – 5 : Wigner’s semicircle law

Notes prepared by: H. Lin

Following from last week, we let k is an even number, say, k = 2l. we first briefly show how to
derive the number of paths from (0, 0) to (k, 0) while not allowed to go below the x−axis.

For any path from (0, 0) to (2l, 0) which intersects with y = −1, we can let (a,−1) be the last
intersection, and reflect the part after (a,−1) with respect to y = −1, and get a path from (0, 0)
to (2l,−2). On the other hand, given a path from (0, 0) to (2l,−2), we can reflect similarly and
obtain a path (0, 0) to (2l, 0). Since a path from (0, 0) to (2l,−2) takes l − 1 steps upward, and
l+1 steps downward, we have

(
2l

l−1

)
such paths. Therefore we have

(
2l

l−1

)
paths from (0, 0) to (2l, 0)

which intersects with y = −1. Now we can claim that there are

(
2l

l

)
−

(
2l

l − 1

)
=

(
2l

l

)
1

l + 1

paths from (0, 0) to (k, 0) without going below the x-axis.

Proof of (2)

We follow the notation used in the proof of (1). Let I = (i1, i2, ..., in) ∈ [n]k be a k−tuple, and
write XI for the product of the entries Xi1i2Xi2i3 ...Xiki1 . From (16), we have

∫
xkdνn = n−1− k

2

∑

I∈[n]k

XI .

So
V ar(

∫
xkdνn) = n−2−k

∑

I,J∈[n]k

cov(XI , XJ). (25)

Now we again represent I and J as closed directed path as in the proof of (1), and give the following
facts:

1. If there are no common ”edges” in I and J , then XI and XJ are independent and hence
cov(XI , XJ) = 0.
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2. If there is an edge which only appears once in I or J , say, the edge i1i2, then Xi1i2 is
independent of rest of the terms in XI and XIXJ . Since EXi1i2 = 0, we know EXI =
EXIXJ = 0, so cov(XI , XJ) = EXIXJ −EXIEXJ = 0.

Let m = |V (I ∪ J)| be the size of the set corresponding to the union of I and J . For a given m, we
at most have Cnm ways to select the k−tuples I and J , where is C is a constant independent of n.

If m ≤ k, then we see the contribution of these term in (25) is of order 1
n2 .

Now we consider the terms with m ≥ k + 1. From the two facts we just mentioned, I and J give
a connected graph, with each edge used at least twice, and hence in the skeleton of the graph of
I ∪ J we only have at most k edges. However, m ≥ k + 1, in this situation we know we must have
m = k + 1 and I ∪ J is actually a double tree.

By erasing vertices not belonging to I, we can see that I is also a double tree, and so is J . We
now look at a ”common edge” in both I and J , it appears twice in I and twice in J , and thus four
times in I ∪ J , which contradicts with the observation that I ∪ J is a double tree.

To sum up, all terms in (25) satisfy m ≤ k and are O( 1
n2 ), which proves (2).

Before proceeding to the next theorem, we prove the following lemma:

Lemma 7. (Hoffman−Wielandt) Let A and B be two n×n symmetric (or Hermitian) matrices
with eigenvalues λ1(A) ≤ λ2(A) ≤ ... ≤ λn(A), and λ1(B) ≤ λ2(B) ≤ ... ≤ λn(B), then

n∑

i=1

|λi(A)− λi(B)| ≤ Tr[(A−B)2] (26)

Proof. Since
∑

i λ
2
i (A) = Tr(A2), we only need to prove

Tr(AB) ≤
n∑

i=1

λi(A)λi(B). (27)

Because A and B are symmetric, we can write

A = UDAUT and B = V DBV T

for some diagonal matrices DA, DB and orthogonal matrices U, V .
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Then let W = [wij ]ni,j=1 = UT V , we get

Tr(AB) = Tr(UDAUT V DBV T )

= Tr(DAUT V DBV T U)

= Tr(DAWDBW T )

=
∑

1≤i,j≤n

λi(A)λj(B)w2
ij

(28)

So now we try to maximize
∑

i,j λi(A)λj(B)vij with the constraints that vij ≥ 0,
∑n

i=1 vij = 1 for
j = 1, ..., n, and

∑n
j=1 vij = 1 for i = 1, ..., n.

Suppose v11 < 1, then there must exist i and j such that vi1 > 0 and v1j > 0. Let v = min{vi1, vj1}.
Then define v′11 = v11 + v, v′1j = v1j − v, v′i1 = vi1 − v, and v′ij = vij + v.

Since

λ1(A)λ1(B)(v′11 − v11) + λ1(A)λj(B)(v′1j − v1j)

+ λi(A)λ1(B)(v′i1 − vi1) + λi(A)λj(B)(v′ij − vij)

=v(λ1(A)− λi(A))(λ1(B)− λj(B))

≥0,

(29)

we see that if we repeat the same argument, we maximize
∑

i,j λi(A)λj(B)vij when all vij = 0 for
i 6= j and vii = 1 for i = 1, 2, ..., n. Therefore (27) is proved and we conclude the proof of the
lemma.

Now we look at a more generalized version of Wigner’s theorem without assuming finiteness of
higher moments:

Theorem 8. Let Mn = [Xij ]ni,j=1 be a symmetric n× n matrix with Random entries such that

• Xij are i.i.d., with EXij = 0 and EX2
ij = 1 for all i < j.

• Xii are i.i.d., with EXii = 0 and EX2
ii is finite for 1 ≤ i ≤ n.

Let νn and ν be defined as before, then we have

νn ⇒ ν (30)

9



Proof. Fix C > 0, for i 6= j define

σ2(C) = V ar
(
Xij1(|Xij |≤C)

)

and for all i and j define

XC
ij =

Xij1(|Xij |≤C) −EXij1(|Xij |≤C)

σ(C)

Let M̃n = [XC
ij ]

n
i,j=1, and define the corresponding λ̃i and ν̃n as before, then we see all entries

have bounded support and thus M̃n satisfy all conditions of theorem 2 (we actually didn’t use the
condition EX2

ii = 1 in the proof of theorem 2, we only need finiteness), so

ν̃n ⇒ ν a.s. (31)

From the definition of XC
ij , we have

Xij −XC
ij =

1
σ(C)

(
Xij1(|Xij≥C|) −EXij1(|Xij≥C|)

)
+

(
1− 1

σ(C)
)
Xij

By lemma (7) and Cauchy-Schwarz inequality, we have

1
n

n∑

i=1

| λi√
n
− λ̃i√

n
|

≤ 1
n2

Tr[(Mn − M̃n)2]

=
1
n2

∑

i,j

(Xij −XC
ij )

2

≤ 2
n2

1
σ(C)2

∑

i,j

(
Xij1(|Xij≥C|) −EXij1(|Xij≥C|)

)2 +
2
n2

(
1− 1

σ(C)
)2

∑

i,j

X2
ij

=
(1− σ(C)2)

σ(C)2
O(1) +

(
1− 1

σ(C)
)2

O(1) as n →∞

(32)

The last step comes from the observation that as n →∞,

1
n2

∑

i,j

(
Xij1(|Xij≥C|) − EXij1(|Xij≥C|)

)2 → V ar
(
Xij1(|Xij≥C|) − EXij1(|Xij≥C|)

)
= 1− σ(C)2

and
1
n2

∑

i,j

X2
ij → V arXij = 1
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Now we look at any bounded and Lipschitz continuous function f(x). There exists a constant
K > 0 such that for all x and y,

|f(x)− f(y)| ≤ K|x− y|.

Hence

|
∫

fdν̃n −
∫

fdνn|

≤ 1
n

∑

i

|f(
λ̃i√
n

)− f(
λi√
n

)|

≤K

√√√√ 1
n

∑

i

(
λ̃i√
n
− λi√

n
)2

≤K ′
√

(1− σ(C)2)
σ(C)2

+
(
1− 1

σ(C)
)2

(33)

for some constant K ′.

So

lim sup
n→∞

|
∫

fdνn −
∫

fdν|

≤ lim sup
n→∞

|
∫

fdν̃n −
∫

fdν|+ lim sup
n→∞

|
∫

fdνn −
∫

fdν̃n|

≤K ′
√

(1− σ(C)2)
σ(C)2

+
(
1− 1

σ(C)
)2

.

(34)

This holds for any C > 0, so we let C go to infinity, and obtain

lim
n→∞ |

∫
fdνn −

∫
fdν|) = 0 a.s. (35)

Take an arbitrary function that is Lipschitz continuous with the following conditions

1. f(x) = 1 for|x| ≤ 2 and x = 0 for |x| ≥ 3.

2. 0 ≤ f(x) ≤ 1 for all real number x.

Immediately from (35) we have

lim
n→∞

∫
fdνn =

∫
fdν
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Recall that ν is a measure with support [−2, 2], and we can also get
∫

fdν = 1. Since we let
0 ≤ f(x) ≤ 1 have support [−3, 3], it follows that νn([−3, 3]) → 1 as n approaches infinity. Now
define a new measure ν̄n(A) = νn(A ∩ [−3, 3]).

Now we claim ν̄n ⇒ ν a.s.. It suffices to show that
∫

xkdν̄n →
∫

xkdν

for all k ∈ Z+. This is clear from previous argument because
∫

xkdν̄n =
∫

xk1(|x|≤3)dνn, and
xk1(|x|≤3) is bounded and Lipschitz continuous.

So for any bounded and continuous function f(x),

lim
n→∞ |

∫
fdνn −

∫
fdν|

≤ lim
n→∞ |

∫
fdνn −

∫
fdν̄n|+ lim

n→∞ |
∫

fdν −
∫

fdν̄n|

≤‖f‖∞ lim
n→∞ νn(R\[−3, 3]) + 0

=0

(36)

This concludes the proof of the theorem.

Remark 9. When we proved (35) for Lipschitz functions, we could get that for each t, the cor-
responding characteristic function cn(t) =

∫
eitxdνn converges to c(t) =

∫
eitxdν almost surely.

Another fact is that there is a countable selection of bounded Lipschitz funcitons on R which
determines the convergence in distribution. So in this way we can prove the theorem.

We can relax the conditions even further and give the following two theorems:

Theorem 10. For each n ∈ Z+, let Mn = [X(n)
ij ]ni,j=1 be a symmetric n × n matrix with Random

entries such that

• X
(n)
ij are independent with mean zero and variance 1.

• supi,j,n E|X(n)
ij |4 < C for some constant C.

If we define νn and ν as before, then
νn ⇒ ν a.s.

The second condition could also be replaced by some sort of uniform integrability of variance.
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Theorem 11. For each n ∈ Z+, let Mn = [X(n)
ij ]ni,j=1 be a symmetric n × n matrix. Assume the

matrix EMn has rank r(n), with limn→∞
r(n)

n = 0. If also assuming V arX
(n)
ij = 1 and

sup
i,j,n

E|X(n)
ij −EX

(n)
ij |4 < ∞,

then for any bounded and continuous function f(x),
∫

fdνn =
∫

fdν

With some tightness on νn the above conditions imply νn ⇒ ν. Note that when all entries have the
same mean, then r(n) = 1, which gives a special case of the theorem.

Another note is that if A is symmetric matrix, then the eigenvalues of A and A+λeeT are interlaced
for λ ∈ R, e ∈ Rn.

For matrices with complex entries, we have the following theorem:

Theorem 12. Mn = [Xij ]ni,j=1 be an n× n matrix with Random entries such that

• Xij = Xji

• Xijs are i.i.d for all i < j, and Xii are i.i.d for all i. For all 1 ≤ i, j ≤ n,

E|Xij |2 = 1, E[Xij] = 0

• All moments exists for each entry.

Define νn and ν as before, then
νn ⇒ ν.

This is analogue of theorem 2, and the proof is very similar, with the only difference Xij = Xji, so
we will have XijXji = |Xij |2 in our computation.
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