
Notes on Algebraic Curves

F.Beukers

1 Introduction

Algebraic curves have been studied since antiquity. We are all familiar with
the circle, parabola and ellipse, which are examples of so-called conic sections.
But also more involved curves were studied already by the ancient Greeks.
We recall the conchoid of Nicomedes (180 BC) and the cissoid of Diocles
(180 BC) which were both used in solutions of the duplication of the cube
problem. As more recent curves we recall the cardioid (Castillon, 1741), the
folium (Descartes, 1638) and the lemniscate (Jacob Bernoulli, 1694).
All these curves share the property that, beside their geometrical description,
they can be given by algebraic equations in the plane equipped with coor-
dinates x, y. The equation of the conic sections are of course all quadratic.
For the cissoid it reads

y2(2a− x) = x3

and for the conchoid we have

(x− b)2(x2 + y2)− a2x2 = 0.

In the real plane they look like
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The equation of the Folium reads

x3 + y3 = 3axy

for the Cardiod we have

(x2 + y2 − axy)2 = 4a2(x2 + y2).

Their real points look like

Finally the lemniscate is given by

(x2 + y2)2 − a2(x2 − y2) = 0
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and it looks like

In the above pictures we have basically drawn the curves as subset of R2.
However, it is also possible to consider curves given by equations with com-
plex coeffients or even coefficients from finite fields. They are a little harder
to draw though.

Definition 1.1 Let k be a field. A (plane, affine) algebraic curve defined
over k is an equation of the form

F (x, y) = 0

where F ∈ k[X, Y ].

Above we have considered curves defined over R, which we shall call real
(algebraic) curves. When the coefficients of the defining equation are in C
we speak of a complex (algebraic) curve. We have very formally defined
an algebraic curve by an equation. Of course there are also solutions to
this equation. We shall call these solutions the points of our curve. More
precisely,

Definition 1.2 Let C be an algebraic curve defined by F (x, y) = 0 with
F ∈ k[X, Y ]. Let K be a field containing k (possibly K = k). The K-
rational points of C are the solutions of F (x, y) = 0 in x, y ∈ K. Notation:
C(K).
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In the pictures above we have drawn the set of real points C(R) of our curves.
Of course we can also consider the complex points C(C) which is what we
shall do later on.

Definition 1.3 Let C be a curve given by F (x, y) = 0 with F ∈ k[X, Y ]. We
shall call C irreducible over k if F is an irreducible polynomial in the ring
k[X, Y ]. We shall call C absolutely irreducible, or geometrically irreducible,
if F is irreducible in k[X, Y ], where k is the algebraic closure of k.

For example, let C be the curve given by x3+y3+1−3xy = 0. It is irreducible
over Q because x3 + y3 + 1− 3xy is irreducible in Q[x, y]. It is reducible over
Q(
√
−3) however, because

x3 + y3 + 1− 3xy = (x+ y + 1)(x+ ωy + ω2)(x+ ω2y + ω)

where ω = (−1 +
√
−3)/2 is a cube root of unity.

On the other hand, the curve x3+y3+1 = 0 is absolutely irreducible because
x3 + y3 + 1 is irreducible in C[x, y].
Although many of the things we discuss in this course hold for general fields
k we shall confine ourselves to real and complex curves, together with their
real and/or complex points. At this point it is interesting to note that the
real points of a real curve do not always reflect the properties of the curve
(that is: its defining equation). For example, the equations x2 + y2 + 1 = 0
and x2 + 2y2 + 3 = 0 are clearly distinct curves, yet they have the same set
of real points, namely the empty one. Another observation, the polynomial
y2− (x3− x) is absolutely irreducible, whereas the real points of y2 = x3− x
look like
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In other words, C(R) consists of two topological components, but we tagged
the curve as being irreducible. All this will prompt us to look at the complex
points of an algebraic curve rather than the real ones. In the next section we
will find some more motivation for this.

2 Bezout’s inequality

In this section we consider the intersection of two algebraic curves. Suppose
the curves are given by F (x, y) = 0 and G(x, y) = 0, then we shall be inter-
ested in their common solutions. In order to solve this system of equations
we need to introduce some elimination theory for polynomial equations. In
general this is done using so-called Gröbner basis techniques, but here we
can confine ourselves to introducing the resultant of two polynomials.
In the section we let R be an integral domain. This is a commutative ring
with 1( 6= 0) and no zero-divisors. To such a ring we can associate its field
of quotients which we denote by K. To fix ideas we can think of the pairs
R = Z, K = Q or R = Q[y], K = Q(y). The ring of polynomials with
coefficients in R is denoted by R[x]. We recall the following theorem.

Theorem 2.1 Suppose R is a unique factorisation ring. Then the same
holds for R[x].

As a consequence we have unique factorisation in Z[x]. By induction on n
we can also show that we have unique factorisation in any polynomial ring
K[x1, x2, . . . , xn] where K is a field.
Consider two polynomials F (x), G(x) ∈ R[x] and write them in the form
F (x) = pmx

m+pm−1x
m−1 + · · ·+p1x+p0, G(x) = qnx

n+ · · ·+ q1x+ q0. The
resultant of F and G is given by the determinant of the so-called Sylvester
matrix

Res(F,G) = det



p0 p1 · · · pm 0 · · · 0
0 p0 · · · pm−1 pm · · · 0
...

...
0 0 · · · p0 p1 · · · pm
q0 q1 · · · qn 0 · · · 0
0 q0 · · · qn−1 qn · · · 0
...

...
0 0 · · · q0 qn−1 qn


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As a rule of thumb, the row with the entries pi occurs n times, the row with
the qj occurs m times.
Examples,

Res(x4 − 4x2 + 3x− 2, x4 + 5x3 − 2x+ 1) = −4457, where R = Z

and

Res(x2+2y2x+y, x3−yx2−y3) = y3(1+y−5y3+4y5+8y6), where R = Q[y]

Theorem 2.2 Let F (x), G(x) ∈ R[x] be two polynomials of degree n and m
respectively. Then there exist polynomials A(x), B(x) ∈ R[x] of degrees < m
and < n respectively, such that

Res(F,G) = A(x)F (x) +B(x)G(x).

Moreover, assuming that R is a unique factorisation ring, we have Res(F,G) =
0 if and only if F,G have a common divisor of positive degree in x.

Proof To the first column of the determinant we add x times the second
column, x2 times the third column, etc until xm+n−1 times the last column.
After these additions the first column looks like

(F (x), xF (x), . . . , xn−1F (x), G(x), . . . , xm−1G(x))t.

All entries of the other columns are in R. Develop the determinant along this
first column and we obtain a relation of the form A(x)F (x) + B(x)G(x) =
Res(F,G), where A,B are polynomials of degrees at most n − 1,m − 1 re-
spectively.
Suppose F,G have a common divisor of positive degree. Then this divisor
divides Res(F,G) which is only possible if Res(F,G) = 0. Suppose conversely
that Res(F,G) = 0. Then the rows of the Sylvester matrix satisfy a non-
trivial linear dependence relation with coeffcients in K, hence coefficients in
R. Denote the coefficients of such a dependence relation by

(a0, a1, . . . , an−1, b0, b1, . . . , bm−1).

Write Ã(x) = a0 +a1x+ · · ·+an−1x
n−1 and B̃(x) = b0 +b1x+ · · ·+bm−1x

m−1

and notice that the dependence relation implies that Ã(x)F (x)+B̃(x)G(x) =
0. So G(x) divides Ã(x)F (x). Since deg(G) = n > n − 1 ≥ deg(Ã) we see
that F,G must have a common divisor. Notice that we could not use the
polynomials A(x), B(x) since we cannot assure that they are non-trivial.

qed
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Proposition 2.3 Let notations be as above. Consider the resultant of F,G
as polynomial in their coefficients pi, qj. Then, for any monomial

pn0
0 · · · pnm

m qm0
0 · · · qmn

n

occurring in Res(F,G) we have that

1.
∑m

i=0 ni = n and
∑n

j=0mj = m

2.
∑m

i=0 ini +
∑n

j=0 jmj = mn

Proof. The first property follows immediately from the shape of the Sylvester
matrix. To see the second property we consider Res(F (λx), G(λx)). In the
Sylvester matrix for F (λx), G(λx) we multiply the the second row with λ, the
third with λ2 untill the n-th row with λn−1. Then we multiply the n+ 2-nd
row with λ, the n+3-rd with λ2, etcetera untill the n+m-th with λm−1. The
value of this new determinant is λn(n−1)/2+m(m−1)/2Res(F (λx), G(λx)). On
the other hand we see that the same determinant can be obtained from the
Sylvester determinant of F (x), G(x) by multiplication of the second column
with λ, the third column with λ2, etcetera, untill the m+ n-th column with
λm+n−1. Thus we see that the new determinant equals λ(m+n)(m+n−1)/2Res(F (x), G(x))
as well. Since (m + n)(m + n − 1)/2 − n(n − 1)/2 −m(m − 1)/2 = mn we
conclude that

Res(F (λx), G(λx)) = λmnRes(F,G),

which proves our second statement.
qed

As illustration we consider the resultant of the quadratric polynomials F =
p0 + p1x+ p2x

2 and G = q0 + q1x+ q2x
2 which is defined as∣∣∣∣∣∣∣∣

p0 p1 p2 0
0 p0 p1 p2
q0 q1 q2 0
0 q0 q1 q2

∣∣∣∣∣∣∣∣
and whose value is

p22q
2
0 − p1p2q0q1 + p0p2q

2
1 + p21q0q2

−2p0p2q0q2 − p0p1q1q2 + p20q
2
2.
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You can easily verify our Proposition in the case of this resultant. In each
term there are two factor pi and two factors qj and the weighted degree of
each term is 4. Notice that if we replace pi by piλ

i and qj by qjλ
j in each

term, each such term is multiplied by λ4. This can be seen directly from the
Sylvester determinant expression,

Res(F (λx), G(λx)) =

∣∣∣∣∣∣∣∣
p0 p1λ p2λ

2 0
0 p0 p1λ p2λ

2

q0 q1λ q2λ
2 0

0 q0 q1λ q2λ
2

∣∣∣∣∣∣∣∣ = λ−2

∣∣∣∣∣∣∣∣
p0 p1λ p2λ

2 0
0 p0λ p1λ

2 p2λ
3

q0 q1λ q2λ
2 0

0 q0λ q1λ
2 q2λ

3

∣∣∣∣∣∣∣∣ .
Note that the second column in the last determinant is divisible by λ, the
third by λ2 and the fourth by λ3. Hence Res(F (λx), G(λx)) = λ4Res(F (x), G(x)).
We now apply our theory of resultants to the ring R = k[y] where k is a field,
usually R or C. Polynomials in R[x] are then polynomials in two variables
x, y. Let F (x, y) and G(x, y) be two such polynomials and suppose they have
no common non-constant factor. The resultant of F,G, when considered as
polynomials in x, is denoted by Resx(F,G). But F,G can also be considered
as polynomials in y. The resultant is then denoted by Resy(F,G).

Proposition 2.4 Let F,G ∈ k[x, y] and suppose the total degree of F is m
and the total degree of G is n. Then Resx(F,G) is either zero or a polynomial
of degree ≤ mn in y.

Proof. We will use Proposition 2.3. Write F (x, y) =
∑m

i=0 pi(y)xi. Then
pi(y) is a polynomial of degree at most m− i in y. Similarly, when we write
G(x, y) =

∑n
j=0 qj(y)xj, the polynomials qj(y) have degree at most n − j.

The resultant is a sum of monomials pn0
0 · · · pnm

m qm0
0 · · · qmn

n . The degree of
such a monomial is at most

m∑
i=0

ni(m− i) +
n∑
j=0

mj(n− j)

= m

m∑
i=0

ni + n

n∑
j=0

mj −
m∑
i=0

ini −
n∑
j=0

jmj

= mn+mn−mn = mn

The last line follows from application of Proposition 2.3. So if Resx(F,G) 6= 0
it is a polynomial of degree ≤ mn.
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qed

Let F,G ∈ k[x, y] be two polynomials without common non-constant factor.
Let x0, y0 satisfy F (x0, y0) = G(x0, y0) = 0. Then Resx(F,G)(y0) = 0 as
well. Since Resx(F,G) has degree at most mn we see that at most mn values
of y0 are possible. Similarly at most mn values of x0 are possible. As a
consequence the set of points x0, y0 satisfying F (x0, y0) = G(x0, y0) = 0 is at
most finite.
We can phrase this alternatively. Consider two algebraic curves C,D given
by the equations F (x, y) = 0 and G(x, y) = 0. We shall say that C,D have a
common component if F,G have non-constant common divisor H ∈ k[x, y].
The common component is then the curve given by the equation H(x, y) = 0.
If F,G do not have a non-constant common factor we say that the curves do
not have a common component.
Any point x0, y0 satisfying F (x0, y0) = G(x0, y0) = 0 can be seen as an
intersection point of C and D. So we see that two algebraic curves without
common component intersect in finitely many points. We can say a bit more
though.

Theorem 2.5 (Bezout inequality) Let C,D be two algebraic curves of
degree m,n respectively. Suppose that the curves have no common compo-
nent. Then the number of intersection points of C,D is at most mn.

Proof. We have seen that the number of intersection points is finite. Choose
λ ∈ k (extend k a bit if necessary) so that the coordinate u given by u =
y + λx has distinct values for every two intersection points of C,D. Let
C,D be given by the polynomial equations F (x, y) = 0 and G(x, y) = 0.
Consider Resx(F (x, u− λx), G(x, u− λx)). This is a non-zero polynomial of
degree ≤ mn in u. So it has at most mn zeros u. To every such zero there
corresponds at most one intersection point by our choice of λ. This proves
our Theorem.

qed

Finally we note that we can compute the points of intersection of two curves
C,D by use of the resultant. In general, let F (x, y) = 0 and G(x, y) = 0
be their equations. The zeros of the resultant Resx(F,G) ∈ k[y] are the
y-coordinates of the points of intersection. To each such zero y we like to
compute the x-coordinate(s) of the intersection points. In general this can
easily be done using Gröbner basis computation, but in this case the following
observation may also help.
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Proposition 2.6 Let P,Q ∈ R[x] and let L(P,Q) be the determinant of the
matrix which we get from the Sylvester matrix by replacing the first row by
(x,−1, 0, 0, . . . , 0). Then L(P,Q) is a polynomial in R[x] of degree at most
1 and it can be written in the form L(P,Q) = U(x)P (x) + V (x)Q(x) where
U, V ∈ R[x].

The proof is an exercise which follows exactly the same lines as the proof of
Theorem 2.2.
We illustrate with an example to intersect two conics, although this particular
case could be handled much more easily in a straightforward manner. We
intersect the curves

P (x, y) := −3− 4x−x2 + 6xy+ 3y2 = 0, Q(x, y) := 1 + y−x2 +xy = 0.

The resultant of P,Q reads −24y(y − 1)(y + 1)(y − 2) so we see that the
y-coordinates of the intersection points are 0, 1,−1, 2. To find the corre-
sponding x values we compute

L(P,Q) = det


x −1 0 0
0 3y2 − 3 6y − 4 −1

1 + y y −1 0
0 1 + y y −1


which equals −4+y+5y2 +(8y2−5y−4)x. It belongs to the ideal generated
by P,Q. Notice that

L(P,Q)|y=0 = −4− 4x, L(P,Q)|y=1 = 2− x

L(P,Q)|y=−1 = 9x, L(P,Q)|y=2 = 18 + 18x.

From this we find the intersection points (−1, 0), (2, 1), (0,−1), (−1, 2). We
note however that this method may not always work since L(P,Q) may vanish
identically when substituting values for y.

3 Bezout’s theorem for projective curves

It turns out that Bezout’s inequality is actually an equality if we take the
right precautions.
Let C,D be two curves defined over R. Then we must look at their complex
intersection points C(C)∩D(C). For example, consider the circle x2+y2 = 2
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intersected with the line y = x+ 2c. We compute the intersection points by
solving (x+ 2c)2 + x2 = 2 which gives us the solutions

x = −c±
√

1− c2.

So in general (that is, if c 6= ±1) there are two intersection points if we
are willing to consider complex points. So most of the time there are two
solutions, exactly the upper bound in Bezout’s inequality.
Another reason for failure of a Bezout equality is the following simple one.
Consider the parallel lines y = x and y = x + 1. They have clearly no
intersection in the plane. However, they do have an intersection at infinity
which becomes visible if we are willing to extend our (affine) plane to the
projective plane.
The projective plane over a field k is defined as the set of triples (X, Y, Z) ∈
k3, not all zero modulo the equivalence relation

(X, Y, Z) ∼ (X ′, Y ′, Z ′) ⇐⇒ ∃λ ∈ k : X ′ = λX, Y ′ = λY, Z ′ = λZ.

Notation P2(k). Very often, to emphasize that we are actually looking at
ratios between the three coordinates, we write a projective point as (X : Y :
Z).
In particular, any point of the projective plane is equivalent to at least one
point of the following form: (x : y : 1), (x : 1 : y) or (1 : y : z). The affine
plane k2 (or more officially, A2(k)) can be embedded in P2 via (x, y) 7→ (x :
y : 1). The set of points not covered by this embedding, i.e. those with
z = 0, is called the line at infinity. The embeddings (x, y) 7→ (x : 1 : y)
and (x, y) 7→ (1 : x : y) give two more embeddings. Together these three
embeddings provide us with a cover of P2 with affine planes A2.
We now define algebraic curves in P2.

Definition 3.1 Let k be a field. A (plane, projective) algebraic curve defined
over k is an equation of the form

F (X, Y, Z) = 0

where F ∈ k[X, Y, Z] is a homogeneous polynomial.

In the same way as with affine curves we can define points on a projective
curve. Since the defining polynomial F of a projective curve is homoge-
neous we have F (λx, λy, λz) = λnF (x, y, z). Hence F (x, y, z) = 0 ⇐⇒
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F (λx, λy, λz) = 0 for any non-zero λ. Actually, this is precisely the rea-
son we consider homogeneous polynomials when speaking about projective
algebraic curves.
Any affine curve C can be extended to a projective curve as follows. Let
F (x, y) = 0 be the defining equation of C and suppose it has degree n. Then
we homogenize by taking the projective equation ZnF (X/Z, Y/Z) = 0. For
example, the affine curve y2 = x3 − 2x − 1 can be extended as projective
curve by writing it as (Y/Z)2 = (X/Z)3 − 2X/Z − 1 and then multiply by
Z3, to get Y 2Z = X3 − 2XZ2 − Z3. This process is called homogenization
of the affine equation. We can reverse the procedure simply by setting X =
x, Y = y, Z = 1. In that way we discard the line at infinity.
Let us turn to our parallel affine lines y = x, y = x + 1. Projectively they
can be written as Y = X and Y = X + Z. Solving these equations gives us
Z = 0 and X = Y . These solutions all represent the same projective point
(1 : 1 : 0), which is a point at infinity.
Consider the two affine curves y = x2, y = x2 + 1. Clearly they have no
intersection in the affine plane. So let us homogenize to the projective curves
Y Z = X2, Y Z = X2 +Z2. Solution of this system gives us Z = 0, X = 0. So
there is only one point of intersection ,namely (0 : 1 : 0). Let us put Y = 1.
Then we get the affine curve z = x2, z = x2 + z2. In a picture,

Thus we see that the curves have 1 point of intersection, but we have higher
order intersection, the curves are tangent in the point x = 0, z = 0. In
order to get a Bezout equality we should also count intersection points with
suitable multiplicities.
Let C,D be two plane projective algebraic curves and let P be a point in
the intersection of C and D. When C and D do not have a common com-
ponent we shall define an intersection multiplicity at P in the next section.
We denote it by νP (C,D). It is a positive integer measuring the order of
intersection of C and D at the point P . Using this intersecting multiplicity
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we can state the following theorem.

Theorem 3.2 (Bezout) Let C,D be two plane projective curves defined
over a field k of degrees m,n. Suppose that they have no common com-
ponents. Let S be the set of intersection points C(k)∩D(k). Here k denotes
the algebraic closure of k. Then∑

P∈S

νP (C,D) = mn.

Note that if we look at real or complex curves (that is, k = R or k = C)
then Bezout’s theorem is a statement about the complex intersection points
(k = C).

4 Singularities and intersection multiplicities

Let C be an algebraic curve given by F (x, y) = 0 and P = (p, q) a point on C.
The tangent of C at the point P is given by (x−p)Fx(p, q)+(y−q)Fy(p, q) =
0. Notice that this defines a straight line if and only if at least one of
Fx(p, q), Fy(p, q) is non-zero. When Fx(p, q) = Fy(p, q) = 0 we call P a
singular point of the curve C. Here are some examples where (0, 0) is a
singular point. Of course this is no restriction since we can always perform
a change of coordinates such that P = (0, 0).
To compute the singular points of an affine curve we must solve the simul-
taneous equations F (p, q) = Fx(p, q) = Fy(p, q) = 0 in the unknowns p, q.
However, since we shall often deal with projective curves, it is better to look
at the projective version of this calculation.
Suppose F has degree n. We define F = ZnF (X/Z, Y/Z). This is the
homogenized version of F . Notice that

- FX = Zn−1Fx(X/Z, Y/Z), FY = Zn−1Fy(X/Z, Y/Z)

- ZFZ = nF −XFX − Y FY

Using these relations we see that finding projective singular points of the
form (p : q : 1) comes down to solving

FX(p, q, 1) = FY (p, q, 1) = FZ(p, q, 1) = 0.
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Furthermore, if (p, q, 1) is a non-singular point of C the tangent line is given
by

XFX(p, q, 1) + Y FY (p, q, 1) + ZFZ(p, q, 1) = 0.

Since any projective point lies in one of the three affine spaces Z 6= 0, Y 6= 0
or X 6= 0, this gives us the following statement.

Theorem 4.1 Let C be a projective curve given by the homogeneous equation
F (X, Y, Z) = 0. Let P = (p : q : r) be a point on C. Then C is singular if
and only if

FX(p, q, r) = FY (p, q, r) = FZ(p, q, r) = 0.

If P is non-singular, the tangent of C at P is given by

XFX(p, q, r) + Y FY (p, q, r) + ZFZ(p, q, r) = 0.

Here is an example where we compute the singular points of the cardioid
(x2 + y2 − xy)2 − 4(x2 + y2) = 0. In homogeneous form,

F (X, Y, Z) := (X2 + Y 2 −XY )2 − 4Z2(X2 + Y 2) = 0.

Consider the equations

FX = 2(X2 + Y 2 −XY )(2X − Y )− 8XZ2 = 0

FY = 2(X2 + Y 2 −XY )(2Y −X)− 8Y Z2 = 0

FZ = −8Z(X2 + Y 2) = 0

From the last equation it follows that either Z = 0 or X = ±iY . In the first
case our equations reduce to

(X2 + Y 2 −XY )(2X − Y ) = 0, (X2 + Y 2 −XY )(2Y −X) = 0.

The assumption X2 + Y 2 −XY 6= 0 leads to 2X − Y = 2Y −X = 0, hence
X = Y = 0, which is no solution. Hence X2 + Y 2 − XY = 0 and we get
X = ρY or X = ρ−1Y where ρ is a primitive 6-th root of unity. So we find
the points (ρ : 1 : 0) and (ρ−1 : 1 : 0). Now suppose that X = iY . The first
two equations become

−2i(2i− 1)Y 3 − 8iY Z2 = 0, −i2(2− i)Y 3 − 8Y Z2 = 0.

If Y 6= 0 we get (4 + 2i)Y 2 − 8iZ2 = 0 and (−2 − 4i)Y 2 − 8Z2 = 0 which
are conflicting equations unless Y = Z = 0 which does not give a solution.
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We are left we the possibility Y = 0 which leads us to the third singularity
(0 : 0 : 1).
For the local study of a singular point it is best to introduce affine coordinates
and choose them in such a way that the singular point has coordinates (0, 0).

Definition 4.2 Let P be a point of an affine curve C. Choose affine coordi-
nates such that P = (0, 0) and let F (x, y) = 0 be the equation of C in these
coordinates. Then the multiplicity of P is given by the degree of the lowest
degree monomial occurring in F . Notation νP (C).

Notice that νP (C) > 0 since P is a point of C and that νP (C) = 1 if and
only if P is a non-singular point of C.
Note that one must verify that νP (C) is independent of the choice of affine
coordinates.
Although singularities of curves can be quite complicated there are a number
of simple types that one distinguishes. Suppose that P = (0, 0) is a singular
point of the curve given by F (x, y) = 0. Here are a number of cases that
may occur.
The nodal singularity. Suppose F = Fn + terms of degree > n where Fn
is homogeneous of degree n with distinct linear factors. For example, F =
x2− y2 + x3 + 4xy3− y5 or F = xy(x+ y) + x5− 2x3y2 + y7. Locally, around
P these curves look like

When n = 2, 3, ... we speak of a double node, triple node, etc. Their multi-
plicity is given νP (C) = n.
The cusp. Suppose F = axp− byq + higher degree terms where p, q ≥ 2, ab 6=
0, gcd(p, q) = 1 and where ”degree” means the weighted degree given by
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deg(xayb) = qa + pb. When p = 2, q = 3 we say that (0, 0) is an ordinary
cusp, when p > 2 or q > 3 we speak of a generalised cusp. The standard
example is the curve given by y2 = x3 which looks like

However, mixes of these singularities are also possible, for example the curve
x5 − x2y2 + y4 = 0,

As for intersection multiplicity we point out that we can have several types
of intersection. Let C,D be two algebraic curves that intersect in a point
P . Suppose first that P is a non-singular point of both C and D. When the
tangents at P are different we speak of transversal intersection and it makes
sense to define the intersection multiplicity as 1.
When the two tangents coincide, we can choose coordinates such that P =
(0, 0) and the common tangent is the line y = 0. Let y−cxγ+O(xγ+1, xy) = 0
be the local equation for C and y− dxδ +O(xδ+1, xy) = 0 the local equation
for D. In that case it makes sense to define the intersection multiplicity as
min(γ, δ) when γ 6= δ. However, when γ = δ and c = d we must be more
careful. For example, the curves y = x2 + x3 and y = x2 + 2x3 intuitively
should have contact order 3, whereas min(γ, δ) = 2.
When P is a singular point on C or D or both, the situation gets more
complicated. For example, when C is given by y − x + y2x = 0 and D by
y2 = x3 + x2, the point P = (0, 0) is non-singular on C and singular on D.
The curves look like
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Or, when C is given by y4 − x3 = 0 and D by x2y3 − y2 + 2x7 = 0 the point
P = (0, 0) is singular on both C and D. The intersecting curves look like

Intuition becomes a bit more complicated in the last example, so we give a
formal definition for intersection multiplicity. Suppose that the curves C,D
are defined over the field k and that they have no common components.
Suppose the curves are given by F (x, y) = 0 and G(x, y) = 0 and that
P = (p, q) ∈ k2. We consider the local ring

OP = {A(x, y)/B(x, y) | A,B ∈ k[x, y], B(p, q) 6= 0}.

In that ring we define the ideal I(F,G) generated by F,G. The quotient ring
OP/I(F,G) can be considered as a k-vector space.

Definition 4.3 Let notations be as above. The intersection multiplicity of
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C,D in the point P is defined by

νP (C,D) = dimk(OP/I(F,G)).

To show how this definition works, we demonstrate a few examples.

1. Suppose we have two straight lines that intersect in P = (0, 0) in
different directions. We can choose a coordinate system so that the
lines are given by x = 0 and y = 0. One easily checks that any element
A(x, y)/B(x, y) of OP is modulo I(x, y) equivalent to A(0, 0)/B(0, 0).
Hence the dimension of OP/I(x, y) is one.

2. Suppose that P = (0, 0) is non-singular on C and D and the tan-
gents are distinct. By a proper choice of coordinates we can see to it
that these tangents are given by x = 0 and y = 0 respectively. Then
the equations read F (x, y) = x + higher order terms and G(x, y) =
y + higher order terms. Let us write F (x, y) in the form F (x, y) =
xF1(x, y) + yF2(x, y) where F1, F2 are polynomials. Of course there
are many ways in which this can be done, but we always have that
F1(0, 0) = 1 and F2(0, 0) = 0 (please check). Similarly G(x, y) =
xG1(x, y) +yG2(x, y) and G1(0, 0) = 0, G2(0, 0) = 1. We can now solve
for x and y,

x =
1

∆(x, y)
(FG2 −GF2), y =

1

∆(x, y)
(−FG1 +GF1)

where ∆(x, y) = F1(x, y)G2(x, y)−F2(x, y)G1(x, y). Notice that ∆(0, 0) =
1, hence x ∈ I(F,G) and y ∈ I(F,G). Thus we conclude that I(F,G) =
I(x, y) and we are back again in the previous case.

3. Let C be given by F = y2−x3−x2 = 0 and D by G = y−x+xy2 = 0.
Denote the ideal I(F,G) by I. Notice that G− xF = y − x+ x3 + x4.
Hence y ≡ x− x3− x4(mod I). Combining this with the first equation
we get (x − x3 − x4)2 − x3 − x2 ≡ 0(mod I) and after simplification,
x3(−1 − 2x − 2x2 + x3 + 2x4 + x5) ≡ 0(mod I). The factor between
parentheses is invertible, hence x3 ≡ 0(mod I). So x3 ∈ I and this
implies that y− x ∈ I. It is now straightforward to see that I(F,G) =
I(y − x, x3) and dimOP/I(F,G) = 3.
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5 Rational parametrisation

It is well known that the circle x2 + y2 = 1 has a parametrisation by rational
functions given by

x =
1− t2

1 + t2
, y =

2t

1 + t2
.

Conversely, given any point on the unit circle, the corresponding parameter
value is given by (1− x)/y.
More generally, any non-singular algebraic curve of degree 2 can be parametrised
by rational functions. We call such curves conics (from conic sections, i.e.
circles, ellipses, hyperbolae, parabolae). The idea is to use the so-called
chord-method. Let C be a conic and P = (p, q) a point on C. Consider the
line Lt given by y − q = t(x − p). It passes through P and has direction t.
Since a line intersects a conic in two points, there is a second point of inter-
scetion we denote by Qt. The coordinates of Qt depend on t in a rational
way. Conversely, given any point Q on C, the direction of the line connecting
P and Q is the parameter value corresponding to Q.

The question arises which algebraic curves can be parametrised rationally.
So, given an algebraic curve F (x, y) = 0, do there exist non-constant rational
functions r(t), s(t) of t such that F (r(t), s(t)) = 0?
In general the answer is ”no”, as can be seen from the case of cubic curves.

Proposition 5.1 Let f(x) be a polynomial of degree 3 with three simple
zeros. Then the curve y2 = f(x) has no rational parametrisation.

Proof. Suppose we do have a parametrisation,

s(t)2 = f(r(t)).
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We consider the rational function r′(t)/s(t). Let a be a pole of this rational
function. Then either a is a pole of r(t), or s(a) = 0.
Suppose a is a pole of order n of r(t). Then a is a pole of order 3n of f(r(t))
and thus s(t) must have a pole of order 3n/2 at a. In particular we see that
n must be even, say n = 2m. So r(t) has a pole of order 2m and s(t) a pole
of order 3m at a. This means that r′(t)/s(t) has a zero of order m− 1 at a,
so r′/s has no pole at a.
Suppose that s(a) = 0 and that s(t) has a zero of order n at a. We differ-
entiate s2 = f(r) to obtain 2ss′ = f ′(r)r′. Notice that f(r(a)) = s(a)2 = 0.
Since f has only simple zeros this means that f ′(r(a)) 6= 0. Therefor, from
the relation 2ss′ = f ′(r)r′ it follows that r′(t) has a zero of order 2n − 1 at
a. Hence r′(t)/s(t) has a zero of order n− 1 at a, again no pole.
Since r′(t)/s(t) does not have poles in finite points a, it must be a polynomial.
Let us now study its behaviour when t =∞. Since r(t), s(t) is a parametri-
sation of y2 = f(x) the same is true for ρ(τ) = r(1/τ), σ(τ) = s(1/τ). By
the same argument we can show that ρ′(τ)/σ(τ) has no pole in τ = 0. No-
tice that r′(t)/s(t) = −τ 2ρ′(τ)/σ(τ). So r′(t)/s(t) vanishes when t =∞ (i.e
τ = 0).
We conclude that r′(t)/s(t) = 0 and hence that r(t) is constant. So we do
not have a rational parametrisation.

qed

We also show

Proposition 5.2 The curve given by xn + yn = 1 cannot be parametrised
rationally when n > 2. In particular this means that Fermat’s equation in
polynomials has no non-constant solution.

Proof. We proceed in almost the same way. Suppose there is a parametri-
sation r(t)n + s(t)n = 1 with non-constant rational functions r(t), s(t). We
consider the rational function r′(t)/s(t)n−1. Suppose a is a pole of this ra-
tional function. Then either s(a) = 0 or a is a pole of r(t). Suppose the
latter holds. Then from the equation it follows that r(t) and s(t) have the
same pole order. Hence, because n− 1 ≥ 2, the quotient r′(t)/s(t)n−1 has no
pole in a. Suppose that s(a) = 0. Then r(a) 6= 0. Differentiate the relation
rn+sn = 1 to obtain rn−1r′+sn−1s′ = 0. Since r(a) 6= 0 we see that r′(t) has
a zero of order norda(s)− 1. Hence r′(t)/s(t)n−1 has zero order orda(s)− 1.
We conclude that r′/sn−1 has no finite poles, so it must be a polynomial in
t. Let us now look in t = ∞. Define ρ(τ) = r(1/τ), σ(τ) = s(1/τ). Clearly
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this is also a parametrisation of the curve xn + yn = 1. Hence ρ′(τ)/σ(τ)n−1

has no pole in τ = 0. Since r′(t)/s(t)n−1 = −τ 2ρ′(τ)/σ(τ)n−1 we see that
r′(t)/s(t)n−1 vanishes at t = ∞. Therefore r′(t)/s(t)n−1 = 0 and r(t) is
constant. So there is no parametrisation.

qed

6 Rational functions and maps

Let C be a geometrically irreducible curve given by the equation F (x, y) = 0,
where F ∈ k[x, y] is absolutely irreducible. We like to consider functions on C
and do this as follows. Any polynomial P (x, y) can be considered as function
on C simply by restricting its domain to C. However, the polynomial P (x, y)
and any polynomial Q(x, y) such that P ≡ Q(mod F ) will give us the same
function on C. Therefore it is more natural to consider the ring

Ok(C) = k[x, y]/(F (x, y))

and call this the ring of regular functions on C. The suffix k is put in
Ok to indicate that the polynomials are taken from k[x, y]. We drop it if
the fields of definition are clear from the context. Note that Ok(C) is an
integral domain because F is irreducible. Its quotient field is called the field
of rational functions on C. Notation: k(C). To emphasize that the functions
have their coefficients in k, we sometimes speak of the field of k-rational
functions. The subfield k is called the field of constant functions. Note that
k(C) is generated by the coordinate functions x, y on C.

Proposition 6.1 Let notations be as above. Then the field k(C) is an exten-
sion of k of transcendence degree 1. Moreover, for any non-constant f ∈ k(C)
the extension k(C)/k(f) is finite.

Let D be another absolutely irreducible curve defined over k by the equation
G(x, y) = 0. A rational map from C to D is a pair of functions f, g ∈ k(C)
such that G(f, g) = 0. The map is called constant if f, g are both constant
and non-constant otherwise. Strictly speaking a rational map can only be
seen as a map of points of C to points of D if we limit ourselves to the domain
of f and g.
Furthermore, any rational map ψ : C → D defines an embedding φ∗ :
k(D)→ k(C) given by

ξ 7→ f, η 7→ g
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where ξ, η are the standard coordinate functions on D. Note that φ∗ fixes
the constant field k.
Conversely, any field embedding φ : k(D)→ k(C) fixing k defines a rational
map from C to D by taking f = φ(ξ) and g = φ(η).

Definition 6.2 Let notation be as above and let ψ : C → D a non-constant
rational map. Then the degree of the extension k(C)/k(f, g) is called the
degree of the rational map ψ.

Proposition 6.3 Let C, be absolutely irreducible curves defined over k. Let
ψ : C → D be a rational map. Suppose that its degree is one. Then there is
a rational map χ : D → C such that χ ◦ ψ = id.

Definition 6.4 A rational map ψ : C → D is called a birational map if it
has an inverse. The curves C,D are called birationally equivalent if there
exists a birational map ψ : C → D.

Notice that the curves C,D are birationally equivalent if and only if the
function fields k(C) and k(D) are k-isomorphic. This means that there is a
field isomorphism φ : k(D)→ k(C) which fixes k.
Notice that a rational parametrisation of a curve C can be seen as a rational
map from the line to C. So if an irreducible conic C is defined over k and
contains a point in C(k) it is birationally equivalent over k to the line.
Similarly we can apply the chord method to a cubic curve C with a double
point S. Any line through S, not tangent to the branches at the singularity,
intersects C in one more point. The dependence of this point on the slope of
the line gives us again a rational parametrisation.

7 The genus of a curve

One of the first problems in the study of absolutely irreducible algebraic
curves is to find a classification for them. One such classification might be
according to the degree of the curve. Although this is a reasonable idea for
very low degree curves, it turns out to be unsatisfactory for higher degree
curves. Instead of the degree there is a more interesting quantity, namely the
genus of a curve. This is a non-negative integer that can be associated to
any absolutely irreducible curve and which, most importantly, is a birational
invariant.
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To define the genus of a curve would lead us too far for this short course.
We can give a number of indications. Let C be an absolutely irreducible
curve of degree d. Suppose it has singular points S1, . . . , Sk. To any singular
point we assign a certain quantity δ which depends on the complexity of
the singularity. If the singularity is an ordinary n-fold node we have δ =
n(n − 1)/2. For a cusp we take δ = 1. In general δ ≥ νP (C)(νP (C) − 1)/2
where νP (C) is the multiplicity of the singularity. The genus of the curve C
is defined by

g(C) =
(d− 1)(d− 2)

2
−

k∑
i=1

δi

where δi corresponds to the singularity Si. We mention the following theo-
rems.

Theorem 7.1 Let C be an absolutely irreducible curve of degree d with sin-
gular points S1, . . . , Sk with multiplicities ν1, . . . , νk. Then

(d− 1)(d− 2)−
k∑
i=1

νi(νi − 1) ≥ 0.

Moreover, if we have equality, then C is a rational curve.

Theorem 7.2 Suppose we have two absolutely irreducible curves C,D and
a non-constant rational map ψ : C → D then g(D) ≤ g(C). In particular
the genus of a curve is a birational invariant.

We now list algebraic curves according to their degree d and make some
comments on their genus.
The case d = 1. This is a straight line, no singularities and by our definition
we have g = 0. For every curve C that can be parametrised rationally we
have g(C) ≤ 0, hence g(C) = 0.
The case d = 2. When there is no singularity the genus definition gives us
g(C) = 0. This corresponds to the fact that conics can be parametrised
rationally.
The case d = 3. Without singularities we have g(C) = 1. So we see im-
mediately that nonsingular cubic curves cannot be parametrised rationally.
Suppose we have a double point or cusp, then g(C) = 0 and we do have a
rational parametrisation.
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The case d = 4. In general, when there is no singularity, the genus is 3.
In case the curve has a double point or cusp we get g(C) = 2. Since the
genus of a non-singular degree d curve equals (d − 1)(d − 2)/2 we see that
a non-singular plane curve can never have genus 2. So plane genus 2 curves
always have singular points.
Only for very special values of g there exist plane non-singular curves of
genus g. For the study of algebraic curves we can assume however that the
singularities are only double points on the basis of the following theorem.

Theorem 7.3 Any plane absolutely irreducible curve is birationally equiva-
lent (over k) to a plane curve having only double points.

If one really wants to have non-singular curves that are birationally equivalent
to a plane curve we should consider models in higher dimensional spaces
which are obtained by blowing up the singular points.

8 Problems

1. Suppose we are given 5 distinct points P1, . . . , P5 in the plane, not all
on a line.

(a) Show that there is a curve C of degree 2 (conic) which passes
through them (hint: how many coefficients does an arbitrary
quadratic polynomial have?).

(b) Suppose that three of the points Pi lie on the straight line L. Show
that L is a component of C.

(c) It turns out that if we make the assumption that no 4 of the points
Pi lie on a straight line, the conic C we found is unique. We prove
this in the following manner. Suppose we have two different conics
passing through the Pi. Suppose they are given by F (x, y) = 0 and
G(x, y) = 0. For every choice of λ, ν the curve Cλ,ν : λF +νG = 0
passes through the Pi. Show this.

(d) Now choose a point A on the line through P1, P2 and choose λ, ν
not both zero such that Cλ,ν passes through A. Show that Cλ,ν is
reducible and show that there are three points among the Pi that
lie on a line.
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(e) Show that F = 0 and G = 0 represent the same curve, contradict-
ing our assumption that they are different.

2. Suppose we are given 9 disctinct points P1, . . . , P9 in the plane, not all
on a line or conic.

(a) Show that there is a cubic curve C passing through these points.

(b) Can you think of a situation where C is not uniquely determined?

(c) Suppose that no 7 of the points Pi lie on a conic and no 3 of them
lie on a straight line. Show that the curve C is irreducible.

3. In this problem we prove the so-called nine point theorem:

Let C1, C2 be two cubic curves intersecting in precisely 9 distinct points
P1, . . . , P9. Then every cubic curve C passing through 8 of these points
also passes through the ninth

Let us suppose that C contains the points P1, . . . , P8. In the following
steps we show that P9 also lies on C. First we make some preparations.

(a) Suppose a cubic curveD contains four points that lies on a straight
line L. Show that L is a component of D.

(b) Suppose a cubic curve D contains 7 points which also lie on an
irreducible conic Q. Then Q is a component of D.

(c) Using the above two parts show that of the points P1, . . . , P9 no
4 can lie on a straight line and no 7 points on a conic.

(d) We now prove our theorem. Suppose C1, C2, C are given by the
equations F1 = 0, F2 = 0, F = 0 respectively. Since C1, C2 in-
tersect in exactly nine points, the polynomials F1, F2 are linearly
independent over the constant. Our proof consists in showing that
F depends linearly on F1, F2, hence F = αF1 + βF2. As a result
we see that F also vanishes in P9, i.e. P9 lies on C.

We now assume that F1, F2, F are linearly independent over the
constants and arrive at a contradiction. For any λ, µ, ν, not all
zero, we consider the cubic curve C(λ, µ, ν) : λF1 +µF2 + νF = 0.
Show that every curve C(λ, µ, ν) contains the points P1, . . . , P8.
We distinguish the following cases:
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i. Three of the points P1, . . . , P8 lie on a straight line L. Let
us assume the points are P1, P2, P3. Let Q be the unique
conic through the remaining five points P4, . . . , P8. Choose a
point A on the line L and a point B not on L and not on Q.
Determine λ, µ, ν, not all zero such that C(λ, µ, ν) contains
both A and B. Show that this curve is the union of L and Q
and derive a contradiction.

ii. Six of the points P1, . . . , P8 lie on a conic Q. Let us assume
the points are P1, . . . , P6. Let L be the line through the re-
maining points P7, P8. Show how we can again arrive at a
contradiction.

iii. Of the points P1, . . . , P8 no three lie on a line and no six lie
on a conic. Choose two points A,B on the line through P1, P2

and construct a cubic curve C(λ, µ, ν) which passes through
A,B. Again derive a contradiction.

4. The nine point theorem can be used to prove Pascal’s theorem. Roughly
speaking it says the following.

Consider a hexagon whose vertices all lie on a conic. Then the three
intersection points of the three pairs of opposite sides lie on a straight
line.

A more precise formulation is the following one.

Let Q be a conic and let P1, . . . , P6 be 6 distinct points on the conic. Let
R1 be the intersection of P1P2 and P4P5, R2 the intersection of P2P3

and P5P6 and R3 the intersection of P3P4 and P6P1. Then R1, R2, R3

lie on one line.

Here is a picture of a sample situation.
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We use the nine point theorem in the notation of the previous problem.
For C1 we choose the union of the lines P1P2, P3P4, P5P6, for C2 we
take the union of P2P3,P4P5,P6P1 and for C we take the union of Q
and the line through R1R2. Now prove Pascal’s theorem.

5. Let d be a positive integer. Suppose we are given d(d + 3)/2 distinct
points in the plane. Show that there is at least one algebraic curve of
degree ≤ d passing through these points.

6. Let C be an irreducible curve of degree d. Let S be a set of d2 + 1
distinct points on C. Show that C is the only curve of degree d passing
through these points. This shows that an algebraic curve is determined
by its points if there are enough of them.

7. Consider the projective algebraic curves z2y = x3 and z2y−x3+y3 = 0.
They are both non-singular curves. Show that they have only one point
of intersection. What is the intersection multiplicity at that point?

8. Find the intersection points of the following pairs of projective curves.

(a)

x(y2 − xz)2 − y5 = 0

y4 + y3z − x2z2 = 0

(b)

x3 − y3 − 3xyz = 0

2x3 − 4x2y − 3xy2 − y3 − 2x2z = 0
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(c)

x4 + y4 − y2z2 = 0

x4 + y4 − 2y3z − 2x2yz − xy2z + y2z2 =

9. Find the singular points of the following projective curves.

(a) xz2 − y3 + xy2 = 0

(b) (x+ y + z)3 − 27xyz = 0

(c) x2y2 + 36xz2 + 24yz3 + 108z4 = 0

10. For which values of λ is the projective curve

x3 + y3 + z3 − λxyz = 0

non-singular?

11. We can use the calculation of singular points to decide if an algebraic
curve is irreducible. Suppose C is a reducible projective curve consist-
ing of two distinct irreducible components C1, C2.

(a) Show that any intersection point of C1, C2 is a singular point of
C. In particular, if we have simple intersection (multiplicity 1) at
a point P , show that P is a double point of C.

(b) Suppose that the degree of C is equal to d ≥ 2 and suppose that
in all points of C1 ∩C2 we have simple (ν = 1) intersection. Show
that the number of singular points of C is at least d− 1.

(c) Determine the singular points of the curve D given by

x2y2 + yz3 − 4x2z2 + z4 = 0

and determine their nature. Conclude that D is irreducible.

12. Suppose we have a birational map from the line to a curve C given by

t 7→ R(t)/T (t), S(t)/T (t)

where R(t), S(t), T (t) ∈ k[t] are polynomials with gcd(R, S, T ) = 1, not
all constant and their maximum degree is d. Show that the degree of
the resulting curve is also d.

28



13. Show that any projective straight line defined over Z/pZ contains pre-
cisely p+ 1 points with coordinates in Z/pZ.

14. Let p be a prime and a an integer not divisible by p. Consider the
projective conic Ca : x2 + y2 = az2 modulo p.

(a) Let a = 1. Show that there are precisely p + 1 points modulo p
on C1. (Hint: use chord method).

(b) Let a be arbitrary. Show that there is at least one point on Ca
with coordinates in Z/pZ. (Hint: how many distinct values are
there for x2(mod p), and for a− y2(mod p)?)

(c) Show that there are precisely p+ 1 points on Ca.

15. How many points does P2(Z/pZ) contain?

16. Count the number of solutions of y2 ≡ x3−x(mod p) for p = 3, 5, 7, 11, 13
and verify if the Hasse inequality is satisfied. Can you explain the an-
swer when p ≡ −1(mod 4)? (we are given that −1 is not a square
modulo p if p ≡ −1(mod 4)).

17. Use the chord method to determine all rational points on the curve
x2 − 3xy + 3y2 − x− y = 0.

18. Consider y2 = x3 + 17 in the unknowns x, y ∈ Q. The solutions P =
(−1, 4) and Q = (−2, 3) are given.

(a) Check for all integers x with |x| < 10 if there exists y ∈ Z such
that y2 = x3 + 17.

(b) Draw the line through P,Q and intersect with y2 = x3 + 17. De-
termine the third point of intersection R.

(c) Change the sign of the y-coordinate of R and repeat the construc-
tion with the new point and Q.

(d) Determine the third point of intersection of the tangent in Q with
y2 = x3 + 17. Do the same with P .

19. Here we describe a construction due to Fermat to construct rational
points on curves of the for y2 = x4 + A. Given two points (x1, y1) and
(x2, y2) construct a parabola y = x2 + αx + β passing through these
points. Then intersect it with y2 = x4 + A.
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Apply the method to y2 = x4 + 9 and the points (0, 3), (2,−5).

Construct a new rational point by choosing the parabola tangent to
y2 = x4 + 9 in (2, 5).
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