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Abstract
A sorting network is a shortest path from 12 · · · n to n · · · 21 in the

Cayley graph of Sn generated by nearest-neighbour swaps. We prove
that for a uniform random sorting network, as n → ∞ the space-
time process of swaps converges to the product of semicircle law and
Lebesgue measure. We conjecture that the trajectories of individual
particles converge to random sine curves, while the permutation ma-
trix at half-time converges to the projected surface measure of the
2-sphere. We prove that, in the limit, the trajectories are Hölder-1/2
continuous, while the support of the permutation matrix lies within
a certain octagon. A key tool is a connection with random Young
tableaux.

1 Introduction

Let Sn be the symmetric group of all permutations σ = (σ(1), . . . , σ(n)) on
{1, . . . , n}, with composition given by (στ)(i) := σ(τ(i)). For 1 ≤ s ≤ n− 1
denote the adjacent transposition or swap at location s by τs := ( s s+1 ) =
(1, 2, . . . , s+1, s, . . . , n) ∈ Sn. Denote the identity id := (1, 2, . . . , n) and the
reverse permutation ρ := (n, . . . , 2, 1). An n-element sorting network
is a sequence ω = (s1, . . . , sN) such that

τs1τs2 · · · τsN
= ρ

Key words: sorting network, random sorting, reduced word, maximal chain in the weak
Bruhat order, Young tableau, permutahedron.
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Figure 1: Selected particle trajectories for a uniformly chosen 2000-element
sorting network.

Figure 2: The permutation ma-
trix of the half-time configuration
σN/2 for a uniformly chosen 2000-
element sorting network.
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Figure 3: Left: the “wiring diagram” of the 6-element sorting network ω =
(1, 2, 1, 3, 4, 5, 2, 1, 3, 2, 1, 4, 3, 2, 1). The swap process is shown by the black
discs. The trajectory of particle 3 is highlighted. Right: the graph (or
permutation matrix) of the configuration σ7 = (3, 4, 2, 5, 6, 1) of ω at time 7.

where

N :=

(
n

2

)
.

(It is easily verified that N is the minimum possible length of a sequence of
swaps whose composition is ρ, while ρ is the unique permutation for which
this minimum length is maximized.) For 1 ≤ k ≤ N we refer to sk = sk(ω) as
the kth swap location, and we call the permutation σk = σk(ω) := τs1 · · · τsk

the configuration at time k. We call σ−1
k (i) the location of particle i

at time k, and we call the function k &→ σ−1
k (i) the trajectory of particle i.

See Figures 1, 2 and 3 for some illustrations.
Let Ωn be the set of all n-element sorting networks, and let PU = Pn

U

denote the uniform probability measure on Ωn (assigning probability 1/#Ωn

to each ω ∈ Ωn). We refer to a random sorting network chosen according to
PU as a uniform sorting network (USN).

Our first results concern the swap locations.

Theorem 1 (Stationarity and semicircle law). Let ωn be a uniform
n-element sorting network.

(i) The random sequence (s1, . . . , sN) of swap locations is stationary;
that is (s1, . . . , sN−1) and (s2, . . . , sN) are equal in law under PU.

(ii) The first swap location s1 satisfies the convergence in distribution

2s1(ωn)/n− 1 =⇒ Z as n→∞
where Z is a random variable with semicircle law; that is with proba-
bility density function 2

π

√
1− y2 for y ∈ (−1, 1).
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Figure 4: A histogram of the swap process for a uniformly chosen 2000-
element sorting network. (The height of each column represents the number
of swaps in the corresponding space-time window.)

In fact we can compute the exact distribution of s1 for each n; see Propo-
sition 9. In addition we establish the following “law of large numbers” for
the swap locations. For an n-element sorting network ω, define the scaled
swap process η = η(ω) to be the measure

η :=
1

N

N∑

k=1

δ
( k

N
,

2sk

n
− 1

)
,

where δ(x, y) is the point measure at (x, y) on R2. Figure 4 is a histogram
of η for a uniform 2000-element sorting network. Denote the semicircle mea-
sure by semi(dy) := 2

π

√
1− y21y∈(−1,1) dy, and Lebesgue measure on [0, 1] by

Leb(dx) := 1x∈[0,1] dx.

Theorem 2 (Law of large numbers). Let ωn be a uniform n-element
sorting network. The scaled swap process η satisfies

η(ωn) =⇒ Leb× semi as n→∞.

Here =⇒ denotes convergence in distribution of random measures in the
vague topology on Borel measures on R2, and the right side denotes the de-
terministic product measure.
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For a sorting network ω, define the scaled trajectory Ti(t) = Ti(t,ω) of
particle i by

Ti(t) := 2σ−1
tN (i)/n− 1

when tN is an integer, and by linear interpolation for other t ∈ [0, 1].

Theorem 3 (Hölder trajectories). Let ωn be a uniform n-element sorting
network.

(i) For any ε > 0, the scaled trajectories satisfy

P
n
U

(
∀i, s, t :

∣∣Ti(t)− Ti(s)
∣∣ ≤
√

8
∣∣t− s

∣∣1/2
+ ε

)
→ 1 as n→∞.

(ii) Let Ti(n) be the scaled trajectory of an arbitrarily chosen particle
i(n) = i(n,ωn) in ωn. Then the random sequence {Ti(n)}∞n=1 has sub-
sequential limits in distribution with respect to uniform convergence of
functions, and any subsequential limit is supported on Hölder(

√
8, 1

2)
continuous paths.

For a uniform sorting network, the particle configuration σk at a given
time is a random permutation. We prove the following bounds on its distri-
bution.

Theorem 4 (Octagon bounds). Let ωn be a uniform n-element sorting
network. For any ε > 0 we have

P
n
U

(
∀k, i :

∣∣σk(i)− i
∣∣ < dk + εn, and

∣∣σk(i)− (n− i)
∣∣ < dN−k + εn

)
→ 1 as n→∞,

where dk := n
√

k
N

(
2− k

N

)
.

Theorem 4 states that for each t, all the 1’s in the permutation matrix
of the configuration σ⌊tN⌋ lie within a certain octagon asymptotically almost
surely; see Figure 5.

Results of [5] and [12] give rise to an efficient algorithm for exactly sam-
pling a uniform sorting network (specifically, see Theorems 8 and 13 in this
article). The resulting simulations, together with heuristic arguments, have
led us to striking conjectures about the asymptotic behaviour of the uniform
sorting network.
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Figure 5: Graphs of the configurations at times 0, N
10 ,

2N
10 , . . . , N for a uni-

formly chosen 500-element sorting network. Also shown are the asymptotic
“octagon bounds” of Theorem 4, and the conjectural asymptotic “ellipse
bounds” implied by Conjecture 2.

Figure 1 illustrates some trajectories for a uniform 2000-element sorting
network. We conjecture that as n→∞, all particle trajectories converge to
sine curves of random amplitudes and phases.

Conjecture 1 (Sine trajectories). Let ωn be an n-element uniform sorting
network and let Ti be the scaled trajectory of particle i. For each n there exist
random variables (An

i )n
i=1, (Θ

n
i )

n
i=1 such that for all ε > 0,

P
n
U

(
max
i∈[1,n]

max
t∈[0,1]

∣∣Ti(t,ωn)− An
i sin(πt + Θn

i )
∣∣ > ε

)
→ 0 as n→∞.

Figures 2 and 5 illustrate the graphs {(i, σk(i)) : i ∈ [1, n]} (i.e. the loca-
tions of 1’s in the permutation matrix) of some configurations from uniform
sorting networks. We conjecture that as n → ∞ the graphs asymptotically
concentrate in a family of ellipses, with a certain particle density in the in-
terior of the ellipse. Define the scaled configuration µt = µt(ω) at time t
by

µt :=
1

n

n∑

i=1

δ
(2i

n
− 1 ,

2σ⌊tN⌋(i)

n
− 1

)
. (1)

We define the Archimedes measure with parameter t ∈ (0, 1) by

Archt(dx× dy) :=
1

2π

√[
sin2(πt) + 2xy cos(πt)− x2 − y2

]−1
∨ 0 dx dy.
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Conjecture 2 (Archimedes configurations). Let ωn be an n-element uni-
form sorting network. For all t ∈ (0, 1), the scaled configuration at time t
satisfies

µt(ωn) =⇒ Archt as n→∞.

Here =⇒ denotes convergence in distribution in the vague topology for ran-
dom Borel measures on R2.

In the case t = 1/2, the measure Arch1/2 has density 1/
(
2π

√
1− x2 − y2

)

on the circular disc x2 + y2 < 1. This is the unique circularly symmet-
ric measure whose linear projections are uniform. It may be obtained by
projecting surface area measure on the 2-sphere in R3 onto R2—that this
gives a measure with the aforementioned property follows from the observa-
tion of Archimedes that the surface area of a sphere between two horizontal
planes equals the corresponding area of a circumscribed vertical cylinder.
(The claimed uniqueness follows from uniqueness of the characteristic func-
tion, [13, Theorem 5.3]). For general t the measure Archt is obtained from
Arch1/2 by the linear transformation (x, y) &→ (x, x cos(πt) + y sin(πt)), and
is supported on the interior of an ellipse—see Figure 5.

Conjectures 1 and 2 (and more) are implied by a very natural conjecture
about the geometry of uniform sorting networks. The permutahedron is
the natural embedding of the Cayley graph (Sn, (τi)

n−1
i=1 ) in Euclidean space

in which we assign the permutation σ ∈ Sn to the point

σ−1 = (σ−1(1), . . . , σ−1(n)) ∈ R
n.

For all σ ∈ Sn, clearly σ−1 lies on the (n− 2)-sphere

Sn :=
{
z ∈ Rn :

∑n
i=1 zi = n(n+1)

2

}
∩

{
z ∈ Rn :

∑n
i=1 z2

i = n(n+1)(2n+1)
6

}
,

while id−1 and ρ−1 are antipodal points on Sn. Furthermore each edge of the
Cayley graph has Euclidean length ∥σ−1 − (στi)−1∥2 =

√
2. See Figure 6 for

an illustration of the case n = 4 (where S4 is a 2-sphere). A sorting network
corresponds to a shortest path from id−1 to ρ−1 in the Cayley graph. It is
natural to guess that such a path might typically be close to a great circle
of Sn; that is, a Euclidean circle in Rn having the same centre and radius
as Sn. We show that, if a sorting network lies close to some great circle,
then its trajectories are approximately sine curves, its particle configurations
approximate Archimedes measure, and its swap locations are approximately
governed by the semicircle law.
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Figure 6: The permutahedron for n = 4.

Theorem 5 (Great circles). Suppose for each n that ωn is a (non-random)
n-element sorting network, and suppose that there is a sequence of great
circles cn ⊂ Sn such that

d∞(ωn, cn) = o(n) as n→∞,

(with distance defined as d∞(ω, c) := maxi∈[1,N ] infz∈c ∥σ−1
i − z∥∞). Then:

(i) there exist an
i , θn

i such that the scaled trajectories satisfy

max
i∈[1,N ]

max
t∈[0,1]

∣∣∣Ti(t,ωn)− an
i sin(πt + θn

i )
∣∣∣→ 0 as n→∞;

(ii) for all t ∈ (0, 1), the scaled configuration satisfies the vague conver-
gence

µt(ωn) =⇒ Archt as n→∞;

(iii) the scaled swap process satisfies the vague convergence

η(ωn) =⇒ Leb× semi as n→∞.

We conjecture that, asymptotically almost surely as n→∞, the uniform
sorting network does indeed lie close to a great circle on the permutahedron.
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Conjecture 3 (Great circles). Let ωn be an n-element uniform sorting
network. For each n there exists a random great circle Cn ⊂ Sn such that

d∞(ωn, Cn) = o(n) in probability as n→∞.

Simulations provide overwhelming numerical evidence in support of Con-
jecture 3. Indeed, the evidence suggests that for the optimum great circle,
typically d∞(ωn, Cn) ≈ const × nα, where α ≈ 1/2. For example, an exact
simulation of a 10000-element uniform sorting network gave d∞(ω10000, c) ≤
159 for a certain great circle c. If Conjecture 3 holds then, by Theorem 5,
Conjectures 1 and 2 follow, as well as the result in Theorem 2. The fact
that Theorem 2 does indeed hold thus provides some further circumstantial
evidence for Conjecture 3. It is interesting that the proofs of Theorem 2 and
Theorem 5(iii) use entirely different methods.

In addition to Theorem 4, we note that certain other special permutations
may be shown to have asymptotically much lower probability than others.
Since the number of permutations is n!, at any given time step k ∈ [0, N ]
there must exist some permutation which is visited with probability at least
1/n! ≥ exp[−n log n]. However, some permutations are much less likely, as
illustrated by the following.

Example 6. For n even, let h = N/2 − n/4, and consider the permutation

ψ :=
(

n
2 , n

2 − 1, . . . , 1, n, n− 1, . . . , n
2 + 1

)
. The probability that the uniform

sorting network passes through particle configuration ψ equals

P
n
U(σh = ψ) = exp

[
− log 2

4 n2 + O(n)
]

as n→∞.

(This will be verified in Section 3.)

Remarks

History and connections. Sorting networks were first considered by
Stanley [21], who proved the remarkable formula

#Ωn =

(
n
2

)
!

1n3n−15n−2 · · · (2n− 3)1
. (2)

Another breakthrough was achieved by Edelman and Greene [5], who ob-
tained a bijective proof of (2). (A related approach to the enumeration of sort-
ing networks was independently developed by Lascoux and Schützenberger;
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see [17], [10, p. 94–95].) The Edelman-Greene bijection is between the set Ωn

of sorting networks and the set of all staircase-shape standard Young tableaux
of size n. This bijection will be an important ingredient for our results; we
describe it in Section 4. See [7, 10, 11, 18, 20] for further background.

Sorting networks are of interest in computer science, since they can be
interpreted as networks of comparators capable of sorting any sequence into
descending order; see [16, Exer. 5.3.4.36–38]. There is also a connection with
change-ringing (English-style church bell ringing); for background see [23]
and the references therein.

About the proofs. The proof of Theorem 1(i) is very simple, and the
proof of (ii) is straightforward given the results of [5]. Similar computations
appear in [20]. Our proofs of Theorems 2, 3 and 4 are more involved, and
depend on results from [19] on limiting profiles for random Young tableaux.
A key tool is an extension of the result in [19] from square tableaux to
staircase tableaux; see Section 5. Theorem 3 is a straightforward consequence
of Theorem 4 together with Theorem 1(i). The proof of Theorem 5 employs
geometric arguments, and relies on the characterization of Arch1/2 as the
unique measure all of whose linear projections are uniform on [−1, 1].

Simulations. As remarked above, simulation evidence strongly supports
Conjecture 3. The measurement d∞(ω10000, c) ≤ 159 was obtained by using
an exact simulation of a 10000-element USN ω10000, and calculating the max-
imum L∞ distance from the configuration σ−1

k at time k to a point moving
at constant angular speed around the great circle c that passes through σ−1

0

and σ−1
N/2. In contrast, applying the same procedure to the “bubble sort”

network ω = (1, 2, . . . , n, 1, 2, . . . , n − 1, . . . , 1, 2, 1) gives for n = 10000
a distance of approximately 9997. It is also easy to see that the condition
d(ωn, cn) = o(n) does not hold for every sequence of sorting networks ωn. For
example, it does not hold for any sequence of sorting networks which pass
through the permutation ψ in Example 6, since the configuration at time
⌊N/2⌋ ≈ h cannot satisfy the condition in Theorem 5(ii).

A particularly striking illustration of Conjectures 1–3 results from plot-
ting the graph of the permutation σ−1

k σk+N/2, and then viewing the animation
as k varies. Stationarity (Theorem 1(i)) implies that at any given time the
picture will resemble Figure 2, while at time k = N/2 the initial picture will
have been exactly rotated by π/2. In fact (for large n) the points appear to

10



Figure 7: The evolution of the
permutation graph of a sliding
window, modulo uniform rota-
tion, for a uniformly chosen 500-
element sorting network.

rotate all at the same constant angular speed. To further illustrate this we
may simultaneously rotate the entire picture by the (uniformly changing) an-
gle −πk/N , and plot the resulting paths of the moving points as k increases
from 0 to N/2. This is shown in Figure 7. The observation that each path
is localized is a manifestation of Conjectures 1 and 3.

Further works. In forthcoming articles [1, 2, 3] we study several closely
related issues. In [3] we prove further bounds on the configurations σk in the
USN. In [2] we study the local structure of the swap process. In [1] we study
another natural probability measure on sorting networks, in which at every
step, a swap location is chosen uniformly from among those locations where
the two particles are in increasing order. It turns out that this model can be
analyzed in detail via the theory of exclusion processes. Its behaviour is very
different from that of the USN, but it has the property, apparently shared by
the USN (see Conjecture 1), that asymptotically each particle initially moves
at a well-defined randomly chosen speed, and continues on a trajectory which
is deterministic given this initial choice.

Stretchable sorting networks. The following is one way to generate a
sorting network. Consider a set of n points in general position in R2, and
label them 1, . . . , n in order of increasing x-coordinate. Now rotate the set
of points by an angle θ. For all but finitely many θ, listing the labels of

11



the points in order of increasing x-coordinate gives a permutation in Sn.
And if we increase θ continuously from 0 to π, these permutations yield the
sequence of configurations for a sorting network. Not all sorting networks
can be obtained in this way; in fact those which can are exactly those whose
wiring diagram may be drawn in the plane so that all the trajectories are
straight lines; such networks are called stretchable—see [11] for details. (The
smallest non-stretchable network, unique up to symmetries, is the 5-element
example ω = (1, 3, 4, 2, 1, 3, 4, 2, 1, 3).) In the proof of Theorem 5 we will
see that the assumption of that theorem implies that the sorting network is
approximated by a stretchable network obtained by rotating a set of points
in R2 which approximate the Archimedes measure Arch1/2.

Consider an n-element USN, and choose m out of the n particles uniformly
at random, independently of the USN. If we observe only the relative order
of these m particles then we obtain a random m-element sorting network. If
Conjecture 3 holds then it may be deduced that, as n→∞ with m fixed, the
distribution of this sorting network converges to a measure whose support
is exactly the set of stretchable m-element networks. This follows from the
proofs in Section 8.

Gallery. For more simulation pictures, see the gallery
http://www.math.ubc.ca/~holroyd/sort.

2 Preliminaries

In this section we present some definitions and basic results.

Proof of Theorem 1(i). If ω = (s1, . . . , sN) is any sorting network then it is
easily seen that

ω′ := (s2, . . . , sN , n− s1)

is also a sorting network, and furthermore that the map ω &→ ω′ is a bijection
from Ωn to Ωn. The result follows immediately.

We note also that

(s1, . . . , sN) &→ (sN , . . . , s1) (3)

and
(s1, . . . , sN) &→ (n− s1, . . . , n− sN) (4)

12



are bijections from Ωn to Ωn, so the measure Pn
U has the corresponding sym-

metries.
For a permutation σ ∈ Sn, denote the inversion number

inv(σ) = #
{

(i, j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)
}

.

It is straightforward to see that inv(σ) is the graph-theoretic distance from
the identity to σ in the Cayley graph of Sn generated by the swaps {τ1, . . . ,
τn−1}. Hence in any sorting network we have inv(σk) = k for all k.

3 Young tableaux

Young tableaux are a central tool in our proofs; we start by introducing some
standard notation and facts. Let N ∈ N := {1, 2, . . .}. A partition of N is
a sequence λ = (λ1,λ2, . . . ,λk) of positive integers such that λ1 ≥ λ2 ≥ . . . ≥
λk and N =

∑
i λi. We denote |λ| := N . We identify each partition λ with its

associated Young diagram, which is the set {(i, j) ∈ N2 : 1 ≤ i ≤ k, 1 ≤
j ≤ λi}. Traditionally each element (i, j) (called a cell) in the diagram is
drawn as a square, in the coordinate system with (1, 1) at the top-left and
(1, 2) to its right. We denote the set of partitions of N by Par(N).

Two Young diagrams will play a central role: the n×n square diagram
(n, n, . . . , n), which we denote by !n, and the staircase diagram (n−1, n−
2, . . . , 1), which we denote by △n.

If λ ∈ Par(N), let λ′ = (λ′1,λ
′
2, . . . ,λ

′
d) denote the conjugate partition

to λ, where d = λ1 and λ′i = #{1 ≤ j ≤ k : λj ≥ i}. The conjugate partition
corresponds to the Young diagram obtained by reflecting the Young diagram
of λ along the northwest-southeast diagonal.

A Young tableau of shape λ, where λ ∈ Par(N), is an assignment of
positive integers, called entries, to the cells of λ such that every row and
column of the diagram contain increasing sequences of numbers. A standard
Young tableau (SYT) is a Young tableau in which the numbers assigned
to all the cells are 1, 2, . . . , N . See Figure 8. We denote the set of SYT of
shape λ by SYT(λ), and we denote d(λ) = #SYT(λ) (sometimes called the
dimension of λ in representation-theoretic contexts), the number of standard
Young tableaux of shape λ. Frame, Robinson and Thrall [9], [16, Sec. 1.5.4]
proved the following formula for d(λ).

13
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9

Figure 8: The Young diagram (4, 4, 1), a Young tableau and a standard
Young tableau.

Theorem 7 (Hook formula; Frame, Robinson and Thrall). For each
cell (i, j) ∈ λ let hi,j(λ) := λi − j + λ′j − i + 1 be the hook number of (i, j)
in λ. Then

d(λ) =
|λ|!∏

(i,j)∈λ hi,j(λ)
.

For two Young diagrams µ,λ write µ ↗ λ (“µ increases to λ”) to mean
that λ can be obtained from µ by the addition of one cell. The Young lattice
is the directed graph whose vertex set is ∪∞N=0Par(N) and whose edges are
all the pairs (µ,λ) with µ↗ λ. Standard Young tableaux of shape λ are in
bijection with paths in the Young lattice leading from the empty diagram ∅
to λ: to the path ∅ = λ0 ↗ λ1 ↗ λ2 ↗ · · · ↗ λN = λ we attach the SYT
which records the order in which new cells were added to the diagrams along
the path, i.e., the unique tableau T = (ti,j)(i,j)∈λ such that for all 0 ≤ k ≤ N
we have that

λk = {(i, j) ∈ λ : ti,j ≤ k}.
We call T the recording tableau of the increasing sequence of diagrams
(λk)0≤k≤N .

As an illustration of the use of the hook formula for sorting networks, we
verify the claim of Example 6. We will use the fact (see [8, p. 135]) that

J(n) :=
n∏

j=1

jj = exp

[
n2 + n

2
log n + O(n)

]
as n→∞.

Thus, using the hook formula and Stirling’s formula we can compute

d(△n) =

(
n
2

)
!

1n−13n−25n−3 · · · (2n− 3)1
=

(
n
2

)
!
(

J(2n−2)
2n(n−1)J(n−1)2

)1/2

(
(2n−2)!

2n−1(n−1)!

)n− 1
2

= exp

[
n2 − n

2
log n + (1

4 − log 2)n2 + O(n)

]
; (5)

14



d(!n) =
(n2)!

J(n)(n + 1)n−1(n + 2)n−2 · · · (2n− 1)1

=
(n2)!J(2n−1)

J(n)

J(n)
[

(2n−1)!
n!

]2n = exp
[
n2 log n + (1

2 − log 4)n2 + O(n)
]
. (6)

By (5) and (2) we have #Ωn = d(△n) (also see Section 4 below).
For a permutation ν ∈ Sn, a partial sorting network (also called a

reduced word) of ν is a sequence (s1, s2, . . . , sk) such that ν = τs1τs2 · · · τsk

and k = inv(ν). Let R(ν) denote the number of partial sorting networks of
ν. In general, evaluation of R(ν) is a deep problem—see e.g. [10, 18].

Let ν be any permutation, and let k = inv(ν). Then ω = (s1, s2, . . . , sN) is
a sorting network passing through configuration ν if and only if (s1, . . . , sk) is
a partial sorting network for ν and (sk+1, . . . , sN) is a partial sorting network
for ν−1ρ. Hence the probability that the USN passes through ν equals

PU(σk = ν) =
R(ν)R(ν−1ρ)

R(ρ)
. (7)

Proof of Example 6. In the case of ψ, we can compute the factors in (7) above
explicitly. We have inv(ψ) = h. Firstly, R(ψ) is equal to

(
h

h/2

)
d(△n/2)2, since

to get from id to ψ one must reverse the particles 1, . . . , n
2 , and independently

reverse the particles n
2 +1, . . . , n, with

(
h

h/2

)
choices for the order in which to

intersperse the left- and the right-half swaps.
Secondly, we claim that the number of partial sorting networks of ψ−1ρ =

(n
2 + 1, . . . , n, 1, . . . , n

2 ) is equal to d(!n/2). This is because, given such a
partial sorting network (s1, s2, . . . , sN−h), we can construct a standard Young
tableau of shape !n/2 whose ith row lists the times k1 < k2 < . . . < kn/2 at
which particle i moved, and it is easy to see that this map is a bijection from
the set of partial sorting networks of ψ−1ρ onto SYT(!n/2). Thus we have:

R(ψ) =
(

h
h/2

)
d(△n/2)

2 = 2n2/4+O(n)d(△n/2)
2;

R(ψ−1ρ) = d(!n/2);

R(ρ) = d(△n).

An application of the asymptotics (5) and (6) for the number of tableaux
together with (7) verifies the claim of Example 6. Interestingly, the leading
terms in n2 log n cancel in the exponent.
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1 2 3 9
4 5 10
6 11 12
7 13 15
8 14

slide−−→

0 2 3 9
1 5 10
4 6 12
7 11 13
8 14

increment−−−−−→

1 3 4 10
2 6 11
5 7 13
8 12 14
9 15

Figure 9: The sliding sequence and the Schützenberger operator. Shown
are: (a) A tableau T . In bold is the sliding sequence (obtained by starting
from the maximum entry and repeatedly passing to the larger of the entries
above and left); (b) the tableau obtained by sliding the entries down along
the sliding sequence; (c) the tableau Φ(T ).

4 The Edelman-Greene bijection

Stanley, who proved (2), noticed that by the hook formula the right-hand
side of (2) is equal to d(△n), the number of staircase shape standard Young
tableaux of order n. Later, Edelman and Greene [5] found an explicit bijec-
tion between SYT(△n) and Ωn. This bijection will play an important part
in what follows, so we describe it and its inverse now.

Given a standard Young tableau T ∈ SYT(λ), where N = |λ|, denote by
(imax(T ), jmax(T )) the coordinates of the cell containing the maximum entry
N in T .

Define the Schützenberger operator Φ : SYT(λ)→ SYT(λ) as follows.
Start with a tableau T = (ti,j)(i,j)∈λ. Construct the sliding sequence of
cells c0, c1, . . . , cd ∈ λ, where c0 = (imax(T ), jmax(T )) and cd = (1, 1), by
the requirements that cr − cr+1 = (1, 0) or (0, 1) for all 0 ≤ r ≤ d − 1,
and cr − cr+1 = (1, 0) if and only if tcr−(1,0) > tcr−(0,1) (where we adopt the
notational convention that for a cell (i, j) with either of i, j being non-positive
we have ti,j = −∞). Then the tableau Φ(T ) = (t′i,j)(i,j) is defined by setting
t′cr

= tcr+1 + 1 for 0 ≤ r ≤ d − 1, t′1,1=1, and t′i,j = ti,j + 1 for all other cells
(i, j) ∈ λ. The definition is illustrated in Figure 9. It is easy to see that Φ is
a bijection of SYT(λ) onto itself.

Definition. The Edelman-Greene bijection EG : SYT(△n)→ Ωn is defined
by

EG(T ) =
(
jmax(Φ

N−k(T ))
)

k=1,...,N

where as before N =
(

n
2

)
, and Φk denotes the kth iterate of Φ.
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1

→

1 2

→

1 2
2

→

1 2 3
2

→

1 2 3 4
2

→

1 2 3 4 5
2

→

1 2 3 4 5
2 3

→

1 2 3 4 5
2 3
3

→

1 2 3 4 5
2 3 4
3

→

1 2 3 4 5
2 3 4
3 4

→

1 2 3 4 5
2 3 4
3 4
4

→

1 2 3 4 5
2 3 4 5
3 4
4

→

1 2 3 4 5
2 3 4 5
3 4 5
4

→

1 2 3 4 5
2 3 4 5
3 4 5
4 5

→

1 2 3 4 5
2 3 4 5
3 4 5
4 5
5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

recording
tableau−−−−−→

1 2 4 5 6
3 7 9 12
8 10 13

11 14
15

Figure 10: Computation of EG−1(1, 2, 1, 3, 4, 5, 2, 1, 3, 2, 1, 4, 3, 2, 1).

It is far from obvious that the map EG is a bijection to Ωn, nor what its
inverse looks like. It turns out that the inverse may be described in terms of
a Young tableau construction algorithm which is a modification of the RSK
algorithm (see [22, Ch. 7.11]). Given a sorting network ω = (s1, s2, . . . , sN) ∈
Ωn, we construct a sequence of (non-standard) Young tableaux T0, T1, . . . , TN

whose shapes ∅ = λ0,λ1, . . . ,λN = △N form an increasing sequence of dia-
grams, i.e., λi ↗ λi+1. To get Ti+1 from Ti, apply the following insertion
algorithm to the input (Ti, si+1).

Insertion algorithm. Given a Young tableau T = (ti,j)(i,j)∈λ of shape λ
and a positive number u, construct a new tableau T ′ = (t′i,j) whose shape is
the union of λ with one new cell, as follows.

Step 1. (Initialize). Set k ← 1 and q ← u. Set t′i,j ← ti,j for all (i, j) ∈ N2,
with the convention that ti,j =∞ for a cell (i, j) ∈ N2 \ λ.

Step 2. (Find next bumping cell). Set ℓ to be the least positive integer
j such that tk,j ≥ q. Set t′k,ℓ ← q. If q = tkℓ, set q ← q + 1, otherwise
set q ← tkℓ. Set k ← k + 1.

Step 3. If q =∞, terminate and return the enlarged tableau T ′. Otherwise
return to Step 2.

Definition. The inverse Edelman-Greene bijection EG−1 : Ωn → SYT(△n)
is defined by setting EG−1(ω) to be the recording tableau of the sequence of
Young diagrams λ0 ↗ λ1 ↗ · · ·↗ λN = △n constructed above.
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Figure 10 shows EG−1 applied to the sorting network of Figure 3. The
following theorem justifies these definitions. The proof can be found in [5];
see also [7].

Theorem 8 (Edelman and Greene). The map EG is a bijection from
SYT(△n) to Ωn, and the map EG−1 is its inverse.

As a first application of the Edelman-Greene bijection, we prove an exact
formula for the distribution of the first swap location s1 = s1(ωn) of a uniform
n-element sorting network ωn, and use it to prove Theorem 1(ii).

Proposition 9 (Swap distribution). If ωn is a uniform n-element sorting
network, then

P
n
U(s1 = r) =

1

N
·
(
3 · 5 · 7 · · · (2r − 1)

)(
3 · 5 · · · (2(n− r)− 1)

)
(
2 · 4 · 6 · · · (2r − 2)

)(
2 · 4 · · · (2(n− r)− 2)

) . (8)

Proof. Let 1 ≤ r ≤ n − 1. By the definition of EG, the sorting networks
ω = (s1, s2, . . . , sN) ∈ Ωn for which s1 = r are exactly the ones for which the
standard Young tableau EG−1(ω) has its maximum entry in the cell (n−r, r).
Since EG is a bijection, the number of such ω’s is the number of SYTs of
shape △n \ {(n− r, r)}. Thus

P
n
U(s1 = r) =

d(△n \ {(n− r, r)})
d(△n)

.

Write this using the hook formula, Theorem 7, to yield the result.

Proof of Theorem 1(ii). Denote an,r = Pn
U(s1 = r), 1 ≤ r ≤ n − 1. Observe

that by Proposition 9 we have

an,r =
2

n(n− 1)
· (2r)(2r)!

22r(r!)2
· 2(n− r)(2(n− r))!

22(n−r)((n− r)!)2

=
8
√

r(n− r)

πn(n− 1)
·
√
πr

(
2r
r

)

22r
·
√
π(n− r)

(
2(n−r)

n−r

)

22(n−r)

Therefore, using Stirling’s formula in its explicit form 1 ≤ m!(2πm)−1/2
(

e
m

)m

≤ 1 + 1
12m−1 (an immediate consequence of [6, Eq (9.15), p. 54]), we get that

(
1− 1

6r

) (
1− 1

6(n− r)

)
≤ an,r

8
πn(n−1)

√
r(n− r)

≤
(

1 +
1

24r − 1

) (
1 +

1

24(n− r)− 1

)
.
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This implies easily that for all −1 < a < b < 1 we have

P
n
U

(
a ≤ 2s1

n
− 1 ≤ b

)
=

∑

n
2 (a+1)≤r≤n

2 (b+1)

an,r −−−→
n→∞

2

π

∫ b

a

√
1− t2dt,

as required.

5 Limit profile for staircase tableaux

For any Young diagram λ we write Pλ for the uniform measure on the set
SY T (λ) of standard Young tableaux. It is natural to consider the limiting
behaviour of a random tableau of distribution Pλn for a sequence of diagrams
(λn) of a given shape and increasing size. For general shape, the problem
of rigorously determining the complete limiting profile is open (see, however
[14, 15] and [4, Theorem 1.5.1]). An exception is the square diagram !n,
where the problem was solved by Pittel and Romik [19]. In this section we
use their result to derive a solution for the staircase diagram △n.

We start by stating the main result from [19]. It will be convenient to
use the following coordinate system. If (i, j) is a cell of !n, then its rotated
(and scaled) coordinates are

u = u(i, j) :=
i− j

n
; v = v(i, j) :=

i + j

n
,

(note that this differs from the coordinate system in [19] by a factor of
√

2).
We define the following functions, which will describe the limiting profile.

For α ∈ [0, 2] the function hα : [−
√
α(2− α),

√
α(2− α)]→ [0, 1] is defined

by

hα(u) :=
2

π

[
u arctan

( u

R

)
+ arctan−1 R

]
where R =

√
α(2− α)− u2

1− α ,

(9)
for α ∈ [0, 1] (where tan−1∞ := π/2 giving h1 ≡ 1), and by

h2−α(u) := 2− hα(u)

for α ∈ (1, 2]. The curve v = hα(u) will approximate the level-(αn2/2)
contour of the tableau; Figure 11 shows some of these curves. The function
L : [0, 1]× [0, 1]→ [0, 2] is defined implicitly by

L

(
u + v

2
,
v − u

2

)
= α ⇐⇒ hα(u) = v.
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0 0.2 0.4 0.6 0.8 1.0−0.2−0.4−0.6−0.8−1.0

0.2

0.4

0.6

0.8

1.0

u

v

Figure 11: The curves v = hα(u) for α = 0.1, 0.2, 0.3, . . . , 0.9, bounded
between the graphs of v = |u| and v = 1.

The following result [19, Theorem 1(i)]) gives the limiting profile for uni-
form square Young tableaux.

Theorem 10 (Limit profile for square tableaux; Pittel and Romik).
Let P!n be the uniform measure on Young tableaux (si,j)(i,j)∈!n

∈ SYT(!n).
For any ε > 0,

P!n

(
max

(i,j)∈!n

∣∣∣∣
2si,j

n2
− L

(
i

n
,
j

n

)∣∣∣∣ > ε

)
−−−→
n→∞

0.

We shall deduce the following analogous result for the limit profile of a
staircase tableau, where the function L is the same as above.

Theorem 11 (Limit profile for staircase tableaux). Let P△n be the
uniform measure on Young tableaux (ti,j)(i,j)∈△n

∈ SYT(△n). For any ε > 0,

P△n

(
max

(i,j)∈△n

∣∣∣∣
2ti,j
n2
− L

(
i

n
,
j

n

)∣∣∣∣ > ε

)
−−−→
n→∞

0.

Thus the limit profile for the staircase tableau is the same as that for
half of the square tableau. Other results in [19] give explicit bounds on
deviations from the limit profile, but only in the interior of the square. These
estimates may be translated to staircase tableaux as well. However, uniform
convergence in probability is sufficient for our purposes. It is important that
Theorem 11 includes the boundary of the diagram.
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Our main tool in proving the above is the following general result con-
cerning continuity of random tableaux in the shape. For Young diagrams
λ, µ we write λ ⊆ µ if this relation holds for λ, µ as subsets of N2.

Theorem 12 (Coupling). Let λ ⊆ µ be a pair of Young diagrams. There
exists a coupling of the measures Pµ on S = (si,j) ∈ SYT(µ) and Pλ on
T = (ti,j) ∈ SYT(λ) such that for all (i, j) ∈ λ

si,j ≤ ti,j + |µ \ λ|.

To prove Theorem 12 we will make use of an algorithm from [12] for
sampling from Pλ. First note that, in order to simulate a tableau with
distribution Pλ, it suffices to be able to choose the location cmax = (imax, jmax)
of the maximum entry |λ| with the correct distribution. For then, after
inserting this entry, we may iteratively apply the same algorithm to the
smaller diagram λ \ {cmax} to locate the second largest entry, and so on.

For a cell (i, j) ∈ λ, define its hook to be the set

H(i,j)(λ) :=
{
(k, j) ∈ λ : k ≥ i

}
∪

{
(i, k) ∈ λ : k ≥ j

}
.

The location cmax of the maximum entry may be simulated using the following
hook walk algorithm from [12].

Hook walk algorithm. Given a Young diagram λ, choose a random se-
quence of cells c0, . . . , cr iteratively as follows.

Step 1. Choose a cell c0 uniformly at random from λ.

Step 2. Given that cells c0, . . . , ck−1 have been chosen, choose ck uniformly
at random from the hook Hck−1

(λ).

Step 3. Repeat Step 2 until we obtain a cell cr with #Hcr(λ) = 1, then
stop.

Theorem 13 (Hook walk; Greene, Nijenhuis and Wilf). The random
final cell cr constructed by the hook walk has the same distribution as cmax

under Pλ.

Lemma 14 (Domination). Assume λ ⊆ µ, and let λ′ := λ \ {cmax(λ)} and
µ′ := µ \ {cmax(µ)} be the random Young diagrams obtained by removing the
largest entry in the respective uniform standard Young tableaux. Then we
have the stochastic domination λ′ ⊆st µ′.
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Proof. Consider the hook walk applied to λ and µ. It is enough to couple
the two hook walks so that either they stop at the same cell, or the walk
in µ stops at a cell in µ \ λ. This will hold provided the two walks coincide
until the first time the one in µ enters µ \ λ. And this can be achieved as
follows. Run the hook walk in µ according to the usual rules. Let the walk
in λ be identical to that in µ while the latter is in λ. If and when the walk
in µ jumps to a cell in µ \ λ, continue the walk in λ according to the usual
rules for λ using an independent source of randomness. It is easy to see
that this gives the correct hook walk terminating probabilities for cmax(λ).
(A key observation is that a uniformly chosen element in the hook H(i,j)(µ)
conditioned to be in H(i,j)(λ) is distributed uniformly in H(i,j)(λ)).

Proof of Theorem 12. Construct the random tableaux S, T iteratively by first
choosing the maximum entry in each, then the second largest, and so on. Do
this using the hook walks, and at each stage couple the two hook walks
according to Lemma 14, so that the remaining unfilled Young diagrams are
always ordered. Let m = |µ \λ|. At the step when k is entered into λ, say at
location (i, j), the entry k + m is entered into µ, and all subsequent entries
entered into µ are ≤ k+m. By the ordering property one of those subsequent
entries (possibly k + m) will be at the cell (i, j). Therefore si,j ≤ k + m =
ti,j + m.

Proof of Theorem 11. Fix ε > 0, and consider a random square tableau
S = (si,j) with law P!n . Let µ be the random Young diagram obtained
by removing the cells with entries greater than (1/2 + ε)n2 from !n,and de-
fine the event An = {△n ⊆ µ}. From Theorem 10 we find that P(An) → 1,
because L ≡ 1 along the diagonal.

Note that, conditional on µ, the tableau obtained by restricting S to µ
has law Pµ. Also let T = (ti,j) have law P△n. Theorem 12 implies that S
and T can be coupled so that on the event An we have si,j ≤ ti,j + n2ε for
(i, j) ∈ △n. Thus by the square diagram result, Theorem 10:

P△n

(
max

(i,j)∈△n

[
−2ti,j

n2
+ L

(
i

n
,
j

n

)]
> 3ε

)
≤

P!n

(
max

(i,j)∈!n

[
−2si,j

n2
+ L

(
i

n
,
j

n

)]
> ε

)
+ P(Ac

n) −−−→n→∞
0,

as required. The corresponding upper bound is similar: instead we begin by
removing the entries greater than (1/2− ε)n2.
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We extract the following consequences of Theorem 11 for use in the later
proofs.

Corollary 15 (First row). For a staircase tableau T = (ti,j) let Rk =
Rk(T ) := max{j : t1,j ≤ k} be the number entries ≤ k in the first row. For
any ε > 0 we have

P△n

(
max

k
|Rk − dk| > εn

)
−−−→
n→∞

0

where dk := n
√

k
N

(
2− k

N

)
.

Proof. Theorem 11 easily implies that for any δ, with probability tending to
1 as n→∞,

max
j

∣∣∣∣
t1,j

N
− L

(
0,

j

n

)∣∣∣∣ < δ. (10)

From the definition of L, the map x &→ L(0, x) is continuous and strictly
monotone, and satisfies L(0,

√
α(2− α)) = α for α ∈ [0, 1]. Therefore given

any ϵ > 0, we can choose δ > 0 such that for all x,α ∈ [0, 1],

|L(0, x)− α| < δ implies
∣∣x−

√
α(2− α)

∣∣ < ε.

We deduce that on the event (10) we have

max
j

|j − dt1,j
| < εn.

Since k &→ dk is strictly monotone this implies that maxk |Rk− dk| < εn.

Corollary 16 (Contours). Fix some α ∈ [0, 1], and let Hα = Hα(T ) be the
set of entries in a staircase tableau T in the cells where v > hα(u). For any
ε > 0 we have the following bound on the symmetric difference:

P△n

[
#

(
Hα ∆ {⌈αN⌉, . . . , N}

)
> εN

]
−−−→
n→∞

0.

Proof. Fix ε > 0. By the continuity and strict monotonicity of the function
L, we may choose δ > 0 such that the area of the region D := {(u, v) :
hα−2δ(u) ≤ v ≤ hα+2δ(u)} is at most ε. Then for n sufficiently large, on the
event

max
(i,j)∈△n

∣∣∣∣
2ti,j
n2
− L

(
i

n
,
j

n

)∣∣∣∣ ≤ δ,

we have that all entries in the symmetric difference Hα ∆ {⌈αN⌉, . . . , N} lie
in D, so the result follows from Theorem 11.
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6 Law of large numbers

This section contains the proof of Theorem 2. Recall the semicircle measure
semi(dx) = 2

π

√
1− x2 1x∈(−1,1) dx. Fix some interval [a, b] ⊂ (−1, 1), and

define for 0 ≤ s ≤ t ≤ 1 and a sorting network ω:

Ss,t(ω) := #
{

sN ≤ k < tN : 2
nsk(ω)− 1 ∈ [a, b]

}
.

We will deduce Theorem 2 from the following.

Lemma 17. Fix an interval [a, b] ⊂ (−1, 1). For any δ small enough (de-
pending on a, b),

P
n
U

(∣∣S0,δ − δNsemi[a, b]
∣∣ > 8Nδ2

)
−−−→
n→∞

0.

Proof of Theorem 2. It suffices to prove that for any [a, b] ⊆ [−1, 1] and for
any ε > 0 and 0 ≤ s < t ≤ 1 we have

P
n
U

[∣∣∣ 1
N Ss,t − (t− s)semi[a, b]

∣∣∣ > ε
]
−−−→
n→∞

0. (11)

Since the total number of swaps is deterministically N , it is enough to prove
this in the case [a, b] ⊂ (−1, 1). We deduce this from Lemma 17 as follows.
Fix some positive integer m to be chosen later, split the time interval [s, t)
into m smaller intervals of length δ := t−s

m , and define the events

Bk :=
{∣∣Ss+kδ,s+(k+1)δ(ω)− δNsemi[a, b]

∣∣ > 9Nδ2
}

, 0 ≤ k < m.

Let B =
⋃

Bk. By stationarity of the swap location process (Theorem 1(i)),
each of the random variables Ss+kδ,s+(k+1)δ is within ±1 of a random variable
having the same law as S0,δ. Hence by Lemma 17,

P
n
U(B) ≤

m−1∑

k=0

P
n
U(Bk) −−−→

n→∞
0.

If B does not occur then the quantity

Ss,t =
m−1∑

k=0

Ss+kδ,s+(k+1)δ
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satisfies ∣∣Ss,t −mδNsemi[a, b]
∣∣ ≤ 9mNδ2;

i.e., since mδ = (t− s)

∣∣ 1
N Ss,t − (t− s)semi[a, b]

∣∣ ≤ 9(t− s)δ ≤ 9δ.

Now (11) follows by setting m large enough that 9δ < ε.

Proof of Lemma 17. By stationarity of the swap process, the first δN swaps
and the last δN swaps have the same law. The idea of the proof is now as
follows. From the Edelman-Greene bijection we see that the last δN swaps
are determined by the locations of the δN largest entries in the staircase
shaped Young tableau T corresponding to ω. By Corollary 16, the set of
these locations is almost deterministic, which will imply our claim.

For a Young tableau T , consider jmax(ΦkT ). To find it we start with the
element N − k in T , and perform k iterations of Φ. At each iteration, the
entry increases by 1, and possibly moves one square towards the diagonal.
If it started close to the diagonal, it can only hit the diagonal in a limited
region. In particular, if N−k started in region A of Figure 12 then necessarily(

2
njmax(ΦkT )− 1

)
∈ [a, b]. Similarly, if it started in either of the regions

labelled C then it will not exit through that interval. If N − k started in the
region marked B, then whether or not it exits in the interval [a, b] depends
on locations of other entries in the tableau.

Let ω = EG(T ), and let Aδ(T ) be the number of entries greater than
(1 − δ)N in region A of T , and similarly define Bδ(T ) with region B. We
find

0 ≤ S0,δ(ω)− Aδ(T ) ≤ Bδ(T ). (12)

To prove the lemma we show that with probability tending to 1, for a
uniformly random tableau T , Bδ(T ) and

∣∣Aδ(T ) − δNsemi[a, b]
∣∣ are both

of order δ2N . Here we use Corollary 16, with ε of the corollary equal to δ2.
Consider the tableau T in the (u, v) co-ordinate system of Section 5 as shown
in Figure 12. Let H be the region where v > h1−δ(u) for the function defined
in (9) (the shaded region in Figure 12), and let H be the set of entries of T
in H .

Corollary 16 states that with probability tending to 1,

#
(
H ∆ {⌈N − δN⌉, . . . , N}

)
≤ δ2N.
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0 1−1 u

v

a b

A

B

C C

Figure 12: A Young tableau in the (u, v) co-ordinate system. Entries in
region A can only exit through the interval [a, b], while entries in C cannot,
and entries in B may or may not. The region where v > h1−δ(u) is shaded—
this is the typical location of the entries greater than (1− δ)N .

This implies that with probability tending to 1 we have
∣∣∣Aδ(T )−NL(H ∩ A)

∣∣∣ ≤ δ2N,
∣∣∣Bδ(T )−NL(H ∩ B)

∣∣∣ ≤ δ2N,

where L denotes area of sets in the (u, v) plane. Applying these to (12) we
find that (with probability tending to 1)

∣∣∣S0,δ(ω)−NL(H ∩ A)
∣∣∣ ≤

(
2δ2 + L(H ∩ B)

)
N (13)

So, we need to estimate the areas of H ∩ A and H ∩B.
We use the Taylor expansion of h1−δ(u) around δ = 0, which is

h1−δ(u) = 1− 2
π

√
1− u2 δ + O(δ3) as δ → 0, uniformly in u ∈ [a, b]

(see [19, formula (7), p. 13]). To estimate L(H∩B) note that the side length
of each of the two “triangles” comprising H ∩ B is of order δ. Indeed, each
is contained in a square with diagonal 4

πδ, and so

L(H ∩ B) ≤ 16

π2
δ2 < 2δ2. (14)

It remains to estimate L(H ∩ A). The fact that ∂2

∂δ2 h1−δ(u)
∣∣∣
δ=0
≡ 0 implies

that for δ small enough (depending on a, b), for any u ∈ [a, b] the error term
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in the Taylor expansion is at most δ2. Consequently, the area of H ∩ A can
be estimated by integrating:

∣∣∣∣L(H ∩ A)− δ
∫ b

a

2
π

√
1− u2du

∣∣∣∣ ≤ (b− a)δ2 + L(H ∩B) ≤ 4δ2. (15)

(The L(H ∩B) term comes from the truncation near a and b.)
The result follows by applying (14) and (15) to (13).

7 Octagon and Hölder bounds

In this section we prove Theorems 3 and 4.

Lemma 18. Let Rk = Rk(ω) = (λk)1 be the length of the first row of the
Young diagram λk created by the first k steps of the EG−1 algorithm from a
sorting network ω. Then σ−1

k (i)− i ≤ Rk for all i, k.

Proof. The first row of the recording and insertion tableaux during the EG−1

algorithm behave exactly the same way as during the celebrated RSK algo-
rithm. It is well known (see [22]) that the RSK algorithm applied to any
sequence of numbers creates a tableau whose first row has length given by
the longest increasing subsequence (check this on Figure 10).

Here we only need the upper bound, which for completeness we verify
here. Observe that the entries of the first row cannot increase as the EG−1

algorithm proceeds, as they only change through bumping which replaces
an element by something less or equal. So given any increasing subsequence
a1, . . . , aℓ, we know that each ai has to be inserted to the right of where ai−1

was inserted. This shows that at any step k the length of the first row is at
least the length of the longest increasing subsequence of the input so far.

Now by time k the position of particle i has changed by η = σ−1
k (i)− i. If

η ≤ 0 then the required statement is vacuously true, and if η > 0 then this
implies that swaps at positions i, . . . , i + η − 1 have appeared in this order
(with possibly other swaps in between). Thus η ≤ Rk, as required.

Proof of Theorem 4. We use Lemma 18 and Corollary 15. With the notation
there, the Edelman-Greene bijection (Theorem 8) shows that if ω = EG(T )
then Rk(ω) = Rk(T ). Therefore Corollary 15 gives for any ε > 0,

P
n
U (∀k : Rk < dk + εn) −−−→

n→∞
1,
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and by Lemma 18 we deduce

P
n
U

(
∀j, k : σ−1

k (j)− j < dk + εn
)
−−−→
n→∞

1.

Since σk is a permutation this is equivalent to

P
n
U (∀i, k : i− σk(i) < dk + εn) −−−→

n→∞
1.

The symmetries (3) and (4) now imply the other three required bounds.

Proof of Theorem 3. Part (i). Fix ε > 0. Consider the event

E =

{
∀i, ∀ 0 ≤ j < k ≤ N : |σ−1

j (i)− σ−1
k (i)| ≤ n

√
2

N
(k − j)1/2 +

εn

2

}

We will show that
P

n
UE −−−→

n→∞
1. (16)

This will be enough, since the effect of linear interpolation is negligible (that
is proving (16) for all ε > 0 implies the required statement for all ε > 0).
Denote M = ⌊ε2N

128 ⌋ and K = ⌊128ε2 ⌋. For each integer 0 ≤ v ≤ K, denote the
event

Ev =

{
∀i, k : |σ−1

k (i)− σ−1
vM (i)| ≤ ε

8
n + n

(
2|k − vM |

N

)1/2 }
.

By Theorem 4 together with stationarity, Theorem 1(i) we get PU(Ev)→ 1.
Since the number of these events is fixed, we deduce

PU

[ ⋂

0≤v≤K

Ev

]
−−−→
n→∞

1.

We claim that if ω ∈
⋂

0≤v≤K Ev then ω ∈ E. For each 0 ≤ j < k ≤ N
consider two cases. First, it is possible that there is some 0 ≤ v ≤ K such
that vM ≤ j < k < (v + 1)M . In this case, ω ∈ Ev implies that for all i

|σ−1
j (i)− σ−1

vM (i)| ≤ ε

8
n + n

(
2|j − vM |

N

)1/2

≤ ε

8
n +

ε

8
n =

ε

4
n, (17)

where we used the fact that j − vM < ε2N
128 . Similarly,

|σ−1
k (i)− σ−1

vM (i)| ≤ ε

4
n,
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and therefore
|σ−1

j (i)− σ−1
k (i)| ≤ ε

4
n +

ε

4
n =

ε

2
n.

The second possibility is that for some 0 < v ≤ K we have that (v−1)M <
j < vM ≤ k. In that case, (17) is still true, and furthermore since ω ∈ Ev

and k − vM < k − j we get

|σ−1
k (i)− σ−1

vM (i)| ≤ ε

8
n + n

(
2|k − vM |

N

)1/2

≤ ε

8
n + n

√
2

N
(k − j)1/2.

Combining this with (17) gives

|σ−1
j (i)− σ−1

k (i)| ≤ ε

2
n + n

√
2

N
(k − j)1/2,

as claimed.

Part (ii). For some fixed sequence εn → 0, consider the set An of contin-
uous functions T : [0, 1]→ [−1, 1] satisfying

∀t, s ∈ [0, 1] : |T (t)− T (s)| ≤
√

8|t− s| + εn.

By part (i) we can choose εn → 0 so that P(Ti(n) ∈ An)→ 1.
Let w(T, h) = sup{|T (t)− T (s)| : |t− s| ≤ h}. It follows from P(Ti(n) ∈

An)→ 1 that
lim
h→0

lim sup
n→∞

E(w(Ti(n), h) ∧ 1) = 0.

By [13, Theorem 16.5] we have tightness of the random sequence Ti(n) under
this condition (note that the target space [−1, 1] is compact). This establishes
the existence of subsequential limits.

Now if we have a weakly convergent subsequence Ti(n(j)), then it must

have the same limit as the conditioned random variables T̃ j d
:= (Ti(n(j)) |

Ti(n(j)) ∈ An(j)). We may realize the sequence {T̃ j} on the same probability

space so that T̃ j → T a.s. [13, Theorem 4.30]. We conclude by observing
that any limit of deterministic paths T j ∈ An(j) is Hölder(

√
8, 1

2).

8 Great circles

In this section we prove Theorem 5. The idea is as follows. If a sorting
network lies close to a great circle then its trajectories are close to sine curves
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up to some time change. Equivalently, it is close to a stretchable network
obtained by rotating a set of points as in the remark in the introduction.
This set of points must have roughly uniform one-dimensional projections
in all directions, so its empirical measure must be close to Arch1/2. Finally,
since the inversion number of the resulting configurations is close to linear in
the angle of rotation, the time change mentioned above must be linear.

Here are the details. Denote the centre of Sn by c =
(

n+1
2 , . . . , n+1

2

)
and

the radius by R =
√

n3−n
12 . Given the circle cn we may choose a pair of

orthogonal vectors u,v of length R so that the circle has the representation
cn = {cn(θ)}θ∈R where

cn(θ) = c + u cos θ + v sin θ.

For k ∈ {0, . . . , N}, define a sequence θk (up to addition of multiples of
2π) by

θk = arg min
θ
∥σ−1

k − cn(θ)∥∞.

Thus cn(θk) is the point of cn closest in L∞ to σ−1
k . W.log. we may choose

u so that θ0 = 0 (this leaves us two possibilities for v). For other k, the
angle θk is uniquely determined inductively by requiring |θk+1− θk| < π. By
symmetry, θN = (2k + 1)π for some integer k (and we will see that in fact
k = 0).

Fix some ε > 0. The condition on ωn implies that for n large enough
(depending on ε),

∥∥σ−1
k − cn(θk)

∥∥
∞
≤ εn for all k. (18)

Since ∥σ−1
k − σ

−1
k+1∥∞ = 1, this implies that

∥cn(θk+1)− cn(θk)∥∞ ≤ 1 + 2εn.

Since R ≈ n3/2, simple geometry implies that for n large enough we have

|θk+1 − θk| ≤ 2 arcsin

(
(1 + 2εn)

√
n

2R

)
≤ 8ε,

for all k (the
√

n term comes from passing from the L∞ norm to the L2

norm). Thus {θk} does not change too quickly. In particular, there must be
some k so that either |θk − π/2| ≤ 4ε, or |θk + π/2| ≤ 4ε. We can negate v,
so w.log. assume the former is the case.
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Considering the ith coordinate in (18), one finds that
∣∣∣σ−1

k (i)−
(

n+1
2 + ui cos θk + vi sin θk

)∣∣∣ ≤ εn. (19)

We would like to show that the sorting network is approximated by motion
along the circle with constant speed, i.e. that θk ≈ πk/N . If that were the
case, part (i) of Theorem 5 would follow. As it is, (19) only implies that the
paths are approximately sine curves up to a time change. The key point here
is that the same time change applies to all particles.

Define a probability measure νn on R2 by

νn =
1

n

n∑

i=1

δ
(

2
nui,

2
nvi

)
,

where δ(x, y) is the delta measure at (x, y). Thus νn is the empirical measure
for the (rescaled) coordinates of u and v.

Lemma 19. With the above notations we have the vague convergence νn =⇒
Arch1/2.

Proof. We first claim that νn is supported inside the disc of radius 2. Indeed,
the vector c+ u approximates the identity permutation, and so (by (18)) all
entries of 2

nu are in [−1−3ε, 1+3ε]. For v, note that there is some k so that
|θk − π/2| < 4ε, we find that c + v approximates σ−1

k , with some additional
error from u cos θk. Thus the coordinates of 2

nv are all in [−1− 6ε, 1 + 6ε].
We use the continuity theorem for the multi-dimensional characteristic

function, (see e.g. [13, Theorem 5.3]). Thus it suffices to prove pointwise
convergence of the characteristic function of νn to the characteristic function
of Arch1/2. This in turn will be deduced from considering the one-dimensional
projections of νn.

More precisely, (19) says that for n large enough, for all k and i,
∣∣∣
(

2
nui cos θk + 2

nvi sin θk

)
−

(
2
nσ

−1
k (i)− 1

)∣∣∣ ≤ 3ε.

This states that the projection of νn in direction θk can be coupled to the
empirical measure of a permutation scaled to [−1, 1] so that they differ by at
most 2ε. But the scaled empirical measure of a permutation consists of equal
point masses along an arithmetic progression, and does not depend on the
permutation. Let F (x) := 0∨ x+1

2 ∧1 be the distribution function of uniform
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measure on [−1, 1]. If Pθ(a, b) = a cos θ + b sin θ denotes projection on a line
in direction θ, then we deduce that for n large enough, for any x ∈ R,

∣∣∣(Pθk
νn)(−∞, x]− F (x)

∣∣∣ ≤ 3ε+
1

n
≤ 4ε. (20)

For an arbitrary angle θ, there is necessarily some k such that either
|θk − θ| < 4ε, or the same holds for θ+ π. Fix x ∈ [−1, 1]. Note that for two
angles φ,ψ, and any z ∈ R2 we have |Pφz − Pψz| ≤ |z||φ − ψ|. Since νn is
supported inside the disc of radius 2, Pθνn is close to Pθk

νn, and so

∣∣∣(Pθνn)(−∞, x]− (Pθk
νn)(−∞, x]

∣∣∣ ≤ 8ε. (21)

Combining (20) and (21) gives that for n large enough (depending on ε), for
all θ and x ∈ [−1, 1],

∣∣∣(Pθνn)(−∞, x]− F (x)
∣∣∣ ≤ 12ε.

By monotonicity of cumulative distribution funcitons, the same bound holds
for 1 ≤ |x| ≤ 2. Since the support of νn is bounded in the disc of radius 2,
for x outside [−2, 2] we have the stronger identity (Pθνn)(−∞, x] = F (x).

We wish to compare the characteristic functions φ and φn of Arch1/2 and
νn respectively. Note that for any θ, the measure PθArch1/2 is the uniform
measure on [−1, 1]. We have that

(φ− φn)(r cos θ, r sin θ) =

∫

R

eirxPθ(νn − Arch1/2)(dx).

Integrating by parts gives

∣∣∣(φ− φn)(r cos θ, t sin θ)
∣∣∣ ≤

∫

R

∣∣∣ireirx
[
Pθ(νn − Arch1/2)

]
(−∞, x]

∣∣∣dx

≤
∫ 2

−2

2
∣∣∣
[
Pθ(νn − Arch1/2)

]
(−∞, x]

∣∣∣dx

≤ 96ε.

Since ε can be arbitrarily small, this proves pointwise convergence of the
characteristic functions, and therefore convergence of νn to Arch1/2.
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Lemma 20. With the above notation,

max
k

∣∣∣∣θk −
kπ

N

∣∣∣∣ −−−→n→∞
0

Proof. Fix some θ, and let Pθ denote the projection on a line in direction θ,
so that

Pθ(x, y) = x cos θ + y sin θ,

and consider the permutation ρn(θ) derived from u,v by arranging i ∈ [1, n]
in increasing order of Pθ(ui, vi). We first estimate the inversion number
inv(ρn(θ)). Define

A(θ) =

{

((x, y), (x′, y′)) ∈ (R2)2 :
x < x′,

Pθ(x, y) > Pθ(x
′, y′)

}

.

We have
1

N
inv(ρn(θ)) =

∫∫
1A(θ) dνn dνn,

which is a continuous functional of νn. Since νn =⇒ Arch1/2, this implies

1

N
inv(ρn(θ)) −−−→

n→∞

∫∫
1A(θ) dArch1/2 dArch1/2 =

θ

π
(22)

To check the last equality, note that the integral is the probability that the
x-projections of two points chosen independently from Arch1/2 change order
after rotation by at most θ. By rotational invariance the angle of the line
between two such points is uniform on [0, π].

Equation (22) holds for any fixed θ. However, inv(ρn(θ)) is increasing in
θ ∈ [0, π], and consequently,

1

N
inv(ρn(θ)) −−−→

n→∞

θ

π
uniformly in θ ∈ [0, π]. (23)

Comparing (19) for i, j we find that for any ε > 0, for n large enough we
have

σ−1
k (i)− σ−1

k (j) = (ui − uj) cos θk + (vi − vj) sin θk + δ (24)

with |δ| < 2εn for all i, j. Say a pair (i, j) is θ-uncertain if

|(ui − uj) cos θk + (vi − vj) sin θk| ≤ 2ε.
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So, for any i < j we have that σ−1
k (i) > σ−1

k (j) if and only if (ρn(θk))(i) >
(ρn(θk))(j), unless (i, j) is θk-uncertain. Recall that any such pair i < j with
σ−1

k (i) > σ−1
k (j) contributes 1 to the number of inversions of σ−1

k (hence,
if (i, j) is not θk-uncertain, also to inv(ρn(θk))). Consequently, inv(ρn(θk))
differs from inv(σ−1

k ) = k by at most the number of θk-uncertain pairs.
It remains to bound the number of θ-uncertain pairs. Fix ε > 0, and

consider the set S4ε of all strips of width 4ε in R2. Since νn =⇒ Arch1/2, we
have

lim sup
n→∞

sup
A∈S4ε

νn(A) ≤ 2ε

because Arch1/2(A) ≤ 2ε for any such strip. This implies that for large n
for any i there are at most 2εn values of j such that (i, j) is θ-uncertain for
some θ. In summary, for n large enough, depending only on ε, and any θ,
the total number of θ-uncertain points is at most 2εn2.

Combining (24) and the above discussion we find that for large n

|inv(σk)− inv(ρn(θk))| ≤ 2εn2,

uniformly in θ. Since inv(σk) = k, combining with (23) yields the result.

Proof of Theorem 5. Combining Lemma 20 and (19) gives part (i):

max
i,t

∣∣( 2
nσ[tN ](i)− 1)− 2

n(ui cos(πt) + vi sin(πt))
∣∣ −−−→

n→∞
0. (25)

In particular, we have 2ui/n = 2i/n − 1 + o(1). By inserting (25) into the
definition of µt in (1), we find that µt(ωn) is close to Rtνn, where Rt is the
linear map Rt(x, y) = (x, x cos(πt)+y sin(πt)), in the sense the two measures
can be coupled with maximal distance tending to 0. Since νn =⇒ Arch1/2,
this implies µt(ωn) =⇒ Archt, which is (ii).

Next, we prove (iii). To sample from the scaled swap process η(ωn) one
may choose uniformly a pair of particles i, j and consider the time and lo-
cation of their swap. Consider the pair of points zi = 2

n(ui, vi) and zj =
2
n(uj, vj). If i, j are swapped at step k of the network, then σ−1

k (i)−σ−1
k (j) =

1, so by (24) we have for n large enough that |Pθk
(zi)−Pθk

(zj)| ≤ 2ε, and by
(19) the scaled location of the swap is given to within 2ε by Pθk

zi. Thus for
any i, j, the time of the (i, j) swap is given by the angle of a certain line, and
the location of the swap by the distance of the line from the origin, where
this line passes within distance ε of both zi and zj . Thus, unless zi, zj are
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sufficiently close, the location of the two points approximately determines
the time and place of the swap.

Specifically, for any pair z, z′, as ε→ 0 the set of possible times converges
to a single time, and the set of possible locations converges to a single loca-
tion. Since νn =⇒ Arch1/2, it follows that η(ωn) converges to the measure
resulting from applying the same operation to Arch1/2.

Let z, z′ ∈ R2 be chosen independently with law Arch1/2. Let θ ∈ [0, π]
be the angle that the line through them makes with the positive y-axis, and
let r := z1 cos θ + z2 sin θ be its signed distance from the origin. It remains
to prove that θ and r are independent, θ is uniform in [0, π] and r has law
semi. Independence and uniformity of θ are clear by rotational symmetry of
Arch1/2. Finally, to calculate the distribution of r we introduce some further
variables. Let ẑ, ẑ′ be z, z′ rotated by −θ and let ẑ = (r, y) and ẑ′ = (r, y′) be
their coordinates. Let w = y/

√
1− r2 and w′ = y′/

√
1− r2. Thus we have

z1 = r cos θ − w
√

1− r2 sin θ

z2 = r sin θ + w
√

1− r2 cos θ

z′1 = r cos θ − w′
√

1− r2 sin θ

z′2 = r sin θ + w′
√

1− r2 cos θ.

We can compute the probability density function of r using the Jacobian of
the transformation (z1, z2, z′1, z

′
2) &→ (r, θ, w, w′); after some straightforward

manipulation we obtain
∫ π

0

∫ 1

−1

∫ 1

−1

∣∣∣∣
∂(z1, z2, z′1, z

′
2)

∂(r, θ, w, w′)

∣∣∣∣
1

2π
√

1− ∥z∥22

1

2π
√

1− ∥z′∥22
dw dw′ dθ

= 2
π

√
1− r2

as required.
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