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Preface

This book grew out of lectures on Riemann surfaces which the author gave
at the universities of Munich, Regensburg and Miinster. Its aim is to give
an introduction to this rich and beautiful subject, while presenting methods
from the theory of complex manifolds which, in the special case of one
complex variable, turn out to be particularly elementary and transparent.

The book is divided into three chapters. In the first chapter we consider
Riemann surfaces as covering spaces and develop a few basics from topology
which are needed for this. Then we construct the Riemann surfaces which
arise via analytic continuation of function germs. In particular this includes
the Riemann surfaces of algebraic functions. As well we look more closely at
analytic functions which display a special multi-valued behavior. Examples
of this are the primitives of holomorphic 1-forms and the solutions of linear
differential equations.

The second chapter is devoted to compact Riemann surfaces. The main
classical results, like the Riemann-Roch Theorem, Abel’s Theorem and the
Jacobi inversion problem, are presented. Sheaf cohomology is an important
technical tool. But only the first cohomology groups are used and these are
comparatively easy to handle. The main theorems are all derived, following
Serre, from the finite dimensionality of the first cohomology group with
coefficients in the sheaf of holomorphic functions. And the proof of this is
based on the fact that one can locally solve inhomogeneocus Cauchy-
Riemann equations and on Schwarz’ Lemma.

In the third chapter we prove the Riemann Mapping Theorem for simply
connected Riemann surfaces (or Uniformization Theorem) as well as the
main theorems of Behnke-Stein for non-compact Riemann surfaces, i.c., the
Runge Approximation Theorem and the Theorems of Mittag-Leffler and
Weierstrass. This is done using Perron’s solution of the Dirichlet problem

vil



viil Preface

and Malgrange’s method of proof, based on Weyl’s Lemma, of the Runge
Approximation Theorem. In this chapter we also complete the discussion of
Stein’s Theorem, begun in Chapter 1, concerning the existence of holomor-
phic functions with prescribed summands of automorphy and present
Rohrl’s solution of the Riemann-Hilbert problem on non-compact Riemann
surfaces.

We have tried to keep the prerequisites to a bare minimum and to
develop the necessary tools as we go along. However the reader is assumed
to be familiar with what would generally be covered in one semester courses
on one complex variable, on general topology and on algebra. Besides these
basics, a few facts from differential topology and functional analysis have
been used in Chapters 2 and 3 and these are gathered together in the
appendix. Lebesgue integration is not needed, as only holomorphic or differ-
entiable functions (resp. differential forms) are integrated. We have also
avoided using, without proof, any theorems on the topology of surfaces.

The material presented corresponds roughly to three semesters of lec-
tures. However, Chapters 2 and 3 presuppose only parts of the preceding
chapters. Thus, after §1, 6 and 9 (the definitions of Riemann surfaces,
sheaves and differential forms) the reader could go directly to Chapter 2.
And from here, only §§12-14 are needed in Chapter 3 to be able to handle
the main theorems on non-compact Riemann surfaces.

The English edition includes exercises which have been added at the end
of every section and some additional paragraphs in §8, 17 and 29. As well,
the terminology concerning coverings has been changed. Thanks are due to
the many attentive readers of the German edition who helped to eliminate
several errors; in particular to G. Elencwajg, who also proposed some of
the exercises. Last but not least we would like to thank the translator,
B. Gilligan, for his dedicated efforts.

Miinster O. FORSTER
May, 1981

Addendum to Fourth Corrected Printing

For the second and fourth printing a number of misprints and errors have
been corrected. I wish to thank B. Gilligan, B. Elsner and O. Hien for pre-

paring lists of errata.

April 1999 0. FORSTER



CHAPTER 1
Covering Spaces

Riemann surfaces originated in complex analysis as a means of dealing with
the problem of multi-valued functions. Such multi-valued functions occur
because the analytic continuation of a given holomorphic function element
along different paths leads in general to different branches of that function. It
was the idea of Riemann to replace the domain of the function with a many
sheeted covering of the complex plane. If the covering is constructed so that
it has as many points lying over any given point in the plane as there are
function elements at that point, then on this “ covering surface ” the analytic
function becomes single-valued. Now, forgetting the fact that these surfaces
are “spread out” over the complex plane (or the Riemann sphere), we get
the notion of an abstract Riemann surface and these may be considered as
the natural domain of definition of analytic functions in one complex
variable.

We begin this chapter by discussing the general notion of a Riemann
surface. Next we consider covering spaces, both from the topological and
analytic points of view. Finally, the theory of covering spaces is applied to
the problem of analytic continuation, to the construction of Riemann sur-
faces of algebraic functions, to the integration of differential forms and to
finding the solutions of linear differential equations.

§1. The Definition of Riemann Surfaces

In this section we define Riemann surfaces, holomorphic and meromorphic
functions on them and also holomorphic maps between Riemann surfaces.

Riemann surfaces are two-dimensional manifolds together with an addi-
tional structure which we are about to define. As is well known, an

1



2 1 Covering Spaces

n-dimensional manifold is a Hausdorff topological space X such that every
point a € X has an open neighborhood which is homeomorphic to an open
subset of R".

1.1. Definition. Let X be a two-dimensional manifold. A complex chart on X
is a homeomorphism ¢: U - V of an open subset U — X onto an open
subset V < C. Two complex charts ¢;: U; — V,, i = 1, 2 are said to be holo-
morphically compatible if the map

@201 0 (U 0 Uy) = 0y(Up 1 Uy)
is biholomorphic (see Fig. 1).

Figure 1

A complex atlas on X is a system A = {¢;: U; - V}, i € I} of charts which
are holomorphically compatible and which cover X, ie., | )i, U; = X.

Two complex atlases 2 and A’ on X are called analytically equivalent if
every chart of 9 is holomorphically compatible with every chart of 2.

1.2. Remarks
(a) If : U — V is a complex chart, U, is openin U and V, == (U, ), then
¢| U, -V, is a chart which is holomorphically compatible with ¢: U — V.
(b) Since the composition of biholomorphic mappings is again biholo-
morphic, one easily sees that the notion of analytic equivalence of complex
atlases is an equivalence relation.

1.3. Definition. By a complex structure on a two-dimensional manifold X we
mean an equivalence class of analytically equivalent atlases on X.

Thus a complex structure on X can be given by the choice of a complex
atlas. Every complex structure T on X contains a unique maximal atlas 2[*.
If A is an arbitrary atlas in X, then 2* consists of all complex charts on X
which are holomorphically compatible with every chart of 2.



1 The Definition of Riemann Surfaces 3

1.4. Definition. A Riemann surface is a pair (X, ), where X is a connected
two-dimensional manifold and ¥ is a complex structure on X.

One usually writes X instead of (X, ) whenever it is clear which complex
structure X is meant. Sometimes one also writes (X, 21) where U is a re-
presentative of Z,

Convention. If X is a Riemann surface, then by a chart on X we always
mean a complex chart belonging to the maximal atlas of the complex struc-
ture on X.

Remark. Locally a Riemann surface X is nothing but an open set in the
complex plane. For, if ¢: U - V < C is a chart on X, then ¢ maps the open
set U < X bijectively onto V. However, any given point of X is contained in
many different charts and no one of these is distinguished from the others.
For this reason we may only carry over to Riemann surfaces those notions
from complex analysis in the plane which remain invariant under biholo-
morphic mappings, i.e., those notions which do not depend on the choice of
a particular chart.

1.5. Examples of Riemann Surfaces

(a) The Complex Plane C. Its complex structure is defined by the atlas
whose only chart is the identity map C — C.

(b) Domains. Suppose X is a Riemann surface and Y < X is a domain,
Le., a connected open subset. Then Y has a natural complex structure which
makes it a Riemann surface. Namely, one takes as its atlas all those complex
charts ¢: U - V on X, where U c Y. In particular, every domain Y = C isa
Riemann surface.

(c) The Riemann sphere P'. Let P! :==C U {00}, where oo is a symbol not
contained in C. Introduce the following topology on P!. The open sets are
the usual open sets U < C together with sets of the form V' U {co}, where
V < C is the complement of a compact set K — C. With this topology P! is a
compact Hausdorff topological space, homeomorphic to the 2-sphere S2. Set

U,=P"\{o}=C
U, =P"1\0}=C* U {c0}.
Define maps ¢;: U, > C, i = 1, 2, as follows. @, is the identity map and

(z) = 1/z forzeC*

02 0 forz=o0.

Clearly these maps are homeomorphisms and thus P! is a two-dimensional
manifold. Since U, and U, are connected and have non-empty intersection,
P! is also connected.
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The complex structure on P! is now defined by the atlas consisting of the
charts @;: U; - C, i = 1, 2. We must show that the two charts are holo-
morphically compatible. But ¢, (U; n U;) = ¢,(U, n U,)=C* and

, i C* - CX z1/z,
is biholomorphic.

Remark. The notation P! comes from the fact that one may consider P'
as the 1-dimensional projective space over the field of complex numbers.

(d) Tori. Suppose w,, w, € C are linearly independent over R. Define
I=2Zw, + Zw, = {nw, + mw,: n, me Z}.

I"is called the lattice spanned by w; and w, (Fig. 2). Two complex numbers
z, 2" € C are called equivalent mod I if z — 2’ € I'. The set of all equivalence
classes is denoted by C/T". Let n: C — C/T" be the canonical projection, i.e.,
the map which associates to each point z € C its equivalence class mod T

)

Figure 2

Introduce the following topology (the quotient topology) on C/T. A
subset U = C/T is open precisely if z7'(U) < C is open. With this topology
C/I" is a Hausdorff topological space and the quotient map n: C — C/T is
continuous. Since C is connected, C/I" is also connected. As well C/T" is
compact, for it is covered by the image under n of the compact
parallelogram

P:={Aw; + pw,: 4, pe[0, 1]}

The map = is open, .., the image of every open set V' < C is open. To see this
one has to show that V:=n"*(n(V)) is open. But

V=) (w+V)

wel

Since every set w + V is open, so is V.



1 The Definition of Riemann Surfaces 5

The complex structure on C/I" is defined in the following way. Let V < C
be an open set such that no two points in V are equivalent under I'. Then
U :=n(V)is open and n|V — U is a homeomorphism. Its inverse ¢: U — V
is a complex chart on C/T". Let U be the set of all charts obtained in this
fashion. We have to show that any two charts ¢;: U; > V;, i = 1, 2, belong-
ing to ¥ are holomorphically compatible. Consider the map

Y=, (P1_13 (Pl(Ul M Uz)_’(Pz(U1 N U,).

For every ze ¢,(U; n U,) one has n(y(z)) = @7 '(z) =n(z) and thus
¥(z) —zeT. Since I' is discrete and y is continuous, this implies that
Y(z) — z is constant on every connected component of ¢, (U, n U,). Thus
is holomorphic. Similarly y~ is also holomorphic.

Now let C/I" have the complex structure defined by the complex atlas .

Remark. Let S' ={z e C: |z| = 1} be the unit circle. The map which
associates to the point of C/T" represented by iw; + pw,, (%, u € R), the
point

(elni/l, eZniu) e Sl x Sl,

is a homeomorphism of C/T" onto the torus S§! x S!.

1.6. Definition. Let X be a Riemann surface and Y < X an open subset. A
function f: Y — C is called holomorphic, if for every chart y: U — V on X the
function

fod i p(U A Y)-C

is holomorphic in the usual sense on the open set (U n Y) < C. The set of
all functions holomorphic on Y will be denoted by ¢/(Y).

1.7. Remarks

(a) The sum and product of holomorphic functions are again holomor-
phic. Also constant functions are holomorphic. Thus ¢(Y) is a C-algebra.

(b) Of course the condition in the definition does not have to be verified
for all charts in a maximal atlas on X, just for any family of charts covering
Y. Then it is automatically fulfilled for all other charts.

(c) Every chart yy: U — ¥ on X is, in particular, a complex-valued func-
tion on U. Trivially it is holomorphic. One also calls i a local coordinate or
a uniformizing parameter and (U, ) a coordinate neighborhood of any point
a € U. In this context one generally uses the letter z instead of 1.

1.8. Theorem (Riemann’s Removable Singularities Theorem). Let U be an
open subset of a Riemann surface and let a € U. Suppose the function
fe €(U\{a}) is bounded in some neighborhood of a. Then f can be extended
uniquely to a function f e ¢(U).
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This follows directly from Riemann’s Removable Singularities Theorem
in the complex plane.
We now define holomorphic mappings between Riemann surfaces.

1.9. Definition. Suppose X and Y are Riemann surfaces. A continuous map-
ping > X — Y is called holomorphic, if for every pair of charts y,: U, - V;
on X and ¥,: U, > V, on Y with {U,) = U,, the mapping

Vo f Yl Vi-V,

is holomorphic in the usual sense.

A mapping f: X - Y is called biholomorphic if it is bijective and both
f:X—>Yandf ':Y— X are holomorphic. Two Riemann surfaces X and
Y are called isomorphic if there exists a biholomorphic mapping f: X — Y.

1.10. Remarks

(a) In the special case Y = C, holomorphic mappings f: X — C are
clearly the same as holomorphic functions.

(b) If X, Y and Z are Riemann surfaces and f: X —» Yand g: Y — Z are
holomorphic mappings, then the composition ¢ - f: X - Z is also
holomorphic.

(c) A continuous mapping f: X — Y between two Riemann surfaces is
holomorphic precisely if for every open set V < Y and every holomorphic
function Y € @(V), the “pull-back ” function ¥ - f: f ~(V)— C is contained
in ¢(f~"(V)). This follows directly from the definitions and the remarks
(1.7.c) and (1.10.b).

In this way a holomorphic mapping f: X — Y induces a mapping

freM)=o(f V). )=y f

One can easily check that f* is a ring homomorphism. If g: Y — Z is another
holomorphic mapping, W is open in Z, V=g~ (W) and U :=f " !(V), then
(g = f)*: O(W)— ¢(U) is the composition of the mappings g*: ¢(W) — ¢(V)
and f*: ¢(V)—- C(U), ie, (g - f) =f* - g*

1.11. Theorem (Identity Theorem). Suppose X and Y are Riemann surfaces
and [y, f-: X > Y are two holomorphic mappings which coincide on a set
A < X having a limit point a € X. Then f, and f, are identically equal.

Proor. Let G be the set of all points x € X having an open neighborhood W
such that f; | W = f,| W. By definition G is open. We claim that G is also
closed. For, suppose b is a boundary point of G. Then f,(b) = f,(b) since f;
and f, are continuous. Choose charts p: U—-»Von X andy: U -V onY
with b € U and f;(U) = U’. We may also assume that U is connected. The
mappings

gi=vy fico V>Vl
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are holomorphic. Since U n G # (7, the Identity Theorem for holomorphic
functions on domains in C implies g, and g, are identically equal. Thus
J1|U =f,|U. Hence b € G and thus G is closed. Now since X is connected
either G = f or G = X. But the first case is excluded since a € G (using the
Identity Theorem in the plane again). Hence f; and f, coincide on all of X.

O

1.12. Definition. Let X be a Riemann surface and Y be an open subset of X
By a meromorphic function on Y we mean a holomorphic function f* Y’ — C,
where Y’ < Y is an open subset, such that the following hold:

(i) Y\Y contains only isolated points.
(ii) For every point p e Y\Y’ one has

lim| f{x)| = o0.

The points of Y\Y" are called the poles of f. The set of all meromorphic
functions on Y is denoted by .#(Y).

1.13. Remarks
(a) Let (U, z) be a coordinate neighborhood of a pole p of fwith z(p) = 0.
Then f may be expanded in a Laurent series

a0
f=3% ¢z

v=—k
in a neighborhood of p.

(b) .#(Y) has the natural structure of a C-algebra. First of all the sum
and the product of two meromorphic functions f; g € .#(Y)are holomorphic
functions at those points where both f and g are holomorphic. Then one
holomorphically extends, using Riemann’s Removable Singularities
Theorem, f + g (resp. fg) across any singularities which are removable.

1.14. Example. Suppose n > 1 and let
Fey=2"4c¢, 2" '+ +¢, c¢eC,

be a polynomial. Then F defines a holomorphic mapping F: C — C. If one
thinks of C as a subset of P!, then lim,_,|F(z)| = co. Thus F e .#(P).

We now interpret meromorphic functions as holomorphic mappings into
the Riemann sphere.

1.15. Theorem. Suppose X is a Riemann surface and f € .4 (X). For each pole
p of f. define fip) :== 0. Then f: X — P! is a holomorphic mapping. Conversely,
iff: X —> P is a holomorphic mapping, then fis either identically equal to o or
else f ~'(o0) consists of isolated points and f: X\ f ~ '(00) — C is a meromorphic
Junction on X.
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From now on we will identify a meromorphic function f ¢ .# (X') with the
corresponding holomorphic mapping f: X — P!

PROOF

(a) Let fe .#(X) and let P be the set of poles of f. Then f induces a
mapping f: X — P! which is clearly continuous. Suppose ¢: U - V and
. U — V" are charts on X and P resp. with f{U) < U’. We have to show
that

g=u [ 9 VoV

is holomorphic. Since f'is holomorphic on X\P, it follows that g is holomor-
phic on V\e(P). Hence by Riemann’s Removable Singularities Theorem, g is
holomorphic on all of V.

(b) The converse follows from the Identity Theorem (1.11). O

1.16. Remark. From (1.11) and (1.15) it follows that the Identity Theorem
also holds for meromorphic functions on a Riemann surface. Thus any
function f'e .# (X ) which is not identically zero has only isolated zeros. This
implies that .#(X) is a field.

ExEercises (§1)

1.1. (a) One point compactification of R". For n > 1 let oc be a symbol not belonging
to R". Introduce the following topology on the set X :=R" U {oo}. A set
U < X is open, by definition, if onc of the following two conditions is
satisfied:

(i) oo ¢ U and U is open in R" with respect to the usual topology on R™.
(ii) oo e U and K = X\U is compact in R" with respect to the usual topology
on R".

Show that X is a compact Hausdorff topological space.
(b) Stereographic projection. Consider the unit n-sphere

ST ={(x1s..0s Xpsg)ERTI X2 4 b xE =1
and the stereographic projection
a: 8" > R" U {00}

given by

1 .
‘i (X1, -os X)W xppy #F 1
O(X1s ooy Xy q) =1 & Fntt

‘ . if X071 = 1.
Show that ¢ is a homeomorphism of §" onto X.

1.2. Suppose

(? S) e GL(2, C).
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1.3.

1.4.

L5,

Show that the linear fractional transformation

_az+b
Tez+d’

fiz)

which is holomorphic on {z € C: cz + d # 0}, can be extended to a meromorphic
function on P! (also denoted by ). Show that f: P! — P! is biholomorphic, i.e.,
is an automorphism of P!,

Identify P! with the unit sphere in R?® using the stereographic projection
6:8* 5 C v {0} = P!

defined in Ex. 1.1. Let SO(3) be the group of orthogonal 3 x 3-matrices having
determinant 1, ie.,

SO(3)={4 e GL(3, R): ATA =1, det 4 = 1}.
For every A € SO(3), show that the map

g A-g 1 plop!
is biholomorphic.
[Hint: Use the fact that every matrix 4 € SO(3) may be written as a product

A=A, - A, where
010
A,»=(0 0 1)
1 00

or else is a matrix of the form
B 0)
0 1

Let I' = Zw, + Zw, and T' = Zw' + Zw’, be two lattices in C. Show that
I' = I'" if and only if there exists a matrix A € SL(2, Z) := {A € GL(2, Z):

det A= 1} SUCh [hat
‘w:l) (wl).
[OF] [oF]

(a) Let T, T < C be two lattices. Suppose « € C* such that o’ < I'"". Show that
the map C — C, z+» az induces a holomorphic map

C/T -C/T",

with B ¢ SO(2).]

which is biholomorphic if and only if oI’ = I
(b) Show that every torus X = C/I is isomorphic to a torus of the form

X(t)=C/HZ + Znr),
where 7 € C satisfies Im(z) > 0.
(c) Suppose ‘C‘ Z € SL(2, Z) and Im(7) > 0. Let

_at+b
ct+d’

’

Show that the tori X(z) and X (z') are isomorphic.
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§2. Elementary Properties of Holomorphic Mappings

In this section we note some of the elementary topological properties of
holomorphic mappings between Riemann surfaces. Using these we show
that one can easily derive some of the famous theorems of complex analysis,
e.g., Liouville’s Theorem and the Fundamental Theorem of Algebra.

2.1. Theorem (Local Behavior of Holomorphic Mappings). Suppose X and
Y are Riemann surfaces and - X — Y is a non-constant holomorphic mapping.
Suppose a € X and b:=fla). Then there exists an integer k > 1 and charts
@:U—>VonXandy: U — V' on Y with the following properties:

(1) ae U, pla)=0; be U, y(b)=0.
(i) AU) < U
(iii) The map F==4 -~ @~ ': V> V'is given by

F(z)=zZ¢ forallzeV.

Proor. First we note that there exist charts ¢,: U; >V, on X and
: U'— V' on Y such that properties (i) and (ii) are satisfied if one replaces
(U, @) by (U,, ¢,). Now it follows from the Identity Theorem that the
function

fl’:ll"’f‘(Pflim“*V'C@

is non-constant. Since f,(0) = 0, there is a k = 1 such that f,(z) =Z'¢g(z),
where g is a holomorphic function on V; with g(0) # 0. Hence there exists a
neighborhood of 0 and a holomorphic function # on this neighborhood such
that h* = g. The correspondence z > zh(z) defines a biholomorphic mapping
a: V3 — V of an open neighborhood V, = V; of zero onto an open neighbor-
hood V of zero. Let U := ¢ }(V,). Now replace the chart ¢,: U, — V, by the
chart ¢: U—V where ¢ =a - ¢,. Then by construction the mapping
F=y - fo ¢ ! satisties F(z) =z~ O

2.2. Remark. The number k in Theorem (2.1) can be characterized in the
following way. For every neighborhood U, of a there exist neighborhoods
U = U, of aand W of b = fla) such that the set f ~!(y) n U contains exactly
k elements for every point y € W, y # b. One calls k the multiplicity with
which the mapping f takes the value b at the point ¢ or one just says that f
has multiplicity k at the point a.

2.3. Example. Let f{z) = z* + ¢, z2*7 ! + -+ + ¢, be a polynomial of degree k.

Then f can be considered as a holomorphic mapping f: P! — P! where
floo) = oo (cf. §1). Using a chart about oo, one can easily check that oo is
taken with multiplicity k.



2 Elementary Properties of Holomorphic Mappings 11

24. Corollary. Let X and Y be Riemann surfaces and let [ X - Y be a
non-constant holomorphic mapping. Then [is open, i.e., the image of every open
set under f is open.

Prookr. It follows directly from Theorem (2.1) that if U is a neighborhood of
a point g € X then flU) is a neighborhood of the point fla). This implies f is
open. O

2.5. Corollary. Let X and Y be Riemann surfaces and let ' X — Y be an
injective holomorphic mapping. Then fis a biholomorphic mapping of X onto

AX).

Prook. Since fis injective, in the local description of f given by Theorem
(2.1), one always has k = 1. Hence the inverse mapping f~': fIlX)— X is
holomorphic. O

2.6. Corollary (Maximum Principle). Suppose X is a Riemann surface and
J X - C is a non-constant holomorphic function. Then the absolute value of [
does not attain its maximum.

ProOF. Suppose that there were a point a € X such that
R:=|f(a)] = sup{| /(x)]: xe X}
Then
fiX)ce K:={zeC: |z| <R}

Since f{X) is open, it lies in the interior of K. This contradicts the assumption
that fla) € 0K. O

2.7. Theorem. Suppose X and Y are Riemann surfaces. Suppose X is compact
and f: X — Y is a non-constant holomorphic mapping. Then Y is compact and f
is surjective.

PrOOF. By (2.4) flX) is open. Since X is compact, f{X) is compact and thus
closed. Since the only subsets of a connected topological space which are
both open and closed are the empty set and the whole space, it follows that
AIX) =Y. Thus fis surjective and Y compact. O

2.8. Corollary. Every holomorphic function on a compact Riemann surface is
constant.

This follows from Theorem (2.7) since C is not compact.

2.9. Corollary. Every meromorphic function f on P! is rational, i.e., can be
written as the quotient of two polynomials.
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Proor. The function [ has only finitely many poles. For if it did have
infinitely many poles then they would have a limit point and by the Identity
Theorem f would be identically equal to co. We may assume the point oo is
not a pole of f. Otherwise consider 1/f instead of . Now suppose ay, ...,
a, € C are the poles of fand

hz)= 3 ejfz-al,

Jj=—ky
is the principal part of f at the pole a,, for v=1, ..., n. Then the function
g:=f— (hy + -+ + h,) is holomorphic on P! and thus a constant by Corol-
lary (2.8). From this it follows that f is rational. O

2.10. Liouville’s Theorem. Every bounded holomorphic function f: C — C is
constant.

ProOF. By Riemann’s Removable Singularities Theorem (2.8) f can be analy-
tically continued to a holomorphic mapping f: P! - C. By Corollary (2.8) f
is constant. 0

2.11. The Fundamental Theorem of Algebra. Let n > 1 and let
fe) =+ et

be a polynomial with coefficients ¢, € C. Then there exists at least one point
a € C such that fla) = 0.

ProOF. The polynomial f may be considered as a holomorphic mapping
£+ P! - P!, where f{oo) = co. By Theorem (2.7) this mapping is surjective
and thus 0 € f(C). O

2.12. Doubly Periodic Functions. Suppose w,, @, € C are linearly indepen-
dent over R and I' :=Zw, + Zw, is the lattice spanned by them. A mero-
morphic function f: C — P! is called doubly periodic with respect to I, if

fz)=Az+w) foreveryzeCandweT.

Clearly, for this to hold it suffices that f{z) = f{z + w,) = flz + w,) for every
ze C. Let m: C - C/T be the canonical map. Then the doubly periodic
function f induces a function F: C/I" — P! such that f=F - 7. It follows
directly from the definition of the complex structure on C/I" that F is a
meromorphic function on C/T". Conversely, for any meromorphic function
F:C/T - P!, the composition f = F - n: C — P! is a meromorphic function
which is doubly periodic with respect to I'. Thus the meromorphic functions
on the torus C/I" are in one-to-one correspondence with the meromorphic
functions on C, doubly periodic with respect to I'. Hence from Theorem (2.7)
we have:
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2.13. Theorem. Every doubly periodic holomorphic function f: C - C is
constant. Every non-constant doubly periodic meromorphic function f+ C — [P?
attains every value ¢ e P!,

EXERCISES (§2)

21. Let I' = C be a lattice. The Weierstrass §-function with respect to I is defined
by

1 | 1

=+ Sl cor o)

(a) Prove that #r is a doubly periodic meromorphic function with respect to I’
which has poles at the points of I'. [Hint: First consider the derivative

Pr(z) =

5]

orz)= 2y ! J

wel (z;w)j.

(b) Let fe .#(C) be a doubly periodic function with respect to I' which has its
poles at the points of I' and which has the following Laurent expansion
about the origin

®
Mz)= 3 2%, whercc_,=1,¢c_,=co=0.
k==2

Prove that f= ;..

2.2. Suppose X is a Riemann surface and f: X — C is a non-constant holomorphic
function. Show that Re(f) does not attain its maximum.

2.3. Suppose f: C - C is a holomorphic function, whose real part is bounded from
above. Then f'is constant.

2.4. Suppose f: X - Y is a non-constant holomorphic map and
f*eY)y->X),  [Ho)=¢ f
Show that f* is a ring monomorphism.

2.5. Suppose p,, ..., p, are points on the compact Riemann surface X and
X" =X\{p., ..., p.}. Suppose

X sC

is a non-constant holomorphic function. Show that the image of f comes arbi-
trarily close to every ¢ € C.

§3. Homotopy of Curves. The Fundamental Group

In this section we present some of the topological results connected with the
notion of homotopy of curves.

By a curve in a topological space X we mean a continuous mapping
u:l— X, where I:=[0, 1] < R is the unit interval. The point a :=u(0) is
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called the initial point and b = (1) the end point of u. One also says that u is
a curve from a to b or that the curve u joins a to b.

Let us recall that a topological space X is called arcwise connected or
pathwise connected if any two points a, b € X can be joined by a curve. An
arcwise connected space is also connected, i.c., there does not exist a decom-
position X = U, u U, where U, and U, are non-empty disjoint open sets.
A topological space is called locally arcwise connected if every point has a
neighborhood basis of arcwise connected sets. In particular this is always the
case for manifolds. A connected, locally arcwise connected space X is
(globally) arcwise connected. For one can easily show that the set of all
points x € X which can be joined with a given pointa € X is both open and
closed.

3.1. Definition. Suppose X is a topological space and @, b € X. Two curves u,
v: I = X from a to b are called homotopic, denoted u ~ v, if there exists a
continuous mapping 4: I x I —» X with the following properties:

(i) A(t, 0) = u(r) for every t € I,
(ii) Az, 1} = v(t) for every t € I,
(iii) A(0, s) = a and A(1, s) = b for every s € 1.

Remark. If one sets ug(t) = A(t, s), then every ug is a curve from g to b and
ug = u, u; = v. The family of curves (u,)y ., is said to be a deformation of
the curve u into the curve v or a homotopy from u to v, cf. Fig. 3.

Figure 3

3.2. Theorem. Suppose X is a topological space and a, b € X. Then the notion
of homotopy is an equivalence relation on the set of all curves from a to b.

Proor. Reflexitivity and symmetry are clear. As to the transitivity, suppose
u, v, w: I - X are three curves from a to b with u ~ v and v ~ w. We must
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show that u ~w. By assumption there exist continuous mappings A,
B: I x I — X such that for every t, s e I the following hold:

A(t, 0) = u(t),
A(t, 1) = B(t, 0) = (1),
B(t, 1) = w(t),
A(0, s) = B(0, s) = a,
A(l,s)=B(l,s)=b
Define C: I x I - X by
c. S):_]A(t, 25) for0 <s<i,

C|B(t,2s—1) ford<s<l.
Then C is continuous and is a homotopy from u to w. 0O
3.3. Lemma. Suppose u: I - X is a curve in the topological space X and

@: I — I is a continuous mapping such that ¢(0) =0 and ¢(1) = 1. Then the
curves u and u - @ are homotopic.

ProoF. Define A: I x I - X by
Aty s)=u((1 — s)t + so(t))-
Then A 1s continuous and
A(t, 0) = u(t), A(t, 1) = (u = o)1)
A, s)=u(0)  A(1, s)=u(1)

for every ¢, s € I. Thus v and u - ¢ are homotopic. ]

3.4. Definition. Suppose a, b and c¢ are three points in a topological space X,
u: I - X isacurve fromatob and v: I - X is a curve from b to ¢.

(i) The product curve u - v: I - X from a to c is defined by

 [u(2t) for0<r<}
v(2t — 1) fori<t< 1.

{u - o)1)

(1) The inverse curve u™: I - X from a to b is defined by
u (t)==u(l —t) foreverytel.

The product curve u - v first traces the points of the curve « and then those of
the curve v but at twice the speed. The inverse curve u~ passes along the
same points as u but in the opposite direction.

One can easily check that ifu,,u,: I - X are homotopic curves from a to
b and v,, v,: I - X are homotopic curves from b to ¢, then u; - vy ~u; - v,
and u; ~u,;.
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3.5. Definition. Suppose X is a topological space and a € X. By the constant
curve at a is meant the constant mapping u,: 1 — X, i.e., uy(t) = a for every
tel.

3.6. Theorem. Suppose X is a topological space and a, b, c € X. Suppose u, v,
w: I — X are curves in X such that

u(0) = a, u(l) = b = v(0), v(1) = ¢ = w(0), w(l)=d.

Further let uy be the constant curve at a, vy the constant curve at b. Then the
following homotopies exist:

(i) ug -u~u~u-u,,
(1) u-u” ~ug,
(i) (u-v)-w~u-(v-w).

PRrOOF
(i) By the definition of the product of curves

. _ [uo(2t) =u(0) for0<t<}
(g u)m—{u(z[_l) oro <<t

Thus ug - u = u -, where ¥y: I — I is the parameter transformation defined
by y(t)=0for 0 <t <%, () =2t — 1 for $ <t < 1. Thus it follows from
Lemma (3.3) that u, - u ~ u. Similarly u - vy ~ u.

(ii) By definition

oy - R0 for 0 <t <4,
(b)) = u(2—-2t) fori<t<l.
Now define 4: I x I - X by
- 1
Afr, 5) = I =5) - for0 <<,

lu2(1 = 6)(1 —5)) fori<r<l.

Then A4 is a homotopy from u - 4~ to the point curve u,.
(iii) One can easily check that

U-v)w=(u-(0-w)-y.
where : I — I is the parameter transformation given by:

(@) ¥(0)=0,y(@) =2 ¥y(G) =3 y(1)=1

(b) ¥ is affine linear on each of the intervals [0, 4], [4, 1], [3. 1].
Hence the result follows from Lemma (3.3). J

Remark. Analogous to (iii) is the following fact. If uy, ..., u, are curves in
X such that the initial point of each u,, ; equals the end point of u,, then
bracketing the product u; - u, * - - u, in various ways corresponds to
taking various parameter transformations : I — I such that y(0) = 0 and
(1) = 1. In particular all such bracketings are homotopic.
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3.7. Definition. A curve u: I - X in a topological space X is called closed if
u(0) = u(1). A closed curve u: I — X with initial and end point a is said to be
null-homotopic if it is homotopic to the constant curve at a.

3.8. Theorem and Definition. Suppose X is a topological space and a € X isa
point. The set n,(X, a) of homotopy classes of closed curves in X with initial
and end point a forms a group under the operation induced by the product of
curves. This group is called the fundamental group of X with base point a.

Notation. For any closed curve u denote by cl{u) its homotopy class. Thus
the group operation in n,(X, a) is by definition cl(u) cl{v) = cl(u - v).

Proor. The fact that the group operation is well-defined follows from the
remark at the end of Definition (3.4). Theorem (3.6) implies that the opera-
tion is associative and the class of null homotopic curves is the identity
element. Inverses satisfy

cl(u)™ ' =cl(u™). |

3.9. Dependence on the Base Point. Suppose X is a topological space and a,
b € X are points which are joined by a curve w. Then a mapping

fim(X, a) - my(X, b)
can be defined as follows:

Slel@))=cl{w™ - u- w).
One easily sees that this mapping is an isomorphism. Thus for an arcwise
connected space X the fundamental group is essentially independent of the
base point and we often just write 7, (X) instead of #,(X, a). Note however
that the isomorphism 7 (X, a) - n,(X, b) depends in general on the curve w
joining a to b used in its construction. If w, is another curve from a to b and
fii (X, a) = my(X, b) is defined by
filel(w) =cliwy - u - w,),
then the automorphism
F ::ffl "‘f; 71'1(X, a)w‘}nl(xs (l)
satisfies F(cl(u)) = cl(w, - w™ - u-w- wi), ie,
1

Fla)=y a7~ ' forevery o emn (X, a),

where y denotes the homotopy class of the closed curve w, - w™. Thus if
7,(X, a) is abelian, then this shows that = (X, a) and (X, b) are canon-
ically isomorphic.

3.10. Definition. An arcwise connected topological space X is called simply
connected if m,(X)=0.
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Remark. Although the group operation in m,(X) is written multiplica-
tively, one writes 7,(X) = 0 if n,(X) only contains the identity.

3.11. Theorem. Suppose X is an arcwise connected, simply connected topologi-
cal space and a, b € X. Then any two curves u, v: I - X from a to b are
homotopic.

PROOF. Let u, (resp. vo) be the constant curve at a (resp. b). Now (X, b)
=0 implies v~ -u~wvo and thus v-(v” -u)~v-vy. But v-(v7 - u)~
(v-v7) - u~ug-u~uandv- vy~ vby Theorem (3.6), ie, u ~ v. O

3.12. Examples

(a) A subset X — R"is called star-shaped with respect to a point a € X if
for every point x € X the straight line segment da + (1 — A)x, 0 <A< 1, is
contained in X. Every star-shaped subset X — R" is simply connected. For
suppose u: I — X is a closed curve with initial and end point a (with a as
above). Then

A: I xI-X, A, s)=sa+ (1 — s)u(t)

is a homotopy from u to the point curve at a. Thus 7,(X, a) = 0. In particu-
lar, the complex plane C and every disk in C are simply connected. As well
C\R, and C\R_ are simply connected, where R, (resp. R_) denotes the
positive (resp. negative) real axis.

(b) The Riemann sphere P! is also simply connected. One can see this as
follows. Let U, :=P'\{o0} and U, :=P!\{0}. Since U, and U, are homeo-
morphic to C, they are simply connected. Now suppose u: [ — P! is any
closed curve starting and ending at 0. Since ! is compact and u is continuous,
one can find finitely many, not necessarily closed, curves u,, ...,
Uy, +1: 1 — P! with the following properties:

(i) The product
v::l’ll ’ u2 e u2n+]

is, up to a parameter transformation, equal to the curve u and thus is
homotopic to u.

(ii) The curves uy,,, k=0, ..., n, lie entirely in U,, and the curves u,,,
k=1,..., n, lie entirely in U,. The initial and end points of the u,, are
different from co. Now by Theorem (3.11) one can find curves u5,, homoto-
pic to u,,, lying entirely in U, \{cc}. Then

Vi=ug Uy Uyt Uy Uy
is homotopic to v and thus to u as well and lies in U,. Since m,(U,) = 0, v'is

null homotopic. Thus u is null homotopic too.

3.13. Definition. Suppose X is a topological space and u, v: I - X are two
closed curves in X, which do not necessarily have the same initial point.
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Then the curves u and v are called free homotopic as closed curves, if there
exists a continuous mapping A: I x I — X with the following properties:

(1) A(t,0) =u(r) for every t € I,
(it) Az, 1) = v(2) for every t e I,
(iii) A0, s) = A(1,s) foreverysel.

Remark. If one sets u(t) := A(t, s), then each u, is a closed curve in X and
uy = u, u; = v. The family of curves u,, 0 < s < 1, gives a deformation of the
curve u into the curve v. Let w(t):=A(0,t), 0 <t < 1. Then w is a curve
which joins a :=u(0) = u(1) to b := v(0) = v(1). Note that for each s the point
w(s) is the initial and end point of the curve u,. It is easy to see (cf. Fig. 4)
that u is homotopic, while keeping the initial and end point a fixed, to the
curve w - v w’.

Figure 4

3.14. Theorem. A pathwise connected topological space X is simply connected
if and only if any two closed curves in X are free homotopic as closed curves.
The proof is simple and is left to the reader.

3.15. Functorial Behavior. Suppose f: X — Y is a continuous mapping be-
tween the topological spaces X and Y. If u: I — X is a curve in X, then
feu:I—Yisacurvein Y. Ifu, u': I — X are homotopic, then f - u, f - u’ are
also homotopic. Hence f induces a mapping

S m(X, a) - w, (Y, fla))

of the fundamental groups. This mapping is a group homomorphism, since
fo-vy=(fou) (fev) If g: Y- Z is another continuous mapping,
then (g o f), = gy ° fy-

EXERCISES (§3)

3.1. (a) Suppose X is a manifold and U,, U, = X are two open, connected and
simply connected subsets such that U, n U, is connected. Show that
U, u U, is simply connected.
(b) Using (a) show that S" for n > 2 is simply connected.

3.2. Suppose X and Y are arcwise connected topological spaces. Prove
n (X x Y) = ny(X) x 7, (Y).
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3.3. Let (X, a) and (Y, b) be topological spaces with base pointsa € X and b € Y. Let
f, g1 X = Y be two continuous maps with fla) = g(a) = b. Then fand g are called
homotopic if there exists a continuous map

F:X x[0,1]-Y

such that F(x, 0) = f(x) and F(x, 1) = g(x) for every x € X and F(a, t) = b for
every t ¢ [0, 1]. Consider the induced maps

f*s Ix: 7T1(X, a)ﬂnl(yv b)

Show that f, = g, if f and g are homotopic.

§4. Branched and Unbranched Coverings

Non-constant holomorphic maps between Riemann surfaces are covering
maps, possibly having branch points. For this reason we now gather
together the most important ideas and results from the theory of covering
spaces.

4.1. Definition. Suppose X and Y are topological spaces and p: Y » X is a
continuous map. For x € X, the set p~!(x) is called the fiber of p over x. If
y e p *(x), then one says that the point y lies over x. If p: Y - X and
q: Z— X are continuous maps, then a map f: Y — Z is called fiber-
preserving if p = q - j. This means that any point y € Y, lying over the point
x € X, is mapped to a point which also lies over x.

A subset A of a topological space is called discrete if every point a € 4 has
a neighborhood V such that ¥ n A4 = {a]. A mapping p: Y - X, between
topological spaces X and Y, is said to be discrete if the fiber p~!(x) of every
point x € X is a discrete subset of Y.

4.2. Theorem. Suppose X and Y are Riemann surfaces and p: Y - X is a
non-constant holomorphic map. Then p is open and discrete.

PrOOF. By (2.4) the map p is open. If the fiber of some point a € X were not
discrete, then, by the Identity Theorem (1.11), p would be identically equal to
a. O

If p: Y = X is a non-constant holomorphic map, then we will say that Y is
a domain over X.

A holomorphic (resp. meromorphic) function f: Y — C (resp. f: Y — P')
may also be considered as a multi-valued holomorphic (meromorphic) func-
tion on X. If x € X and p~*(x) = {y;: j € J}, then the fly;), j € J, are the
different values of this multi-valued function at the point x. Of course it
might turn out that p~!(x) is a single point or is empty.
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As an example, suppose Y = C, X = C* and p = exp: C - C*. Then the
identity mapping id: C — C corresponds to the multi-valued logarithm on
C*. For, the set exp~!(b), where b e C*, consists of exactly the various
values of the logarithm of b. The following diagram illustrates this.

id

C —

exp " log
C *

4.3 Definition. Suppose X and Y are Riemann surfaces and p: ¥ — X is a
non-constant holomorphic map. A point y € Y is called a branch point or
ramification point of p, if there is no neighborhood V of y such that plVis
injective. The map p is called an unbranched holomorphic map if it has no
branch points.

4.4. Theorem. Suppose X and Y are Riemann surfaces. A non-constant holo-
morphic map p: Y — X has no branch points if and only if p is a local homeo-
morphism, i.e., every point y € Y has an open neighborhood V which is mapped
homeomorphically by p onto an open set U in X.

PrOOF. Suppose p: Y — X hasno branch points and y e Y is arbitrary. Since
y is not a branch point, there exists an open neighborhood V of y such that
p|V is injective. Since p is continuous and open, p maps the set ¥ homeo-
morphically onto the open set U := p(V).

Conversely, assume p: Y — X is a local homeomorphism. Then for any
y € Y there exists an open neighborhood V of y which is mapped homeo-
morphically by p onto an open set in X. In particular, p|V is injective
and y is not a branch point of p. O

4.5. Examples

(a) Suppose k is a natural number >2 and let p,: C — C be the mapping
defined by p,(z):=z* Then 0 € C is a branch point of p, and the mapping
px|C* - C is unbranched.

(b) Suppose p: Y — X is a non-constant holomorphic map, y € Y and
x = p(y). Then y is a branch point of p precisely if the mapping p takes the
value x at the point y with multiplicity > 2, cf. (2.2). By Theorem (2.1) the
local behavior of p near y is just the same as the local behavior of
the mapping p, in example (a) near the origin.

(¢) The mapping exp: C — C* is an unbranched holomorphic map. For
€xp is injective on every subset V' = C which does not contain two points
differing by an integral multiple of 2.

(d) Suppose I' = C is a lattice and n: C — C/T" is the canonical quotient
mapping, cf. (1.5.d). Then = is unbranched.
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4.6. Theorem. Suppose X is a Riemann surface, Y is a Hausdorff topological
space and p: Y — X is a local homeomorphism. Then there is a unique complex
structure on 'Y such that p is holomorphic.

Remark. By (2.5) it follows that p is even locally biholomorphic.

ProOF. Suppose ¢,: U; - V = C is a chart of the complex structure of X
such that there exists an open subset U < Y with p|U — U, a homeo-
morphism. Then ¢ :=¢, - p: U— V is a complex chart on Y. Let 2 be the
set of all complex charts on Y obtained in this way. It is easy to see that the
charts of 21 cover Y and are holomorphically compatible with one another.
Now let Y have the complex structure defined by 2. Then the projection p is
locally biholomorphic and so, in particular, is a holomorphic mapping.
Uniqueness may be proved as follows. Suppose 21’ is another complex
atlas on Y such that the mapping p: (Y, ') - X is holomorphic and thus
locally biholomorphic. Then the identity mapping (Y, 2)— (Y, ') is
locally biholomorphic and thus is a biholomorphic mapping. Hence 2l and
2’ define the same complex structure. O

4.7. The Lifting of Mappings. Suppose X, Yand Z are topological spaces and
p: Y= X and f: Z— X are continuous maps. Then by a lifting of f with
respect to p is meant a continuous mapping g: Z — Y such thatf=p - g, ie,
the following diagram commutes.

Y

4.8. Theorem (Uniqueness of Lifting). Suppose X and Y are Hausdorff spaces
and p: Y — X is a local homeomorphism. Suppose Z is a connected topological
space and f> Z — X is a continuous mapping. If g, g,: Z — Y are two liftings
of fand g,(zo) = g2(z,) for some point z, € Z then g, = g, .

Proor. Let T:=1{z € Z: g,(z) = ¢,(z)}. The set T is closed, since it is the
preimage of the diagonal A Y x Y under the mapping (94, g;): Z—
Y x Y. We claim that T is also open. Let z € T and let g,(z) = g,(z) = y.
Since p is a local homeomorphism, there exists a neighborhood V of y which
is mapped by p homeomorphically onto a neighborhood U of p(y) = f(z).
Since g, and g, are both continuous, there is a neighborhood W of z with
gi(W) < V. Now let ¢: U — V be the inverse of p| V' — U and note that ¢ is
continuous. Because p < g; = f,onehasg;| W= ¢ « (f | W)fori=1, 2. Thus
g,|W=g,|Wand W < T. Hence T is open. Since Z is connected and T is
non-empty, T = Z and thus g, = g,. O
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4.9. Theorem. Suppose X, Y and Z are Riemann surfaces, p: Y — X is an
unbranched holomorphic map and > Z — X is any holomorphic map. Then
every lifting g: Z — Y of f is holomorphic.

PRrOOF. Suppose ¢ € Z is an arbitrary point and let b :=g(c) and a = p(b) =
flc). There exist open neighborhoods V of b and U of a such that p|V — U is
biholomorphic. Suppose @: U — V is the inverse map. Since ¢ is continuous,
there is an open neighborhood W of ¢ such that g(W)< V. But f=p- g
implies g| W = ¢ « (f | W) and thus g is holomorphic at the point ¢. [

Consequence. Suppose X, Y and Z are Riemann surfaces and p: Y - X
and ¢g: Z - X are unbranched holomorphic maps. Then every continuous
fiber-preserving map f: Y — Z is holomorphic. For fis a lifting of p with
respect to q.

Lifting of Curves. Suppose X and Y are Hausdorff spacesand p: ¥ — X is
a local homeomorphism. We are particularly interested in the lifting of
curves u: [0, 1] — X. By Theorem (4.8) a lifting &: [0, 1] — Y of u, if it exists
at all, is uniquely determined once the lifting of the initial point is specified.

In the following we again let I =0, 1].

4.10. Theorem (Lifting of Homotopic Curves). Suppose X and Y are Haus-
dorff spaces and p: Y — X is a local homeomorphism. Suppose a, b € X and
ae Y is a point such that p(a) = a. Further suppose a continuous mapping
A: 1 x I - X is given such that A(0, s) = a and A(1, s) = b for every s € I. Set

uy(t) = A(t, s).
If every curve u, can be lifted to a curve ii; with initial point 4, then gy and 1,
have the same end point and are homotopic.

Proor. Define a mapping A: I x I - Y by A(t, 5) ==d(t).

Claim (a) There exists ¢, > 0 such that A is continuous on [0, e[ x 1.

Proof. There are neighborhoods V of @ and U of a such that p|V > U isa
homeomorphism. Let ¢: U — V be the inverse map. Since A(0 x I) = {a}
and A is continuous, there exists &, > 0 such that A([0, ¢,] x I) = U. Be-
cause of the uniqueness of the lifting of curves, one has

[0, o] = @ = uy|[0, &9] for every s e I.

Thus A = ¢ - Aon [0, ¢,] x I and this implies 4 is continuous on [0, g0 x I.

Claim (b) The mapping A is continuous on all of I x I.

Proof. Suppose to the contrary that there is a point (to, ) € I x I at which 4
is not continuous. Let t be the infinum of all those r such that A4 is not
continuous at (t, ¢). By (a) © > ¢,. Let x:=A(z, o) and y = A(z, 0) = ii,(1).
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There are neighborhoods V of y and U of x such that p|V — U is a homeo-
morphism. Let ¢: U — V be the inverse. Since A is continuous, there exists
¢ > 0 such that A(I,(r) x I,(¢)) = U, where

LEy={tel: |t—¢&| <e}.

In particular u,(I,(r)) = U and thus

| 1,(t) = @ < u, | 1,(x).
Choose tq € I(t) with 1, < 7. Then

A(ty, o) =i, (t,) e V.
Since A is continuous at (t;, o), there exists § > 0, § < ¢, such that

A(ty, s)=1,(t,) e V for every s € I;(c).

Because of the uniqueness of liftings it now follows that for every s e I4(o)

"A‘SIIE(T) =@~ usIIﬁ(T)'

Thus A = ¢ - A on I,(t) x I,(s). But this contradicts the definition of (z, &).
Thus A is continuous on I x 1.

Since 4 = p - A and A({1} x I) = {b}, it follows that A({1} x I) = p~'(b).
Since p~!(b) is discrete and {1} x I is connected, A({1} x I) consists of a
single point. This implies that the curves i, and ii; have the same end point
and, by means of A, they are homotopic. O

Covering Maps. We would now like to give a condition which will ensure
that the lifting of curves is always possible.

4.11. Definition. Suppose X and Y are topological spaces. A mapping
p: Y — X is called a covering map if the following holds.

Every point x € X has an open neighborhood U such that its preimage
p~'(U) can be represented as

pH(U)= UV,
jed

where the V;, j € J, are disjoint open subsets of Y, and all the mappings
p|V; — U are homeomorphisms. In particular, p is a local homeomorphism.

4.12. Examples

(a) Let D ={z e C: |z| < 1} be the unit disk in the complex plane and let
p: D — C be the canonical injection. Then p is a local homeomorphism, but
not a covering map. For, no point a € C with |a| = 1 has a neighborhood U
with the property required in the definition.

(b) Let k be a natural number >2 and let

pi: C*—C*  zrz~
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Then p, is a covering map. For, suppose a € C* is arbitrary and choose
b e C* with p,(b) = a. Since p, is a local homeomorphism, there are open
neighborhoods ¥, of b and U of a such that p, | V, — U is a homeomorphism.
Then

P U)=Vo vV u ot Y,

where w is a kth primitive root of unity, say @ = exp(2ri/k). It is clear that
the sets V;==w'V,, j=0,...,k—1, are pairwise disjoint and each
px|V; = U is a homeomorphism.

(¢) The mapping exp: C — C* is a covering map.

PrOOF. Suppose a € C*and b € C withexp(b) = a. Since exp is a local homeo-
morphism, there exist open neighborhoods V;, of b and U of g such that
exp|V, —» U is a homeomorphism. Then
exp”(U)= (J V,, where V,:=2min+ V,.
nez
Clearly the V, are pairwise disjoint and each map exp |V,-» U is a
homeomorphism.

(d) Suppose I' = C is a lattice and n: C — C/T is the canonical quotient
mapping. In the same way as in example (c) one can show that 7 is a
covering map.

4.13. Definition. A continuous map p: Y — X is said to have the curve lifting
property if the following condition holds. For every curve u: [0, 1] — X and
every point y, € Y with p(y,) = u(0) there exists a lifting : [0, 1] - Y of u
such that 4(0) = y,.

4.14. Theorem. Every covering map p: Y — X of topological spaces X and Y
has the curve lifting property.

ProoOF. Suppose u: [0, 1] — X isa curve and y, € Y with p(y,) = u(0). Because
of the compactness of [0, 1] there exists a partition

O=t<t;<-<t,=1
and open sets U, = X, k =1, ..., n, with the following properties:

(i) ullte- 1, t]) = Uy,

(11) p_l(Uk) = UjEJk V;cj’
where the V,; = Y are open sets such that p | Vi; = U, are homeomorphisms.
Now we shall prove by induction on k =0, 1, ..., n the existence of a lifting
][0, t,] > X with 2(0) = y,. For k = 0 this is trivial. So suppose k > 1 and
4|[0, t,_;]— X is already constructed and let @(ty— 1) =t yi_;. Since
P(Vi—1) = u(t,_1) € Uy, there exists jeJ, such that y,_ eV, Let
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¢: U,— V,; be the inverse of the homeomorphism p|V,; — U,. Then if we
set

ﬁl[[k,l, tk] = (u|[fk—1’ tk])v

we obtain a continuous extension of the lifting @ to the interval [0, t,]. [

4.15. Remark. Suppose X and Y are Hausdorff spaces, p: ¥ — X is a cover-
ing map and x, € X, y, € Y are points with p(y,) = x,. Then by (4.14) and
(4.8) for every curve u: [0, 1]— X with u(0) = x, there exists exactly one
lifting &tz [0, 1]— Y such that @(0) = y,. When the curve u is closed, the
lifting # need not be closed. An example of this is the following. Let
X=Y=C*

p: C* > C*, Zr 22,

and x, = y, = 1. Define the curve u: [0, 1]— C* by u(t) = e*"". Then u has
initial and end point 1 and is thus closed. But #(r) :=e™ defines a lifting
f: [0, 1] — C* of u with respect to p which has initial point 1 and end point
- L

However from Theorem (4.10) it follows that every lifting of a closed
null-homotopic curve is again closed and null-homotopic.

4.16. Theorem. Suppose X and Y are Hausdorff spaces with X pathwise con-
nected and p: Y — X is a covering map. Then for any two points xg, x; € X
the sets p~ (xo) and p~'(x,) have the same cardinality. In particular, if Y is
non-empty, then p is surjective.

The cardinality of p~!(x) for x € X is called the number of sheets of the
covering and may be either finite or infinite.

Proor. Construct a mapping @: p~ '(xo) = p~'(x,) in the following way.
Choose a curve u: [0, 1]— X joining x, to x;. If y € p~!(x,) is an arbitrary
point, then there exists precisely one lifting i: [0, 1] - Y of u such that
4(0) = y. Set o(y)=d(1) € p~'(x,). The uniqueness of liftings then implies
that the mapping just constructed is bijective. O

Remark. In general the bijective mapping constructed in the proof
depends on the choice of the curve u. Thus in general there is no well-defined
way to enumerate globally the “sheets” of a covering.

4.17. Theorem. Suppose X and Y are Hausdorff spaces and p: Y — X is a
covering map. Further, suppose Z is a simply connected, pathwise connected
and locally pathwise connected topological space and f: Z — X is a continuous
mapping. Then for every choice of points zo € Z and yo € Y with f(zo) = p(¥o)
there exists precisely one lifting f+ Z — Y such that flzo) = o -
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Remark. In the following proof the only properties of the mapping p that
are used are that it is a local homeomorphism and has the curve lifting

property.

PROOF. Define the mapping f: Z — Y in the following way. Suppose z € Z is
an arbitrary point and u: I - Z is a curve from z, to z. Then v:=f-u isa
curve in X with initial point f{z,) and end point f{z). Let &: I — Y be the
unique lifting of v which has initial point y,. Then set f{z):=0(1). This
definition is independent of the choice of curve u from z; to z. For, suppose
u, is another curve from z, to z. Then u, is homotopic to u. Thus v, ==/ ¢ u,
and v = f - u are also homotopic. By Theorem (4.10) the liftings &, of v, and
& of v with £,(0) = #(0) = y, have the same end point. Hence f{z) is well-
defined. Also by construction f=p - f.

All that remains to be proved is that the mapping f: Z — Y is continuous.
Letz € Z, y = flz) and suppose V is a neighborhood of y. We must show that
there exists a neighborhood W of z such that f{lW) < V. Since p is a local
homeomorphism, we may assume, possibly by shrinking V, that there is a
neighborhood U of p(y) = flz) such that p| V > U is a homeomorphism. Let
¢@: U —V be its inverse. Since f is continuous and Z is locally pathwise
connected, there exists a pathwise connected neighborhood W of z such that
W)= U.

Now we claim that f{W) < V. To see this suppose that the curves u, v and
b are defined as above. Let z' ¢ W be an arbitrary point and let v’ be a curve
from z to z' which lies entirely in W. Then the curve ¢v' :={f - u’ lies entirely in
U and ¥ :=¢ - ¢ 1s a lifting of ¢’ with initial point y. Hence the product & - ¥/
is a lifting of v - v =f = (u - w') with initial point y,. Thus

Az)= (- ) 1) =¥(1) e V. 0

4.18. Example (The Logarithm of a Function). Suppose X is a simply con-
nected Riemann surface and f: X — C* is a nowhere vanishing holomorphic
function on X. We would like to find the logarithm of f; i.e., find a holo-
morphic function F: X — C such that exp(F) = /. But this just means that F
is a lifting of f with respect to the covering exp: C — C*, ie.,

C

n

exp

x—1  ox

If xo € X and ¢ € C is any solution of the equation e = f(x,), then by
Theorem (4.17) there exists a lifting F: X — C of the required kind with
F(x,) = ¢. By Theorem (4.9), F is holomorphic. Also any other solution of
the problem differs from F by an additive constant 2zin, n € Z.
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As a special case suppose X is a simply connected domain in C* and
j: X — C* is the canonical injection, i.e., j(z) = z. Then every lifting of j with
respect to exp is nothing more than a branch of the function log on X.
Analogously one can construct various roots of a nowhere vanishing holo-
morphic function f: X — C* on any simply connected Riemann surface X.
To do this one uses the covering in Example (4.12.b).

4.19. Theorem. Suppose X is a manifold, Y is a Hausdorff space andp: Y — X
is a local homeomorphism with the curve lifting property. Then p is a covering
map.

ProoF. Suppose x, € X is an arbitrary point and y;,j € J, are the preimages
of x, with respect to p. Take U to be an open neighborhood of x, which is
homeomorphic to a ball and let f/: U — X be the canonical injection. From
the remark in Theorem (4.17) it follows that for every j e J there is a lifting
fi U—Y of fsuch that fj(x,) = y;. Let V;>==f(U). Now one can easily
convince oneself that
i (U)= UV,
jeld

that the V; are pairwise disjoint open sets and that every mapping p|V,-U
is a homeomorphism. O

4.20. Proper Mappings. Recall that a locally compact topological space is a
Hausdorff space such that every point has a compact neighborhood. A
continuous mapping f: X — Y between two locally compact spaces is called
proper if the preimage of every compact set is compact. For example this is
always so if X is compact. A proper mapping is closed, i.e., the image of
every closed set is closed. This follows from the fact that in a locally compact
space a subset is closed precisely if its intersection with every compact set is
compact.

4.21. Lemma. Suppose X and Y are locally compact spacesandp: Y —» X isa
proper, discrete map. Then the following hold:

(a) For every point x € X the set p~'(x) is finite.
(b) If x € X and V is a neighborhood of p~'(x), then there exists a neigh-
borhood U of x with p~'(U) = V.

PRrROOF

(a) This follows from the fact that p~'(x) is a compact discrete subset of
Y.

(b) We may assume that V is open and thus Y\V is closed. Then
p(Y\V)=:4 is also closed and x ¢ A. Thus U :=X\A4 is an open neighbor-
hood of x such that p"(U) <= V. O
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4.22. Theorem. Suppose X and Y are locally compact spaces and p: Y — X is
a proper local homeomorphism. Then p is a covering map.

PROOF. Suppose x € X is arbitrary and let p~'(x) = {y;, ..., y, Where
yi # y; for i # j. Since p is a local homeomorphism, for every j =1, ..., n
there exists an open neighborhood W of y; and an open neighborhood U; of
x, such that p| W, - U; is a homeomorphism. We may assume that the W,
are pairwise disjoint. Now W, U --- U W, is a neighborhood of p~ !(x). Thus
by (4.21.b) there exists an open neighborhood U =« Uy n --- n U, of x with
p U)W, u - u W, If we let V=W, n p~'(U), then the V; are dis-
joint open sets with

Uy=riu-ul,

p
and all the mappings p|V;— U, j =1, ..., n are homeomorphisms. O

4.23. Proper Holomorphic Mappings. Suppose X and Y are Riemann sur-
faces and f: X — Y is a proper, non-constant, holomorphic mapping. It fol-
lows from Theorem (2.1) that the set 4 of branch points of f'is closed and
discrete. Since fis proper, B:=f{A4) is also closed and discrete. One calls B
the set of critical values of f.

Let Y:=Y\Band X' :=X\f"'(B) = X\A. Then f|X' > Y’ is a proper
unbranched holomorphic covering and by (4.22), (4.16) and (4.21.a) it has a
well-defined finite number of sheets n. This means that every value ¢ € Y’ is
taken exactly n times. In order to be able to extend this statement to the
critical values b € B as well, we have to consider the multiplicities.

For x € X denote by v(f, x) the multiplicity, in the sense of (2.2), with
which ftakes the values f{x) at the point x. Then we will say that ftakes the
valuc ¢ € Y, counting multiplicities, m times on X, if

m= Y o(f x)

xep~ 1)

4.24. Theorem. Suppose X and Y are Riemann surfaces and f: X - Y is a
proper non-constant holomorphic map. Then there exists a natural number n
such that f takes every value ¢ € Y, counting multiplicities, n times.

ProoF. Using the same notation as in (4.23) let n be the number of sheets of
the unbranched covering f|X'— Y'. Suppose b e B is a critical value,
N6y ={x,...,x} and ki :==uv(f,x;). By (2.1) and (2.2) there exist
disjoint neighborhoods U; of x; and V; of b such that for every ¢ € V\{b}
the set /'(c) n U; consists of exactly k; points (j=1,...,r). By Lemma
(4.21.b) we can find a neighborhood V< Vi~ --- nV, of b such that
f'(VYcUw---uU. Then for every point ce ¥nY' we have
that £~ !(c) consists of k| + - - - + k, points. On the other hand, for ¢ € ¥’ the
cardinality of p~!(c) is equal to n. Thus n = k; + -+ + k,. O
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Remark. A proper non-constant holomorphic map will be called an n-
sheeted holomorphic covering map, where n is the integer found in the
previous Theorem. Note that holomorphic covering maps are allowed to
have branch points. If we wish to emphasize that there are none, then we will
specifically say that the map is unbranched. If we speak of a topological
covering map or if there is no complex structure, then we mean a covering
map in the sense of (4.11).

4.25. Corollary. On any compact Riemann surface X every non-constant
meromorphic function f: X — P! has as many zeros as poles, where each is
counted according to multiplicities.

Proor. The mapping /: X — P! is proper. O

4.26. Corollary. Any polynomial of nth degree
fley=2"+a 2" '+ +a,eC[z]
has, counting multiplicities, exactly n zero.

PrOOF. By (2.3) we may consider f as a holomorphic mapping f Pt - p!
which, counting multiplicities, takes the value co exactly n times. |

EXERCISES (§4)
41. Let X :=C\{+ 1}, Y:=C\{(n/2) + kn, k € Z}. Show that
sint Y - X
is a topological covering map. Consider the following curves in X.
u: [0, 1] = X, uft) =1 — &
v: [0, 1] > X, v(t) = —1 + &>

Let wy: [0, 1] — Y be the lifting of u - v with w;(0) = 0 and w,: [0, 1] — Y be the
lifting of v - u with w,(0) = 0. Show that

wi(l)=2n
wy(l) = —2nm.
Conclude that 7;(X) is not abelian.

4.2. Let X and Y be arcwise connected Hausdorff topological spaces and f* ¥ — X
be a covering map. Show that the induced map

Jur mi(Y) = mi(X)

is injective.
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4.3. Let X and Y be Hausdorff spaces and p: Y — X be a covering map. Let Z be a
connected, locally arcwise connected topological space and f> Z -+ X a contin-
uous map. Let ¢ € Z, a*=f(c) and b € Y such that p(b) = a. Prove that there
exists a lifting /: Z — Y of f with f(¢) = bif and only if fim(Z,¢c)c p,m(Y,b).

4.4. (a) Show that
tan: C —» P!
is a local homeomorphism.
(b) Show that tan(C) = P'\{+i} and
tan: C — P\{ £ i}
is a covering map.

(c) Let X =C\{it: t € R, [t| = 1}. Show that for every k € Z there exists a
unique holomorphic function arctan,: X — C with

tan - arctan, = idy,
and
arctan,(0) = k
(the kth branch of arctan).

4.5. Determine the ramification points of the map

f:C - P ﬂz)=:%(z+})_

§5. The Universal Covering and Covering
Transformations

Amongst all the covering spaces of a manifold X, there is one which deserves
to be called the “largest,” namely, the universal covering. All other covering
spaces can be obtained from this one as quotients, and what happens to the
universal covering when it is acted on by the group of “covering trans-
formations ” is closely related to the fundamental group of X. An investiga-
tion of these ideas is the focus of attention in this section.

5.1. Definition. Suppose X and Y are connected topological spaces and
p: Y > X is a covering map. p: Y — X is called the universal covering of X if
it satisfies the following universal property. For every covering map
g: Z - X, with Z connected, and every choice of points y, € Y, z, € Z with
P(vo) = q(z,) there exists exactly one continuous fiber-preserving mapping
f: Y — Z such that fly,) = z,.

A connected topological space X has up to isomorphism at most one
universal covering. For, with the above notation, suppose q: Z — X isalsoa
universal covering. Then there exists a fiber-preserving continuous mapping
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g:Z—-Y such that g(zo) =y,. The compositions g f:Y—Y and
fog: Z—Z are continuous fiber-preserving mappings such that
g > f{yo) = yo and f = g(zo) = z, . Because of the universality condition there
can exist only one continuous fiber-preserving mapping in each case which
satisfies these conditions. Thusg - f=1idyandf- g =id,. Hencef: Y - Zis
a fiber-preserving homeomorphism.

5.2. Theorem. Suppose X and Y are connected manifolds, Y is simply con-
nected and p: Y — X is a covering map. Then p is the universal covering of X.

Proor. This follows directly from the definition and Theorem (4.17). O

5.3. Theorem. Suppose X is a connected manifold. Then there exists a con-
nected, simply connected manifold X and a covering map p: X — X.

By Theorem (5.2) X — X is the universal covering of X.

Proor. Pick a point x, € X. For x € X let n(x,, x) denote the set of
homotopy classes of curves having initial point x, and end point x. Let

X={xa):xeX, aen(xq,x)}.

Define the mapping p: X — X by p(x, a) := x. We will now define a topology
on X so that X becomes a connected, simply connected Hausdorff manifold
and p: X — X is a covering map.

Suppose (x, «) € X and U = X is an open, connected, simply connected
neighborhood of x. Define a subset [U, «] = X as follows: [U, «] consists of
all points (y, B) € X such that ye U and g =cl(u - v), where u is a curve
from x, to x such that o = cl(u) and v is a curve from x to y which lies
completely in U. (Since U is simply connected, f is independent of the choice
of the curve v.) Now let 8B be the system of all such sets [U, a].

Claim (a) B is the basis for a topology on X.

Proof

(i) Clearly every point of X lies in at least one [U,q].

(i1) Suppose (z, 7) € [U, a] n [V, B]. Then z € U n V and there exists an
open, connected and simply connected neighborhood W U n V of z.
Then, as one can easily check,

(z.y) e [W, 7] = [U, a] 0 [V, B]
From (i) and (ii) the claim follows.
Claim (b) The mapping p: X —» X is a local homeomorphism and in

particular is continuous. This follows from the fact that for every [U, a] € B
the mapping p|[U, ] » U is a homeomorphism.

Claim (c) X is HausdorfT.
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It suffices to show that any two points (x, «), (x, 8) € X, where « # B, have
disjoint neighborhoods. Suppose U < X is an open, connected, simply con-
nected neighborhood of x. Then [U, a] n [U, ] = &. Otherwise there
would be an element (y, y) in the intersection. Suppose w is a curve in U
from x to y and o = cl(u), § = cl(v). Then by definition y = cl(u - w) =
cl(v - w). Thus cl(u) = cl(v). But this contradicts the assumption that o # §.

Claim (d) X is connected and p: X — X has the curve lifting property
and thus by (4.19) is a covering map. Suppose u: [0, 1] — X is a curve with
initial point x,. For s e [0, 1] let u,: [0, 1]— X be the curve defined by
uy(t) == u(st). (The curve u, runs along the points of the curve u correspond-
ing to parameter values t € [0, s].) Further suppose v is a closed curve with
initial and end point x,. Then the mapping

2:[0,1]1- X,  t(u(t), v u,))

is continuous and is a lifting of u with #(0) = (x,, cl(v)). This follows directly
from the definition of the topology on X. Finally, suppose w: [0, 1] > X isa
curve with arbitrary initial point x; == w(0), « € 7{x, x,) and v is a curve
from x, to x, with cl(v) = . Then it is easy to see that the lifting of u:==v - w
with @(0) = (x,, ¢), where ¢ is the homotopy class of the constant curve at
X, gives rise to a lifting of w with W(0) = (x,, ).

Claim (e) X is simply connected.

Let w: [0, 1] > X be a closed curve with initial and end point (x,, ¢). Then
u=p o wis a closed curve in X with u(0) = x,. Now letii: [0, 1] - X be the
lifting of u, which exists by claim (d), where v is chosen to be the constant
curve at x,. Because of the uniqueness of liftings, # = w. Thus #(1) =
(%0, cl(u)) = (xo, ) and hence u is null-homotopic. By Theorem (4.10) w is
also null-homotopic and thus X is simply connected.

This completes the proof of Theorem (5.3). O

Remark. In particular, one can construct the universal covering of any
Riemann surface and by (4.6) this universal covering is, in a natural way, a
Riemann surface as well.

5.4. Definition. Suppose X and Y are topological spaces and p: Y - X is a
covering map. By a covering transformation or deck transformation of this
covering we mean a fiber-preserving homeomorphism f: ¥ — Y. With opera-
tion the composition of mappings, the set of all covering transformation of
p: Y- X forms a group which we denote by Deck(Y/X). If there is any

chance of confusion, then we will write Deck(Y SX ) instead of Deck(Y/X).

5.5. Definition. Suppose X and Y are connected Hausdorff spaces and
p: Y — X is a covering map. The covering is called Galois (the terms normal
and regular are also in common usage) if for every pair of points y,,y, € Y
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with p(y,) = p(y,) there exists a covering transformation f: Y — Y such that
fWo) = 1.

Remark. By Theorem (4.8) there exists at most one covering trans-
formation f: Y — Y with fy,) = y,, for fis a lifting of p: Y — X.

Example. The mapping p: C* — C*, z+ z*, is a covering map. It is Galois
since for any z,, z, € C* with p(z,) = p(z,), one has z, = wz, where w is a
kth root of unity and the mapping z+— wz is a covering transformation.

There is a connection between Galois coverings and Galois field exten-
sions, cf. (8.12).

5.6. Theorem. Suppose X is a connected manifold and p: X — X is its univer-
sal covering. Then p is Galois and Deck(X/X ) is isomorphic to the fundamental
group m,(X).

PROOF

(a) Suppose y,, y; € X with p(y,) = p(y,). By the definition of the
universal covering there exists a continuous fiber-preserving mapping
f: X - X with f{y,) = y,. We have to show that fis a homeomorphism. This
can be seen as follows. As above there exists a continuous fiber-preserving
mapping g: X — X with g(y;) = yo. But then /= g and g - f are continuous
fiber-preserving mappings of X into itself such that f- g(y,) =y, and
g = f(yo) = yo . Again from the definition of the universal covering it follows
that f- g and g - f are both the identity map of X. Thus f is a homeo-
morphism and hence a covering transformation. This shows the covering
X - X is Galois.

(b) Suppose x, € X and y, € X is a point with p(y,) = x,. Define a
mapping

®: Deck(X/X) - n,(X, xo)

as follows: Suppose o € Deck(X/X) and v is a curve in X with initial point
yo and end point a(y,). (The homotopy class of v is uniquely determined
since X is simply connected.) The curve p - v in X has initial and end point
Xo . Let ®(o) be the homotopy class of p - v.

(i) @ is a group homomorphism. Suppose a, T € Deck(X/X) and v (resp.
w) is a curve in X with initial point y, and end point a(y,) (resp. t(y,)). Then
o -w is a curve with initial point o(y,) and end point a1(y,). Also
p - (oo w)=p o w. The product curve v - (o - w) has initial point y, and
end point g1(y,). Thus

Do) =cllp - (¢ (o w) =cl(p - v)el(p - (& - w))
=cl(p - v)cl(p - w) = O(a)D(7).

(1) @ is injective.
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Suppose o € Deck(X/X) and v is a curve in X from y, to a(y,). Assume
®(c) = ¢, ie. p - v is null-homotopic. Since v is a lifting of p - v, it follows
from (4.10) that the end point ¢(y,) of v is the same as the initial point y, .
This implies ¢ = id 3.

(iii) @ is surjective.

Suppose a € 7, (X, xo) and u is a curve representing o. Let v be a lifting of u
to X with initial point y, and suppose the end point of v is y,. Then there
exists o € Deck(X/X) such that 6(y,) = y;. From the definition of ® one has
®(a) = a. This completes the proof. O

5.7. Examples

(a) exp: C > C* is the universal covering of C*, since C is simply con-
nected. For ne Z let 1,: C - C be translation by 2zin. Then exp(z,(z)) =
exp(z + 2nin) = exp(z) for every zeC and thus 7, is a covering
transformation. If ¢ is any covering transformation, then exp{(s(0))=
exp(0) = 1 and thus there exists n € Z such that ¢(0) = 2rin. Since 7,(0) =
2mnin as well, ¢ = 1,. Thus

Deck(C —2— C*)={r,:ne Z}.
Since the last group is isomorphic to Z,

n,(C*) = Z.
(b) Let
H ={z e C:Re(z) <0}
be the left half plane and
D¥*={zeC:0< |z| <1}

Then exp: H — D* is the universal covering of the punctured unit disk. As in
Example (a) one can show that the group of covering transformations con-
sists of all translations by integral multiples of 2#i and that =,(D*) = 7.

(c) Suppose I' = Zy, + Zy, is a lattice in C. Then the canonical quotient
mapping C —» C/T" is the universal covering of the torus C/T". For y e I
denote by 1,: C - C translation by y. Analogous to Example (a) one can
show that Deck(C — C/T') = {r,: y € I'}. Thus

n,(CT)=T>~2Zx Z.

Consequence. There does not exist any meromorphic function on C doubly-
periodic with respect to I which mod T has a single pole of first order.

PROOF. Such a function would define a holomorphic mapping f: C/I" — P!
which takes the value oo only once. By (4.24) and (2.5) f would be biholo-
morphic and in particular n,(C/T’) = n,(P') = 0, a contradiction! O
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Remark. Later (18.3) we will give necessary and sufficient conditions for
the existence of a doubly periodic meromorphic function with prescribed
principal parts. However it is worth noting that one can make the above
observation using only topological reasons.

5.8. Definition. Suppose X and Y are topological spaces, p: Y — X is a cover-
ing map and G is a subgroup of Deck(Y/X). Two points y, y' € Y are called
equivalent modulo G, if there exists ¢ € G such that g(y) = y. Clearly this
really is an equivalence relation on Y.

5.9. Theorem. Suppose X and Y are connected manifolds, q: Y — X is a cover-
ing map and p: X — X is the universal covering. Let f: X — Y be a continuous
fiber-preserving mapping, which by the definition of the universal covering
exists. Then f is a covering map and there exists a subgroup G = Deck(X/X)
such that two points x, x' € X are mapped onto the same point by f precisely if
they are equivalent modulo G. Moreover G = m,(Y).

Proo¥. First we will show that fis a local homeomorphism. Suppose x € X,
p(x)=:s and f{x) =:y. Since p is a local homeomorphism, there exist open
neighborhoods W, of x and U, of s, such that p| W, » U, is a homeo-
morphism. Since g is a covering map, there exists an open connected neigh-
borhood U of s contained in U, and pairwise disjoint open sets V., i e I,
such that ¢~ '(U) = | ) V; and q|¥; - U is a homeomorphism for every i € I.
Let V be the particular V; containing the point y and let W:=p~'(U) n W,.
Then yefiW)<=q Y(U) and since f{W) is connected, it follows that
AIW) = V. Since p| W— U and ¢q|V — U are homeomorphisms, / | W - V is
also a homeomorphism. Thus f'is a local homeomorphism.

In order to prove that fis a covering map, consider a curve v in Y with
initial point y, and a point x, € X with f{x,) = y,. We have to show that the
curve v can be lifted to X with initial point x, . Since p: X — X is a covering
map the curve g - vin X may be lifted to a curve u in X with initial point x,.
Then the curves f - u and v in Y are both liftings of the curve ¢ - vand have
the same initial point y,. Thus they coincide. But this means that u is the
desired lifting of v. Thus fis a covering map by Theorem (4.19).

Let G = Deck(X/Y). This is a subgroup of Deck(X/X). Since X is simply
connected, f: X — Y is the universal covering of Y and so is Galois. Hence
G ~ ny(Y) and f{x) = fix') precisely if there exists ¢ € G such that o(x) = x".
This completes the proof of Theorem (5.9). O

We will now use Theorem (5.9) to determine all the covering spaces of the
punctured unit disk D* ={ze C: 0 < |z| < 1}.

5.10. Theorem. Suppose X is a Riemann surface and f- X — D* is an un-
branched holomorphic covering map. Then one of the following holds:
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(i) If the covering has an infinite number of sheets, then there exists a
biholomorphic mapping ¢: X - H of X onto the left half plane such that

diagram (1) is commutative.
X—2—>H
f\' %p (1)
D*

(ii) If the covering is k-sheeted (k < o0), then there exists a biholomorphic
mapping @: X — D* such that diagram (2) is commutative, where p,: D* — D*

is the mapping z+— z*.
\ / B

Thus every covering map of D* is either isomorphic to the covering given
by the logarithm or else by the kth root.

ProOF. Since exp: H — D* is the universal covering, there exists a holo-
morphic mapping : H — X such that exp = f = . Let G = Deck(H/D*) be
the corresponding subgroup.

(i) If G consists only of the identity, then y: H — X is a biholomorphic
map. Then the mapping ¢: X — H, which we are looking for, is the inverse
mapping of .

(ii} Now

Deck(H/D*) = {z,: n € Z},

where 1,: H— H denotes the translation z+— z + 2min. Thus for every sub-
group G = Deck(H/D*) which is not the identity, there exists a natural
number k > 1 so that

G=l{t,:nelZ.

Let g: H — D* be the covering map defined by g(z) = exp(z/k). Then g(z) =
g(z’) precisely if z and 2z’ are equivalent modulo G. Hence there exists a
bijective mapping ¢: X — D* such that the diagram

H
/X
X—2  D*
is commutative. Since ¥ and g are locally biholomorphic, ¢ is biholo-

morphic. It is now easy to check that diagram (2) is commutative and the
Theorem is proved. O
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5.11. Theorem. Suppose X is a Riemann surface, D is the unit disk and
f: X - D is a proper non-constant holomorphic map which is unbranched over
D* = D\{0}. Then there exists a natural number k > 1 and a biholomorphic
mapping @: X — D such that the diagram

X —25D

\ / *)
D

ProoOF. Let X*:=f"1(D*). Then f|X* > D* is an unbranched proper
holomorphic covering map. By the previous Theorem there is a commuta-
tive diagram

is commutative, where py(z)+=z~.

X*

¢ D*
N
v
*

D

for some biholomorphic mapping ¢: X* — D*. We claim that f ~*(0) con-
sists of only one point. To the contrary suppose f ~(0) consists of n points
by, ..., b, where n > 2. Then there exist disjoint open neighborhoods ¥; of b;
and a disk D(r)={z e C: |z] <r}, 0 <r < 1, such that

fMDE) Vo Ul (**)

Let D*(r) = D(r)\{0}. Since f/~!(D*(r)) is homeomorphic to p; '(D*(r)) =
D*(%/r), it is connected. Since every point b; is an accumulation point of
fUD*(r)), f~Y(D(r)) is also connected. But this contradicts (**). Thus
/7 10) consists of a single point b € X. Hence by defining ¢(b) =0 one can
continue the mapping ¢: X* — D* to a biholomorphic mapping ¢: X - D
which makes the diagram (*) commutative. O

EXERCISES (§5)
51. Let X =C\{+1}, and Y =C\{(n/2) + kn: ke Z} (cf. Ex. 4.1.). Prove that
Deck(Y — X) consists of the following transformations

() filz) = z + 2kn, kez
(i) gu(z) = —z + (2k + D)m, kez.

Calculate the products fi = fi, fi = 9i, g1 < fus 9 © G1-
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5.2.

5.3.

54.

5.5.

5.6.

5.7.

Let X be a connected manifold and p: X — X be its universal covering. Let
G < Deck(X/X) be a subgroup, Y :=X/G be the quotient of X by the equi-
valence relation defined in 5.8 and ¢: Y — X be the map induced by p. Show that
q is a covering map which is Galois if and only if G is a normal subgroup of
Deck(X/X). In the latter case

Deck(Y/X) =~ Deck(X/X)/G.
Determine the covering transformations of
tan: € - PI\{i, —i}
(cf. Ex. 4.4).
Let I, I = C be lattices and
fiCr-or

a non-constant holomorphic map with f(0) = 0. Show that there exists a unique
o € C* such that al' = T and the following diagram is commutative

c———¢

cr—L ¢

where F(z) = «z and n and 7’ are the canonical projections. Prove that fis an
unbranched covering map and
Deck(C/T —L— €/I") = I"/aT".
Let X :=C\{2, =2}, Y:=C\{+1, £2}, and let p: Y — X be the map
p(z) =2z* — 3z

Prove that p is an unbranched 3-sheeted holomorphic covering map. Calculate
Deck(Y/X) and show that the covering Y — X is not Galois.

[Hint: Use the fact that every biholomorphic map f: Y — Y extends to an auto-
morphism of P1.]

Let X :==C\{0, 1}, Y :=C\{0, +i, +i,/2} and let p: ¥ » X be the map
p(z)= (2 + 1)~

Prove that p is an unbranched 4-sheeted covering map, which is not Galois and
that

Deck(Y/X) = {id, ¢},
where ¢(z) = —z.

Suppose X and Y are connected Hausdorff spaces. Show that every 2-sheeted
covering map p: Y — X is Galois.
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§6. Sheaves

In complex analysis one frequently has to deal with functions which have
various domains of definition. The notion of a sheaf gives a suitable formal
setting to handle this situation.

6.1. Definition. Suppose X is a topological space and T is the system of open
sets in X. A presheaf of abelian groups on X is a pair (£, p) consisting of

(i) a family # = (#(U))y. ; of abelian groups,
(i) a family p = (pV)y. v < 1. v v Of group homomorphisms

pv: F(U)—> F(V), where V is open in U,
with the following properties:
py =1idzy, forevery Ue I,

pw o pU=pY for Wc VcU.

Remark. Generally one just writes # instead of (#, p). The homo-
morphisms p} are called restriction homomorphisms. Instead of py(f) for
fe #(U) one writes just f | V. Analogous to presheaves of abelian groups
one can also define presheaves of vector spaces, rings, sets, etc.

6.2. Example. Suppose X is an arbitrary topological space. For any open
subset U = X let 4(U) be the vector space of all continuous functions
f: U—>C.For V< Ulet p}: €(U)— (V) be the usual restriction mapping.
Then (%, p) is a presheaf of vector spaces on X.

6.3. Definition. A presheaf # on a topological space X is called a sheaf if for
every open set U < X and every family of open subsets U, = U, i € I, such
that U = | J;., U, the following conditions, which we will call the Sheaf
Axioms, are satisfied:

(1) If ; g € #(U) are elements such that f |U; = g| U, for every i € I,
then f=g.
(I1) Given elements f; € #(U,), i € I, such that

HlUinUj=£flU; nU; foralli,jel,
then there exists an f € #(U) such that f | U; = f; for every i € I.
Remark. The element f, whose existence is assured by (II), is by (I)
uniquely determined.

Applying (I) and (II) to the case U = &F = { ), o U, implies #(¥) con-
sists of exactly one element.
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6.4. Examples

(a) For every topological space X the presheaf 4 defined in (6.2) is a
sheaf. Both Sheafl Axioms (I) and (II) are trivially fulfilled.

(b) Suppose X is a Riemann surface and ¢(U) is the ring of holomorphic
functions defined on the open set U < X. Taking the usual restriction map-
ping ¢(U) — @(V) for V < U one gets the sheaf ¢ of holomorphic functions
on X. The sheaf .# of meromorphic functions on X is defined analogously.

(c) For an open subset U of a Riemann surface X let (*(U) be the
multiplicative group of all holomorphic maps f: U — C*. With the usual
restriction maps ('* is a sheaf of (multiplicative) abelian groups. The sheaf
H* is defined analogously: For any open set U = X, .#*(U) consists of all
meromorphic functions f'e .#(U) which do not vanish identically on any
connected component of U.

(d) Suppose X is an arbitrary topological space and G is an abelian
group. Define a presheaf % on X as follows: For any non-empty open subset
Uc X let 4(U)==G and let (&) :=0. As for the restriction mappings, let
py =1idg if ¥V # 7 and let pY be the zero homomorphism. If G contains at
least two distinct elements g, ¢, and if X has two disjoint non-empty open
subsets U, U,, then % is not a sheaf. This is because Sheaf Axion (II) does
not hold. For, since U; nU,=F one has ¢g,|U nU,=0=
g2|U; n U, but there isno fe 4(U, u U,) = G such that f | U, = g, and
J | Uy=9,.

(e) One can easily modify the previous example to obtain a sheaf. For
any open set U, let 4(U) be the abelian group of all locally constant map-
pings g: U— G. Then if U is a non-empty connected open set, one has
4(U)= G.For V < U let 4(U) - %(V) be the usual restriction. Then 7 is a
sheaf on X which is called the sheaf of locally constant functions with values
in G. Often it is just denoted by G.

6.5. The Stalk of a Presheaf. Suppose # is a presheaf of sets on a topological
space X and a € X is a point. On the disjoint union

) #(U),

U3a
where the union is taken over all the open neighborhoods U of a, introduce
an equivalence relation 3 as follows: Two elements fe #(U)and g € #(V)
are related f ~ g precisely if there exists an open set Wwithae We U A V
such that f| W =g|W. One can easily check that this really is an equi-
valence relation. The set %, of all equivalence classes, the so-called inductive
limit of #(U), is given by

and is called the stalk of # at the point a. If # is a presheaf of abelian groups
(resp. vector spaces, rings), then the stalk %, with the operation defined on
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the equivalence classes by means of the operation defined on representatives,
is also an abelian group (resp. vector space, ring).
For any open neighborhood U of a, let

Pa: F(U)—> F#,

be the mapping which assigns to each element f € # (U) its equivalence class
modulo . One calls p,(f) the germ of f at a. As an example consider the
sheaf ¢ of holomorphic functions on a domain X = C. Leta € X. A germof
a holomorphic function ¢ € (,1s represented by a holomorphic function in an
open neighborhood of a and thus has a Taylor series expansion Y =
¢{z — a)* with a positive radius of convergence. Two holomorphic functions
on neighborhoods of a determine the same germ at a precisely if they have
the same Taylor series expansion about a. Thus there is an isomorphism
between the stalk ¢, and the ring C{z — a} of all convergent power series in
z — a with complex coefficients. In an analogous way, the ring .# , of germs
of meromorphic functions at a is isomorphic to the ring of all convergent
Laurent series

c(z — a), kez, ¢, €C,

it

v

which have finite principal parts.
For any germ of a function ¢ e ¢, the value of the function, ¢(a) € C, is
well-defined, i.e., is independent of the choice of representative.

6.6. Lemma. Suppose F is a sheaf of abelian groups on the topological space
X and U c X is an open subset. Then an element f € Z(U) is zero precisely if
all germs p(f) e #,, x € U, vanish.

This follows directly from Sheaf Axiom (I).

6.7. The Topological Space Associated to a Presheaf. Suppose X is a topolo-
gical space and # is a presheaf on X. Let

17| =) Z.

xeX

be the disjoint union of all the stalks. Denote by
p: | F|-X

the mapping which assigns to each element ¢ € %, the point x. Now intro-
duce a topology on | # | as follows: For any open subset U = X and an
element f e Z#(U), let

[U.f1={pf): xe Up = | 7].
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6.8. Theorem. The system B of all sets [U, ], where U is open in X and
fe #F(U), is a basis for a topology on | F |. The projectionp: |F| - X isa
local homeomorphism.

Proor
(a) To see that B forms a basis for a topology on |# |, one has to verify
the following two conditions:

(i) Every element ¢ € | #| is contained in at least one [U, f]. This is
trivial.

(i) If @ e[U, f1 [V, g], then there exists a [W, h] € B such that ¢
[W, k] =[U, f] [V, g]. For suppose p(¢)=x. Then xe U ~n ¥V and
@ = p,(f) = p.(g). Hence there exists an open neighborhood W< U n V
of x such that f | W = g| W =:h. This implies ¢ € [W, h] < [U, f] n [V, ¢g].

(b) Now we will show that p: |#| — X is a local homeomorphism.
Suppose ¢ € |# | and p(p) = x. There exists a [U, f]e B with ¢ € [U, f].
Then [U, f]is an open neighborhood of ¢ and U is an open neighborhood of
x. The mapping p|[U, f]— U is bijective and also continuous and open as
one sees immediately from the definition. Thus p: |# | — X is a local
homeomorphism. O

6.9. Definition. A presheaf # on a topological space X is said to satisfy the
Identity Theorem if the following holds. If Y = X is a domain and f,
g € #(Y) are elements whose germs p,(f) and p,(g) coincide at a point
ac Y, then f=g.

For example, this condition is satisfied by the sheaf ¢ (resp. .#) of holo-
morphic (resp. meromorphic) functions on a Riemann surface X.

6.10. Theorem. Suppose X is a locally connected Hausdorff space and F is a
presheaf on X which satisfies the Identity Theorem. Then the topological space
| # | is Hausdorff.

PrOOF. Suppose ¢, ¢, € | # | and ¢, # ¢,. We have to find disjoint neigh-
borhoods of ¢, and ¢, .

Case 1. Suppose p(¢,) = x # y = p(@,). Since X is Hausdorff, there exist
disjoint neighborhoods U and V of x and y respectively. Then p~}(U) and
p~Y(V) are disjoint neighborhoods of ¢, and ¢,, respectively.

Case 2. Suppose p(¢,) = p(¢,) =:x. Suppose the germs ¢; € % are re-
presented by elements f; € #(U,), where the U, are open neighborhoods of x,
i=1,2 Let U< U, n U, be a connected open neighborhood of x. Then
[U, f;|U] are open neighborhoods of ¢;. Now suppose there exists ¥ €
[U, f1|U} n [U, f2|U]. Let p(¥) = y. Then ¥ = p,(f;) = p,(f>). From the
Identity Theorem it follows that f, |U = f,| U, thus ¢, = ¢, . Contradiction!
Hence [U, f; | U] and [U, f, | U] are disjoint. O
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EXERCISES (§6)

6.1. Suppose X is a Riemann surface. For U = X open, let #(U) be the vector space
of all bounded holomorphic functions f: U — C. For V = U let #(U) - #(V) be
the usual restriction map. Show that # is a presheaf which satisfies sheaf axiom
(I) but not sheaf axiom (II).

6.2. Suppose X is a Riemann surface. For U < X open, let
F(U)=¢*(U)fexp €(U).

Show that # with the usual restriction maps is a presheaf which does not satisfy
sheaf axiom (I).

6.3. Suppose .Z is a presheaf on the topological space X and p: | #| - X is the
associated covering space. For U « X open, let % (U) be the space of all sections
of p over U, i.e., the space of all continuous maps

ffU—-|#F

with p - f=1id,. Prove the following:

(a) # together with the natural restriction maps is a sheaf,
(b) There is a natural isomorphism of the stalks

F.>3F,., foreveryxelX.

§7. Analytic Continuation

Next we consider the construction of Riemann surfaces which arise from the
analytic continuation of germs of functions.

7.1. Definition. Suppose X is a Riemann surface, u: [0, 1] — X is a curve and
a:=u(0), b-=u(1). The holomorphic function germ € ¢, is said to result
from the analytic continuation along the curve u of the holomorphic function
germ @ € (', if the following holds. There exists a family ¢, € €, t € [0, 1]
of function germs with ¢, = ¢ and ¢, = ¥ with the property that for every
1 € [0, 1] there exists a neighborhood T < [0, 1] of 7, an open set U = X
with u(T) = U and a function f € ((U) such that

pucf) =, foreveryteT.

Here p, (/) is the germ of f at the point u(t). Because of the compactness of
[0, 1] this condition is equivalent to the following (see Fig. 5). There exist a
partition 0 =t, <t, <--<t, ; <t,=1 of the interval [0, 1], domains
U, = X with u([t;—,, t;]) = U; and holomorphic functions f; € ¢(U,) for
i=1, ..., nsuch that:

(i) ¢ is the germ of f; at the point a and y is the germ of f, at the point b.
(ii) f;|Vi=fis 1| Vi for i=1, ..., n — 1, where V; denotes the connected
component of U; n U,, | containing the point u(t;).
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Figure 5

If one carries out the construction given in (6.7) for the sheaf ¢ of holo-
morphic functions, then one gets a map p: |¢| » X. The next Lemma
shows that one can interpret analytic continuation along a curve by means
of this map.

7.2. Lemma. Suppose X is a Riemann surface and u: [0, 1] — X is a curve in X
with u(0) =:a and u(1) =:b. Then a function germ s € C, is the analytic contin-
uation of a function germ ¢ € O, along u precisely if there exists a lifting
iu: [0, 1] — |©| of the curve u such that @(0) = ¢ and u(1) = .

ProoF

(a) Suppose € €, is the analytic continuation of ¢ € ¢, along u. Let
¢, € Oy for te[0,1] be the family of function germs as given in the
Definition (7.1). It follows directly from the definition of the topology of
|¢] that the correspondence t+— ¢, represents a continuous mapping
u:[0, 1] — |©|. Thus u is a lifting of u with i#(0) = @, = ¢ and i(1) = ¢, = .

(b) Suppose thereis a lifting ii: [0, 1] —» @ of u with 1(0) = ¢ and 4(1) = .
For t € [0, 1], let @, :==d(z). Then ¢, € O,y and ¢, = @, ¢, = . Letz € [0, 1]
and suppose [U,f] = | @] is an open neighborhood of éi(t). Then there exists
a neighborhood T < [0, 1] of 7 such that #(T) < [U, f]. This implies
u(T) = U and ¢, = i(t) = p,q(f) for every t € T. But this means that v is
the analytic continuation of ¢ along u. O

Because of the uniqueness of liftings (Theorem 4.8) it follows from the
lemma that if the analytic continuation of a function germ exists, then it is
uniquely determined. Another consequence of the lemma is the Monodromy
Theorem.

7.3. Monodromy Theorem. Suppose X is a Riemann surface and u,,
uy: [0, 1] > X are homotopic curves from a to b. Suppose u;, 0 <s<1,is a
deformation of u, into u, and ¢ € O, is a function germ which admits an
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analytic continuation along every curve ug. Then the analytic continuations of
@ along uy and u, yield the same function germ \y € €.

PrOOF. Apply Theorem (4.10) to the local homeomorphism |¢| — X,
noting that |("| is Hausdorff by Theorem (6.10). O

7.4. Corollary. Suppose X is a simply connected Riemann surface, a € X and
@ € (, is a function germ which admits an analytic continuation along every
curve starting at a. Then there exists a globally defined holomorphic function

f€ C(X) such that p,(f) = ¢.

Remark. Because of the Identity Theorem, f is uniquely determined.

PrOOF. For any x € X let Y, € (', be the function germ which results from the
analytical continuation of ¢ along any curve from a to x. Since X is simply
connected, ¢, is independent of which curve is chosen. Set f{x):=y (x).
Then f'is a holomorphic function on X such that p,(f) = ¢. O

7.5. In general, even if the analytic continuation of some function germ is
possible along two curves with the same initial and end points, then the
resulting germs at the end point may be different. Thus if we consider all the
germs arising by analytic continuation from the given function germ we get a
multi-valued function. Our next task is to look at this situation and to make
the details precise.

Suppose X and Y are Riemann surfaces and ¢’y and ¢y are the sheaves of
holomorphic functions on them. Suppose p: Y — X is an unbranched holo-
morphic map. Since p is locally biholomorphic, for each y € Y it induces an
isomorphism p*: Oy ., — Cy, . Let

i (i
Px: (’Y.y_’( X, p(y)

be the inverse of p*.

7.6. Definition. Suppose X is a Riemann surface,a € X isa pointand ¢ € ¢/,
is a function germ. A quadrupel (Y, p, f; b) is called an analytic continuation
of ¢ if:

(i) Y is a Riemann surface and p: Y — X is an unbranched holomorphic
map.
(ii) fis a holomorphic function on Y.
(iii) b is a point of Y such that p(b) = a and

Pxloo(f) = 0.

An analytic continuation (Y, p, f, b) of ¢ is said to be maximal if it has the
following universal property. If (Z, g, g, ¢) is any other analytic continuation
of ¢, then there exists a fiber-preserving holomorphic mapping F: Z - Y
such that F(c) = b and F*(f)=g.
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A maximal analytic continuation is unique up to isomorphism. Namely,
using the above notation, if (Y, p,f, b)and (Z, g, g, c) are two maximal analytic
continuations of ¢, then there exists a fiber-preserving holomorphic map-
ping G: Y — Z such that G(b) = c and G*(g) = f. The composition F - G isa
fiber-preserving holomorphic mapping of Y onto itself which leaves the
point b fixed. Hence by Theorem (4.8) one has F - G =idy. Similarly
G - F =1id, and thus G: Y — Z is biholomorphic.

7.7. Lemma. Suppose X is a Riemann surface,ae X, ¢ € G, and (Y, p,f, b)is
an analytic continuation of . Then if v: [0, 1] — Y is a curve with v(0) = b and
v(1) =:y, then the function germ y :=p(p,(f)) € €, is an analytic continua-
tion of ¢ along the curve u:=p - v.

Proor. For ¢ € [0, 1] let ¢, =p,(p,(f)) € Cpoipy = Cugy- Then @y = ¢ and
@1 = py(f;) = ¥. Suppose t, € [0, 1]. Since p: ¥ - X is a local homeo-
morphism, there exist open neighborhoods ¥V = Y and U = X of v(t,) and
p(v(to)) = u(to) resp. such that p| V — U is biholomorphic. Let g: U > V be
the inverse mapping and let g :=q*(f | V) € O(U). Then p,(p,(f)) = ppm(9)
for every n e V. There exists a neighborhood T of ¢, in [0, 1] such that
v(Tyc V,ie, u(T)c U. Foreveryte T

pu(r)(g) = p*(pv(r)(f)) = ¢,.
This proves that ¥ is an analytic continuation of ¢ along u. O

7.8. Theorem. Suppose X is a Riemann surface, a e X and ¢ € €, is a holo-
morphic function germ at the point a. Then there exists a maximal analytic
continuation (Y, p, f, b) of .

ProOF. Let Y be the connected component of | (7| containing ¢. Let p also
denote the restriction of the mapping p: [¢/| > X to Y. Thenp: Y > X isa
local homeomorphism. By Theorem (4.6) there is a complex structure on Y
so that it becomes a Riemann surface and the mapping p: Y —» X is holo-
morphic. Now define a holomorphic function f: Y - C as follows. By
definition every n € Y is a function germ at the point p(n). Set f(n) :=n(p(n)).
One easily sees that f is holomorphic and p,(p,(f)) = n for every n e Y.
Thus if one lets b := ¢, then (Y, p, f, b) is an analytic continuation of ¢.
Now we will show that (Y, p, f, b) is a maximal analytic continuation of ¢.
Suppose (Z, g, g, ¢) is another analytic continuation of ¢. Define the map
F:Z — Y as follows. Suppose { € Z and ¢g({) =: x. By Lemma (7.7) the func-
tion germ q,(p.(g)) € ', arises by analytic continuation along a curve from a
to x from the function germ ¢. By Lemma (7.2} Y consists of all function
germs which are obtained by the analytic continuation of ¢ along curves.
Hence there exists exactly one # € Y such that q,(p(g)) = n. Let F({) = n. It
is easy to check that F: Z — Y is a fiber-preserving holomorphic map such
that F(c) =b and F*(f)=g. O
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Remark. The analytic continuation of meromorphic function germs can
be handled by using the techniques employed in this section for holo-
morphic function germs. One just looks at the map |.# | — X. So far we
have disregarded branch points but in the next section we will also consider
these for the special case of algebraic functions.

EXERCISES (§7)

7.1. Suppose X and Y are Riemann surfaces, p: Y > X is a holomorphic (un-
branched) covering map and f: Y — C is a holomorphic function. Let b e Y,
a=p(b) and ¢ :=p.(ps(f)) € ¢,. Prove that (Y, p, f, b) is a maximal analytic
continuation of ¢ if and only if the following condition is satisfied: For any two
distinct points by, by € p~'(a) the germs @, :=p,(ps,(f)) and @; = p,(ps,(f))
are different.

7.2. Suppose X is a Riemann surface and a € X. Suppose ¢ € (¢, admits an analytic
continuation along every curve in X which starts at a. Let (Y, p, f, b) be the
maximal analytic continuation of ¢. Prove that p: Y — X is a covering map.

§8. Algebraic Functions

One of the first examples of a multi-valued function which one encounters in
complex analysis is the square root w = \/ z. This is a particular case of an
algebraic function, i.e., a function w = w(z) which satisfies an algebraic equa-
tion w" + a,(z)w" "' + -+ + a,(z) = 0, where the coefficients a, are given
meromorphic functions of z. In this section we present the construction of
the Riemann surfaces of algebraic functions. It turns out that they are proper
coverings such that the number of sheets equals the degree of the algebraic
equation.

8.1. The Elementary Symmetric Functions. Suppose X and Y are Riemann
surfaces, 7: Y — X is an n-sheeted unbranched holomorphic covering map
and f is a meromorphic function on Y. Every point x € X has an open
neighborhood U such that n~!(U) is the disjoint union of open sets
Vi, ..., V,and n: V, > U is biholomorphic for v=1,...,n. Lett: UV,
be the inverse mapping of n|V, > U and let f, :==t* f=f- 7, . Suppose T is
an indeterminate and consider

[IT-f)=T+c,T" "+ +e¢,
v=1

Then the ¢, are meromorphic functions in U and

Cv = (— l)vsv(fls . "’f;1)9

where s, denotes the vth elementary symmetric function in n variables. If one
carries out this same construction in a neighborhood U’ of another point
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x" € X, then one gets the same functions ¢, ..., ¢,. Thus these functions
piece together to give global meromorphic functions cy, ..., ¢, € #(X),
which we call the elementary symmetric functions of f with respect to the
covering Y — X.

8.2. Theorem. Suppose X and Y are Riemann surfaces and n: Y — X is an
n-sheeted branched holomorphic covering map. Suppose A = X is a closed
discrete subset which contains all the critical values of n and let B = n™'(A).
Suppose f is a holomorphic (resp. meromorphic) function on Y\B and
Ciyons €y € O(X\A) (resp. € #(X\A)) are the elementary symmetric functions
of f. Then f may be continued holomorphically (resp. meromorphically) to Y
precisely if all the c, may be continued holomorphically (resp. mero-
morphically) to X.

The Theorem ensures that the elementary symmetric functions of a func-
tion f € .#(Y) are also defined when the map Y — X is a branched holomor-
phic covering.

PRroOF. Suppose a € A and by, ..., b, are the preimages of a. Suppose (U, z) is
a relatively compact coordinate neighborhood of a with z(a) =0 and
Un A={a}. Then V:=n"'(U) is a relatively compact neighborhood of
each of the b, .

1. First consider the case f e ¢(Y\B).

(a) Assume f may be continued holomorphically to all the points b,.
Then fis bounded on V\(b,, ..., b,,}. This implies that all the ¢, are bounded
on U\{a}. By Riemann’s Removable Singularities Theorem they may all be
continued holomorphically to a.

(b) Suppose all the ¢, may be continued holomorphically to a. Then all
the ¢, are bounded on U\{a}. But this implies fis bounded on V\{b,, ..., b,.},
for, if y € V\{by, ..., b,,; and x = n(y), then

FOY +ax)fpy '+ +cux)=0.

Again Riemann’s Removable Singularities Theorem implies that f may be
continued holomorphically to every point b, .

2. Now suppose f e .#(Y\B).

(a) Assume f may be continued meromorphically to all points b,. The
function ¢:=n*z € (V) vanishes at all the points b,. Thus ¢*f may be
continued holomorphically to all the points b, if k is sufficiently large. The
elementary symmetric functions of ¢*f are z**c, and by the first part of the
proof they may be continued holomorphically to a. Thus all the ¢, may be
continued meromorphically to a.

(b) Suppose all the ¢, may be continued meromorphically to a. Using the
above notation one has: For k sufficiently large all the z**c, admit holo-
morphic continuations to a. Thus ¢*f admits a holomorphic continuation to
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all the points b,. This implies that f may be continued meromorphically to
all of the points b, . U

For later use note that the proof does not use the fact that Y is connected.
Thus the Theorem also holds in the case that Y is a disjoint union of finitely
many Riemann surfaces.

If 7. Y - X is a non-constant holomorphic map between Riemann sur-
faces X and Y, then for any meromorphic function f on X the function
n*f:=f o mis a meromorphic function on Y. Thus there is a map

n* M(X)— H(Y)

which is a monomorphism of fields.

8.3. Theorem. Suppose X and Y are Riemann surfaces and n: Y -+ X is a
branched  holomorphic  n-sheeted covering map. If fe #(Y) and
C v.s € € M(X) are the elementary symmetric functions of f, then

fn + (n*cl)f"_l + o4 (R*C,,.-l)f‘l' 7l'*C,, = 0.

The monomorphism n*: .M (X)— #(Y) is an algebraic field extension of
degree =< n. Moreover, if there exist an f € M(Y) and an x € X with preimages
Vi ---s Yo € Y such that the values f(y,) for v=1, ..., n are all distinct, then
the field extension n*: #(X)— .#(Y) has degree n.

Remark. We will see later (cf. (14.13) and (26.6)) that the last statement of
the Theorem is always fulfilled.
Proor. The existence of the equation

1"+

\

1=

(w*e) /"™ =0

1

follows directly from the definition of the elementary symmetric functions
of f.

Let L:=.#(Y) and K :=n*.#(X) < L. Then every f e L is algebraic over
K and the minimal polynomial of f over K has degree < n. Suppose f, € Lis
an element for which the degree n, of its minimal polynomial is maximal.
We claim L = K(f,). Choose an arbitrary element f'e L and consider the
field K(f,,f). By the Theorem of the Primitive Element there exists g € L
such that K(f,, f) = K(g). By the definition of n, one has dimy K(g) < n, .
On the other hand,

dimy K(fo, f) = dimg K(fo) = n,.

Thus K(f,) = K(fo,f) and f e K(fp).
Finally if the degree of the minimal polynomial of f over K were equal to
m < n, then f would be able to take at most m different values over every

point x € X. 0
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8.4. Theorem. Suppose X is a Riemann surface, A = X is a closed discrete
subset and let X' = X\A. Suppose Y' is another Riemann surface and
7' Y — X' is a proper unbranched holomorphic covering. Then n’ extends to a
branched covering of X, i.e., there exists a Riemann surface Y, a proper holo-
morphic mapping n: Y — X and a fiber-preserving biholomorphic mapping

o Y\n~Y(A4)> Y.

ProoF. For every a € 4 choose a coordinate neighborhood (U,, z,) on X
with the following properties: z,(a) =0, z,(U,) is the unit disk in C and
U,nU,=@ if a#a. Let U¥=U,\|a}. Since n': Y- X' is proper,
n'"}(U¥) consists of a finite number of connected components VF,
v=1,..., n(a). For every v the mapping n'|V} — U} is an unbranched
covering. Let its covering number be &, . By Theorem (5.10) there exist
biholomorphic mappings {,,: V¥ — D* of V¥ onto the punctured unit disk
D* = D\{0} such that the diagram

is commutative, where 7, ({) = {*.
Now choose “ideal points™ p,,, a € A, v=1, ..., n(a), ie., pairwise
distinct elements of some set disjoint from Y'. Then on

Y=Y ulp,:ae A v=1, ..., na)

there exists precisely one topology with the following property. If W,, i € I is
a neighborhood basis of g, then

P U (@ HW) A VE), el

is a neighborhood basis of p,, and on Y’ it induces the given topology. This
makes Y into a Hausdorff space. Define z: Y —» X by n(y) = n'(y)fory e YV’
and n(p,,) = a. Then, as one easily checks, n is proper.

In order to make Y into a Riemann surface, add to the charts of the
complex structure of Y’ the following charts. Let V,, = V¥ U {p,,} and let

{avi Vay = D

be the continuation of the mapping (,,: V¥ — D* described above which is
obtained by defining {,,(p,,) :=0. Since the last mapping is biholomorphic
with respect to the complex structure of Y, the new charts {,: V,, — D are
holomorphically compatible with the charts of the complex structure of Y’
The mapping n: Y — X is holomorphic. Since Y\n™!(4) = Y’ by construc-
tion, we may choose @: Y\n™ '(4) — Y’ to be the identity mapping. This then
shows the existence of a continuation of the covering n": Y’ — X". O
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The following Theorem shows that the continuation of the covering,
whose existence was just proven, is uniquely determined up to isomorphism.

8.5. Theorem. Suppose X, Y and Z are Riemann surfaces and n: Y — X,
1. Z— X are proper holomorphic covering maps. Let A < X be a closed
discrete subset and let X' := X\A, Y':=n"Y(X')and Z' =1~ (X’). Then every
fiber-preserving biholomorphic mapping ¢': Y' — Z' can be extended to a fiber-
preserving biholomorphic mapping o: Y — Z. In particular every covering
transformation o' € Deck(Y'/X") can be extended to a covering transformation
o € Deck(Y/X).

PRrOOF. Suppose a € 4 and (U, z) is a coordinate neighborhood of a such that
z{a) =0 and z(U) is the unit disk. Let U* = U\{a}. Moreover we may
assume that U is so small that = and t are unbranched over U*. Let
Vis ., Vo (resp. W, ..., W,,) be the connected components of = }(U) (resp.
t7}(U)). Then V}:=V,\n"'(a) (resp. W*:= W, \t~(a)) are the connected
components of 7~ '(U*) (resp. t~ }(U*)).

Since o’'|n~'(U*) -t~ }(U*) is biholomorphic, n = m and one may re-
number so that ¢'(V¥)= W¥. Since n|V* - U* is a finite sheeted un-
branched covering, ¥, n n~'(a) (resp. W, n t~'(a)) consists by Theorem
(5.11) of exactly one point b, (resp. c¢,). Hence o' | 1~ 1(U*) -t~ }(U*) can be
continued to a bijective mapping n~ !(U)— ¢~ }(U) which assigns to b, the
point c,. Since n|V,— U and t| W, — U are proper, the continuation is a
homeomorphism and by Riemann’s Removable Singularities Theorem it is
biholomorphic as well. (The Removable Singularities Theorem applies since
V, and W, are isomorphic to the unit disk by Theorem (5.11).) If one now
applies this construction to every exceptional point a € A4, then one gets the
desired continuation ¢: Y — Z. 0

Theorem (8.5) makes the following definition meaningful (cf. Definition
5.5).

8.6. Definition. Suppose X and Y are Riemann surfaces and z: Y » X is a

branched holomorphic covering. Let 4 = X be the set of critical values of 7

and let X' :=X\4 and Y :=n"!(X’). Then the covering Y —» X is called

Galois if the covering Y’ — X’ is Galois.

8.7. Lemma. Suppose c,, ..., ¢, are holomorphic functions on the disk
D(R)={zeC: |z| <R}, R>0.

Suppose w,, € C is a simple zero of the polynomial

T+ c,(0)T" ' + - + ¢,(0) e C[T].
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Then there exist anr,0 < r < R, and a function @ holomorphic on the disk D(r)
such that ¢(0) = w,y and

@+ 9"+ + ¢, =00nD(r)

ProOF. For z € D(R) and w € C let
F(z, w)=w"+ ¢;(zw" "' + - + ¢,(2).

There exists an ¢ > 0 such that the function wi— F(0, w) has a unique zero w,
in the disk {w € C: |w — w,| < &}. Now because of the continuity of F there
exists an r with 0 < r < R such that in the set

{(zw)eC? |z| <,

w— wo| =¢}
the function F has no zeros. For fixed z € D(r) the integral

1y F (z, w) __OF
n(z) = - Flz. w) daw, (Fw = )

“lw—wol|=¢

gives the number of zeros of the function w F(z, w) in the disk with radius
¢ and center wy. Since n(0) = 1 and n depends continuously on z, one has
n(z) = 1 for every z € D(r). By the Residue Theorem the zero of w— F(z, w)
in the disk |w — w,| < ¢ is equal to

g o ulaw)
270 ooy =e Flz, W)

o(2) dw.

Since the integral depends holomorphically on z, the function z+ ¢(z) is
holomorphic on D(r) and F(z, ¢(z)) = 0 for every z € D(r). O

8.8. Corollary. Let (', be the ring of holomorphic function germs at a point x of
a Riemann surface and let
PT)=T"+c¢, T '+ 4¢,eC[T].
Suppose that the polynomial
p(T)=T"+ ¢ (x)T" 1 + -+ + ¢,(x) e C[T]

has n distinct zeros wy, ..., w,. Then there exist elements @, ..., ¢, € (', such
that ¢ (x) = w, and

P = [1(T =0

8.9. Theorem. Suppose X is a Riemann surface and
P(M=T"+c¢;T" '+ +c,e H#X)T]

is an irreducible polynomial of degree n. Then there exist a Riemann surface Y,
a branched holomorphic n-sheeted covering m: Y — X and a meromorphic
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function F € .#(Y) such that (n*P)(F) = 0. The triple (Y, n, F) is uniquely
determined in the following sense. If (Z, ©, G) has the corresponding properties,
then there exists exactly one fiber-preserving biholomorphic mapping o: Z — Y
such that G = o*F.

To simplify the terminology (Y, =, F)is called the algebraic function defined
by the polynomial P(T).

Remark. The classical case is when X is the Riemann sphere P!. Then by
(2.9) the coefficients c, of the polynomial P(T) are rational functions in one
variable. Since P! is compact and n: Y — P! is proper, Y is also compact.

PrOOF. Let A e .#(X) be the discriminant of the polynomial P(T). (A is a
certain polynomial in the coefficients of P.) The discriminant can not vanish
identically, for otherwise P would be reducible. There exists a closed discrete
subset 4 < X such that at every point x € X' = X\A4 all the functions c,, ..
¢, are holomorphic and A(x) # 0. Then for every x € X’ the polynomial

PT)=T" + c;(x)T"" ' + - + ¢,(x) e C[T]

[}

has n distinct zeros. Now we will use the topological space |¢| — X asso-
ciated to the sheaf ¢, cf. (6.7). Let Y’ < || be the set of all the function
germs @ € (¢,, x e X', which satisfy the equation P(p)=0 and let
n': Y — X' be the canonical projection. By Corollary (8.8) for every point
x € X' there exist an open neighborhood U = X' and holomorphic func-
tions f, ..., f, € O(U) such that

P(T)=[1(T—f) onU.

Then o'~ *(U) = | Ji- [U, ] The [U, 1,] are disjoint and 7' |[U,f,] » Uisa
homeomorphism. This shows that Y’ — X’ is a covering map. The connected
components of Y’ are Riemann surfaces which also admit covering maps
over X'. Let f: Y' — C be defined by f(¢) = ¢(7'(¢)). Then f'is holomorphic
and by construction

FOr+a@O) o)y 4+ +e(r(y)=0

for every y € Y. By Theorem (8.4) the covering n': Y’ — X’ may be continued
to a proper holomorphic covering n: Y — X, where we identify Y’ with
7~ 1(X’). By Theorem (8.2) f may be extended to a meromorphic function
F e #(Y), for which

(R*P)F)=F" + (n*c)F" ' + -+ + n*c, = 0.

Now we will show that Y is connected and thus a Riemann surface. Suppose
this is not the case. Then Y has finitely many connected components
Y, ..., Y, and n| ¥, - X is a proper holomorphic n;-sheeted covering, where
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¥n; = n. Using the elementary symmetric functions of F|Y; one gets poly-
nomials P(T) e .#(X)[T] of degree n; such that

P(T)= P(T)Py(T) -~ PLT).
But this contradicts the assumption that P(T) is irreducible.

Uniqueness. Suppose (Z, t, G) is another algebraic function defined by the
polynomial P(T). Let B = Z be the union of the poles of G and the branch
points of t and let A’ :=1(B). Let

Xr/ = X’\A(, Yr/ :=TE— I(X”), Zn o I_A 1(X”).

Define a fiber-preserving mapping ¢”: Z” — Y” in the following way. Let
ze Z" 1(z) = x and ¢ € @, be the function germ ¢ =1, G, . Then P(p) = 0.
By the construction of Y’ one sces that ¢ is a point of ¥" over x and thus
@ € Y". Set 6”(z) = ¢. From the definition it follows directly that ¢” is con-
tinuous. Since ¢” is fiber-preserving, ¢” is thus holomorphic. Moreover, ¢” is
proper since 7| Y” — X" is continuous and 7| Z” — X" is proper. Hence ¢” is
surjective. Because Y” — X” and Z"” — X" have the same number of sheets,
¢": Z"— Y" is biholomorphic. Also from the definition of ¢” one gets
G|Z" = (¢")*(F|Y"). By Theorem (8.5) ¢” can be extended to a fiber-
preserving biholomorphic mapping o: Z— Y for which one then has
G = ¢*F. The mapping ¢ is in fact uniquely determined by the property
G = o*F. For, otherwise there would exist a covering transformation
«: Y — Y different from the identity such that «*F = F. But this is not
possible since F assumes distinct values on the fiber 7~ !(x) over every point
xe X' 0

8.10. Example. Suppose f(z) = (z — a,) -** (z — a,) is a polynomial with
distinct roots ay, ..., a, € C. Consider f as a meromorphic function on the
Riemann sphere P!. The polynomial P(T)= T? —f is irreducible over
A (P') and defines an algebraic function which is usually denoted by \/f ().
Its Riemann surface n: Y — P! may be described using the above construc-
tion as follows. Let

A={ay, ..., a,} U {0},

X =P"A and Y':=n"!(X’). Then n: Y'— X’ is an unbranched holo-
morphic two-sheeted covering. This implies that every function germ ¢ € 0,
where x € X', such that ¢? = fcan be analytically continued along every curve
lying in X’. Now consider the covering over neighborhoods of the excep-
tional points.

(a) For each j € {1, ..., n} choose r; > 0 sufficiently small that no other
point of A lies in the disk

Uj={zeC: |z—aj| <r
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Since the function g(z) = [ [+, (z — @) has no zeros in U; and Uj is simply
connected, there ex1sts a holomorphic function h: U; — C such that h?=g.
Thus

[(2) = (z — aph(z)*

on U;. Suppose 0 < p <r;, § € Rand let { =a; + pe”. By Lemma (8.7)
there exists a function germ ¢, € ¢, such that (pf = fand
() = \/peh(C).

If one continues this function germ along the closed curve { = a; + pe”,
0 < 6 <2n, then one obtains the negative of the original germ. Let
U¥:=U,\la;} and V}:=n"'(U¥). Then n: V¥ - U¥ is a connected two-
sheeted covering as in Theorem (5.10.i) with k=2. For otherwise
n: V¥ - U¥ would split into two single-sheeted coverings and the analytic
continuation of the function germ ¢, along the curve (= a;+ pe®,
0 < # < 2r, would lead back to the same function germ. Hence the Riemann
surface Y has exactly one point over the point g;.

(b) Suppose r > max{|a,|, ..., |a,|} and let

U*={zeC: |z| >rh.

Then U = U* U {o0} is a neighborhood of oo, which is isomorphic to a disk,
and which contains no other points of A. On U one can write f = z"F, where
F is a holomorphic function having no zeros in U. Now we distinguish two
cases:

(i) n odd. Then there exists a meromorphic function h on U such that
f(2) = zh(z)".
(ii) n even. Then there exists a meromorphic function h on U such that
f(2) = h(z)*.

Let V*:=n~'(U*). Now one shows, the same as above, that in case (i)
n: V* - U* 1s a connected two-sheeted covering and thus Y has precisely
one point over co. But in case (ii) z: V* — U* splits into two single-shected
coverings and thus when n is even Y has two points over oo.

8.11. If X and Y are Riemann surfaces and n: Y — X is a branched holo-
morphic covering map, then Deck(Y/X) has a representation into the auto-
morphism group of the field .#(Y) defined in the following way. For
o € Deck(Y/X) let af:==f- ¢~ !. Clearly the correspondence fi—gf is an
automorphism of .#(Y). The mapping

Deck(Y/X)— Aut(#(Y))

is a group homomorphism. For suppose ¢, T € Deck(Y/X). Then for every
fe H(Y)

(o1)f=f-(or) ' =f-v ! o =0a(fct 1) =0(t).
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Trivially every such automorphism fi— of leaves invariant the functions of
the subfield n*.#(X) < .#(Y) and thus is an element of the Galois group
Aut( A (Y)/n* 4 (X))

8.12. Theorem. Suppose X is a Riemann surface, K = .#(X) is the field of
meromorphic functions on X and P(T) e K[T] is an irreducible monic poly-
nomial of degree n. Let (Y, n, F) be the algebraic function defined by P(T) and
L=_#(Y). By means of the monomorphism n*: K —» L consider K as a
subfield of L. Then L: K is a field extension of degree n and L =~ K[T)/(P(T)).
Every covering transformationa: Y — Y of Y over X induces an automorphism
fioaf=f<a"' of L leaving K fixed and the mapping

Deck(Y/X)— Aut(L/K)

which is so defined, is a group isomorphism. The covering Y — X is Galois
precisely if the field extension L: K is Galois.

PRrROOF. The fact that L: K is a field extension of degree n follows from the last
statement of Theorem (8.3). Since P(F) =0, there is a homomorphism
K[T]/(P(T)) — L. Since both these fields are of degree n over K, this is an
isomorphism.

The mapping Deck(Y/X)— Aut(L/K) is injective, because oF # F for
any covering transformation ¢ which is not the identity. This mapping is
also surjective. For, suppose « € Aut(L/K). Then (Y, , «F) is also an alge-
braic function defined by the polynomial P(T). Thus by the uniqueness
statement of Theorem (8.9) there exists a covering transformation
7 € Deck(Y/X) such that oF = t*F. If ¢ :=1" !, then

6F=F g '=F . 1=1* =oF.

Since L is generated by F over K, the automorphism fi— af of L coincides
with o.

The last statement of the Theorem follows from the fact that Y is Galois
over X (resp. L is Galois over K) precisely when Deck(Y/X) (resp.
Aut(L/K)) contains n elements. O

8.13. Puiseux Expansions. Denote by C{{z}} the ficld of all Laurent series
with finite principal part

p(z)= ) ¢,z kez, ¢, €C,
v=k
converging in some punctured disk {0 < |z| < r}, where r > 0 may depend
on the element ¢. Then C{{z}} is isomorphic to the stalk .#,, of the sheaf .#
of meromorphic functions in the complex plane and is the quotient field of
C{z}.
Consider an irreducible polynomial

F(z, w) = w"+ a;(zw" "' + -+ + a,(z) e C{{z}}[w]
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of degree n over the field C{{z}}. For some r > 0, all the coefficients a, are
meromorphic functions on

D(r)={zeC: |z| <r},

and thus F may also be considered as an element of .#(D(r))[w]. It is clear
that F is also irreducible over the field .#(D(r)). Now suppose that r has
been chosen so small that for every a € D(r)\0 the polynomial

F(a, w) e C[w]

has no multiple roots. Let (Y, =, f) be the algebraic function defined by
F(z, w) € .#(D(r))[w] in the sense of Theorem 8.9. Then n: Y — D(r) is an n-
sheeted proper holomorphic map which is ramified only over the origin. By
Theorem (5.11) there exists an isomorphism

w:D(p)->Y, p=2u/r,

such that

n(x(()) =" for every { € D(p).
Since F(m, f) =0, it follows that

F(" o(£)) =0, where g =f" a.

This proves the following Theorem.

8.14. Theorem (Puiscux). Let
F(z, w)=w"+a(zw"™ ' + - + a,(z) e C{{z}}[w]

be an irreducible polynomial of degree n over the field C{{z}}. Then there exists
a Laurent series

o«

o(f) = Y el e Cl{TH
=k

y=

such that

F(Z" o(())=0
as an element of C{{(}}.

Remarks

(1) If all of the coefficients a, are holomorphic, ie., a, € C{z}, then
¢ € C{{} as well. This follows from the fact that in this case the function f
considered in (8.13) is holomorphic on Y.

(2) Another way of expressing the assertion of the Theorem is to say that
the equation

F(z,w)=0
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can be solved by a Puiseux series

(3) We can interpret the Theorem of Puiseux in the following algebraic
way. By means of the map

Ciizli -~ Cclich, 2%

C{{C}} becomes an extension field of C{{z}} of degree n. A basis of C{(}} over
C{{z}}is given by 1, (..., "~ '. The series ¢(() is a root of F in this extension
field. Let ¢ be a primitive nth root of unity, e.g. ¢ = ¢2™/". Then for k = 0,
1,...,n— 1 we have (¢"{)" = (" and hence

F(", (")) = 0.

Thus ¢(:*() € C{{C}} is also a root of the polynomial F. It is easy to see that
the series @(e), k=0, 1, ..., n — 1, are distinct. Thus C{{}} is a splitting
field of the polynomial F e C{{z}}[w].

EXERCISES (§8)

8.1. Suppose X and Y are compact Riemann surfaces such that .#(X)and .#(Y) are
isomorphic as C-algebras. Prove that X and Y are isomorphic.
[Hint: Represent X and Y as the Riemann surfaces of algebraic functions defined
by one and the same irreducible polynomial P e .#(P')[T]. Also use the fact
(proved in Corollary (14.13)) that on a compact Riemann surface the mero-
morphic functions separate points.]

8.2. Let X and Y be compact Riemann surfaces, ay, ..., a,€ X, by, ..., b, € Y and
X' =X\ay, ..., a,), Y =Y\{by,..., b,}. Show that every isomorphism
f: X’ > Y’ extends to an isomorphism f: X — Y.

8.3. Let F(z, w)=w? — 2°w + z e C{{z}}[w].
(a) Show that F is irreducible over C{{z}}.
(b) Determine the Puiseux expansion

o
w = Z c,z"?
V=0

of the algebraic function defined by F(z, w) = 0.

§9. Differential Forms

In this section we introduce the notion of differential forms on Riemann
surfaces. It is important to consider not only holomorphic and meromorphic
forms but also forms which are only differentiable in the real sense.
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9.1. Suppose U is an open subset of C. We identify C with R? by writing
z = x + iy, where x and y are the standard real coordinates on R?. Denote
by &(U) the C-algebra of all those functions f: U — C which are infinitely
differentiable with respect to the real coordinates x and y. Besides the partial
derivatives (6/0x) and (8/dy), we also consider the differential operators

o 1 ( é i é o 1 ( e +i 0 )

_— = R —— RN — = —_— l —.

oz 2\ex  oy) oz 2\ox  dy,
As is well-known, the Cauchy-Riemann equations say that the vector space

O(U) of holomorphic functions on U is the kernel of the mapping
(0/02): £(U) - &(U).

9.2. By means of the complex charts one can define the notion of differen-
tiable function on any Riemann surface X. For any open subset Y = X, let
&(Y) consist of all functions f: Y —-C such that for every chart
z: U—V < C on X with U Y there exists a function f e £(V) withf | U =
fo z. Clearly the function f'is uniquely determined by f, for f'= f - y, where
W: V> Uis the inverse of z: U — V.

Together with the natural restriction mappings one gets the sheaf & of
differentiable functions on the Riemann surface X. In the following differen-
tiable will always mean infinitely differentiable.

If (U, z), where z = x + iy, is a coordinate neighborhood on X, then the
differential operators

a @8 o 0
ox’ 0y’ 8z’ 0% §(U)=6(U)
can be defined in the obvious way.

Suppose a is a point in X. Then the stalk &, consists of all the germs of
differentiable functions at the point a. Denote by m, = &, the vector sub-
space of all function germs which vanish at a and by m = m, the vector
subspace of those function germs which vanish to second order. A function
germ ¢ € m, is said to vanish to second order if it can be represented by a
function f such that, with respect to a coordinate neighborhood (U, z
= x + iy) of a, one has

Sy

S @=5 =0

This definition is independent of the choice of the local coordinate z.

9.3. Definition. The quotient vector space

mn
7‘(1) . a
=—

a
g



9 Differential Forms 61

1s called the cotangent space of X at the point a. If U is an open neighbor-
hood of a and f e &(U), then the differential d, f € T, of fat a is the element

d, f=(f—f(a))mod m?.

Note that the function f — f(a) vanishes at the point ¢ and thus represents an
element of m,. By definition its equivalence class modulo m? is d, f.

9.4. Theorem. Suppose X is a Riemann surface, a € X and (U, z)is a coordin-
ate neighborhood of a, where z = x + iy is the decomposition of z into its real
and imaginary parts. Then the elements d,x and d,y form a basis of the
cotangent space TSV. As well (d, z, d, Z) is a basis of TV, If fis a function which
is differentiable in a neighborhood of a, then

_U

d, f==-(a) dyx + =~(a) day

ox dy

= %(a) d,z + ZJ; (a) d,z.

ProoF

(a) First we will show that d,x and d,y span T\". Let t € T(" and sup-
pose @ € m, is a representative of t. Expanding ¢ in a Taylor series about a
yields

@ = ci(x — x(a)) + ¢y — ¥(a)) + ¥,
where ¢, ¢, € C and y € m? . Taking equivalence classes modulo nt7, we get
t=c,d,x+c,d,y.

(b) Now we claim d, x and d, y are linearly independent. For, ¢, d,x +
¢, d,y = 0 implies

ci(x — x(a)) + co(y — y(a)) e m2.

Then taking partial derivatives with respect to x and y,one has¢; = ¢, =0.
(c) Suppose f'is differentiable in a neighborhood of a. Then

_Y

110 = @ = x(@) + 2 @~ i) + 0

where g vanishes at a to second order. Thus

= % (a) d,x + g (a)d,y.

d, f i

Similarly, one can prove the corresponding results for (d, z, d,Z). O
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9.5. Cotangent Vectors of Type (1, 0) and (0, 1). Suppose (U, z) and (U’, ')
are two coordinate neighborhoods of a € X. Then

e’ . éz’ )
F(a)—w e C*, 5-5—(51):(,

and

>N
t

jo5
bl

(a) ="

=)
tai
i3
(]

This implies d,z’ = cd,zand d,z2' = ¢ d, Z.

Thus the one-dimensional vector subspaces of T\!), which are spanned by
d,z and d,Z, are independent of the choice of local coordinate (U, z) about a.
Introduce the following notation:

THO=Cd,z  T':=Cd,=

By construction T4V = T2 %@ T¢ !. The elements of T ° (resp. T2' ') are
called cotangent vectors of type (1, 0) (resp. (0, 1)).
If f is differentiable in a neighborhood of a, define d;, fand 4} f by
d,f=d, f+4d,f. d, feTH", di fe TO1

a a

Then

=

d,f ==—(a)d,z, df=—=-(a)d.;z.

5

of
oz

[¢

by

~

9.6. Definition. Suppose Y is an open subset of the Riemann surface X. By a
differential form of degree one, or simply a 1-form, on Y we mean a mapping

w: Y- [ JTY"
aeY
with w(a) e Ty for every ae Y. If w(a) e T, © (resp. w(a) € Ty ') for every
a e Y, then w is said to be of type (1, 0) (resp. of type (0, 1)).

9.7. Examples
(a) Suppose fe &(Y). Then the mappings df, d'f, d"f, which are defined by
df)a):=d, f,  (df)a)=d.f  (df)a)=d; [,
for every a e Y, are 1-forms. Clearly a function f'is holomorphic precisely if
d'f=0.
(b) Suppose w is a l-form on Y and f: Y — C is a function. Then the
mapping fw defined by ( fw)(a)=f(a)w(a) is also a 1-form on Y.

Remark. If (U, z) is a complex chart with z = x + iy, then every I1-form on
U may be written

w=fdx+gdy=¢dz+ dz,
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where the functions f, g, ¢, ¥: U — C are not necessarily continuous in
general.

9.8. Definition. Suppose Y is an open subset of a Riemann surface X. A
1-form w on Y is called differentiable (resp. holomorphic) if, with respect to
every chart (U, z), w may be written

w=fdz+gdzonUn Y, wheref,ge&(Un Y),
resp.

w=fdzon Un Y, wherefeO(U n Y)

Notation. For any open subset U of a Riemann surface X we will denote
by #(U) the vector space of differentiable 1-forms on U, by &' °(U) (resp.
&% 1(U)) the subspace of &*(U) of differential forms of type (1, 0) (resp.
(0, 1)) and by Q(U) the vector space of holomorphic 1-forms. Together with
the natural restriction mappings &%), &' 9, £% ! and Q are sheaves of vector
spaces over X.

9.9. The Residue. Suppose Y is an open subset of a Riemann surface,ae Y
and o is a holomorphic 1-form on Y\{a}. Let (U, z) be a coordinate neigh-
borhood of a such that U = Y and z(a) = 0. Then on U\{a} one may write
w = f dz, where f e O(U\{a}). Let

be the Laurent series expansion of f about a with respect to the coordinate z.
If ¢, = O for every n < 0, then w may be holomorphically continued to all of
Y. In this case a is called a removable singularity of w. If there exists k < 0
such that ¢, # 0 and ¢, = 0 for every n < k, then w has a pole of kth order at
a. If there are infinitely many n < 0 with ¢, # 0, then o has an essential
singularity at a.

The coefficient ¢_, is called the residue of w at a and is denoted by

c_, = Res,(w).
The next lemma shows that this definition makes sense.
Lemma. The residue is independent of the choice of chart (U, z).
Proor. Suppose V is an open neighborhood of a.

Claim (a) If g is holomorphic on V\{a}, then the residue of dg at a equals
zero and is thus independent of the choice of chart.
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PROOF. Let (U, z) be any coordinate neighborhood of a with z(a) = 0 and
suppose

is the Laurent series expansion of g about a. Then

dg = ( Y nc,,z"_l) dz
and thus the coefficient of z~ ! dz is zero.

Claim (b) If ¢ is a holomorphic function on ¥ which has a zero of first
order at a, then Res,(¢™ ' dp) = 1 and is thus independent of the choice of
chart.

PROOF. Suppose (U, z) is a chart at a with z(a) = 0. Then ¢ = zh, where h is
holomorphic at a and does not vanish there. Thus do = h dz + z dh and

dp hdz+zdh dz dh
e it B
@ zh z h

Since h(a) # 0, the differential form £~ ! dh is holomorphic at a and thus has
residue zero. This implies

Resa(d—q)) = Resa(dz) =1
®

P

Now using (a) and (b) one can easily finish the proof. With respect to a
chart (U, z) with z(a) = 0 let & = f dz, where

Let

-2

g:: Z i7"+1+ i C" Zn+1.

n:*oon_{_ly r|=0n+1

Then w = dg + c¢_,z” ' dz. From (a) and (b) one has Res,(w) = c_,, which
is independent of the chart. O

9.10. Meromorphic Differential Forms. A 1-form w on an open subset Y of a
Riemann surface is said to be a meromorphic differential form on Y if there
exists an open subset Y’ < Y such that the following hold:

(i) @ is a holomorphic I-form on Y,
(i) Y\Y’ consists of only isolated points,
(iii) w has a pole at every point a € Y\Y".
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Let .#') (Y) denote the set of all meromorphic 1-forms on ¥. With the natural
algebraic operations and the usual restriction mappings .#‘" is a sheaf of
vector spaces over X. The meromorphic 1-forms on X are also called abelian
differentials. As well an abelian differential is said to be of the first kind if it is
holomorphic everywhere, of the second kind if its residue is zero at every one
of its poles and of the third kind otherwise.

9.11. The Exterior Product. In order to be able to define differential forms of
degree two, we have to recall some properties of the exterior product of a
vector space with itself. Let V be a vector space over C. Then A2V is the
vector space over C whose elements are finite sums of elements of the form
vy AU, for vy, v, € V. One has the following rules

(vi +v)Avy =0 /05 0,80
(Avy) A vy = Avy Avsy)
UVIAU, = —Uy Al

for vy, v,, 03 Vand L e C. If (e, ..., e,) is a basis of V, then the elements
e;ne;, for i < j, form a basis of A*V. In fact these properties completely
characterize A2V,

Now we will apply this to the cotangent space T'!’ of a Riemann surface
X at a point a. Set

T® = A2TW),

Let (U, z) be a coordinate neighborhood of a, where z = x + iy. Then, it
follows from what was just said, that d,x And, y is a basis of T'?. Another
basis is d,zAd,z = —2i d,x Ad,y. Thus T'®) has dimension one.

9.12. Definition. Suppose Y is an open subset of a Riemann surface X. A
2-form on Y is a mapping

w: Yo |JTY,

aeyY

where w(a) e T for every a € Y. The form w is called differentiable on Y if,
with respect to every complex chart (U, z) on X, it can be written

w=fdzardz withfe&(U n Y),
where @ = f dz A dz means that w(a) =f(a)d,zAd,z for everyae U ~ Y.
Denote by #?(Y) the vector space of all differentiable 2-forms on Y.
Examples If w,, w, € §'")(Y) are 1-forms, then one can define a 2-form
W, Aw, € &3(Y) by letting
(@1 A @,)(a) = w,(a) A w,(a)

for every a € Y. For f € §(Y) and w € £®(Y) one gets a new 2-form
fw € £P(Y) by defining (fw)(a) = f(a)w(a) for every a e Y.



66 1 Covering Spaces

9.13. Exterior Differentiation of Forms. We now define derivations d, d’,
d": E(U)— &P(U), where U is an open subset of a Riemann surface.
Locally a differentiable 1-form may be written as a finite sum

w = Zﬁ dgks

where the f; and g, are differentiable functions, e.g., w = f; dz + f, dz where
z 1s a local coordinate. Set

dw =Y df, Adg,,

dw:=>Y df,ndg,

d'w=Y d'f, ndg,.
Now one has to show that this definition is independent of the representa-
tion w =Y f, dg,. We will do this for the operator d, the other cases being
similar.

Suppose @ =Y f, dg, = Y. f; dg;. Choose a particular coordinate neigh-

borhood (U, z), where z = x + iy. One has to show that Y df, Adg, =
Y. df; ndg;. Because

_ gy 09
dg, = o dx + By dy,

with a corresponding expression for dg;, one has by assumption
g _ g, g _ a9,
Zf"ax_Z]fax’ Zf"ay_Z]fay'

Taking appropriate partial derivatives with respect to x and y and sub-
tracting yields
(B ey (@32
dy dx 0x dy dy dx  dx dy/’
On the other hand
_ e 0gx O Odic )
dek/\dgk—Z(ax oy 3y 6x)dx/\dy,

with a corresponding formula for 3 df;ndg;. The result follows
immediately.

9.14. Elementary Properties. Suppose U is an open subset of a Riemann
surface, fe &(U) and w € &V(U). Then

(i) ddf = d'df=d"d"f=0.
(i) do =d'o + d'w,
(iif) d(fw) = df A @ + f dw with similar rules for d' and d”.
These rules are straightforward consequences of the definitions; e.g.,

ddf = d(1 - df) = dL Adf = 0.
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From (i) and (ii) one gets
d/d!ff‘: _d//dtf;
since 0 = (d' + d")d + d")f=d'd'f+ d"d.
With respect to a local chart (U, z), where z = x + iy, one has
o’f . S/
P T (ax

Hence a differentiable function f, defined on an open subset of a Riemann
surface, is called harmonic if d'd”’f = 0.

d/d/l —

5f) dx A dy.

9.15. Definition. Suppose Y is an open subset of a Riemann surface. A differ-
entiable 1-form w € &'V(Y) is called closed if do = 0 and exact if there exists
fe &(Y) such that @ = df.

Remark. Because ddf = 0, every exact form is closed. However the con-
verse is not true in general. We shall look at this question in more detail in
the next section.

9.16. Theorem. Suppose Y is an open subset of a Riemann surface. Then the
Jollowing hold:

(a) Every holomorphic 1-form » € Q(Y) is closed.
(b) Every closed 1-form w € &' °(Y) is holomorphic.

Proo¥. Suppose w is a differentiable 1-form of type (1, 0). With respect to a
coordinate neighborhood (U, z) one may write w = f dz for some differen-
tiable function . Then

do = df ndz = (f dz +6f )/\dz= —gdZ/\df’.
F
Thus dw = 0 is equivalent to (3f/0z) = 0 and the results follow. O

Consequence. If u is a harmonic function, then d'u is a holomorphic
1-form. For, dd'u = d"d'u = 0.

9.17. The Pull-Back of Differential Forms. Suppose F: X — Y is a holo-
morphic mapping between two Riemann surfaces. For every open set
U < Y the map F induces a homomorphism

F*: 8(U)—> &(F 1(U)), F*(f):==f- F.

Generalizing this one can define corresponding mappings for differential
forms

F*: 6®(U) - gP(FYU)), k=12
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(Using the same symbol /* should cause no confusion.) Locally a 1-form
(resp. 2-form) may be written as a finite sum ) f; dg; (resp. Y f; dg; A dh;),
where the functions f;, g;, h; are differentiable. Set

F*(Z.ff dgf) =X (F*f;) d(F*g;),

Fo( S doy i) = 5 (F7) d(Fg) ndl k)

It is easy to check that these definitions are independent of the local re-
presentations chosen and hence piece together to give unique global vector
space homomorphisms F*: §®(U) - &®(F~'(U)). For fe&(U) and
w e §P(U) one has

(1) F*(df)=d(F*f), F*(dw) = d(F*w),
(i) F*(df) = d'(F*f), F¥(d'w) = d'(F*w),
with corresponding formulas for d”.

Consequence. If f e &(U) is harmonic, then F*f=f Fe &(F~1(U))is also
harmonic. For, d'd"(F*f) = d'(F*d"f) = F*(d'd"f) = 0.

EXERCISES (§9)

9.1. Suppose p:=exp: C — C* is the universal covering of C* and w is the holo-
morphic 1-form dz/z on C*. Find p*w.

9.2. Prove that the holomorphic 1-form

dz
1+z%

which is defined on C\{+1i}, can be extended to a holomorphic 1-form ® on
PY\{£i}. Let

p=tan: C - PH{+i}
(cf. Ex. 4.4) and find p*w.

9.3. Suppose p: Y — X is a holomorphic mapping of Riemann surfaces, a € X,
b e p~*(a) and k is the multiplicity of p at b. Given any holomorphic I-form
on X\{a} show that

Resy(p*w) = k Res,(w).

§10. The Integration of Differential Forms

Differential 1-forms can be integrated along curves. If the form is closed,
then the integral only depends on the homotopy class of the curve. Thus on
any simply connected surface X the indefinite integral of a closed 1-form,
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where the integration takes place along a curve with fixed initial point and
variable end point, is a well-defined function on X. In general the integration
of closed forms yields multi-valued functions. But these functions display a
very special kind of multi-valued behavior. This will be looked at more
closely in this section. As well we consider the integration of 2-forms. This
will be useful in transforming line integrals into surface integrals and will
also be needed to prove the Residue Theorem.

A. Differential 1-Forms

10.1. Suppose X is a Riemann surface and w e §V(X). Further suppose that
a piece-wise continuously differentiable curve in X is given. This means there
is a continuous mapping

c: [0, 1]- X
for which there exists a partition
O=ty<t;y < <t,=1

of the interval [0, 1] and charts (U,, z,), z, = X, + iy, k=1, ..., n, such
that c([t;— 1, t&]) = U, and the functions

Xpe € [ ] = R, Vo [tmy, ] > R

have continuous first order derivatives. The integral of w along the curve ¢ is
defined in the following way. On U, one may write w as w = f; dx, + g, 4V,
where the functions f, g, are differentiable. Set

Jo=3 " (™52 + o @)

k=1 "tg-g '

One can easily check that this definition is independent of the choice of
partition and charts.

10.2. Theorem. Suppose X is a Riemann surface, c: [0, 1] > X is a piece-wise
continuously differentiable curve and F € &£(X). Then

[ dF = F(e(1)) - F(c(0)).

Proor. Choose a partition 0 = ¢, < t, < - < t,= 1 and charts (U, z,) as
above. On U, one has
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S (Fle(t) — F(elte-1)) = F(e(1)) = F(c(0)) 0

k=1

10.3. Definition. Suppose X is a Riemann surface and w € #*(X). A func-
tion F € &£(X) is called a primitive of w if dF = w.

By (9.15) any differential form which has a primitive is necessarily closed.
But the primitive of a differential form is not unique. If F is a primitive of ©
and ¢ € C, then F + c is also a primitive of . Conversely any two primitives
differ by a constant. For, if dF = 0, it follows, for example using Theorem
(10.2), that F is a constant.

Using Theorem (10.2) one can easily compute any line integral of a
differential form if one knows one of its primitives. And it also follows from
the Theorem that the integral of an exact differential form along a curve
depends only on the initial and end points of the curve.

10.4. The Local Existence of Primitives. Suppose U:={ze C: |z| <r},
where r > 0, is an open disk about zero in C and @ € £V(U). The differen-
tial form w may be written

w=fdx+gdy, fge&(U),

where x, y are the usual real coordinates on R? =~ C. Assume that o is closed,
1.e., dw = 0. Since
0 d
do =dfndx + dgrdy = (~g — A
ox  dy
this is equivalent to (dg/dx) = (&f/0y). We will prove that w has a primitive F
which is given by the integral

) dx A dy,

1
F(x, y):= “ (f(ex, ty)x + g(tx, ty)y) dt, for (x, y)e U.
"0
One sees directly that F is infinitely differentiable. One has only to verify
that dF = w, i.e., (0F/0x) = f and (0F/8y) = g. Differentiating under the
integral sign, we get
OF(x, y) of dg

W1
— = Jo (é} (zx, ty)ex + Ix (tx, ty)ty + f(tx, ty)) dr.
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Since

)
5f (e, ty)x + i (tx, ty)y,
0x

éLg:g and if(tx, ty) = 3y

éx Oy di

one then has

3F(x, y) J 1(

ox = f(ex, ty) + f(ex, ty)) dr

dt

1

-1 %(tf(tx, ty)) dt = £ (x, )

Similarly, (6F/dy) = g. This proves that dF = w.
In the special case that w is holomorphic, the proof of the existence of a
primitive on the disk U is much easier. Namely, in this case one has

w = [ dz with f e O(U).
Let
/@)= Yo

be the Taylor series expansion of f. Then defining

Fz)= Y =

woo B+ 1

n
Zn+1

gives us a function F € ¢(U) such that dF = w.
Globally a primitive of a closed differential form exists in general only as
a multi-valued function. This is made precise in the next theorem.

10.5. Theorem. Suppose X is a Riemann surface and w € &V(X) is a closed
differential form. Then tf;ere exist a covering map p: X — X with X connected,
and a primitive F € £(X) of the differential form p*w.

Proor. Let # be the sheaf of primitives of w. This is defined as follows. For
an open set U < X let #(U) consist of all functions fe &(U) such that
df =w on U. The sheaf # satisfies the Identity Theorem (cf. Definition
(6.9)), since any two elements f, f, € # (U), where U is a domain in X, differ
by a constant. Consider the associated space p: |# | > X. By Theorem
(6.10) the space |.# | is Hausdorff. Now we will show thatp: |# | - X isa
covering map. For every point a € X there exist by (10.4) a connected open
neighborhood U and a primitive f € #(U) of w. Then f + ¢, for ¢ € C, are all
the primitives of w on U. Hence

p~(U)= |J[U, f+c]

ceC
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The sets [U, f+c] are pairwise disjoint and all the mappings
p|[U. f+ ¢] - U are homeomorphisms. This proves that p: |#| - X is a
covering map. Let X < |# | be a connected component. Then p|X — X is
also a covering map. Since X is a set of function germs, a function F: X —» C
is defined in a natural way by F(¢) == @(p(¢)). It then follows directly from
the definitions that F is a primitive of p*w. |

10.6. Corollary. Suppose X is a Riemann surface, n: X — X its universal
covering and w € £(X) a closed differential form. Then there exists a primi-
tive f € 6(X) of n*w.

PROOF. Let p: X — X be the covering map construction in (10.5) and let
F € &(X) be a primitive of p*w. Since n: X — X is the universal covering,
there exists a holomorphic fiber-preserving mapping t: X - X. Let

f=1*F € &(X). Then fis a primitive of t*(p*w) = m*w. O

10.7. Corollary. On a simply connected Riemann surface X every closed differ-
ential form w € & V(X)) has a primitive F € &(X).

This follows from (10.6) since id: X — X is the universal covering.

10.8. Theorem. Suppose X is a Riemann surface and p: X — X is its universal
covering. Suppose w € &'V(X) is a closed differential form and F € &(X)is a
primitive of p*w. If ¢: [0, 1] = X is a piece-wise continuously differentiable
curve and ¢: [0, 11— X is a lifting of ¢, then

[ = F@(1)) ~ F(0))

PRrOOF. For every piece-wise continuously differentiable curve v: [0, 1] > X
and every differential form w € &V(X) one has
" o = ' .
J, L.
This follows directly from the definitions. The theorem then follows from
Theorem (10.2). O

10.9. Remark. Theorem (10.8) now gives a way to define the integral of a
closed differential form along an arbitrary (continuous) curve c: [0, 1] - X,
namely by the given formula. This definition is independent of the choice of
the primitive F of p*w, for any two primitives only differ by a constant and
taking the difference kills this. The definition is also independent of the
lifting of the curve ¢. For suppose # and v are two liftings of c. Since the
covering p: X — X is Galois (cf. 5.6), there is a covering transformation
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such that v = ¢ - u. Since p - ¢ = p, one has o*(p*w) = p*w. Thus o*F is
also a primitive of p*w and so ¢*F — F = const. Hence

Fo(1)) = F((0)) = 0*F(u(1)) — o*F(u(0)) = F(u(1)) — F(u(0))

and thus the value of the integral is the same for both liftings.

10.10. Theorem. Suppose X is a Riemann surface and w € §'(X) is a closed
differential form.

(@) If a, b € X are two points and u, v: [0, 1] — X are two homotopic curves
from a to b, then

PROOF

(a) Let p: X - X be the universal covering and suppose 4, &: [0, 1] - X
are liftings of u and v resp. with the same initial point. By Theorem (4.10) &
and 7 also have the same end point. Hence the result follows from Theorem
(10.8).

(b) Suppose the curve u has initial and end point x, and the curve v has
initial and end point x,. Then there exists a curve w from x, to x, such thatu
is homotopic to w - v - w™, ¢f. (3.13). Hence by (a) one has

o]

Ywensws

w:.‘w—kJ‘w—"w:'w. O
10.11. Periods. Suppose X is a Riemann surface and w e §'"(X) is a closed
differential form. Then by Theorem (10.10) one can define the integral

a, = ’ w, o e my(X),

by choosing any curve representing the homotopy class ¢ and integrating
along that curve. These integrals are called the periods of w. Clearly

o= ' w + |‘w for o, 1 € m;(X).

Thus one gets a homomorphism 7,(X) — C of the fundamental group of X
into the additive group C. This homomorphism is called the period homo-
morphism associated to the closed differential form w.
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Example. Suppose X = C*. By (5.7.a) n,(C*) = Z. A generator of n,(C*)
is represented by the curve u: [0, 1] - C*, u(t) = e*™*. Let @ := (dz/z), where
z is the canonical coordinate. Then

!‘ w= J —;Z = 2.
Hence the period homomorphism of w is
Z—-C, n 2mnin,

where we have explicitly realized the isomorphism Z = n,(C*) by the corre-
spondence n+— cl(u").

10.12. Summands of Automorphy. Suppose X is a Riemann surface and
p: X — X is its universal covering. The group G = Deck(X/X) of covering
transformations of the universal covering, as was observed in (5.6), is isomor-
phic to the fundamental group of X. If 6 € G and f: X — C is a function, then
we can define a function of: X - C by af:==f- ¢~ !. If g: X - C is another
function, then o(f + g) = of + og and o(fg) = (of )(og). Also for 6, 1€ G
one has (o7)f = o(zf).

A function f: X — C is called additively automorphic with constant sum-
mands of automorphy, if there exist constants a, € C, ¢ € G, such that

f—oaf=a, foreveryoegG.

The constants a,, which are uniquely determined by f, are called the sum-
mands of automorphy of f. Then of — o1f=a, for any o, 7 € G, since
f—1f=a,. Thus

b =f—otf=(f—of )+ (of —0tf) =q, +a..

Hence the correspondence o+a, is a group homomorphism
Deck(X/X)— C.

Any function f* X — C which is invariant under covering transformations,
Le., of = f for every o € G, is an example of an additively automorphic
function. In particular its summands of automorphy are all zero. For any
such function there exists a function f,: X — C such that f= p*f,. If fis
differentiable (resp. holomorphic) then f, is differentiable (resp. holo-
morphic) as well.

10.13. Theorem. Suppose X is a Riemann surface and p: X — X is its univer-
sal covering.

(a) If w € V(X)) is a closed differential form and F € &(X) is a primitive of
p*w, then F is additively automorphic with constant summands of automorphy.
Its summands of automorphy a,, ¢ € Deck(X/X), are, with respect to the
isomorphism m,(X) = Deck(X/X), exactly the periods of w.
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(b) Conversely suppose F € &(X) is an additive automorphic function with
constant summands of automorphy. Then there exists precisely one closed
differential form w € £Y(X) such that dF = p*w.

PrOOF
(a) If o is any deck transformation, then because p - ¢~ ! = p the function
oF is also a primitive of p*w. Thus

—-a, .= oF — F

is a constant. Suppose x, € X and z, € X is a point with p(z,) = x, . Suppose
o € Deck(X/X). By (5.6) the element @ € m,(X, x,) which is associated to ¢
can be represented as follows. Choose a curve v: [0, 1] X with v(0):=
Vo =0 Y(z0) and v(1):=zy = a(y,). Then u:=p - v is a closed curve in X
and & = cl(u). By Theorem (10.8) the periods of w with respect to & are given
by

f w = F(v(1)) — F(©(0)) = F(zy) — F(o'(z)) = —a,.

(b) If F has summands of automorphy a,ecC, then for every
o € Deck(X/X) one has

o*(dF) = do*F = d(F + a,) = dF.

Thus the closed differential form dF is invariant under covering trans-
formations. Since p: X - X is locally biholomorphic, there exists
w e &M(X) such that dF = p*w. Clearly w is uniquely determined and is
closed. O

10.14. Example. Suppose I' = Zy, + Zy,, where y,, y, € C are linearly
independent over R, is a lattice in C. Let X :==C/T.

The canonical quotient mapping n: C — X is also the universal covering
map and Deck(C/X) is the group of all translations by vectors y e T, cf.
(5.7.c). Consider the identity map z: C — C. Then the function z is additively
automorphic under the action of Deck(C/X ) with summands of automorphy
a, =7, y € I'. Hence dz is invariant under covering transformations. Thus
there exists a holomorphic differential form w e Q(X) such that p*w = dz
and whose periods are exactly the elements of the lattice I'.

10.15. Theorem. Suppose X is a Riemann surface. A closed differential form
w € &Y(X) has a primitive f € &(X) if and only if all the periods of w are zero.

ProOF. If @ has a primitive, then by (10.2) all its periods are zero.
Conversely, suppose that all the periods of w are zero. By Corollary (10.6)

there exists, on the universal covering p: X — X, a primitive F € &(X) of

p*w. By (10.3), F has summands of automorphy 0. Thus there is an f € (X))
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such that F = p*f. Then this function is a primitive of w, since p*w = dF =
d(p*f) = p*(df) implies o = df. 0

Remark. If all the periods of w vanish, then by Theorem (10.2) one gets a
special primitive of w from the integral

)= o
o
Here x, € X is a fixed arbitrary point and the integral is along any curve
from x, to x (the integral is in this case independent of the choice of curve).

10.16. Corollary. Suppose X is a compact Riemann surface and w,, @, € Q(X)
are two holomorphic differential forms which define the same period homo-
morphism 7t,(X)— C. Then w, = w,.

Proor. The difference w :=w; — w, has zero periods and thus has a primi-
tive fe ¢(X). Since X is compact, f is constant and thus w =df =0. [J

B. Differential 2-Forms

10.17. Next we look at integration of differential 2-forms in the complex
plane. Suppose U = C is open and @ € &*(U). Then @ may be written

w=fdxady= é SfdzAdz, where fe &(U).
Assume that f vanishes outside of a compact subset of U. Then define

[[ =[x ) dx dy:

174 U

where the right-hand side is the usual double integral.

Now suppose V' is another open subset of C and ¢: V' — U is a biholo-
morphic mapping. If ¢ = u + iv is the splitting of ¢ into its real and imagin-
ary parts, then by the Cauchy-Riemann equations the Jacobian determinant
of the mapping ¢ is

du,v) Oudv Oudv 5

| ’

dx,y) 0Oxdy Oydx

Thus the transformation formula for the integral becomes

[[axdy=1[[(f- o) dx dv.
/ 14

J

U
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On the other hand,
o*(dz ~ndz)=do ~dp = (¢ dz) A (p' dZ) = |@'|* dz ndZ
and thus p*w = (f- @)|¢’|* dx ~dy. Hence

f[o=]fso

10.18. Now suppose X is a Riemann surface. By the support of a differential
form w on X we mean the closed set

Supp(w):={a e X: w(a) #0}.

The support Supp(f) of a function f: X — C is defined analogously.

(a) Suppose ¢: U — V is a chart on X and w € £@(X) is a differential
form whose support is compact and contained in U. Then (¢~ ')*w is a
differential form with compact support in ¥V < C and thus one can define

[[o=[[o=[(") e

X U 1 4

This definition is independent of the choice of chart. For, suppose
@,: U, = V] is another chart with Supp(w) = U,. Without loss of generality
we may assume U = U, (otherwise take the intersection). Then

Y=g, o0 VoW

is a biholomorphic mapping. Since

(0™ Vo = (o1 - ¥)*w = y*((o1 ) o),
by (10.17) one has

[[to7 10 = [[ (01 o

Vv Vi

Thus [y  is defined independently of the choice of chart.

(b) Now suppose w € &'*(X) is an arbitrary differential form with com-
pact support. Then there exist finitely many charts o,: U, > V., k=1,...,n
such that

Supp(w) = | Uy.
k=1

Then one can find functions f, € &(X) with the following properties (a
so-called “partition of unity,” cf. Appendix A):

(i) Supp(fi) = Us,
(ii) i) filx)=1 for every x € Supp(w).
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Then f,w is a differential form with Supp(f, w) € Uy and

n
W= Z Jfrw.
K=1

Define
H W = kZI H fr.

Here the right-hand side 1s defined by (a). Again it is straightforward to
check that the definition is independent of the choice of charts and functions

i

10.19. Later on we want to use a special case of Stokes’ Theorem in the
plane. Suppose U < C is open and A < U is a compact subset with smooth
boundary 6A4. Then for every differential form w e &"(U)

H do = J‘M .

Here the boundary is oriented so that the outward pointing normal of A and
the tangent vector to 4 in this order determine a positively oriented basis of
the plane.

We will need the theorem only in the case that A is a disk or an annulus

A={zeC:e<|z| <R}, O0O<e<R

In the second case, 4 consists of the positively oriented circle |z| = R and
the negatively oriented circle |z| =¢ Then Stokes’ Theorem for
w =fdx + g dy says

o (8g of - . .
H (R - 8,}’) dx dy = JM:R(fdx +g dy) — szg(f dx + g dy).

e<|z|<R

We would now like to prove this formula directly by introducing polar
coordinates z = re®, ie.,

x =rcos 0, y=rsin 0.

First we look at the case o = g dy. Thus dw = (0g/0x) dx ~ dy. Noting that
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and letting §(r, 0) = g(re®®), one gets

. o, . 0, . .
f (cosﬂa(rg)—%(smﬂg))drdﬂ.

Now for every fixed r € [¢, R]

2 a 6=2n

. 3 (sin 07) d6 = sin 03(r, 0)  =0.

o =0

Then
.2 R (‘3 R
E[ dow = JO cos e(f = (r3) dr)dE)

2 2n L 2n

=J g(R, 0)R costH—J (e, B) e cos 6 db

0 o

[ gay-[ gdv=] o
“lz|=R Jz|=¢ YoA

The case w = f dx is reduced to the case just considered by making the

change of coordinates (x, y)— (y, —x) and noting that this transformation

has Jacobian determinant 1. This proves Stokes’ Theorem for an annulus.

The case of the disk is obtained by letting ¢ — 0.

10.20. Theorem. Suppose X is a Riemann surface and w € &V(X) is a differ-
ential form with compact support. Then

fxfdw=o.

PrOOF. By multiplying by a partition of unity as in (10.18.b) we may write @
asasumw = w, + - + w,, where each w, has compact support which lies
entirely in one chart.

Without loss of generality we may thus assume X = C.

Choose R > 0 so large that

Supp(w) = {zeC: |z| <R}.

I E EE

C |z| =R lz|=R =R

Then



80 1 Covering Spaces

10.21. The Residue Theorem. Suppose X is a compact Riemann surface and
ay. ..., a, are distinct points in X. Let X':=X\{a,, ..., a,). Then for every
holomorphic 1-form w € Q(X’), one has

M=

Res, (w) =0.

k

1

Proor. Choose coordinate neighborhoods (U,, z;) of the a, such that
Ujn U,=Zifj # k. Also we may assume that z,(a,) = 0 and z,(U,) = C is
a disk. For every k=1, ..., n choose a function f; with compact support
Supp(fi) = U, such that there exists an open neighborhood Uj < U, of g,
with fi | Uy = 1. Set g:==1 — (f; + - + £,). Then g| U, = 0. Thus g may be
continued to the point g, by assigning it the value zero, and may thus be
considered as an element of &*(X). By (10.20)

[[ digw)=o.

X

Since w is holomorphic, dw =0 on X'. On U, n X’ one has f,w = w and
thus d(f,w) = 0. Hence d(f,w) may be considered to be an element of
€?(X) whose support is a compact subset of UNa}. Now dgw) =

- d(f, ) implies
L || dfe)=o0.
k=1 X
Hence the proof will be complete once we show
U d(fw)= —2mi Res, (o).

X

Since the support of d( f; w) is contained in U,, we only have to integrate
over U,. Using the coordinate z, we may identify U, with the unit disk.
There exist 0 < ¢ < R < 1 such that

Supp(fi) = {|z| <R} and fil{|z| <e} =1

But then
[[dho)= [[ dho)=| fo-| fo
X e<|zi/< R lzk| =R “lzk|=¢
= - [ w = —2mi Res, (w)
Ylzel=¢
by the Residue Theorem in the complex plane. 0

10.22. Corollary. Any non-constant meromorphic function [ on a compact
Riemann surface X has, counting multiplicities, as many zeros as poles.
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Proor. The differential form w := df/fis holomorphic except at the zeros and
poles of /. If a € X is a zero (resp. pole) of mth order of £, then Res,(w) = m
(resp. Res,(w) = —m). Hence the result follows from the Residue Theorem.

O

Remark. We already proved this Corollary in (4.25) using coverings.

EXERCISES (§10)

10.1. Let X be a Riemann surface and w be a holomorphic 1-form on X. Suppose ¢
is a primitive of w on a neighborhood of a point a e X and (Y, p, f, b) is a
maximal analytic continuation of ¢. Prove

(a) p: Y = X is a covering map
(b) fis a primitive of p*w
(c) The covering p: Y — X is Galois and Deck(Y/X) is abelian.

10.2. Let X = C/T" be a torus. Given any homomorphism
a:m(X)-C

show that there exists a closed 1-form e &"(X) whose period homo-
morphism is equal to a.

10.3. Suppose X is a Riemann surface and w & .#'V(X) is a meromorphic 1-form on
X which has residue zero at every pole. Show that there is a covering p: ¥ —» X
and a meromorphic function F € .#(X) such that dF = p*w.

104. Let I' = C be a lattice. Use the Residue Theorem to show that there is no
meromorphic function f e .#(C/I') having a single pole of order 1.

§11. Linear Differential Equations

In this section we consider linear differential equations of the form
w' = A(z)w, where A(z) is a given n x n matrix which depends holo-
morphically on z. A vector-valued function w = w(z) is sought which
satisfies the differential equation. Locally, for any given initial condition
w(zo) = wy, there always exists a unique holomorphic solution. This solu-
tion may be continued along every curve in the domain of definition of 4.
However this continuation is, in general, no longer a single-valued function.
It turns out that closer consideration of this multi-valued behavior gives a
good insight into the structure of the solutions.

11.1. Notation. Denote by M(n x m, C) the vector space of all n x m
matrices with coefficients in C and by GL(n, C) the group of all invertible
n X n matrices with complex coefficients. If X is a Riemann surface, then a
mapping

A: X >M@nxmC)
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is called holomorphic if all the coefficients a;: X — C are holomorphic. The
set of all holomorphic mappings 4: X - M(n x m, C) will be denoted by
M(n x m, ¢(X)). One can define GL(n, ¢(X)) similarly.

11.2. Theorem. Suppose A € M(n x n, O(D)) is a holomorphic n x n-matrix
on the disk

D:={zeC: |z| <R}, where ) <R < .

Then for every wye C" there exists precisely one holomorphic function
w: D — C" such that

(1) w'(z) = A(z)w(z) for every z € D,

(2) w(0) = wyo.

(Here we are identifying C” with the space M(n x 1, C) of column vectors.)

ProoOF
(a) The matrix A can be expanded in a Taylor series

Alz)= Y A,2, A,=(ay,)e M(n xn, C)
v=0

in D. (This is to be understood as a system of n* equations for the entries of
A(z).) Now suppose that the solution w has the form

w(z)= ) ¢,z ¢, = (c;,) e C™
v=0

If this series converges in D, then (1) is equivalent to

Srer - (Fa)(Sor) - [ £ ae)

k=0 \u+v=k
1e.,

(3) (k+1)cpsy =Dk Ay_,c, foreverykeN.

The initial condition (2) is equivalent to ¢, = w,. Hence by (3) one can
recursively compute all the coefficients c, . This shows the uniqueness of the
solution.

(b) In order to prove the existence of a solution we have to show that the
series for w, having the coefficients computed in (3), does in fact converge in
D. To do this we will use the majorant method of Cauchy.

For an arbitrary r with 0 < r < R the series

0
Z 'aiJ'VIrv
v=0

converges. Hence there exists N € N such that

(4) |aj,| <Nr*! foreveryveNand 1 <i,j<n.
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Define an n x n matrix B = (b;;) which is holomorphic in |z| < r by letting
N 2\ NE 2
iz)=—1[1—- =— — 114, j.
(5) byfe) = ( r) ST 5 foralli

Let wo = (Wyq, ..., Wyo) and K :==max([wyq|,..., [Wso|). Now we can find a
solution of the differential equation

v'(z) = B(z)u(z)

in the disk |z| < r which satisfies the initial condition v(0) = (K, ..., K). By
(a) the solution is unique and is given by

v(z) = (¥(2). ... ¥(2)),
where
—nN
(z) = K(l - ;)
The function  is a solution because

lp/(Z)=KnN(1 _g)‘"”” _ nﬂ(l _E)lw(z).

r r r r

On the other hand, the differential equation " = Bv can be solved using
power series. If

B(z)= Y B,z, B, =(b,,) e M(n xn,C)
v=0
and
U(Z) = Z '))vZ“, Ty = (yiv) € C"
v=0

are the appropriate power series, then analogous to (a) one has

(6) (k + l)ykJrl = Zfzo Bk—v yv .
Then from (4) and (5), it follows that

|a;,| < b, forevery i, j, v.
Since [cio| = |Wio| < K =y for i =1, ..., n, comparison of (3) and (6) and
induction on k implies
|cij| <vu foreverykeNandi=1,..., n

Since the series ), yuz* =(z) converges for |z| <r, one has that
Yk ¢ ¥ = w(z) converges as well.
Since r < R is arbitrary, the series converges on all of D = {|z| < R}.
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11.3. On a Riemann surface X a linear differential equation for an unknown
holomorphic function w: X — C" may be written in the form

dw = Aw,

where 4 = (a;;) € M(n x n, Q(X)) is a given n x n matrix of holomorphic
1-forms a;; € Q(X). For any local chart (U, z) on X one has 4 = F dz, where
F e M(n x n, ¢(U)) and the differential equation becomes

dw _

E—F'w.

But this is just the form of equation studied in (11.2).

11.4. Theorem. Suppose X is a simply connected Riemann surface,
Ae M(n x n, QX)) and xo € X. Then for every c € C" there exists a unique
solution w € C(X )" of the differential equation

dw = Aw

satisfying w(x,) = c.

Proor

(a) By Theorem (11.2) there exists a connected open neighborhood U, of
x, and a solution fe @O(U,)* of the differential equation df = Af with
f(xg) = c. Now we will show that f may be analytically continued along any
curve a: [0, 1] - X having initial point x,. Then by Corollary (7.4) these
continuations will piece together to form a global function w € ¢(X)" which,
because of the Identity Theorem, satisfies the differential equation dw = Aw
on all of X.

(b) By Theorem (11.2) there exists a partition

O=ty,<t; < <=1

of the interval [0, 1] and domains U;, j =1, ..., k — 1, with the following
properties:

(i) «([tj, t;+1]) = U;for j=0, ..., k — 1, where U, is the neighborhood
of x, mentioned above.

(ii) For any initial value ¢; € C" there exists f; € O(U;) with df; = Af; and
filat))=cjj=1,..., k-1

Now, starting with the solution f,=f on U, found in (a) and using
induction on j one can construct solutions f; on U; satisfying

filadt)) = fi- 1 ((ty)).

From the uniqueness proved in Theorem (11.2) and the Identity Theorem it
follows that f;_, and f; agree on the connected component of U;_; n U;
containing a(t;). This proves that f can be analytically continued along .

0
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11.5. Corollary. Suppose X is a Riemann surface, p: X — X is its universal
covering, xo € X is a point and y, € X is a point such that p(y,) = x, . Suppose
AeMn xn, X)) and ce C" Then there exists a unique solution
w e O(X)" on the universal covering X of X of the differential equation

dw = (p*A)w
satisfying w(y,) = c.

11.6. Factors of Automorphy. Suppose X is a Riemann surface and
A e M(n x n, Q(X)). On the universal covering p: X — X let L, be the set of
all solutions w € ¢(X)" of the differential equation

dw = (p*Aw.

Just as in the theory of real linear differential equations one can show that
L, is an n-dimensional vector space over C and that wy, ..., w, e L, are
linearly independent precisely if for an arbitrary point a € X the vectors
wy(a), ..., w,(a) € C" are linearly independent. Therefore a basis wy, ..., w
of L, defines an invertible matrix

® = (wy, ..., w,) € GL(n, (X))

n

such that d® = (p*4)D. Such a matrix is called a fundamental system of
solutions of the differential equation dw = Aw. Let G := Deck(X/X) = n,(X)
be the group of covering transformations of p: X — X. Analogous to (10.12),
for 6 € G we can set 6®:=® c ¢~ 1. Then o® as well as @ satisfies the
differential equation d(¢®) = (p*4)(c®) and thus is another fundamental
system of solutions. Hence there exists a constant matrix T, ¢ GL(n, C) such
that
o® = OT, .

If 7 is another covering transformation, then
OT, = 100 = 2(OT,) = ()T, = OT, T,,

ie, T,,=T.T,. Hence the correspondence o+ T, defines a group
homomorphism

7,(X) = Deck(X/X)— GL(n, C).

The matrices T, are called the factors of automorphy of ®. Now conversely
suppose a homomorphism

T: Deck(X/X)—> GL(n,C), o—T,
and a holomorphic mapping

®: X - GL(n, C)
are given such that

o® = ®OT, for every ¢ € Deck(X/X).
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The matrix (d®)® ' e M(n x n, (X)) is then invariant under covering
transformations, for
o(dd - ® )= (dD T,JPT,) ' =db - d '

Hence there is a matrix A € M(n x n, Q(X)) such that p*4 = d® - ®~ ' and
@ is a fundamental system of solutions of the differential equation dw = Aw.

11.7. Now consider the special case
X={zeC:0< |z] <R}, where0 <R < c0.

Then by (5.7.b) the group of covering transformations of the universal cover-
ing p: X - X is Z. Let o be one of the generators of Deck(X/X). On X the
logarithm of the coordinate function on X exists, i.c., there exists a holo-
morphic function

log: X - C
such that exp - log = p. Now we may assume that ¢ is chosen so that
o log = log + 2ni.

Suppose A € M(n x n,Q(X))and ® € GL(n, ¢(X))is a fundamental system of
solutions of the differential equation dw = Aw. Since Deck(X/X)=
{d":n € Z}, the behavior of ® as an automorphic function is determined by the
matrix T e GL(n, C) which satisfies

o® = PT.

If ¥ € GL(n, (X)) is another fundamental system of solutions of dw = Aw,
then there exists a matrix § € GL(n, C) with ¥ = ®S. Thus

oV =WS TS = ¥T,

where T:= S~ !TS. Hence by a suitable choice of the fundamental system ¥
one can in fact arrange it so that the factor of automorphy T has Jordan
normal form.

11.8. The Exponential of Matrices. For a matrix 4 € M(n x n, C) define the
exponential of 4 by

1
exp A = kZO T A*,

Then each entry of the matrix converges absolutely. If 4, Be M(n x n, C)
are matrices which commute with each other, i.e.,, AB = BA, then

exp(4 + B) = exp(A)exp(B).

One proves this in the same way that one proves the comparable result for
the exponential of complex numbers, namely by multiplying together the
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series for exp(A) and exp(B) to get the series for exp(4 + B). In particular if
B = — A, then exp(A)exp(— A) = I, i.e,, exp(4) € GL(n, C).
If Se GL(n,C)and A € M(n x n, C), then

exp(S™1A4S) = S~ {exp 4)S. *)

Now for every matrix B € GL(n, C) there exists a matrix 4 € M(n x n, C)
such that

exp A =B.

Because of (*), it suffices to prove this in the case that B has Jordan normal
form. If B is a diagonal matrix with entries A, ..., 4, € C* then one can
simply choose A to be the diagonal matrix with entries g, ..., u,, where
exp(y;) = A;. A general matrix in Jordan normal form is made up of Jordan
blocks of the form

VE! 0
|
B, = = ME + (1/4)N),
i1
0 p)
0 1 0!
0 1
where N =
0 1
0 ]
A matrix A, such that exp(4,) = B, is given by
Al = /lE + M7
where exp(u) = A and
1 Z 1
M=Ilog|E+-N]|:= — 1)t N¥
g( *3 ) Z U e

The series contains only finitely many non-zero terms since N is nilpotent.

11.9. Suppose A is an n x n matrix whose coefficients are holomorphic
functions on a Riemann surface X. Then the coefficients of the matrix exp 4
are also holomorphic on X, since the series converges uniformly on compact
subsets of X.
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If A e M(n x n, ¢(X)) is a matrix such that
A-dA=dA- A,
then
dlexp A)=dA -exp A =exp A - dA.

This follows immediately when one differentiates the exponential series term
by term.

11.10. Theorem. Suppose T € GL(n, C) is a given matrix and Be M(n x n, C)
is a matrix such that

exp(2niB) = T.
Now consider the differential equation

1
w = — Bw"

on X ={zeC:0< |z| <R}. Then
®, :==exp(B log)

is a fundamental system of solutions of w' = :}Bw on the universal covering
p: X — X which has T as its factors of automorphy, i.e.,
o®, =0,T.

Here ¢ is defined the same as in (11.7).
ProOF. From the remark in (11.9) it follows that @}, = (1/z)B®, . Moreover,
o®, = o exp(B log) = exp(Bo log)
= exp(B(log + 2ni)) = exp(B log)exp(2niB) = ®, T. O
Remark. The theorem shows that given any punctured disk X and
prescribed factor of automorphy one can always find a differential equation

whose solution has this as its factor of automorphy. We will look at the same
problem on an arbitrary non-compact Riemann surface X in §31.

11.11. Theorem. Suppose the notation is the same as in Theorem (11.10) and
A e M(n x n, O(X)). Then the differential equation

w = Aw
has a fundamental system of solutions ® € GL(n, ((X)) of the form
D = ¥O,,

where @, = exp(B log) for a constant matrix B e M(n x n, C) and ¥ is invar-
iant under covering transformations, i.e., 'V defines an element in GL(n, 0(X)).
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PROOF. Suppose ® € GL(n, O(X)) is a fundamental system of solutions of
w' = Aw and

o® = ®T, where T € GL(n, C).
By (11.10) one can find ®, = exp(B log) € GL(n, (¢(X)) such that
7Dy = B, T.
Then for ¥ :==®®, ! one has ¥ = V. O

11.12. By Theorem (11.11) any fundamental system of solutions of a differen-
tial equation w' = Aw on the punctured disk X = {0 < |z| < R} may be
represented as the product of a very special kind of multi-valued function
®, = exp(B log) and a single-valued (matrix-valued) function ¥. Now this
function ¥ can be expanded in a Laurent series on X. The origin is called a
regular singular point or a singularity of Fuchsian type of the differential
equation w' = Aw if ¥ has at most a pole at the origin, i.e., if only finitely
many terms with negative exponent occur in the Laurent series.

11.13. Theorem. Let X :={zeC: 0< |z| <R}. If the matrix Ac
M(n x n, O(X)) has at most a pole of first order at the origin, then the origin
is a regular singular point of the differential equation w' = Aw.
ProOOF. The proof requires two lemmas.

(1) Suppose K >0 is a constant and F: 10, ro] = R* is a continuously
differentiable positive-valued function, whose derivative satisfies the inequality

K .
|F'(r)] < - F(r) for everyre )0, o).

Then

FO < Fe)(1)  Jorevery re o)

0

Proof of (1). From the assumption one gets
F'(r) K
—log F(r) = > ——.
a8 FO=Fp =75
By integrating over the interval [r, r,], one obtains
0

F(ro) r
F(r) > —K log e

log

Thus
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(2) Suppose [ is a holomorphic function on X. Then

8 2
5”'

<2011

Here (0/0r) denotes the radial derivative with respect to polar coordinates
z = re®.
Proof of (2). Since fis complex differentiable,

1 of

f = =T and thus arl = |f].
Moreover
E_(E) and thus (J-lf -
This implies
P N of ,
o V=T +1 | <2117

Now the actual proof of Theorem 11.13! By (11.11) there exists a fundamen-
tal system of solutions of w' = Aw which may be written ® = Y®,, where
¥ e GL(n, ¢(X)) and @, = exp(B log) with B e M(n x n, C). Then
1
D = AD =V, + YO, = VD, + ¥ - - BO,.
Multiplication by @, * on the right yields AY =¥ + (1/z)¥'B, ie,
1

¥'=AY - -¥B. (*)

Since the matrix A has at most a pole of first order at 0, there exists a matrix

A, which is holomorphic on the whole disk |z| < R such that 4 = (1/2)4;.
Define the norm of a matrix C = (c¢;,) by

1/2
1= (S lexl)
J. k

Then from (*) it follows that given any r, € ]0, R[ there exists a constant
M > 0 such that

el = e foro< |zl =r<ro,

Suppose  j, are the components of the matrix V. For fixed 6 € R let

F(r)=|P(re”)|* = Zkl%k(rem)lz-
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By means of (2) one gets

|F'(r)] < 22‘“/’;%(“’“')"W}k("emﬂ

< 2w (e ¥ re)] < 22 e
ie, |[F'(r)| < (2M/r)F(r). Now from (1) it follows that

Fo=Feo( )

Fo,
1e.,
. . ry M
¥(re)] = ¥ e (2]
Hence ¥ can have a pole of order at most M at the origin. O

We are now going to use Theorem (11.13) to determine the form of the
solutions of certain linear second order differential equations which arise
quite often in practice.

11.14. Theorem. Suppose D = {z € C: |z| < R} and X = D\{0}. Suppose a,
b € ((D). Then the differential equation

w”+%z)W’+if)W=0 M

z
A

has, on the universal covering p: X — X, a fundamental system (¢, ¢,) of
solutions which has one of the following forms: Either

1@1(2): 21y 4(2),
]‘Pz(z)z 272 5(z),

or

@1(z) = 224 (2),
@,(z) = (Y ((2)log z + r,(2)).

Here p, py, p, denote complex numbers and Y., , € G(D).

Remark. log z and z# = e 1°¢* are single-valued holomorphic functions on
X. Holomorphic functions on D will be interpreted as functions on X which
are invariant under covering transformations.

Proor. We reduce the differential equation to a system of two differential
equations of first order by setting

’

Wi=w, Wy i=ZW.
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Since wy = zw” + w', equation (1) is equivalent to the system

| 6

Theorem (11.13) may be applied to the system (2). Thus it has a fundamental
system of solutions of the form

d(z) = 2"¥(z)exp(B log z),

where n e Z, ¥ € GL(2, (/(D)), Be M(2 x 2,C). By a change of basis one may
even assume that B has Jordan normal form.

Case 1: B is a diagonal matrix, i.e.,

B= (“‘ 0).
0 o,

Then

(3]

0Ny
~—

exp(B log z) = ((Z;l z“(?)
o(z) = (%(2) 2

20} (2) zco’z(Z;) B (Z;EZ) 318

(
Thus ¢,(z) = """ (2), @a(z) = 2" "2, (2).

o )

(8]

Case 2: B is a Jordan block, i.e.,
o 1
B = .
5 2)

1
exp(B log z) = z“(o

Then

log z
)

and this yields
@1(z) = 2"y (2), @a(z) = 2" (Y1 (2)log z + ¥5(2)). U

11.15. Bessel’s Equation. As an example consider the differential equation,
which is known as Bessel’s equation, on C*

1 2
w”+:w’+(l—%)w=0. (1)
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Here p is an arbitrary complex number. By Theorem (11.14) the equation
has at least one solution of the form

p(z)=2rY ¢,2", peC, ¢,#0. 2)

Differentiation of the series gives

@'(z) =2 (p + nje, 2" 1,
0

P(z)=2"Y (p+n)p+n— 1), z"" %
n=0

Substituting this into the differential equation and collecting together the
resulting coefficient of z”™"~ %, one sees that the differential equation is
satisfied precisely if

(i) (p* = p*)co =0,
(ii) ((p + 1)° = p*)e, =0,
(iit) ((p + n)* — p*)e, + ¢, =0 for every n > 2.

Since ¢ # 0, (i) implies p = +p. For n = 2k even, (iii) becomes
(iii) 2%k(p + k)cae + €2y = 0.

We now distinguish two cases.

Case 1. p e C\Z. A solution to the system of equations (i)-(iii) is given by

Copiy =0

ca = (— 1G> o

kifp+ 1) (p + k)
for every k e N and arbitrary ¢,. Since

Clp+k+1)=(p+k)p+k—1) (p+ 1)(p+1),

for the special choice ¢, = 1/T'(p + 1) this gives

k(1\2k 1
e = (—1)3) Ttk+ D0(p+ k+ 1)

The Bessel function of order p is defined to be

)= (%) péo T(k + 151:(;): K+ 1) (%) "

What we have done shows that J, and J_, are two linearly independent
solutions of the differential equation (1).
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Case 2: p e Z. We may assume p > 0. In this case equation (2) with p = p
necessarily leads to the solution ¢(z) = const - J,(z). If p#0 and p = —p,
then using (iii) and the fact that ¢, # O first gives ¢,, # O for all k < p and
then for k = p the contradiction 0 - ¢,, + ¢,,_, = 0. Thus equation (2) for p
an integer can only give us one linearly independent solution. By Theorem
(11.14) equation (1) has a second solution which is linearly independent of J,,
and has the form

W(z) = J,(z)log z + y(z),

where g is a function holomorphic on C* having at most a pole at 0. Differ-
entiation gives

V(e) = TyeNog 2 + 0, (2) + ).

2 1 .,
Y'(z) = Jy(z)log z + 2 Jo(z) — — J(z) + g"(2).

<

Substituting this into the differential equation and using the fact that
w = J,(z) is already a solution of (1), one gets that  is a solution of (1)
precisely if

70+ 1a @)+ (1= Lot = - 2t

This equation can be solved by a power series of the form

This solution is then uniquely determined up to the addition of a constant
multiple of J,. This solution, when properly normalized, is the so-called
Neumann Function N , (or Bessel function of the second kind) and together with
J, forms a fundamental system of solutions of Bessel’s equation (1), cf. [52],
[58].

EXERCISES (§11)
11.1. Show that for every A € M(n x n, C)

det(exp A) = exp(trace A4).
11.2. Calculate exp(A;) for

o O =
A .

NN
I
ey
|
— b
b =
~——
=
N
J
.
S O N
S N
—_— O
S ———
N
w
[
——
—_ - O
S = =
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11.3. Let X ={ze C: 0 < |z] < R}, p: X - X be its universal covering and ¢ be a
generator of Deck(X/X). Find a holomorphic map

®: X - GL(3,C)
such that
i 1 0
cd=d-{0 i 1
0 0 i



CHAPTER 2
Compact Riemann Surfaces

Amongst all Riemann surfaces the compact ones are especially important.
They arise, for example, as those covering surfaces of the Riemann sphere
defined by algebraic functions. As well their function theory is subject to
interesting restrictions, like the Riemann-Roch Theorem and Abel’s
Theorem. More recently the theory of Riemann surfaces has been gener-
alized to an extensive theory for complex manifolds of higher dimension.
And the methods developed for this are very well suited to proving the
classical theorems. One such method is sheaf cohomology and we give a
short introduction to this in the present chapter.

To a large extent Chapter 2 is independent of Chapter 1. Essentially only
§1 (the definition of Riemann surfaces), the first half of §6 (the definition of
sheaves) and §§9 and 10 (differential forms) will be needed.

§12. Cohomology Groups

The goal of this section is to define the cohomology groups H(X, # ), where
# is a sheaf of abelian groups on a topological space X. In our further study
of Riemann surfaces, these cohomology groups play a very decided role.

12.1. Cochains, Cocycles, Coboundaries. Suppose X is a topological space
and & is a sheaf of abelian groups on X. Also suppose that an open covering
of X is given, ie., a family U = (U;);., of open subsets of X such that
(Jier Ui=X. For q=0, 1, 2, ... define the gth cochain group of #, with
respect to U, as

', F):= [ FUyn- U

96
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The elements of C4(U, # ) are called g-cochains. Thus a g-cochain is a family

(fio...iq)io iyeratt such that f;u.“iq eFU,n - nU,)

for all (ip,...,i)eI*"'. The addition of two cochains is defined
component-wise. Now define coboundary operators

§: C°(U, F)- CYU, F)
§: C'(u, #)- C*u, #)
as follows:
(i) For (f)ic; € C°M, #) let 8((f)ics) = (9:)i. je 1 where
gij=f;—fie F(U;,n U;).

Here it is understood that one restricts f; and f; to the intersection U; n U;
and then takes their difference.

(ii) For (f;)i jes € C'(U, F) let 8((f;;)) = (gi) where
giji‘:: jk ~f;'k +ﬁ165'7(U, [ UJ @) Uk)

Again the terms on the right are restricted to their common domain of
definition U; n U; n U,.

These coboundary operators are group homomorphisms. Let
Z'(U, F)=Ker(C'(U, F) > C*(U, F)),

B'(Y, #) =Im(C°(U, F) 5 C'(Uu, #)).

The elements of Z' (U, # ) are called 1-cocycles. Thus by definition a 1-cochain
(f;;) € C'(U, #) is a cocycle precisely if

f;sz;j+‘f',k OnUiﬁ Ujﬁ Uk (*)
for all i, j, k € I. One calls (*) the cocycle relation and it implies
ﬁ.‘ =0, fij = “fj.’-

One obtains these from (*) by letting i = j = k for the first and i = k for the
second.

The elements of B'(U, F) are called 1-coboundaries. In particular every
coboundary is a cocycle. A coboundary is also called a splitting cocycle.
Thus a 1-cocycle (f;;) e Z'(U, #) splits if and only if there is a 0-cochain
(9:) € C°(U, #) such that

fi=¢g,—g; onU,n U; foreveryijel.

12.2. Definition. The quotient group
H'(U, #):=2Z'(U, #)/B'(U, F)
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is called the Ist cohomology group with coefficients in # with respect to the
covering U. Its elements are called cohomology classes and two cocycles
which belong to the same cohomology class are called cohomologous. Thus
two cocycles are cohomologous precisely if their difference is a coboundary.

The groups H'(ll, ) depend on the covering l1. In order to have coho-
mology groups which depend only on X and #, one has to use finer and
finer coverings and then take a limit. We shall now make this idea precise.

An open covering B = (V),.x is called finer than the covering
U = (U,);.,, denoted B < U, ifevery V} is contained in at least one U;. Thus
there is a mapping t: K — I such that

V,c U, forevery ke K.
By means of the mapping t we can define a mapping
ty: Z'U, F)-> ZYB, F)
in the following way. For (f;;) € Z'(U, F) let tg((f;;)) = (9u) Where
G =foa.al Vi n V; foreveryk, le K.

This mapping takes coboundaries into coboundaries and thus induces a
homomorphism of the cohomology groups H!(U, #)— H'(B, #), which
we also denote by 3.

12.3. Lemma. The mapping
ty: H'(U, #)-> HY(B, #)
is independent of the choice of the refining mapping 1: K — I.

PROOF. Suppose 7: K — I is another mapping such that ¥} = U for every
k e K. Suppose (f;;) € Z'(U, #) and let
Ga = for, rlI Vi Vi and  gu=fa, ;1’ Vi 1.

We have to show that the cocycles (g,,) and (g,;) are cohomologous. Since
V, € Uy n Uy, one can define

W= fu w| Ve € Z (Va).
On V¥, ~n V¥, one has
Gt — G =For ot — Jan u
=k, o T fo o —Jo e — S w
= foe o — fou =P — hy.

Thus the cocycle (g,;) — (§u:) is a coboundary. O
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12.4. Lemma. The mapping
ty: H'(U, #) > HY(B, F)

is injective.

PROOF. Suppose (f;;) e Z'(U, #) is a cocycle whose image in Z'(B, #)
splits. One has to show that (f;;) itself splits.

Now suppose f 4 =gx — g1 on Vi, n V,, where g, € #(¥,). Then on
U; ~n V, ~n V, one has

G~ q=fwa=fui+fiua=Fa—Ffiw

and thus f; . + g« = f, « + g,. Applying sheaf axiom II (see Definition (6.3))
to the family of open sets (U; N V,), .k, one obtains h; e #(U,) such that

h=fia+g onU V.
With the elements h; found in this way, on U; n U; n V, one has

fi=fiatfui=fiat o —Ffia—g=h— h;.

Since k is arbitrary, it follows from sheaf axiom I that this equation is valid
over U; n Uy, ie, the cocycle (f;;) splits with respect to the covering .

O

12.5. The definition of H'(X, #). If one has three open coverings such that
W< B < U, then

5oty = thy.

Thus one can define the following equivalence relation ~ on the disjoint
union of the H'(U, %), where U runs through all open coverings of X. Two
cohomology classes ¢ e H'(U, #) and n e H'(U, #) are defined to be
equivalent, denoted ¢ ~ 7, if there exists an open covering B with 8 < U
and B < U’ such that t§(¢) = tg (). The set of equivalence classes is the
so-called inductive limit of the cohomology groups H'(U, #) and is called
the 1st cohomology group of X with coefficients in the sheaf %. In symbols

HY(X, #) = lim H'(, 7) = (Lu) H'(U, 9»'))/~ .

Addition in H'(X, #) is defined by means of representatives as follows.
Suppose the elements x, y € H'(X, #) are represented by ¢ € H'(U, &)
resp. n € H'(U, #). Let B be a common refinement of U and U'. Then
x+ye H'(X, #) is defined to be the equivalence class of t¥(¢)+
ty(n) € H'(B, #). One can easily check that this definition is independent
of the various choices made and makes H'(X, #) into an abelian group. If
# is a sheaf of vector spaces, then in a natural way H'(U, #)and H'(X, #)
are also vector spaces.
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From Lemma (12.4) it follows that for any open covering of X the canoni-
cal mapping

H'(U, #)> H\(X, )

is injective. In particular this implies that H'(X, #)=0 precisely if
H'(U, #) =0 for every open covering U of X.

12.6. Theorem. Suppose X is a Riemann surface and & is the sheaf of differen-
tiable functions on X. Then H'(X, &) = 0.

Proor. We give the proof under the assumption that X has a countable
topology. However this assumption is always valid, see §23.

Suppose U = (U;);, is an arbitrary open covering of X. Then there is a
partition of unity subordinate to U, i.e. a family (), c , of functions
; € &£(X) with the following properties (cf. the Appendix):

(i) Supp(y;) = U,.

(ii) Every point of X has a neighborhood meeting only finitely many of
the sets Supp(¥;).

(iii) Zisl yi=1
We will show that H'(U, &) = 0, i.., every cocycle (f;;) € Z'(U, &) splits.

The function y; f;;, which is defined on U; n U}, may be differentiably
extended to all of U, by assigning it the value zero outside its support. Thus
it may be considered as an element of &(U;). Set

gi'= Z v fi-
jel
Because of (ii), in a neighborhood of any point in U;, this sum has only
finitely many terms which are not zero and thus defines an element
g; € éa(Ul) For l,_] € 1
g — 9g;= Z W fu — Z wkfik = z 'f/k(ﬁk “f}k)

kel kel k

= g, Ui fix + fig) = %‘, Vi fij =1
on U; n Uj and thus (f;;) is a coboundary. |

Remark. In exactly the same way one can show that on a Riemann surface
X the 1st cohomology groups with coefficients in the sheaves &V, &1+, £°-
and &2 also vanish.

12.7. Theorem. Suppose X is a simply connected Riemann surface. Then

(a) HY(X,C) =0,
(b) H'(X, Z) = 0.



12 Cohomology Groups 101

Here C (resp. Z) denotes the sheaf of locally constant functions with values
in the complex numbers (resp. integers), cf. (6.4.e).

Proor

(a) Suppose U is an open covering of X and (c;) € Z'(U, C). Since
Z'(U,C)c Z'(U, &) and H'(U,&)=0, there exists a cochain
(f;) e C°(U, &) such that

c;=f—f;, onU,nU;.

But dc;; = 0 implies df; = df; on U; n U;, and thus there exists a global
differential form w € &"(X) such that w | U; = df;. Since ddf; = 0, it follows
that o is closed. Because X is simply connected, by (10.7) there exists
fe &(X) such that df = w. Set

¢ =f; _f| U;.

Since d¢;=df;—df=w—w=0 on U;, ¢ is locally constant, ie.,
(¢;) e C°(U, C). On U; n U, one has

Cij:ﬂ‘sz(fi—f)_(fj"f)=ci—cj,
and thus the cocycle (c;;) splits.
(b) Suppose (a;) € Z'(U, Z). By (a) there exists a cochain (c;) e C°(U, C)
such that
agp=c;—c¢, onU;nU,.

Since exp(2mia) = 1, one has exp(2nic;) = exp(2ric,) on the intersection
U; n U,. Since X is connected, there exists a constant b € C* such that

b = exp(2mic;) for everyje I
Choose ¢ € C such that exp(2ric) = b and let
a}‘ = Cj — C.

Since exp(2nia;) = exp(2mic;)exp(—2mic) = 1, it follows that a; is an integer,
ie., (a;) e C°(U, Z). Moreover

ap=c;—c=[(;—c)—(a—c)=a;—a,
ie., the cocycle (a;) lies in B'(U, Z). O

The next theorem shows that in certain cases one can calculate H'(X, #)
using only a single covering of X.

12.8 Theorem (Leray). Suppose ¥ is a sheaf of abelian groups on the topologi-
cal space X and W = (U, , is an open covering of X such that
HYU;, #)=0 for every i € I. Then

H\(X, F)= H'(U, 7).

Such a U is called a Leray covering (of 1st order) for the sheaf #.
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Proor. It suffices to show that, for every open covering 8 = (V,),. 4, with
P < U, the mapping ty: H'(U, #)— H'(B, #) is an isomorphism. From
(12.4) this mapping is injective.

Suppose 1: A — [ is a refining mapping with V, = U, foreveryax € 4. To
prove the surjectivity of fs, we must show that given any cocycle
(fop) € Z'(B, F), there exists a cocycle (F;)e Z'(U, #) such that the
cocycle

(Fm, r[]) - (fa/})

is cohomologous to zero relative to the covering B. Now the family
(Ui n V), 4 is an open covering of U; which we denote by U; n 8. By
assumption H'(U; n B, #) =0, i.e., there exist g;, € #(U; n V,) such that
Jap=9u— gy onU;nV,n V.
Now on the intersection U; n U; n V, n V; one has
Gja = 9ia = 9jp — Yip
and thus by sheaf axiom II there exist elements F;; € #(U; n U;) such that
Fij=6iu— 9 onUinU;nV,.
Clearly, (F;;) satisfies the cocycle relation and thus lies in Z'(1, #). Let
hy =ex. 2|V, € Z(V,). Then on V, n V; one has
Fra. B _j;ﬁ = (gt[t’,a - guz.az) - (grﬂ,a - gtﬁ,ﬁ)
= gr[},[} T hﬂ - ha’

and thus (F,, ) — (/) splits. O

12.9. Example. As an application of Leray’s Theorem, we will show
HY (C* Z)=12.

Let U;:==C*\R_ and U,:=C*\R,, where R, and R_ denote the positive
and negative real axes respectively. Then U = (U,, U,) is an open covering
of C*. By (12.7) HY(U;, Z) = 0 since U, is star-shaped and thus simply
connected. Thus H}(C*, Z) = H'(U, Z).

Since any cocycle (a;;) e Z'(4, Z) is alternating, ie, a; =0 and
a; = —aj, it is completely determined by a,, and thus Z'(U, Z) =
Z(U, n U,). But the intersection U; n U, has two connected components,
namely the upper and lower half planes, and thus Z(U, ~ U,)= Z x Z.
Since U, is connected, Z(U;) = Z and hence C°(U, Z) = Z x Z. The coboun-
dary operator §: C°(U, Z) —» Z'(U, Z) is given with respect to these isomor-
phisms by

ZxZ—>7Z X Z, (bl, b2)'—‘>(b2 - b19 b2 — bl)
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Thus the coboundaries are exactly the subgroup B < Z x Z of those ele-
ments (a,, a,) with a; = a,. Hence H'(Ul, Z)~ 7Z x Z/B= Z.

Similarly one can show H'(C* C) = C.

12.10. The Zeroth Cohomology Group. Suppose % is a sheaf of abelian
groups on the topological space X and U = (U,);_, is an open covering of X.
Set

Z°WU, #)=Ker(C°U, F) > C'(U, F)),

B°(U, #):=0,

HO(U, #)= 2, #)/B°(U, #) = Z°WU, F).
From the definition of § it follows that a 0-cochain { f;) € C°(U, #) belongs
to Z°(U, #) precisely if f;| U; n U; = f;| U; n U for every i, j € I. By sheaf

axiom II the elements f; piece together to give a global element f € % (X ) and
there is a natural isomorphism

HOMU, #) = Z°U, F) = F(X).

Thus the groups H°(U, #) are entirely independent of the covering U and
one can define

HO(X, 7)=F(X).

EXERCISES (§12)

12.1. Suppose py, ..., p, are distinct points of C and let

X’=C\{p1, ey pn}

Prove
HY(X, Z)= 7"

[Hint: Construct a covering U = (U, U,) of X such that U, and U, are
connected and simply connected and U, n U, has n+ 1 connected
components.]

12.2. (a) Let X be a manifold, U = X open and V € U. Show that V meets only a
finite number of connected components of U.
(b) Let X be a compact manifold and U = (U,);.;, B = (V);, be two finite
open coverings of X such that V; € U, for every i € I. Prove that

Im(Z'(U, C) - Z\(B, C))

is a finite-dimensional vector space.
(c) Let X be a compact Riemann surface. Prove that H!(X, C) is a finite-
dimensional vector space.
[Hint: Use finite coverings U = (U;), B = (V;) of X with ¥; € U, such that all
the U; and V; are isomorphic to disks.]
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12.3. (a) Let X be a compact Riemann surface. Prove that the map
H'(X, z)- HY(X, C),

induced by the inclusion Z < C, is injective.
(b) Let X be a compact Riemann surface. Show that H'(X, Z) is a finitely
generated free Z-module.
[Hint: Show first, as in Ex. 12.2.c), that H'(X, Z) is finitely generated and then
use 12.3.a) to prove that H'(X, Z) is free.]

§13. Dolbeault’s Lemma

In this section we solve the inhomogeneous Cauchy-Riemann differential
equation (0f/0z) = g, where ¢ is a given differentiable function on the disk X.
This is then used to show that the cohomology group H'(X, () vanishes.

13.1. Lemma. Suppose g € &(C) has compact support. Then there exists a
function f e &(C) such that

C

0z

Proor. Define the function f: C — C by

: 11 9(2) .
()=— dz Adz.
FE@)=5_ !C‘ -
Since the integrand has a singularity when z = (, one has to show that the
integral exists and depends differentiably on {. The simplest way to do this is
to change variables by translation and then introduce polar coordinates r, 6,
namely let
z=1{ + re®.
With regard to the integration { is a constant and one has

dzndz = =2idx ndy = —2ir dr ndb.
Thus

fQ)=—- :;’f*—g(g _:i:el )r dr do

r

_! “gC+re"” e dr de.
— 1] )

Since g has compact support, one has only to integrate over a rectangle
0<r<R, 0<0<2n provided R is chosen sufficiently large. One may
differentiate under the integral sign, ie., f e &(C) and

- - L[

= —io
o it e ' dr do.
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Changing back to the original coordinates, one has

o o 1 g+l
gf(i) ‘llm}J}J.T;dZ/\da,

27 g

where B,:={z e C: ¢ < |z| < R}. Since

ag(C‘+ z)1 _0dg({+2)1 @ (g(C + z))

¢ z  éz oz oz\
for z # 0, one has
of 1. rd(g(l+2) _ .
a—z(C)=—hm” ( )dzxxdz=—hm£fdw,

2ni g 5 0z z

=0
where the differential form w is given by

o(z) = ﬁgi(c z+ 2)

dz

(here one considers z as a variable and ( as a constant). By Stokes’ Theorem

€)= inffao=—in[ o=inf o

Parametrizing the circle |z| =& by z = &€, 0 < 0 < 2x, one gets
) 1 2 .
a—é () =1lim o= [ g( + &) ao.

¢~0 2T
Now the integral gives the average value of the function g over the circle
{ + ge' for 0 < 0 < 2n. Since ¢ is continuous, this converges to g({) as ¢ — 0,
ie.,

(&) =9(0). O

The next theorem shows that one may drop the assumption that g has
compact support.

13.2. Theorem. Suppose X :={z e C: |z| <R}, 0 <R < o0, and g € &(X).
Then there exists f € &(X) such that

g _

z 7

This theorem is a special case of the so-called Dolbeault Lemma in
several complex variables, see [32].
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PROOF. In this case a solution cannot simply be given as an integral as in
(13.1), for the integral will not converge in general. For this reason we use an
exhaustion process which allows (13.1) to be applied in the present setting.

Suppose 0 <Ry < R; << R, is a sequence of radii such that
lim,, R, = R and set

X,={zeC: |z|] <R,
There exist functions y, € £(X) with compact supports Supp(¥,) = X+,
and y,|X, = 1. The functions i,g vanish outside X,,, and thus if one

extends them by zero, they become functions on C. By (13.1) there exist
functions f, € £(X) such that

of,=¥,g onX.

Here and in the following we use the abbreviation 0 = (6/0z).
By induction we alter the sequence ( f,) to another sequence (), which
for all n > 1 satisfies

(i) f,=g onX,,
(ii) “];H-l ‘j;x X, <270

(As usual let || f]x:=sup,.x | f(x)| denote the supremum norm.) Set
fi=f1. Suppose fi, ..., f, are already constructed. Then

a(f;z+1—}:x)=0 on Xny

and thus f,, ; — f, is holomorphic on X ,. Hence there exists a polynomial P
(e.g., a finite number of terms of the Taylor series of f, . ; — f,) such that

”fn+1 _fr'l —P
If we set f,, ; ==f,.1 — P, then (ii) is satisfied. Moreover, on X, ; one has
aﬂwl zgfwl - 0P = 5];:+1 =Y,19 =14,

1.e., (1) also holds. Since every point z € X is contained in almost all X, the
limit

X, <27

f(z) == lim f,(2)

n—>ce

exists. On X, one may write

f=j;. + ki (];c+1 —];c)

For k>n, the functions f,,, —f; are holomorphic on X,, since

5(ﬁc+1 —];c) =0.

Because of (ii), the series

Fn:= i(ﬂﬁ-l _];6)

k=n
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converges uniformly on X, and is thus holomorphic there. Hence f = f, + F,
is infinitely differentiably on X, for every n and thus f e £(X). As well

f=0=g onX,
for every n and thus df = g on all of X. O

Remark. Naturally the solution of the equation Jf = g is not uniquely
determined, only up to the addition of an arbitrary holomorphic function.

13.3. Corollary. Suppose X :={z € C: |z| < R},0 < R < oo. Then given any
g € &(X), there exists f € &(X) such that Af = g.
Here
0? ik 02
A=Y L9 4 9
%2 oy ez es

is the Laplace operator.

ProoF. Choose f; € §(X) such that Jf; = g and f, € &(X ) such that of, = 7f;.
Then f:=1f, satisfies Af = g, for

_ % _g(@‘z)_ a(a_fz)_%

Af‘azaz T oz\oz) " oz\az

=z 7 0

13.4. Theorem. Suppose X :={zeC:|z| <R}, O<R<oo. Then
H'(X, 0) = 0.

PROOF. Suppose U = (U;) is an open covering of X and (f;;) € Z'(Y, O)is a
cocycle. Since Z'(U, 0) = Z'(U, &) and H'(X, &) = 0, there exists a cochain
(9:) € C°(U, &) such that

fi=¢i—¢; onU,n U,

Since df;; = 0, one has dg; = dg; on U; n U, and thus there exists a global
function h e &(X) with h|U;=dg;. By (13.2) we can find a function
g € &(X) such that g = h. Define

fi=g:—9g.

Now f; is holomorphic, since df; = dg; — dg = 0, and thus (f;) € C°(U, 0). As
well on U; n U; one has

/i _fj =4i—9; =.fij,
i.e., the cocycle (f;;) splits. O

13.5. Theorem. For the Riemann sphere H'(P*, 0) = 0.
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PROOF. Set U, == P'\oco and U, = P'\0. Since U, = C and U, is biholomor-
phic to C, it follows from (13.4) that H'(U;, ¢) =0. Thus U = (U, U,)isa
Leray covering of P' and H'(P?, ¢) = H*(U, ¢) by (12.8). Thus the proof is
complete once one shows that every cocycle (f;;) € Z'(U, ¢) splits. In order
to do this, it is clearly enough to find functions f; € ¢(U;) such that

Jiz=fi—f, onU;nU,=C*
Let

le(Z): E ann

be the Laurent expansion of f;, on C*. Set

Sfi(z)= 2)6"2" and f,(z)=— i cpz".

n=-—aw

Then f; e ¢(U,) and f, — f, = f1,. 0

ExXERCISES (§13)

13.1. Let X ={z e C: |z| < R}, where 0 < R < c. Denote by /# the sheaf of har-
monic functions on X, ie.

H(U)={f:U-C:fis harmonic}
for U = X open. Prove
HY(X, #) =0.

13.2. (a) Show that U = (P'\co, P'\0) is a Leray covering for the sheaf Q of holo-
morphic 1-forms on P!
(b) Prove that

HY (P, Q)= H' (U, Q)=C
and that the cohomology class of

flz-z e QU, A Uy) = ZI(U, Q)

is a basis of H'(P!, Q).

13.3. Suppose g € £(C) is a function with compact support. Prove that there is a
solution f e &(C) of the equation

af
5}—9

having compact support if and only if

JJ z"g(z) dz~dz =0 for every n e N.
C
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§14. A Finiteness Theorem

In this section we prove that for any compact Riemann surface X the coho-
mology group H'(X, 0) is a finite dimensional complex vector space. Its
dimension is called the genus of X. One of the consequences of the finiteness
theorem is the existence of non-constant meromorphic functions on every
compact Riemann surface. With regard to further applications in Chapter 3
we will do everything not only for compact Riemann surfaces but also for
relatively compact subsets of arbitrary Riemann surfaces.

14.1. The I2-Norm for Holomorphic Functions. Suppose D — C is an open
set. Given a holomorphic function f € (D) define its [*-norm by

11l 2 = (H | f(x + iy)|* dx dy)l/z.

Then || f|| 20 € Ry © {00} If | flL2) < o0, then fis called square inte-
grable. We denote by I*(D, 0) the vector space of all square integrable
holomorphic functions on D. If

Vol(D):=[[ dx dy < 0,
)

then for every bounded function f € ¢(D) one has

11|20 </ VOI(D)|| f]

where || f |, :=sup{| f(z)|: z € D} denotes the supremum norm.
For f, g € I*(D, ") one can define an inner product { f, g)> € C by

D>

gy =[] fg dxdy.

The integral exists because for every z € D

| F@)aE)] <3S + |9G)*)
With this inner product I*(D, ¢) is a unitary vector space and in particular
has a well-defined notion of orthogonality. Now suppose B = B(a, r):=

{zeC: |z—al| <r} is the disk with center a and radius r > 0. Then the
monomials (,),. « given by

Yu(z)=(z — af
form an orthogonal system in I*(B, ¢’) and one can easily check using polar
coordinates that

Jartt

[Wall L2 = —\/ﬁ for every n e N.
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If fe [}(B, ¢) and

D)= Y clz—ay

n=0

is the Taylor series of f about a, it follows from Pythagoras that

-¢] n.r2n+
H.f”izw) = ngo n+1 |c,,|2. (*)

2

14.2. Theorem. Suppose D = C is open, r > 0 and
D,={zeC: B(z, r) = D}

is the set of points in D whose distance from the boundary is greater than or
equal to r. Then for every f e I*(D, () one has

|/

1 .
b, = Tn‘r [ 2oy -

PROOF. Suppose a € D, and f(z) = Y ¢,(z — a)"is the Taylor series of fabout
a. Using (*) one gets

1
| f(a)] = |co Sﬁ 1 2t Sﬁ 1S ez

Since | f

p, = sup{| f(a)|: a € D,}, the result follows. O

In particular, it follows from Theorem (14.2) that if (f,),. ., is a Cauchy
sequence in I*(D, (), then the sequence converges uniformly on every com-
pact subset of D. Thus the limit function is holomorphic. Hence I(D, 0) is
complete and thus is a Hilbert space.

The following lemma may be viewed as a certain generalization of
Schwarz’ Lemma.

14.3. Lemma. Suppose D' € D are open subsets of C. Then given any & > 0,
there exists a closed vector subspace A = I*(D, 0) of finite codimension such
that

[/ 20y <&l f |2y for every fe A.

PRrOOF. Since D’ is compact and lies in D, there exist r > 0 and finitely many
points a, ..., a, € D with the following properties:

(i) B(aj,r)=D forj=1,..., k
(ii) D' = ( Ji—, Bla;, 1/2).
Choose n so large that 27" 'k <& Let 4 be the set of all functions

f e }(D, ) which vanish at every point a; at least to order n. Then A4 is a
closed vector subspace of I*(D, () of codimension < kn.
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Let fe A. Then f has a Taylor series about g;

fz)= Z cfz —a).
For every p < r one has
€ 2n+2
2 _ np 2
Hf”Lz(B(aj,p)) ‘ ; v+ 1 iCV‘ ’

from which it follows that
1A 1 2 rizn < 27" S | raenay, o -
Using (i) and (ii) one has
S | L2siag e < 1S 2

and

k
/L2 < ‘ZIHfHLZ(B(a,-, 2
iz

Thus
[ 2oy < k- 27" f L2y < €]l f Il 2o - g

14.4. Square Integrable Cochains. Suppose X is a Riemann surface. Choose a
finite family (U}, z;),i = 1, ..., n, of charts on X such thatevery z(U}) = C
is a disk. Note however that we are not assuming that U* = (U}), ;.. isa
covering of X. Suppose U; = U¥ are open subsets and set U = (U;);cicp-
We introduce I*-norms on the cochain groups C°(U, ¢) and C'(U, 0),
defined on the space
ju|=v,v--uu,,
in the following way:
(i) For n = (f;) e C°(U, 0) let
1120 :=Z | fillZaws-
(ii) For & = (f;;) e C'(U, ©) let

10 20 = Z Hfij ||12,2<U.- AU

L

Here the norms of f;, resp. f;;, are calculated with respect to the chart
(U¥, z)), ie,

I fil 2wy =11 £ 27 Y Lo »

£l 2w, ' i e 27 Y 2w AU
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The set of cochains having finite norm is a vector subspace C,(U, () <=
Ci(U, ), g =0,1, and these subspaces are Hilbert spaces. The cocycles in
Cl, (2, ¢) form a closed vector subspace which we denote by Z, (2, ().

145. If V,e U,, i=1,..., n, are relatively compact open subsets and
B = (V)1 <i<n» then to simplify the notation we will write 8 < U. For any
cochain & € CY(U, (V) one has |¢]|,2q, < o0. It then follows directly from
Lemma (14.3) that given any & > 0, there exists a closed vector subspace
A < Z},(U, ©) of finite codimension such that

Hgy”Lz(g_;) < 8”6”[;(10 for every é e A.

14.6. Lemma. Suppose X is a Riemann surface and U* is a finite family of
charts on X as in (14.4). Further suppose that one has W < B < U < U*, ie,
fixed shrinkings of U* are given. Then there exists a constant C > 0 such that
for every & € Z1 (B, ) there exist elements { € Z1,(U, O)and n e C},(, O)
with

{=¢+0d0n oniB

and

max(|[Clf 2an» (1] 2aw) < CllE] Law)-

PROOF

(a) Suppose & = (f;;) € Z;.(B, O) is given. Forgetting for the moment
the restriction on the norms, we first construct { e Z},(U, ¢) and
n € CL,(W, O) such that { = £ + dn on W. By Theorem (12.6) there exists a
cochain (g;) € C°(B, &) such that

ﬁj-_—gj—gi onV,n V.

Since d"f;; = 0, one has d"g; = d"g; on V; n V;, and thus there exists a differ-
ential form w € % (| B|) with |V, = d"g,. Since | W| € | V|, there exists
a function y € &(X) with

Supp(y) = | 8| and y||W| =1

Hence Yo can be considered as an element of &(|U*|). By Theorem (13.2)
there exist functions h; € &(U}) such that

d'h; =yw on U¥
Because d’h; = d"h; on UF ~ U7, it follows that

Set {:=(F;)|U. Since U < U* one has { € Z},(U, ¢). On W, one has
d'h; = yw = w =d"g;, thus h; — g; is holomorphic on W,. Since h; — g, is
also bounded on W, one has

n:=(h; — g;)| W € CL(W, O).
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Now Fy; — f;; = (h; — g;) — (h; — g;) on W, n W, and thus
{—¢=0n onW.

(b) In order to get the desired estimate on the norms, we consider the
Hilbert space

H:=2ZLU, 0) x Z}1,(B, O) x C,(W, ©)
with the norm
I & Ml = a0 + 1€l 22 + 1] Z2w)"
Let L <= H be the subspace
L={((,&neH:{=¢(+6n on W)

Since L is closed in H, it is also a Hilbert space. From part (a) the continuous
linear mapping

L= Z1(B,0), (& n)—d

is surjective. By the Theorem of Banach (cf. Appendix B. 6, 7) the mapping =
is open. Thus there exists a constant C > 0 such that for every & € Z1,(B, @)
there exists x = (¢, &, n) € L with n(x) = ¢ and |x|| ; < C[¢] L2)- This con-
stant then satisfies the desired conditions. O

14.7. Lemma. Under the same assumptions as in Lemma (14.6), there exists a
finite dimensional vector subspace S = Z'(U, ©) with the following property.
For every & € Z'(U, ©) there exist elements ¢ € S andn € C*(W, €) such that

og=¢+0n on 1.

Remark. The lemma says that the natural restriction mapping
H'(U, ¢) > H(W, 0)
has a finite dimensional image.
PRroOF. Suppose C is the constant in Lemma (14.6) and set ¢ := (1/2C). By

(14.5) there exists a finite codimensional closed vector subspace
A < Z1,(U, 0) such that

€12 < SHéHLZ(U) for every & € A.

Let S be the orthogonal complement of A in ZL,(U, 0), ie,
A®S =ZL,(U, 0).
Now suppose ¢ € Z'(U, ) is arbitrary. Because 8 < U,

1€l 2@y ="M < 0.
By (14.6) there exist {, € Z1 (U, 0) and n, € C2:(IW, @) such that
lo=C+0on, on I
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and HCO “1,2(11) < CM,

Mo || 2wy < CM. Suppose
{o=¢E0 + g, Eye A, o, € S,

1s the orthogonal decomposition.
We now construct, by induction, elements

(e Z1U, ), 1, € Ch(, O), E e A, ¢
with the following properties:

(i)=& -, +0n onW
(ii) {, =& + o,
(iii) [&]zan <27°CM, |2y < 27°CM.

Consider the induction step from v to v + 1. Since {, = &, + o, is an ortho-
gonal decomposition, one has

(&2 < 16 20y < 277CM.

Thus

oy < 27ECM <277 ML

1€, L2 < &]E,

By Lemma (14.6) there exist elements ( ., e Z],(U, ¢) and
Nes1 € CH(W, ) such that

{oo1=¢,+0n,,, onW
and
max(1€, s sans [+ Juzom) < 277 CM.

Now one has an orthogonal decomposition {,,, =¢&.,, + 0., , where
¢,+1 € Aand o,,, € S, and thus the induction step is complete.

From the equation {, = & + an,, together with equations (i) and (ii) up
to v = k, one gets

n‘.) on 2. (*)

gMé

k
é'k+ Z Uv:é+5(
v=0 v

From (ii) and (iii) it follows that

max ([ &, | L2an- 00 [lL2an - (110 [|20) < 277CM.

Hence lim,, ,, & = 0 and the series

n= 3 n,e CW, 0O)
v=0

converge. Finally from (*) one gets ¢ = ¢ + d5 on . O
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Remark, By using more powerful tools from functional analysis one could
make the proof shorter, cf. the proof of Theorem (29.13).

14.8. Suppose X is a topological space, Y < X is open and .# is a sheaf of
abelian groups on X. For every open covering U = (U,);_; of X,U n Y:=
(U; n Y);., is an open covering of ¥ and the natural restriction mapping
Z'U, F)>Z'U A Y, #) induces a homomorphism H'(U, 7)—
H'(M ~ Y, #). These homomorphisms for all i give rise to a restriction
homomorphism

HY X, #) > H'\(Y, 7).

Clearly, if one has open sets Y < Y < X, then the homomorphism
HY(X, #)—> HYY, #) is the composition of the homomorphisms
H\(X, #) - H(Y', #) and H\(Y', #) - H\(Y, #).

14.9. Theorem. Suppose X is a Riemann surface and Y, € Y, = X are open
subsets. Then the restriction homomorphism

HU(Y,, ¢)> H'(Y,, €)
has a finite dimensional image.

PROOF. There exists a finite family of charts (U}*, z;); <;<» on X and relatively

!

compact open subsets W, € ¥, € U; € U¥ with the following properties:
) e iy Wi=YeY ={)i_, UV,
(i) all z(U?¥), z,(U;) and z,(W;) are disks in C.

Let U= (U}, cicn, W:=(W),<;<,. By Lemma (14.7) the restriction map-
ping H'(U, 0)— H'(2W, ¢) has a finite dimensional image. By Theorem
(134), HYU;, 0)=H'(W,, 0)=0. Thus by Leray’s Theorem (12.8),
H'(M, ©)= H'(Y", 0) and H'(I, €)= H'(Y', ©). Since the restriction
mapping H'(Y,, ©) - H'(Y,, 0) can be factored as follows

HY(Y,, 0)— H'\(Y", 0) > H\(Y', 0) - H\(Y,, O),

the proof of the theorem is complete. O

14.10. Corollary. Suppose X is a compact Riemann surface. Then

dim H'(X, 0) < .
PRrROOF. Since X is compact, one can choose Y, = Y, = X in the previous
theorem. O

14.11. Definition. Suppose X is a compact Riemann surface. Then

g =dim H'(X, 0)
is called the genus of X.
By Theorem (13.5) the Riemann sphere P! has genus zero.
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14.12. Theorem. Suppose X is a Riemann surface and Y € X is a relatively
compact open subset. Then for every point a € Y there exists a meromorphic
function f e #(Y) which has a pole at a and is holomorphic on Y\{a}.

ProoF. By Theorem (14.9)
k=dim Im(H'(X, ¢) > H'(Y, () < o0.

Suppose (U4, z) is a coordinate neighborhood of a with z(a) = 0. Set
U, = X\{a}. Then U = (U, U,) is an open covering of X. The functions z 7/
are holomorphic on U, n U, = U, \{a} and represent cocycles

LeZ' o), j=1...k+1.
Since dim Im(H'(U, ¢') > H'(U ~ Y, 0)) < k + 1, the cocycles
lYeZlUn Y, (),

1 <j <k + 1, are linearly dependent modulo the coboundaries. Thus there
exist complex numbers cy, ..., ¢4+, not all zero, and a cochain
n=(fi.f2) e C°(4 Y, ©) such that

¢l + 4 s 1lerr =0y with respect to U N Y,
1.e.,

Yezl=f—fi onUnU;nY.
i=1

Hence there is a function f e .#(Y), which coincides with
k+1

fit+ Y ez
i=1

on U, n Y and which is equal to f, on U, n Y = Y\{a}. This is the desired

function. O
14.13. Corollary. Suppose X is a compact Riemann surface and ay, ..., a, are
distinct points on X. Then for any given complex numberscy, ..., ¢, € C, there
exists a meromorphic function f e #(X) such that f(a)=c;fori=1,..., n.

ProOOF. For every pair i # j, by applying Theorem (14.12) in the case Y = X,
one gets a function f;; € .#(X) which has a pole at g, but is holomorphic at
a;. Choose a constant A; € C* such that f(a.) # fij(a;) — 4; for every
k=1, ..., n. Then the function

9ij'= %N 1
TSy = filag) + A
is holomorphic at the points a;, 1 < k < n, and satisfies g;;(a;) =1 and
gij(a;) = 0. Now the functions
h. =114, i=1,...,n

JFi

fii ——fij(aj) c JW(X)
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satisfy hy(a;) = 9,; and thus

solves the problem. O

We now note a few consequences of the finiteness theorem for non-
compact Riemann surfaces. The reader who is only interested in compact
Riemann surfaces may skip over these if he wants.

14.14. Corollary. Suppose Y is a relatively compact open subset of a non-
compact Riemann surface X. Then there exists a holomorphic function
f: Y —C which is not constant on any connected component of Y.

Proor. Choose a domain Y, such that Y€ Y, € X and a point ae Y;\Y.
(Since X is non-compact and connected, Y;\Y is not empty.) Now apply
Theorem (14.12) to Y; and the point a. )

14.15. Theorem. Suppose X is a non-compact Riemann surface and
Y € Y < X are open subsets. Then

Im(H!(Y, ¢)— H'(Y, ) =0.

Proor. By Theorem (14.9) we already know that
L+=Im(H\(Y', ©) > H\(Y, 0))

is a finite dimensional vector space. Choose cohomology classes
& .an, &, € HY(Y, 0) such that their restrictions to Y span the vector space
L. According to (14.14) we may choose a function fe ¢(Y’) which is not
constant on any connected component of Y'. Since H!(Y’, () is in a natural
way a module over ¢(Y’), the products f&, e H'(Y’, ¢) are defined. By the
choice of the ¢, there exist constants ¢,, € C such that

fé= chuf,, onY forv=1,...,n (1)

Set
F:= det(féw, — Cvu)lsv.usn'

Then F is a holomorphic function on Y’ which is not identically zero on any
connected component of Y'. From (1) it follows that

FE|Y=0 forv=1,..., n (2)

An arbitrary cohomology class { € H'(Y', /) can be represented by a
cocycle (f;;) € Z'(U, ), where U = (U;);, is an open covering of Y’ such
that each zero of F is contained in at most one U;. Thus for i # j one has
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FlU;n U;e ¢*U; n U)). Hence there exists a cocycle (g;;) € Z'(U, €)
such that f;; = Fg;;. Let £ € H'(Y', () be the cohomology class of (9:;)- Then
{ = F& Hence from (2) one gets {|Y = FE|Y = 0. i

14.16. Corollary. Suppose X is a non-compact Riemann surface and
Y €Y < X are open subsets. Then for every differential form w e £° (Y’)
there exists a function f e &(Y) such that d'f= w|Y.

Proor. By Theorem (13.2) the problem has a solution locally. Thus there
exist an open covering U = (U;);.; of Y’ and functions f; € &(U,) such that
d'f; = | U;. The differences f; — f; are holomorphic on U; n U ; and thus
define a cocycle in Z'(U, (). By (14.15) this cocycle is cohomologous to zero
on Y and thus there exist holomorphic functions g; € ¢(U; n Y) such that
fi=fi=gi—g; onU,nU;nY.
Hence there exists a function fe &(Y) such that
f=fi—g; onU,nY, foreveryicel.

But then the function f satisfies the equation d"f = w| Y. O

Remark. Theorems (25.6) and (26.1) will extend the results of (14.15) and
(14.16).

EXERCISES (§14)

141. Let X ={z e C:r < |z| < R}, where 0 < r < R < 0. Determine an orthonor-
mal basis of I?(X, () consisting of functions of the form

©nlz) = ¢, 2", neZ.

14.2. Let X = C be a bounded open subset, p,, ..., p, € X and X' == X\{p,, ..., pu}-
Show that the restriction map

(X, 0)- XX, 6)
is an isomorphism.

§15. The Exact Cohomology Sequence

In this section we consider sheaf homomorphisms, exact sequences of
sheaves and the long exact cohomology sequence. These tools prove useful
in calculating various cohomology groups.

15.1. Definition. Suppose .# and ¥ are sheaves of abelian groups on the
topological space X. A sheaf homomorphism oa: F — % is a family of group

homomorphisms
ay: F(U)->%(U), U openin X,
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which are compatible with the restriction homomorphisms, ie., for every
pair of open sets U, V = X with VV < U the diagram

F(U) —2 5(U)

restr. l l restr,

F(V) AN 4(V)

is commutative. If all the «, are isomorphisms, then o is called an
isomorphism.

Similarly, one can define homomorphisms of sheaves of vector spaces.
Often one just writes a: #(U) — 4(U) instead of a,: #(U)— %(U).

15.2. Examples

(a) Suppose &(resp. &'V, §@) are the sheaves of differentiable functions
(resp. 1-forms and 2-forms) on a Riemann surface X. The exterior derivative
d on functions (resp. differential forms) induces sheaf homomorphisms

d: & - &9, d: 6V — 9.

Similarly the mappings d’ and d” also induce sheaf homomorphisms.

(b) On a Riemann surface X the natural inclusions 0 — &,C — &,7Z - C,
Q- &% ° etc., are sheaf homomorphisms.

(c) On a Riemann surface X one can define a sheaf homomorphism
ex: ¢ — (* from the sheaf of holomorphic functions into the multiplicative
sheaf of holomorphic functions with values in C*. For U an open subset of X
and f e O(U) let exy(f) = exp(2mif).

15.3. The Kernel of a Sheaf Homomorphism. Suppose % and ¥ are sheaves
on the topological space X and a: # — 4 is a sheaf homomorphism. For U
open in X let

A (U):=Ker(F(U) —— %(U)).
One can easily show that the family of groups #(U), together with the
restriction homomorphisms induced from the sheaf %, is again a sheaf. Itis
called the kernel of « and is denoted by #" = Ker a.
Examples. On any Riemann surface one has
(a) ¢ = Ker(6 ——— &%), (see 9.1),
(b) Q@ = Ker(¢™° —= £@) (see 9.16),

(c) Z =Ker(@ = @*) (see 15.2.c).
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15.4. Remark. Given a homomorphism «: # — % of sheaves on the topo-
logical space X one can define

A(U)=Im(F(U) - %(U)) for every open U in X.

This defines a presheaf 2 which in general does not satisfy sheaf axiom II. As
a counterexample consider the sheaf homomorphism

ex: 0 — 0%  fr+exp(2nif),

on the space C*. Let U; = C*\R_ and U, = C*\R, . Define f, € O*%(U,) by
Julz) =z for every z € U, k=1, 2. Since U, is simply connected,

fi € Im ((G(Uk) =, (0*(Uk)).

Moreover, f; |U; n U, =f,|U,; n U,. But there is no element
fe Im(co(@*) =, (0*(@*))

with f'| U, = f,, since the function z+ z has no single-valued logarithm on
all of C*.

15.5. Exact Sequences. Suppose a: # — ¥ is a sheaf homomorphism on the
topological space X. Then for each x e X there is an induced homo-
morphism of the stalks

U F,.—%Y,.

A sequence of sheaf homomorphisms # - % L # is called exact, if for each
x € X the sequence

~ ax Bx
F., — G, —— H,

X

is exact, i.e., Ker f, = Im «,. A sequence

T x1 s ' P an-1 o
FL— Fy—— 0 — F | — F,, (n>3),
of sheaf homomorphisms is called exact if the sequence

'?k = Lgrk+1 Sl 'g/’-k+2
is exact for every 1 < k < n — 2. A sheaf homomorphism a: # — % is called
a monomorphism if 0 > F 5 4 is exact and an epimorphism if # 5 % - 0 is
exact. An exact sequence of the form 0 —» .% — 4 — # — 0 is called a short
exact sequence.

15.6. Lemma. Suppose a: F — % is a sheaf monomorphism on the topological
space X. Then for every open subset U — X the mapping ay: F(U) - %(U) is
injective.
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PROOF. Suppose fe #(U) and ay(f) =0. Since a,: F, — %, is injective for
every x € X, every x € U has an open neighborhood V, < U such that
/| V. =0. From sheaf axiom I it follows that = 0. O

15.7. Remark. If a: # — ¥ is a sheaf epimorphism, it is not necessarily true
that for every open set U the mapping ay: & (U) — 4(U) is surjective. This
is illustrated by the example ex: ¢ — @~ in (15.4). For every x the map
ex: (0, — (F is surjective, since every non-vanishing function locally has a
logarithm. But ex: ¢(C*)— O*(C*) is not surjective.

158. Lemma. Suppose 0 » F 5 4 4 # is an exact sequence of sheaves on
the topological space X. Then for every open set U — X the sequence

0> F(U)>9U)S #(U)

is exact.

PROOF

(a) The exactness of 0 - #(U) > %(U) was proved in (15.6).

(b) Im « < Ker B. Suppose fe #(U) and g :=a(f). Since the sequence of
stalks #, - %, — #, is exact for every x € U, it follows that each point
x € U has a neighborhood V, = U such that f(g)|V, = 0. Hence by sheaf
axiom I one has #(g) = 0.

(c) To prove the inclusion Ker § = Im « suppose g € 4(U) with B(g) = 0.
Since for every x € U one has Ker f, = Im «,, there is an open covering
(V)ier of U and elements f; € #(V;) such that«(f;) = g| V;foreveryie I.On
the intersection ¥; n V; one then has «( f; — f;) = 0. Hence by (15.6) it fol-
lows that f; = f; on V; n V;. Now by sheaf axiom II there exists an f € #(U)
with f|V, = f; for every i e I. Since a(f)|V;=a(f|V)=g|V,, it follows
from sheaf axiom I, applied to the sheaf %, that a(f) =g. O

15.9. Examples. We now give several examples of short exact sequences of
sheaves

0 F %> H# >0
on a Riemann surface X.
(@) 05 0—-€L &% 50
Here ¢ — & is the natural inclusion. The exactness follows from the Dol-

beault Lemma (13.2).
(b) Let

Z =Ker (é”‘“ 4 é"‘z’)
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be the sheaf of closed differential forms. The sequence

0-CoE6S57 50

is exact. That d: & » Z is an epimorphism follows from the fact that locally
every closed differential form is exact, see (10.4).

() 0-C—05Q-0.
This exact sequence is the holomorphic analogue of (b).
(d) Since

Q = Ker (é“' 04 é‘"z’),
in order to prove the exactness of

0-5Q—&h05 e 0,

one has only to show that d: &'° — & is onto. With respect to a local
chart (U, z), one has

d(fdz) = % dz ndz.

Thus for every open set VV = U such that z(V) < C is a disk one sees by using
the Dolbeault Lemma that d: &'-°(V)— &P(V) is surjective. Hence
d: £1:° - £2 is surjective for every point a € X.

(e) The exactness of the sequence

0-Z->0 =5 ¢*>0
follows from (15.3.c) and the remark (15.7).
15.10. Any homomorphism a:.# — % of sheaves on the topological space X
induces homomorphisms
2°: H(X, #) - H(X, %),
al: HY(X, #) - H\(X, ).

The homomorphism «° is nothing but the mapping ay: #(X)— %(X). The
homomorphism «! is constructed as follows. Let U = (U;);., be an open
covering of X. Consider the mapping

ay: CHU, #) - CY{U, %)
which assigns to each cochain & = (f;;) € C'(1, #) the cochain

(&) = (2l fiy)) € C' (U, ).
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This mapping takes cocycles to cocycles and coboundaries to coboundaries
and thus induces a homomorphism

ay: H'(U, #)— H'(U, %).
The collection of @,;, where U runs over all open coverings of X, then induces
the homomorphism «'.

15.11. The Connecting Homomorphism. Suppose

0-F595 w0

is an exact sequence of sheaves on the topological space X. A “connecting
homomorphism”

o*: HY(X, #) - HY (X, #)
is defined as follows. Suppose
he H(X, #) = #(X).

Since all the homomorphisms f,: 4, » #, are surjective, there exists an
open covering U = (U,),., of X and a cochain (g;) € C°(U, %) such that

Blg:)=h|U; foreveryiel. (1)

Hence B(g;—¢:))=0 on U;n U;. By Lemma (158) there exists
fij€ #(U; n Uj) such that

afiy)=9;— gi- ()
On U;nU;nU, one has a(fij+fx—fau)=0 and thus by (15.6)
Jii + fie = Jues 184

(fij)e 2\, #).

Now let 6*h € H'(X, #) be the cohomology class represented by (f;;). One
can easily check that this definition is independent of the various choices
made.

15.12. Theorem. Suppose X is a topological space and

07395 w0

is a short exact sequence of sheaves on X. Then the induced sequence of
cohomology groups

5% Hl(

0 — HYX, #) == H(X, 9) -2 HO(X, #) >
X, ) = H'(X, %) 25 H\(X, #)

is exact.
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PrOOF

(a) The exactness at H°(X, #) and H°(X, ) follow from Lemma (15.8).

(b) Im p° = Ker 6*. Suppose g € H(X, %) and h:=f°(g). In the con-
struction of 6*h described in (15.11) one can choose g; = g | U;. But then
fi;; =0 and thus 6*h = 0.

(c) Ker 6* = Im B°. Suppose h e Ker §* Using the notation of (15.11)
one can represent 6*h by the cocycle (f;;) € Z' (U, #). Since 6*h = 0 there
exists a cochain (f)) e C°(U, #) such that f;; =f;—f; on U, n Uj. Set
gi=g; — a(f;). Then g; = §;on U; n U;because a(f;;) = g; — g;. Thus the g;
are restrictions of some global element g € H°(X, %). On U, one has f(g) =
B(g:;) = Blg; — a(f:)) = Blg:) = h, ie, h e Im [ixd

(d) Im 6* < Ker a'. This follows from condition (2) in (15.11).

(¢) Ker o' = Im &* Suppose ¢ € Ker o' is represented by the cocycle
(f;;) € Z'(U, #). Since a'(¢) = 0, there exists a cochain (g;) € C°(U, %) such
that a(f;;) = g; — g, on U; n U;. This implies

0 = B(a(f;;)) = Blg;) — Blg:) on U, n U;.

Hence there exists h € #(X) = H°(X, #) such that h| U; = f(g;). The con-
struction given in (15.11) now shows that 6*h = £.
(f) Tm o' = Ker B*. This follows from the fact that

FUia U)S9U, UYL #U ~ Uy

is exact by (15.8).

(g) Ker ' = Im o'. Suppose n € Ker p' is represented by the cocycle
(9;) € Z* (U, %), where U = (U,); ., . Then there is a cochain (h;) € C°(U, #°)
such that f(g;;) = h; — h;. For every x € X choose tx € Isuchthatxe U_,.
Since B,: %, — H# . is surjective, there is an open neighborhood V, = U, of x
and an element g, € 4(V,) such that (g,) = h.|Vi. Let B = (V). x and
Jry = Gex. oy| Ve 0 V;. Then (gy,) € Z!(B, 9) is a cocycle which also repre-
sents the cohomology class 7. Let /., =g, — g, + g.. The cocycle (,) is
cohomologous to (J,,) and B(Y,,) = 0. Thus there exists f,, € F(V, N V)
such that a(f,,) = ¥,,. Since

w FVen Vyn V) =8V V,n V)

is injective by (15.6), (f.,)e Z'(8, #). Thus the cohomology class
¢ e H\(X, #) of (f,,) satisfies a'(£) = ». This completes the proof. O

15.13. Theorem. Suppose 0 - F 5% L w >0 is an exact sequence of
sheaves on the topological space X such that H (X, 4) = 0. Then

HY\(X, 7)= #(X)/f%(X).
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Proor. Since H!(X, %) = 0, by Theorem (15.12) one has the exact sequence
B(X) — #(X) s H'(X, F)—0.
The result is now obvious. O

For many applications it is important to be able to describe the
isomorphism.

O: H'(X, F) > #(X)/B%(X)

explicitly. By Lemma (15.8) we can always assume that % = Ker f and
o: F — % is the inclusion map.

Suppose & € H'(X, #) is a cohomology class which is represented by the
cocycle (f;;) e Z'(U, #) < Z'(U, ¥). Since H'(U, %) = 0, there exists a co-
chain (g;) € C°(U, 4)suchthatf;; = g; — g;on U; n U;.Since B(f;) = 0, B(g;)
and B(g;) agree on U; n U;. Thus there exists a global element h € #(X)
with h|U; = B(g;). Then ®(£) is the coset of h modulo f%(X). The fact that
the mapping @ described above is the inverse of the isomorphism
H(X)/B%(X) > H'(X, #) induced by the exact cohomology sequence fol-
lows from part (e) in the proof of (15.12).

15.14. Dolbeault’s Theorem. Let X be a Riemann surface. Then there are
isomorphisms

(a) HY(X, 0) = &% (X )/d"8(X),
(b) H'(X, Q) = (X )/de" *(X).

Since H'(X, €) = H'(X, €"°) = 0, one may apply Theorem (15.13) to
the exact sequences given in (15.9.a) and (15.9.d) respectively.

Remark. Theorem (13.4) is a special case of Dolbeault’s Theorem.

15.15. The deRham Groups. On every Riemann surface X every exact 1-form
is closed but every closed form is not necessarily exact. Consequently one is
interested in the quotient group

_Ker(£(X) 5 62(X))

Rh!(X):
Im(&(X) > £9(X))

of closed 1-forms modulo exact 1-forms. Two closed differential forms which
determine the same element in Rh!(X), i.e., whose difference is exact, are said
to be cohomologous. Rh!(X)is called the 1st deRham group of X. Note that
Rh'(X) = 0 precisely if every closed 1-form o ¢ ¢"(X) has a primitive.
If X is simply connected, then Rh'(X) = 0 by (10.7).
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deRham’s Theorem. Let X be a Riemann surface. Then
H'(X, C) = Rh*(X).

This follows from (15.13) applied to the exact sequence in (15.9.b).
Theorem (12.7.a) is a special case of deRham’s Theorem.

Remark. The theorems of deRham and Dolbeault are proved here only
for Riemann surfaces. But they are also valid in a more general form on
differentiable (resp. complex) manifolds of arbitrary dimension. More details
can be found in any book on several complex variables, e.g., [30], [31], [32],
[33], [34], [35] In §§6, 12 and 15 we have considered only the most basic
ideas about sheaves and sheaf cohomology. A systematic introduction can
be found in [41].

EXERCISES (§15)

15.1. Let X be a Riemann surface and .# be the sheaf of harmonic functions on X.
Verify that the sequence

00— # — & 25 62 0

is exact.

15.2. Show that on any Riemann surface the sequence

d log
e

0 — C* — (* Q—0

is exact, where (d log)f:=f"" df.

15.3. On a Riemann surface X let 2 = .#'" be the sheaf of meromorphic 1-forms
which have residue 0 at every point. Show that the sequence

0 —C — M —2—0
Is exact.
15.4. Let X = C/I" be a torus. Prove that
HY(X,C)=Rh}(X)=C?

and that the classes of dz and dz form a basis of Rh!(X).
[Hint: Let w e &Y(X) be a closed 1-form. Show that for suitable ¢y, ¢, € C all
the periods of w — ¢; dz — ¢, dZ vanish.]

§16. The Riemann-Roch Theorem

The Riemann-Roch Theorem is central in the theory of compact Riemann
surfaces. Roughly speaking it tells us how many linearly independent mero-
morphic functions there are having certain restrictions on their poles.
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16.1. Divisors. Let X be a Riemann surface. A divisor on X is a mapping
D: X7

such that for any compact subset K = X there are only finitely many points
x € K such that D(x) # 0. With respect to addition the set of all divisors on
X is an abelian group which we denote by Div(X). As well there is a partial
ordering on Div(X). For D, D' € Div(X), set D < D" if D(x) < D'(x) for every
xe X.

16.2. Divisors of Meromorphic Functions and 1-forms. Suppose X is a
Riemann surface and Y is an open subset of X. For a meromorphic function
Se #(Y)and a e Y define

0, if fis holomorphic and non-zero at a,
k, if fhas a zero of order k at a.
ord,(f)= <—k, iffhas a pole of order k at q,
oo, if fis identically zero in a
neighborhood of a.

Thus for any meromorphic function fe .# (X )\{0}, the mapping x + ord (/)
is a divisor on X. It is called the divisor of f and will be denoted by (f).

The function fis said to be a multiple of the divisor D if (f) > D. Then fis
holomorphic precisely if (f) > 0.

For a meromorphic 1-form w e .#"(Y) one can define its order at a point
a € Y as follows. Choose a coordinate neighborhood (U, z) of a. Then on
U ~n Y one may write @ = f dz, where f is a meromorphic function. Set
ord (w) = ord,(f). It is easy to check that this is independent of the choice of
chart. For 1-forms w e .#"(X)\{0} the mapping x> ord,(w) is again a
divisor on X, denoted by ().

For f, g e #(X)\{0} and w e .#V(X)\{0} one has the following relations:

o) =+  Wf)=-(f), (fo)=()+ ()

A divisor D € Div(X) is called a principal divisor if there exists a function
fe #(X)\{0} such that D = (f). Two divisors D, D’ e Div(X) are said to be
equivalent if their difference D — D’ is a principal divisor.

By a canonical divisor one means the divisor (@) of a meromorphic 1-form
w e #V(X)\{0}. Any two canonical divisors are equivalent. For, if w,,
w, € #V(X)\{0} then there exists a function fe .#(X)\{0} such that
w, = fw, and thus (v,) — (@) = (f).

16.3. The Degree of a Divisor. Suppose now that X is a compact Riemann
surface. Then for every D € Div(X) there are only finitely many x € X such
that D(x) # 0. Hence one can define a mapping

deg: Div(X) - Z
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called the degree, by letting
deg D= ) D(x).

XelX

The mapping deg is a group homomorphism. Note that deg(f) = 0 for any
principal divisor () on a compact Riemann surface since a meromorphic
function has as many zeros as poles. Hence equivalent divisors have the
same degree.

16.4. The Sheaves (/;,. Suppose D is a divisor on the Riemann surface X. For
any open set U = X define ¢0,,(U) to be the set of all those meromorphic
functions on U which are multiples of the divisor —D, i.e.,

Op(U):={fe #(U): ord(f) = —D(x) forevery x € U}.

Together with the natural restriction mappings ¢}, is a sheaf. In the special
case of the zero divisor D = 0 one has ¢, = ¢. If D, D" € Div(X) are equiva-
lent divisors, then ¢, and @, are isomorphic. An isomorphism can be
defined as follows. Pick e .#(X)\{0} such that D — D" = (/). Then the
sheaf homomorphism induced by multiplication by , ie.,

Cp—Cp, f=yf,

1S an isomorphism.

16.5. Theorem. Suppose X is a compact Riemann surface and D € Div(X)isa
divisor with deg D < 0. Then H°(X, ¢/;)) = 0.

PrOOF. Suppose, to the contrary, that there exists an fe H°(X, ¢p,) with
f#0. Then (f) > —D and thus

deg(f) = —deg D > 0.
However this contradicts the fact that deg(f) = 0. O

16.6. The Skyscraper Sheaf C,. Suppose P is a point of a Riemann surface
X. Define a sheaf C, on X by

:=]<D ifPe U,

C(U) 0 ifP¢U,

where the restriction maps are the obvious homomorphisms. Then

(i) H(X, Cp) =C,
(i) H'(X, Cp) =0.

Now assertion (i) is trivial. In order to prove (ii), consider a cohomology
class ¢ € H'(X, Cp) which is represented by a cocycle in Z'(U, Cp). The
covering U has a refinement 8 = (V,), . , such that the point P is contained
in only one V,. But then Z(B, C,) =0 and hence ¢ = 0.
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16.7. Now suppose D is an arbitrary divisor on X. For P € X denote by the
same letter P the divisor which takes the value 1 at P and is zero otherwise.
Then D < D + P and there is a natural inclusion map ¢, > @, ». Let (V, z)
be a local coordinate on X about P such that z(P) = 0. Define a sheaf
homomorphism

B:Cpip—Cp

as follows. Suppose U = X is an open set. If P ¢ U, then B, is the zero
homomorphism. If P e U and fe ¢, p(U), then the function f admits a
Laurent series expansion about P, with respect to the local coordinate z,

where k = D(P). Set
Bu(f)=c-y-1 € C =CpU).

Obviously f is a sheaf epimorphism and

0o Cp—0psp 5Cpo0
is a short exact sequence. By Theorem (15.12) this induces an exact sequence
0 H°(X, Op) > H*(X, Cp,p)—»C

£

- HY(X, Op) > HY(X, Op,p) 0. )
16.8. Corollary. Let D < D’ be divisors on a compact Riemann surface X.
Then the inclusion map O, — O, induces an epimorphism

HY(X, 0,) > HYX, ¢)— 0.

Proor. If D' = D + P, where P is the divisor given by a single point, then the
assertion follows from (16.7). In general D'=D + P, 4+ --- + P,, with
P; e X and the assertion follows by induction. O

16.9. The Riemann—Roch Theorem. Suppose D is a divisor on a compact
Riemann surface X of genus g. Then H°(X, Op) and H'(X, O)) are finite
dimensional vector spaces and

dim H°(X, ¢,) — dim H'(X, 0})) =1 — g + deg D.

ProoOF

(a) First the result holds for the divisor D = 0. For, H(X, ¢) = ¢(X)
consists of only constant functions and thus dim H°(X, @) = 1. As well dim
H'(X, @) = g by definition.

(b) Keeping the same notation as in 16.7, suppose D is a divisor, P € X
and D’ = D + P. Suppose that the result holds for one of the divisors D, D'.
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The exact cohomology sequence (*) in (16.7) can be split into two short
exact sequences. For, let
V=Im(H°(X, ¢,)—C)

W:=C/V.
Then dim V + dim W =1 = deg D' — deg D and the sequences
0- H°X, ¢p)— H(X, Cp) >V =0,
0-»W-H' X, ¢,)-»H'(X, ¢),)>0

are exact. Thus all the vector spaces occurring are finite dimensional and one
has the following equations relating the various dimensions

dim H°(X, 0},) = dim H°(X, Op,) + dim V
dim H'(X, ¢},)) = dim H (X, ¢',) + dim W.
Adding one gets
dim H°(X, (/) — dim H'(X, C},)) — deg D’
=dim H°(X, ¢p) — dim H (X, ¢,)) — deg D.

This implies that if the Riemann-Roch formula holds for one of the two
divisors, then it also holds for the other. Thus by (a) the Theorem holds for
every divisor D’ > 0.

(c) An arbitrary divisor D on X may be written

D=P1+.“+Pm_Pm+1_n'wpn1

where the P; € X are points. Starting with the zero divisor and using (b) one
now proves by induction that the Riemann-Roch Theorem holds for the
divisor D. O

16.10. The Index of Speciality. One calls
i(D):=dim HY(X, ©,)

the index of speciality of the divisor D. Thus the Riemann-Roch Theorem
may be written in the form

dim H°(X, 0p) =1 — g + deg D + i(D).

In (17.16) we will show that i(D) = O whenever deg D > 2g — 2. In any case
i(D) = 0 and thus dim H°(X, /,) is bounded from below. From Theorem
(16.5) it follows that

i(Dy=g—1—degD ifdegD <0.
16.11. Theorem. Suppose X is a compact Riemann surface of genus g and a is a

point of X. Then there is a non-constant meromorphic function f on X which
has a pole of order <g + 1 at a and is otherwise holomorphic.
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PROOF. Let D: X — Z be the divisor with D(a) =g + 1 and D(x) = 0 for
x # a. By the Riemann-Roch Theorem

dim HY(X, 0,) > 1 — g + deg D = 2.

Thus there exists a non-constant function f € H°(X, ¢;,) and clearly this
function fulfills the requirements of the theorem. O

16.12. Corollary. Suppose X is a Riemann surface of genus g. Then there exists
a holomorphic covering mapping f+ X — P! with at most g + 1 sheets.

Proor. The function f found in Theorem (16.11) is by Theorem (4.24) such a
covering mapping since the value co is assumed with multiplicity <g + 1.

g

16.13. Corollary. Every Riemann surface of genus zero is isomorphic to the
Riemann sphere.

This follows from the fact that a one-sheeted covering map is a
biholomorphism.

EXERCISES (§16)
16.1. Let D be a divisor on the Riemann sphere P!. Prove
(a) dim H°(P', ¢/p) = max(0, 1 + deg D)
(b) dim H'(P', ¢;) = max(0, — 1 — deg D).
16.2. Let X = C/T be a torus, xo € X a point and P the divisor

]1 if x = xg,

P(x)zlo if x % x.

Show

0 forn<O,
for n =0,

dim HY(X, 0,p) = 1 1
J n forn>1.

[Hint: Use the Weierstrass #-function (Ex. 2.1).]

16.3. Let X be a compact Riemann surface, D a divisor on X and U = (U,) an open
covering of X such that every U, is isomorphic to a disk. Show that il is a Leray
covering for the sheaf ¢, cf. (12.8).

16.4. (a)} On a Riemann surface X let D be the sheaf of divisors, i.e., for U = X open
D(U) consists of all maps

D:U—7Z
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such that for every compact set K — U there are only finitely many x € K
with D(x) # 0. Show that D together with the natural restriction mor-
phisms is actually a sheaf and that

H'(X, D)=0.

[Hint: Imitate the proof of Theorem (12.6), using a (discontinuous) integer-
valued partition of unity.]

(b) Let f: .#* — D be the map which assigns to every meromorphic function
fe . .#*(U)its divisor (f) e D(U) and let a: ¢* — .#* be the natural inclu-
sion map. Show that

005 L0

is an exact sequence of sheaves and thus that there is an exact sequence of
groups

0— H(X, 0*) > HO(X, .#/*) - Div(X)
—~ HY(X, ¢*) > HY(X, .#*) = 0.

§17. The Serre Duality Theorem

The Serre Duality Theorem allows a simpler interpretation of the cohomo-
logy groups H'(X, () in terms of differential forms. In fact, dim H*(X, ')
is equal to the maximum number of linearly independent meromorphic
I-forms which are multiples of the divisor D. One consequence is the
Riemann-Hurwitz formula, which allows one to calculate the genus of a
covering from the number of sheets it has and its branching order. Another
consequence is a vanishing theorem which asserts that HY(X, ¢p) =0, if
deg D > 2g — 2. This vanishing theorem itself has interesting applications
and we will use it to prove an embedding theorem for compact Riemann
surfaces into PV,

17.1. Definition of a Linear Form Res: H'(X, Q) — C. Suppose X is a com-
pact Riemann surface. By (15.14) the exact sequence

0-5Q- 105 6259

induces an isomorphism H'(X, Q)= &P (X)/dé"%(X). Suppose
& e HY(X, Q) and w € §P(X) is a representative of ¢ via this isomorphism.
Set

Res(¢) ;=2Lm. ” .
X

Because of Theorem (10.20) this definition is independent of the choice of the
representative w.
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17.2. Mittag-Leffler Distributions of Differential Forms. Suppose X is a
Riemann surface, .#!) is the sheaf of meromorphic 1-forms on X and
U = (U;);., is an open covering of X. A cochain u = (w;) € C°(U, .4V is
called a Mittag-Leffler distribution if the differences w; — w; are holo-
morphic on U; n Uy, ie., due Z'(U, Q). Denote by [du] € H'(X, Q) the
cohomology class of dpu.

Let a be a point of X. The residue of the Mittag-Leffler distribution
i = (w,;) at the point g is defined as follows. Choose i € I such that a € U,
and set

Res, (1) = Res,(w;).

Ifae U; n Uj, the difference w; — w; is holomorphic and w; and w; have the
same residue at a. Thus the definition is independent of the choice of i e I.

Now assume that the Riemann surface X is compact. Then Res,(u) # 0 for
only finitely many points a. Thus one can define

Res(u) = Y Res,(u).

ae X

We will now show that this residue is related to the mapping Res defined in
(17.1).

17.3. Theorem. Assume the notation is the same as above. Then

Res(u) = Res([6]).

ProOF. In order to compute Res([du]) we have to construct the isomorphism
HY(X, Q) = &2(X)/dé&" °(X) explicitly, cf. (15.13).

Since oy = (w; — ;) € Z'U, Q)= Z'(U, &"°) and H'(X, £°) =0,
there exists a cochain (g;) € C°(U, & °) such that

w;—w;=6;—0; onU;n U,

Then d(w; — w;) = d"(w; — ;) =0 implies do; = do; on U, n U;. Thus
there exists a global 2-form 7 € §®(X) such that t| U; = do;. This differen-
tial form represents the cohomology class [du] and thus

Res([du]) = — K2

2ni J
X

Suppose a;, ..., a,€ X are the finitely many poles of u and let
X'=X\la;,..., a,}. On X' n U; n U; one has g, — v, = 6; — w;. Thus
there exists a differential form ¢ e &' °(X’) such that ¢ = ¢, — w; on
X' n U;. Hence t =do on X'.

For every a, there is an i(k) € I such that a, € U,,. Choose a coordinate
neighborhood (V%, z) such that ¥V = Uy and zx(ax) = 0. We may assume
that the V, are pairwise disjoint and that each z,(V;) = C is a disk. For every k



134 2 Compact Riemann Surfaces

choose a function f, € &(X) such that Supp( f,} = V, and such that there is an
open neighborhood V; < ¥, of q, with £, | V; = 1. Set

g=1=(fi+ " +1)

Since g|V; = 0, go may be continued across the points g, by defining it to be
zero there and thus may be considered as an element of &' °(X). By (10.20)
one has

. ’ d(gs)=0.

x
On V,\{a,} one has d(f, 0) = do = d(0;4, — Wig)) = doyu, - Thus d( f, o) may
be continued differentiably across a,. Since f, ¢ vanishes on X'\Supp(fi),
d(f, ) may be considered as an element of £®(X). Then t = d(go) +

Y d(f; o) implies

[[e=3 [[dho= ¥ [[4

X k=1X k= le

(feGiy — fu®@iqio)-

Using (10.20) again, one has
|| d(fioi) =
v

and as in (10.21) one can show

H d(fi i) = —2mi Res, (w4)-
Vi

Combining everything, one gets

1 o "
EU T= k; Res, (@;4) = Res(u). -

17.4. The Sheaves Q);,. Let X be a compact Riemann surface. For any divisor
D e Div(X) we denote by Q,, the sheaf of meromorphic 1-forms which are
multiples of — D. Thus for any open set U = X the set Qp,(U) consists of all
differential forms w e .#"(U) such that ord,(w) > — D(x) for every x € U.
In particular Q, = Q is the sheaf of all holomorphic !-forms.

Suppose @ € .#Y(X) is a non-trivial meromorphic 1-form on X, e.g.,
w = df, where f'e .#(X) is a non-constant meromorphic function. Let K be
the divisor of w. Then for an arbitrary divisor D € Div(X ) multiplication by
 induces a sheaf isomorphism

Opix 3 Qp, S fo.
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Lemma. There is a constant ko € Z such that
dim H°(X, Q) > deg D + k,
for every D € Div(X).

PROOF. Suppose w and K are as above and g is the genus of X. Set k, =1 —
g + deg K. Then by Riemann-Roch

dim HO(X, Q) = dim HO(X, ¢}, ;)
=dim H'(X, Op,¢) + 1 — g + deg(D + K)
>deg D + k. O

17.5. Definition of a Dual Pairing. Suppose X is a compact Riemann surface
and D € Div(X) is a divisor. The product

Q ,x0,—>Q, (w, )~ wf,
induces a mapping
H(X, Q_,) x HY(X, 0p) - H'(X, Q).
The composition of this mapping with Res: H!(X, Q) — C produces a bilin-
ear mapping
¢, > HYX, Q_p) x HI(X, Op)— C,
{w, &y =Res(wé).
Hence this mapping induces a linear mapping
1p: HO(X, Q_p) > HY(X, 0,)*

of H(X, Q_p) into the dual of H(X, ¢,). The Serre Duality Theorem
asserts that {, » is a dual pairing, ie. 1, is an isomorphism. This will be
proved in (17.6) and (17.9).

17.6. Theorem. The mapping 1, is injective.

Proor. We have to show that for any non-zero w e H°(X, Q_ ) there exists
¢ e H'(X, Op)such that (w, &) # 0. Leta € X be a point such that D(a) = 0
and (U, z) be a coordinate neighborhood of a with z(a) = 0 and D | Uy = 0.
On U, one can write w as w = fdz where f € O(U,). We may assume U, is
so small that fhas no zeros in Uy\{a}. Set U, = X\{a}and U = (U,, U,). Let
n=(fo,f1) e COU, #), where fy = (zf) ' and f, = 0. Then

d
on = (_Z? 0) e CO, .™M)
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is a Mittag-Leffler distribution with Res(wn) = 1. One has én e Z'(U, € ).
Let ¢&=[on]e H'(X, ¢,) be the cohomology class of 5. Since
wé = o - [on] = [6(wn)], it follows from Theorem (17.3) that

{w, &Y = Res(wé) = Res([6(wn)]) = Res(wn) = 1. ]

17.7. Suppose D, D' € Div(X) are two divisors on the compact Riemann
surface X with D’ < D. Then by (16.8) the inclusion 0 — (', — ¢, induces an
epimorphism

HY(X, ¢,)— H'(X, ¢p) - 0.
This then induces a monomorphism of the duals

0> H'(X, ()% ~2 H(X, €y~

One can easily check that the diagram

0 H'(X, Cp)* —2— HY(X, €p)*

L

0 H(X, Q_,) —— H°(X,Q_,)

commutes, where the vertical arrows are the maps defined in (17.5).

Lemma. Using the same notation as above suppose i€ H'(X, ¢,)* and
w e HY(X, Q_p) satisfy

i5.(2) = 1(0)

Then w is also contained in H(X, Q_,) and 4 = 1p(w).

PROOF. Suppose, to the contrary, that @ is not an element of H°(X, Q_,).
Then there is a point a € X such that ord,(w) < D(a). Let (U, z) be a
coordinate neighborhood of a with z(a) =0. On U, one may write @ as
® = fdz, where f e .#(U,). We may suppose U, is sufficiently small so that

(i) D|Uo\la} =0,  D'| Ulla} = 0.
(ii) f has no zeros or poles in U,\{a}.
Set U, = X\{a} and U = (Uy, U,). Let n=(fy, f1) € C°(, .#), where

fo = (zf)" ' and f; = 0. Because ord,(w) < D(a), one even has n € C°(, O,).
Thus

dne Z'U, 0)=Z'U, 0,) = Z'(U, Op).

Denote the cohomology class of 5 in H*(X, ¢’;,) by & and in H'(X, ¢'},)) by
& Note that ¢ = 0. By assumption

{w, & = ip(A)&) = HS) = 0.
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On the other hand, since wy = ((dz/z), 0), one has
{w, &y = Res(wn) = 1, a contradiction!

Thus the assumption is false and w € H(X, Q_}).
Since if.(4) = 1, (w) = i (1p(w)), the equality 4 = i,(w) follows from the
fact that i, is one-to-one. O

17.8. Suppose D and B are two divisors on the compact Riemann surface X.
Given a meromorphic function y € H°(X, (/) the sheaf morphism
CppoCp.  frodhf.
induces a linear mapping H'(X, ¢',,_z)— H'(X, ¢,) and thus a linear
mapping
H‘(Xa ((/n)* - HI(X.- (cl)—B)*a

which we also denote by . By definition

WANE) = Ay&) for A e HY(X, Op)%, Ee H'(X, Op_p).
The diagram

H\(X, Op)* —2— HY(X, Op_p)*

HO(X, Q_p) —Y— HOX,Q_,. )
commutes, where the arrow in the second row is also defined as multi-
plication by y. This follows since {Yw, &> = {w, Y&>.
Lemma. If € H(X, () is not the zero element, then the mapping

v HY(X, Op)* - HY(X, Op_g)*
is injective.

Proor. Let 4:=() > —B be the divisor of . The mapping (/,,_ ﬂ(L’D
factors through ¢, , ,, i.e., one has

W
Op-g—>0Upyy >0,

where O, 4 Y Op is an isomorphism. Since the mapping H (X, O),_5) —
H'(X, ¢}, ,) induced by the inclusion ¢/;,_yz— O}, , is an epimorphism
(16.8), it follows that

H'(X, 0p_5) 5 HY(X, 0,)

is also an epimorphism. The result follows from this. O
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17.9. The Duality Theorem of Serre. For any divisor D on a compact Riemann
surface X the mapping

ip: HO(X, Q_p)—» H'(X, Op)*
defined in (17.5) is an isomorphism.

Proor. Because of (17.6) only the surjectivity of 1, remains to be proved.
Suppose 4 e HY(X, @,)* with 2 # 0. We want to show that A lies in the

image of 1.
Suppose P is a divisor with deg P = 1. For any natural number n let

D,:=D — nP.

Denote by A = H'(X, ¢}, )* the vector subspace of all linear forms of the
form YA, where y e H(X, 0p). By Lemma (17.8) A is isomorphic to
H°(X, Onp). It thus follows from the Riemann-Roch Theorem that

dimA>1—g+n,

where g denotes the genus of X. By Lemma (17.4) the vector subspace
Im(ip,) = H'Y(X, 0p,)* satisfies

dim Im(ij, ) = dim H°(X, Q_,, ) > n + k, — deg D.

For n > deg D one has deg D, < 0 and thus H°(X, ¢/, ) = 0. The Riemann-
Roch Theorem implies

dim HY(X, ¢, )* =g—1—deg D,=n+ (g — 1 — deg D).
If one chooses n sufficiently large, then
dim A + dim Im(:,,) > dim HY(X, ¢}, )*.

This implies A ~ Im(1,,) # 0. Thus there exists € H*(X, 0,p), ¥ # 0, and
we H(X, Q_, ) with Y4 =1, (w). Let 4:=(y) be the divisor of ¥, ie.,
1y € H°(X, ¢,), and let D' :==D, — A. Then

1h(h) = %(l//i) = %an(w) =1p (lllja)).

From Lemma (17.7) one gets w, = (1/y)o € HY(X, Q_p) and i = 15(w,).
O

17.10. Remark. Frequently one only uses the Serre Duality Theorem to
obtain equality of the dimensions

dim H'(X, ¢p) = dim H°(X, Q_)).
In particular for D = 0 one has

g =dim H'(X, ©) = dim H°(X, Q).
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Thus the genus of a compact Riemann surface X is equal to the maximum
number of linearly independent holomorphic 1-forms on X.
One can now formulate the Riemann—Roch Theorem as follows:

dim H°(X, 0_,) — dim H°(X, Q,)=1—g — deg D,

or in words: On a compact Riemann surface of genus g the maximum
number of linearly independent meromorphic functions which are multiples
of a divisor D minus the maximum number of linearly independent mero-
morphic 1-forms which are multiples of —D is equal to 1 — g — deg D.

17.11. Theorem. Suppose D is a divisor on the compact Riemann surface X .
Then
HO(X, 0_p) = H'(X, Qp)*.

PRrOOF. Let wy # 0 be a meromorphic 1-form on X and let K be its divisor.
By (17.4) one has Q, =~ 0,y and O_,, = Q_,,_,. Hence the result follows
from the Serre Duality Theorem. O

Consequence. In particular, for D = 0 one has dim H'(X, Q) =
dim H°(X, ©) = 1. This implies that the mapping
Res: H'(X, Q)—»C
is an isomorphism, for it is clear that it is not identically zero.
17.12. Theorem. The divisor of a non-vanishing meromorphic 1-form w on a
compact Riemann surface of genus g satisfies

deg(w) =29 — 2.

ProoF. Let K = (w). By Riemann-Roch
dim H%(X, Og) — dim H'(X, Og) = 1 — g + deg K.
By (17.4) one has Q =~ (. Thus
1 — g+ deg K =dim H%(X, Q) — dim H}(X, Q)=¢g - 1
and so deg K = 2(g — 1). O

17.13. Corollary. For any lattice T’ = C the torus C/T" has genus one.

ProoF. The 1-form dz on C induces a 1-form w on C/T" having no zeros or
poles (see 10.14). Thus deg(w) =2g — 2 =0 and hence g = 1. 0

17.14. The Riemann-Hurwitz Formula. Suppose X and Y are compact
Riemann surfaces and f: X — Y is a non-constant holomorphic mapping.
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For x € X let v(x, /) be the multiplicity with which f takes the value f(x) at
the point x, cf. (2.2) and (4.23). The number

(. x)=o(f; x) - 1
is called the branching order of f at the point x. Note that b(f, x)=0

precisely if f'is unbranched at x. Since X is compact, there are only finitely
many points x € X such that b(f, x) # 0. Thus

b(f):= 2 b/ x),

xeX

the total branching order of f, is well-defined.

Theorem. Suppose [+ X — Y is an n-sheeted holomorphic covering mapping
between compact Riemann surfaces X and Y with total branching order
b = b(f). Let g be the genus of X and g’ be the genus of Y. Then

b
g=§ +n(g'—1)+1.

This is known as the “Riemann-Hurwitz formula.”

PROOF. Suppose w is a non-vanishing meromorphic 1-form on Y. Then
deg(w) = 29’ — 2 and deg(f*w) =29 — 2.

Suppose x € X and f(x)=y. By Theorem (2.1) there is a coordinate
neighborhood (U, z) of x (resp. (U’, w) of y) with z(x) = 0 (resp. w(y) = 0)
such that with respect to these coordinates one can write f as w = z¥ where
k=1v(f, x). On U’ let = y(w) dw. Then on U one has

f*o = y(2¥) dzF = kz* 71y (2¥) dz.
This implies

ord,(f*w) = b(f, x) + v(f, x)ord (w).
Since
Y uofix)=n
xe f1(y)

for any y € Y one has

Y ord(f*w)= Y b(f, x)+ n ord(w).

xe f=1(y xe f1y)
Thus
deg(f*w)= Y ord(f*w)= } Y ord(f*w)
xeX yeY xe f-1(y)
= Y b(f, x)+nY ord(w)=>b(f)+ n deg(w).
xekX yeY

This implies 2g — 2 = b + n(2g’ — 2) and the result follows. O
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17.15. Coverings of the Riemann Sphere. For the special case of an n-sheeted
covering m: X — P! of the Riemann sphere with total branching order b one
gets the genus g of X from the Riemann-Hurwitz formula, ie.,

b
If one has a double covering of P!, then b is equal the number of branch
points and g = (b/2) — 1. A compact Riemann surface of genus > 1 which
admits a double covering of P! is called hyperelliptic.
For example, let 7: X — P! be the Riemann surface of ,/P(z), where

PE)=(z—a)) (- a)

is a polynomial of degree k which has distinct roots a; (cf. 8.10). Since b must
be even, we see that X is branched over oo precisely if k is odd. This was
proved earlier. The genus of X is g = [(k — 1)/2], where [x] denotes the
largest integer <x. One can give an explicit basis w,, ..., w, for the vector
space of holomorphic 1-forms on X as follows

7l dz
W=
! P(z)

where z is simply another notation for the meromorphic function
n: X — P'. Using local coordinates at the critical points one can easily show
that the w; are holomorphic on all of X. Clearly w,, ..., w, are linearly
independent.

. 1<j<g=[(k—1)2]

17.16. Theorem. Suppose X is a compact Riemann surface of genus g and D is
a divisor on X. Then

HY(X, Op) =0 whenever deg D > 2g — 2.

PrOOF. Suppose w is a non-vanishing meromorphic 1-form on X and K is its
divisor. Then by (17.4) there is an isomorphism Q_, =~ @x_,. Thus
H'(X, Op)*=~HX, Q_p)= HX, Ox_,). If deg D>2g— 2, then
deg(K — D) < 0. Thus H°(X, ¢x_p) = 0 by Theorem (16.5).

17.17. Corollary. Suppose X is a compact Riemann surface and 4 is the sheaf
of meromorphic functions on X. Then

HY(X, .#) =0.

ProoF. Let & € H'(X, .#) be a cohomology class which is represented by a
cocycle (f;;) € Z'(U, #). Passing to a refinement of U, if necessary, one may
assume without loss of generality that the total number of poles of all the f;;
is finite. Hence there is a divisor D with deg D > 2g — 2 such that
(fij) € Z' (U, 0p). By (17.16) the cocycle (f;;) is cohomologous to zero rela-
tive to the sheaf ¢;, and thus also relative to the sheaf .#. O
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Remark. The sheaf .#*) of meromorphic 1-forms on X is isomorphic to
M. An isomorphism .# > .4V is given by fi— fiw, where w # 0 is a fixed
element of .#"). Thus HY(X, .#") =0 as well.

This can be used to give a definition, without the use of integrals, of the
residue mapping Res: H'(X, Q) —» C introduced in (17.1). For, suppose
e H'Y(X, Q) is represented by the cocycle (w;;)e Z'(U, Q). Since
HY (X, .#4V) = 0, this cocycle splits relative to the sheaf .#‘"). Thus there is a
Mittag-Leffler distribution u e C°(U, .#") with [éu] = &. Then

Res(¢) = Res(u)
by Theorem (17.3).

17.18. We are now going to give some other applications of Theorem (17.16),
but we first consider the following notion. Let D be a divisor on a Riemann
surface X. We say that the sheaf ¢, is globally generated, if for every x € X
there exists an f e H°(X, () such that

CCD, x = (Ox .f&

i.e., every germ @ € (5, , may be written ¢ = yf with ¢ € ¢,.. The condition
Op. . = O, fis equivalent to

ord (f) = —D(x)

17.19. Theorem. Let X be a compact Riemann surface of genus g and D be a
divisor on X with deg D > 2g. Then Oy, is globally generated.

PrOOF. Suppose x € X is a fixed point and let D’ be the divisor defined by

oy — [PO) for y # x,
D = D(y)—1 fory=x.

Since deg D > deg D' > 2g — 2, by Theorem (17.16) we have
HY(X, 0,) = H'(X, 0)) =0.
The Riemann-Roch Theorem now implies
dim H°(X, 0p) > dim H°(X, Cp),

and hence there exists an element fe H(X, ¢,)\H°(X, Op). This element
satisfies the condition ord,(f) = — D(x). O

17.20. Embedding into Projective Space. Denote by PV the N-dimensional
projective space which is defined as P¥ = (CV**\0)/~, where ~ is the fol-
lowing equivalence relation:

(zo, --r zy) ~ (20, -o.r 2y)=>FA e C*: 2z, =4z, forv=0,..., N.
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Denote by (zo: - : zy) € PV the equivalence class of (zo, ..., zy) € C¥*1\0.
Equipped with the quotient topology, P" is a compact Hausdorff space. For
j=0,..., N let

Uj={(zo: - 1 zy) € P¥: z; # 0}.

The family (U,, ..., U,) forms an open covering of PV. Let
be defined by
Py Zim1 Zien N
ofzor 1 zy) (Zj,..., Z z zj)'

It is easy to see that ¢, is well-defined and maps U; homeomorphically onto
ch.
Now suppose X is a compact Riemann surface and

F: X Py

is a continuous map. Then W;:=F~!(U;) is an open subset of X for
j=0,..., N, and we can consider the maps

Fj=g¢, F: W,~CV.

Then every F; is an N-dimensional vector F; = (F;,, ..., F;y) of functions
F;,: W, C. The map F: X —» P" is said to be holomorphic if all of the
functions F;, are holomorphic. F is called an immersion if it is holomorphic
and for every point x € X there exists at least one F, such that x ¢ W; and
dF ;(x) # 0. A holomorphic map F: X — P" is called an embedding if it is an
injective immersion.

17.21. Examples of holomorphic mappings F: X — P¥ can be obtained in
the following way. Let f;, ..., fy € .#(X) be meromorphic functions on X
which do not vanish identically. Define

F=(fo:fi::fy): X ->B"

as follows. For x € X let (V, z) be a coordinate neighborhood with z(x) = 0
and let

k == min ord,(f;).

J

On V we can write f; = z*g;, where g; is holomorphic in a neighborhood of x
and for at least one j we have g;(x) # 0. Set

F(x)=(go(x): - : gn(x)).
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Of course this definition is independent of the local coordinate chosen. If
gi(x) # 0, then F(x) e U; and hence x € W, and the map F;: W, - C", as
defined in (17.20), has the following form in a neighborhood of x:

F.

j Y s g ey

g; ’ gj 9; 9gj
This shows that F is holomorphic.

_ (9 gi-1 Yina gﬂ

17.22. Theorem. On a compact Riemann surface X of genus g let D be a divisor

of degree >2g + 1. Let f,, ..., fy be a basis of H*(X, (')). Then
F=(for i fy): X > P

is an embedding.

PrOOF
(a) First let us show F is injective. Suppose x; # x, are two points of X.
Let D’ be the divisor defined by

|D(x) for x # x,,

D)= |D(x) =1 for x = x,.

Since deg D' =deg D — 1 > 2g, the sheaf (¥, is globally generated by
Theorem (17.19), hence there exists an /e H°(X, () such that

ord,,(f) = —D(x,)- (*)
By the definition of D’ we have
ord,,(f) > —D(x,)+ L (**)

Of course f also belongs to H(X, Op,), so f =Y 4; f; for certain coefficients
Aje C. Let (Vy, z;) and (V3, z,) be coordinate neighborhoods of x,; and x,
resp. such that z,(x,) =0, u =1, 2. Since /), is globally generated, we have

k, = min ord, (f;) = —D(x,).
J
Write f; = zkg,; and f = z%g, in a neighborhood of x,. Then

F(x,) = (guolx,): " gun(x,))
and

N
Z ’{jguj(xu) = gu(xu)'
Jj=0

But from (*) and (**) it follows that g,(x,) # 0 and g,(x) = 0. This shows
F(x,) # F(xy). ) )

(b) We now prove that F is an immersion. Let x, € X be a given point
and consider the divisor D’ defined by

— |D(x) for x # x,,

D'(x) \D(x) —1 forx=x,.
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Then D’ is globally generated and hence there exists an f e H°(X, ¢p,) such
that
ord, (f) = —D(xy) + 1.
As above f= ) 4; f; for certain 4; e C. Let (V, z) be a coordinate neighbor-
hood of x, such that z(x,) = 0 and set
f} = zkgja f: Zkg’

where k = min ord, (f;) = —D(x,). Let v be an index such that g (x,) # 0.
We may assume v=0. The map Fy = ¢4 c F: W, - C" considered in
(17.20), is now given in a neighborhood of x, by

g1 In
Fy=(Fo,.... F =(,...,—)
0 ( 01 ON) do do
and we get

N N \

. g g
Y AiFo; = ) i-(’)z —Ap.-
ji=1 7o j=1 ! 9o do ¢

Hence

Y 4, dFy; = d(i).

Jo
Since go(xo) # 0 and g has a zero of first order at x,, we have d(g/go)(xo)
# 0. Hence dFj(x,) # O for at least one index j. This shows that F is an
immersion. 0

Remark. It can be shown that if deg D > 2g + 1, then there exist elements
@0, -, @3 € HY(X, Op) such that (@o: -~ : ¢3): X — P? is an embedding.
Thus every compact Riemann surface admits an embedding into 3.

EXERCISES (§17)

17.1. Let X — P! be the Riemann surface of the algebraic function 2 /1 — 2", i.e., the
algebraic function defined by the polynomial

P(T)=T" +z"— 1 .4(P')[T)
where z € .#(P') is the canonical coordinate function. Show that the genus of
Xis
n—1}n—-2
g n=2)

17.2. Let X be a compact Riemann surface. Let 2(X) « .#'V(X) be the space of all
meromorphic 1-forms on X whose residues vanish at every point. Using Ex.
15.3 show

HY(X, C) = 2(Xyd.#(X).
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17.3. Let X = C/T be a torus. Show that the classes of dz and - dz form a basis of
2(X)mod d.#(X).

17.4. Let D be a divisor on the compact Riemann surface X of genus g. Show
dim H°(X, ¢p) =0 fordeg D < —1
0 < dim H%(X, €¢p) <1 +deg D for —1<degD<g—1
1 —g+degD<dim HY (X, Cp)<g forg—1<degD <29~ 1
dim H°(X, ¢p)=1—-g+deg D for deg D > 29 — 1.
17.5. Let K be a canonical divisor on a compact Riemann surface X of genus > 0,

and let D > K be a divisor with deg D = deg K + 1. Show that the sheaf O is
globally generated, but ¢, is not.

17.6. Let I" < C be a lattice and let § be the Weierstrass f-function with respect to
I'". Interpret & and its derivative §’ as meromorphic functions on C/T". Show
that

(1: ©: ¢): C/T - P?
is an embedding.

17.7. Let X be a compact Riemann surface of genus two. Suppose w and w, forma
basis of H°(X, Q) and define f € .#(X) by w, = fw,. Show thatf: X - Plisa
2-sheeted (branched) covering map.

§18. Functions and Differential Forms with
Prescribed Principal Parts

As 1s well known, the classical theorem of Mittag-Leffler asserts that in the
complex plane there always exists a meromorphic function having suitably
prescribed principal parts. Our present goal is to look at the analogous
problem on compact Riemann surfaces. Here the problem does not always
have a solution. But from the Serre Duality Theorem one can derive neces-
sary and sufficient conditions for a solution to exist.

18.1. Mittag—Leffler Distributions of Meromorphic Functions. Suppose X is
a Riemann surface and U = (U,),., is an open covering of X. A cochain
p=(f;) e C°(U, .#) is called a Mittag-Leffler distribution if the differences
f; — fi are holomorphic on U; n Uj, i.e., du € Z' (U, ). Thus the functions f;
and f; have the same principal parts on their common domain of definition.
By a solution of uis meant a global meromorphic function f e .#(X) which
has the same principal parts as y, ie. f|U; — f; € O(U,) for every ie I.
Denote by [6u] € H'(X, ©) the cohomology class represented by the cocycle
ou.
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Theorem. A Mittag-Leffler distribution u has a solution if and only if [6p] = 0.

Proor
(a) Suppose fe .#(X) is a solution of u = (f;). Set g;,:=f; — fe O(U,).
Then on U; n U; one has

f; —f; =49;— Y-

This means that the cocycle éu = (f; — f;) is contained in B'(U, 0), ie.,
[ou] =0.

(b) Suppose [du] = 0 and thus du € B (U, ¢). Then there exists a cochain
(9:) € C°(U4, @) such that

f;—f;zgj_gl OnU,‘f\Uj.

This implies f; — g; = f; — g; on U; n U;. Thus the f; — g, piece together to
form a global meromorphic function fe.#(X). Since f|U;—f;
= —g; € O(U,), f is a solution of u. OJ

Remark. By (17.17) on every compact Riemann surface H'(X, .#) = 0.
This implies that given any cohomology class ¢ € H'(X, (V) there exists a
Mittag-Leffler distribution u € C°(U, .#) such that & = [6u], for a suitably
chosen covering U. Thus on every compact Riemann surface of genus > 1
there are Mittag-Leffler problems which have no solution. But on the
Riemann sphere H'(P!, ¢’) = 0 and every Mittag-Leffler distribution has a
solution. This is also easy to see directly.

18.2. Now suppose X is a compact Riemann surface and u e C°(U, .#)is a
Mittag-Leffler distribution of meromorphic functions on X. Then for every
holomorphic 1-form @ € Q(X) the product wpu e C°(U, .#") is a Mittag-
Leffler distribution of 1-forms and thus by (17.2) the residue Res(wp) is
defined. This allows us to formulate the criterion alluded to above which
tells us when u has a solution.

Theorem. Suppose u e C°(U, .#) is a Mittag-Leffler distribution of meromor-
phic functions on the compact Riemann surface X. Then p has a solution if and
only if

Res(wu) =0 for every w € Q(X).
Proor. Now [du] € H'(X, ) vanishes if and only if A([éu]) = O for every
A e HY(X, O0)*. By the Serre Duality Theorem this is the case exactly if
{w, [6u]> =0 for every w e Q(X).

By Theorem (17.3) one has {w, [6u]> = Res(w[éy]) = Res(wy). Thus the
result follows from Theorem (18.1). O
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Remarks
(@) Ifwy, ..., w, is a basis of Q(X), then Res(wyu) = 0 for every w e Q(X)
if and only if

Res(w,p) =0 fork=1,...,g.

Thus u has a solution if and only if g linear equations hold, where g is the
genus of X.

(b) If x has a solution and f}, f, € .#(X) are two solutions, then f; — f is
holomorphic on X and thus constant. Hence the solution is unique up to an
additive constant.

18.3. Application to Doubly Periodic Functions. Suppose y,, 7, € C are
linearly independent over R and let

P={t;y,+t,y,:0<t, <1,0<t, <1},

Suppose that at the points ay, ..., a, € P principal parts
-1
Y ¢ z—a;), forj=1,....n,
v=—rj
are prescribed. Then there exists a meromorphic function f'e .#(C) doubly
periodic with respect to I' = Zy,; + Zy, and having poles with the prescribed
principal parts at the points a,, ..., a, if and only if

n
Y ¥ =0.
j=1

ProoF. Any function doubly periodic with respect to I’ may be considered as
a function on the torus X = C/T. The prescribed principal parts then give
rise to a Mittag-Leffler distribution u on X. The differential form w on X
induced by the I-form dz on C (cf. 10.14) is a basis of Q(X), since
dim Q(X) = 1. Now

n

Res(wp) = Y ¢,

i=1

and the result follows from the above theorem. O

In particular, this implies that there are no doubly periodic meromorphic
functions having precisely one pole of order one in any period paral-
lelogram. For, such a function would have a non-zero residue (cf. 5.7.c).

We now consider whether on a Riemann surface of genus g > 1 there
exist meromorphic functions which have one pole of order < g but are
otherwise holomorphic. To do this we need some preliminaries.

18.4. The Wronskian Determinant. Suppose f}, ..., f, are holomorphic func-
tions on a domain U = C. By the Wronskian determinant of f;, ..., f, one
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means the determinant of the matrix of derivatives ™, where 0 < m <
g—L1<k<g, ie,

ho L
W(fla--.,_fa)::det fl f:‘z f;g
f-(‘gil) f-(zg_l] f?—n

If the functions f, ..., f, are linearly independent over C, then the Wron-
skian determinant is not identically zero. This can be proved by induction
on g. For, suppose that we have already shown that W(f,, ..., f,_,) #0.
Consider the differential equation

h S fg—1 w

fi 14 j"g—l w'
W(f1s .oy fy 1o w) =det| ; ; :

f(ly—l) f(zgfl) f;y;ll) w1

=0

for some unknown function w. If one expands by cofactors about the last
column, then one gets

aow(g*1)+alw(g‘2)+...+ag_1w=0’ (*)

where ap = W(fi,...,f,_,). Clearly f, ..., f,_ , are solutions of this differen-
tial equation. If W(f,, ..., f,) vanishes identically, then f, is another solution
of (*). Hence f, is a linear combination of f,, ..., fo-1 over
U :={z e U: ay(z) # 0} and by the Identity Theorem over U as well. But
this is a contradiction.

Now suppose X is a compact Riemann surface of genusg > land 0, ...,
w, is a basis of Q(X). For any coordinate neighborhood (U, z) we can
define a holomorphic function W(w,, ..., w,) on U as follows. The 1-forms
w, may be written w, = f, dz on U. Set

Wy, ..., 0)=W(fy, ..., f,),

where the derivatives of the functions f; on the right-hand side are taken with
respect to z. How the Wronskian determinant of o, ..., w, behaves under a
change of coordinates is answered by the next theorem.

18.5. Theorem. Suppose (U, z) and (U, %) are two coordinate neighborhoods
on X. Then on U ~ U one has

dz (g+1)
dz ’

N
Wz(wl,...,wg)=( )Wf(cul,...,cug), where N =4 3
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PROOF. Set  :=(dZ/dz) € 0*(U n U). Define the functions f, and f; on
Un Uby
o, =f, dz = f, dz.

Then f, = ¥f,. By induction on m one can now show that

d" fk dmj;c -1 du A

lprn-#l + z muﬁ

where the ¢,,, are holomorphic functions on U n U which are independent
of k. From this one gets

dm n
det({’f) = de:t(l,b"‘+l df:'f)
dz m=0,..9-1.k=1,...g dzZ" | =0, v g=1,k=1,...49
Since 1 + 2 + - + g = g(g + 1)/2, the result follows. O
If @4, ..., @&, is another basis of Q(X), then there exist constants cpeC
with det(c; )= # 0 such that w; = Y, ¢;, @,. Then

Wi wy, ..., w,) = c Wy, ..., ).

Hence the following definition is meaningful, i.e., it does not depend on the
choice of basis of Q(X) nor on the choice of local coordinate.

18.6. Definition. Suppose X is a compact Riemann surface of genus g > 1. A
point p € X is called a Weierstrass point, if for a basis &, ..., w, of Q(X) and
a coordinate neighborhood (U, z) of p, the Wronskian determinant
W,(wy,...,wg)hasazeroat p. The order of this zero is called the weight of the
Weierstrass point. By definition a Riemann surface of genus 0, i.e., P!, does
not have any Weierstrass points.

18.7. Theorem. Suppose X is a compact Riemann surface of genus g and p is a
point of X. Then there exists a non-constant meromorphic function f € .#(X)
which has a pole of order < g at p and is holomorphic on X\{p} if and only if p is
a Weierstrass point.

Proor. We will use the criterion of Theorem (18.2). Suppose @y, ..., w,is a

basis of Q(X) and (U, z) is a coordinate neighborhood of p with z(p) = 0.
The w, may be expanded in series

e o}
w,= Y a,z"dz, k=1,..., g,
v=0

about p. The function f which we are looking for has a principal part at p of
the form

- 20 (oo cyor) # (0, ..., 0)

Z
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and thus is a solution of the Mittag-Leffler distribution
w=(h0)e C°U, .#), U=(U, X\{p}).

Now
g—1
Res(w, i) = Res, (o, h) = Y ac,.
v=0
Thus the equations Res,(w, h) = 0 have a non-trivial solution (c,, csCyoy)
if and only if det(a,,) = 0. But this is equivalent to
Wi, ... 0)(p) = 0. 0

18.8. Theorem. On a compact Riemann surface X of genus g the number of
Weierstrass points, counted according to their weights, is (g — Dg(g + 1).

PROOF. Suppose (U, z;), i € I, is a covering of X by coordinate neighbor-
hoods. On U; n U; the function y,; := (dz; /dz;) is holomorphic and has no
zeros. With respect to a fixed basis w,, ..., w, of Q(X) let

W=W, (0, ..., 0,) e OU,).
By Theorem (18.5) one has
W, =yiW, on U, n U, where N = g(g + 1)/2. (1)

Setting D(x) := ord,(W}) for x € U,, defines the divisor D on X correspond-
ing to the Weierstrass points together with their respective weights. Thus
deg D is the total of the weights of the Weierstrass points and the proof is
complete once we show deg D = (g — 1)g(g + 1).
Let D, be the divisor of w,. Then deg D, = 2g — 2 by Theorem (17.12). 1f
we setw; = fy; dz; on U;, then D, (x) = ord,( f;;) for every x & U,. Moreover
Jui=W¥ifi; onU;n U;. (2)
From (1) and (2) it follows that
W= W fi onU n Uj.

Thus there exists a global meromorphic function Se #(X) with
SU;= W, f1". For the divisor of f one has

(f)=D - ND,
Since deg(f) = 0, it follows that

+1
degD=NdegD1=g—(g2 )(29—2)=(g—1)g(g+1). O

18.9. Corollary. Every compact Riemann surface X of genus g > 2 admits a
holomorphic covering mapping f: X — P! having at most g sheets. In particular
every compact Riemann surface of genus 2 is hyperelliptic.
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Remark. In fact, every compact Riemann surface of genus g > 2 admits a
covering of P! with [(g + 3)/2] or fewer sheets, see [56].

18.10. Differential Forms with Prescribed Principal Parts. Suppose X is a
Riemann surface, U = (U;),., is an open covering of X and
1= (w;) e C°U, .#Y) is a Mittag-Leffler distribution of meromorphic
1-forms on X, cf. (17.2). By a solution of u we mean a global meromorphic
1-form w e .#"(X) which has the same principal parts as y, i, @ |U; —
w; € QU;) for every i € I. As in (18.1) one can prove that u has a solution if
and only if the cohomology class [6u] € H'(X, Q) vanishes.

18.11. Theorem. On a compact Riemann surface X a Mittag—Leffler distribu-
tion e COU, .#4") of meromorphic 1-forms has a solution if and only if
Res(u) = 0.

ProoF. By Theorem (17.3) one has Res(u) = Res([6x]). By the consequence
in (17.11) the mapping Res: H'(X, Q)—>C is an isomorphism. Thus
[6u] = 0 is equivalent to Res(u) = 0 and the result follows. O

18.12. Corollary. Suppose X is a compact Riemann surface.

(a) For any point p € X and any natural number n> 2 there exists a
meromorphic 1-form on X which has a pole of order n at p and is otherwise
holomorphic (“an elementary differential of the second kind.”).

(b) For any two distinct points p,, p, € X there exists a meromorphic
L-form on X which has poles of first order at p, and p, with residues + 1 and
—1, respectively, and is otherwise holomorphic (“ an elementary differential of
the third kind™).

EXERrciSEs (§18)

18.1. Let U={z e C: |z| <r}, r >0, and let f: U — C be a holomorphic function
with f(0) # 0.

(a) Define fi(z) =z/"'f (z) for j = 1, ..., g. Prove that the Wronskian determin-
ant W(fy, ..., f;) does not vanish at the origin.

(b) Define ¢ (z) :=z%"2f(z) for j =1, ..., g. Prove that the Wronskian deter-
minant W(ey, ..., @,) has a zero of order (g(g — 1)/2) at the origin.

18.2. Let m: X — P! be a hyperelliptic Riemann surface of genus g > 2.

(a) Show that all the ramification points py, ..., pas+2 € X of mare Weierstrass
points of X.

(b) Prove that there are no other Weierstrass points and that every Weierstrass
point p; has weight (g{g — 1)/2).
[Hint: Use Ex. 18.1.]

18.3. Let X be a compact Riemann surface of genus g > 1 and suppose wy, ..., w is a
basis of Q(X). Let D > 0 be a non-negative divisor on X. Denote by M, the set
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of all Mittag-Leffler distributions u > —D on X, ie. the set of all Mittag-
Leffler distributions lying in C°(!, ¢} for some open covering U of X. Define a

linear map
R: M,—C?
by
R(p) = (Res(uw, ), ..., Res(uw,)).
Prove

dim HY(X, ¢p) = g — dim R(M ).

§19. Harmonic Differential Forms

With the help of the results obtained so far it is now easy to derive the most
important results about harmonic differential forms on compact Riemann
surfaces X. In particular every closed differential form on X may be uniquely
written as the sum of a harmonic and an exact differential form. This implies
that the 1st deRham group of X is isomorphic to the vector space of har-
monic differential forms on X. Using this one can show that the genus is a
topological invariant.

19.1. Complex Conjugation. For any 1-form w € (X ) on a Riemann sur-
face X, the complex conjugation of functions induces a conjugate complex
differential 1-form @ e &Y(X). For, locally w =Y f; dg;, where the func-
tions f; and g, are differentiable. Thus @ = Y’ f; dg;. A 1-form w € (X)) is
said to be real if w = @. In general the real part of a differential form ® is
defined by

Re(w) = 3w + @).

Clearly w is real if and only if ® = Re{(w). If ¢ is a curve on X, then

Iw = ch, and thus Re( fc u)) = JC Re(w).

(If @ is not closed, then we assume that c is piecewise continuously differen-
tiable.) If w e Q(X) is a holomorphic 1-form, then @ is called anti-

holomorphic. We denote the vector space of all anti-holomorphic 1-forms on
X by Q(X).

19.2. The *-operator. Any 1-form w e £&(X) may be uniquely decomposed
as

o =w, +w, wherew,;e&"X), w,e&"(X)
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Set
0 = i@, — @,).

The mapping *: §V(X) > (X)) is an R-linear isomorphism which maps
&4 °(X) onto &% '(X) and vice versa.

For w € £V(X), w; € £ °(X), w, € £ '(X) and f e £(X) one has the
following:

(@) *xw = —w, 0 = ¥,

(b) d+(w, + w,)=id@, — id"®,,
(c) xdf=id"f, *d'f= —idf,
(d) dxdf = 2id'd"f.

19.3. Harmonic Differential Forms. A 1-form @ € §'V(X) on a Riemann
surface X is called harmonic if

dw = dxw = 0.

Theorem. Suppose w € &'(X). Then the following conditions are equivalent:

(i) w is harmonic,
(il) do=d"w =0,
(iii) w = @, + w, where w, € Q(X) and w, € YX),
(iv) given any point a € X there exists an open neighborhood U of a and a
harmonic function f on U such that o = df.

ProOF. The equivalence of (i), (ii) and (iii) follows from (19.2).

(i) = (iv). Since in particular a harmonic differential form is closed, locally
w = df, where fis a differentiable function. Since 0 = dxw = dxdf = 2id'd"f,
it follows that f is harmonic.

(iv)= (i). If © =df and f is harmonic, then dw = ddf =0 and dxw =
dsdf = 0. O

Notation. The vector space of all harmonic 1-forms on the Riemann
surface X will be denoted by Harm'(X). Thus
Harm'(X) = Q(X) ® O(X).
Thus if X is a compact Riemann surface of genus g, then

dim Harm'(X) = 2g.

19.4. Theorem. Every real harmonic 1-form ¢ € Harm'(X) is the real part of
precisely one holomorphic 1-form w € Q(X).

PROOF. Suppose ¢ = w,; + @, with w;, w, e Q(X). Because 6 = w, +
0, =6 =@, + w,, it follows that @, = ©,. Thus 6 = Re(2w,).



19 Harmonic Differential Forms 155

To prove the uniqueness, suppose w € (X ) and Re(w) = 0. Since locally
@ = df, where fis a holomorphic function, it follows that f has constant real
part. Then f itself is constant and thus w = 0. O

19.5. Scalar Products in &'"/(X). We now assume that X is a compact
Riemann surface. For ,, w, € &"(X) let

{wy, W, = | ‘ W A*W0,.
o

Clearly the mapping (w,, w,)— {w;, w,) is linear in the first and semi-
linear in the second argument and
wy, w1y =<Lwy, 0,).
We now claim that  , ) is positive definite. For, suppose o € £V(X). With
respect to a local chart (U, z), where z = x + iy, suppose
w=fdz+ g dz.
Then
x = i(fdz — g dz)
and
onrxo=i(|f?+ |g]?)dz ndz=2(]f]*+ |g|*) dx A dy.
This shows that {w, @) > 0 and (w, @) = 0 only if w = 0. Hence with this

scalar product &V(X) becomes a unitary vector space. However it is not a
Hilbert space, since it is not complete.

19.6. Lemma. Suppose X is a compact Riemann surface.

(a) d€(X), d"6(X), QUX) and X)) are pairwise orthogonal vector sub-
spaces of &M(X).
(b) d&(X) and «d&(X) are orthogonal vector subspaces of &V(X) and

dE(X)@ «d&(X) = dE(X) D d"E(X).

PROOF
(a) Since & °(X)and &% (X ) are trivially orthogonal, it suffices to show

that '€(X) L Q(X) and d"#(X) L Q(X).
Suppose f e &(X) and w € Q(X). Then
wAxdf=ioAdf=ioAdf = —i d(fo).
Thus
(o, df> = =i [[ d(fw) =0

X

by Theorem (10.20). Similarly one can show (@, d"f> = 0.
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(b) Suppose f, g € &(X). Then
df n x(xdg) = —df ndg = —d(f dg).
Thus
(df. »dg> = — || d(f dg) = 0.

X

The equality d&(X) @ *d&(X) = d'&(X) @ d"&(X) follows from (19.2.¢c). [

19.7. Corollary. On a compact Riemann surface X every exact differential
form ¢ € Harm'(X) vanishes and every harmonic function fe &(X) is
constant.

This follows since d&(X) is orthogonal to Harm!(X) = Q(X)@® Q(X).

19.8. Corollary. Suppose X is a compact Riemann surface and ¢ ¢ Harm'(X),
w € QX). If for every closed curve y on X one has

[ oc=0, resp. Re( | a)) =0,
2 A
then ¢ =0, resp. o = 0.

PROOF. Since a (resp. Re(w)) is exact by Theorem (10.15), the result follows
from (19.7) and (19.4). O

19.9. Theorem. On any compact Riemann surface X there is an orthogonal
decomposition

X)) = d"6(X) @ QUX).

ProOF. Let g be the genus of X. Since H'(X, ¢) =~ &% '(X)/d"6(X) by
Dolbeault’s Theorem (15.14), one has

dim &% 1(X)/d"6(X) = g.
On the other hand, dim Q(X) = g by (17.10). The result now follows from
Lemma (19.6.a). O

19.10. Corollary. Suppose X is a compact Riemann surface and o € £%*(X).
The equation d'f = ¢ has a solution f € &(X) if and only if

H crw =0 forevery w e QX).

X

The given condition is equivalent to ¢ L Q(X).
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19.11. Theorem. On any compact Riemann surface X there is an orthogonal
decomposition

EVX) = xd&(X)® dE(X) ® Harm'(X).
Proof. Taking complex conjugates in (19.9) one gets £%(X) =d'6(X) @
Q(X). Thus
EVNX)=dEX)Dd"EX)D AUX) D QX).
Hence the result follows from (19.6). OJ

19.12. Theorem. Suppose X is a compact Riemann surface. Then

d

Ker(6V(X) - &2(X)) = d&(X) ® Harm'(X).

d
Proor. Since Z(X):=Ker(6§M(X)—- &P(X)) > dé(X) @ Harm'(X), it
suffices by Theorem (19.11) to show that

Z(X) L +d&(X).
Suppose w € Z(X) and fe &(X). Then
o A *(xdf )= —w A df = d(fo).

Hence

(o, «df > = [[ d(fw) = 0. 0

X

19.13. Corollary. Suppose X is a compact Riemann surface. Then a differential
form o € &'V(X) is exact if and only if for every closed 1-formw € &V(X) one
has

H anrw=0.

x

Proor. The given condition is equivalent to {w, *a) = 0 for every closed
1-form w. But by (19.11) this means *o € *d&(X), ie.,, 0 € d6(X). O

19.14. Theorem (deRham-Hodge). Suppose X is a compact Riemann surface.
Then

H'(X, C) =~ Rh!(X) =~ Harm'(X).
Because of (19.12) this follows directly from deRham’s Theorem (15.15).

Remark. Since the sheaf C of locally constant complex-valued functions
on X depends only on the topological structure of X, it follows that

by(X):=dim H'(X, C),
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the first Betti number of X, is a topological invariant. From (19.14) one has
bl(X) = Zga

where g is the genus of X. Thus the genus is a topological invariant.

There is a topological classification of connected orientable compact two-
dimensional manifolds (Riemann surfaces are orientable), which depends
only on the first Betti number. Every such surface X with b,(X) = 2g is
homeomorphic to a sphere with g handles (cf. Seifert-Threlfall [46] or [42]).

It should also be noted that for every genus >1, there are Riemann
surfaces which are homeomorphic but which are not holomorphically equi-
valent. The holomorphic equivalence classes of Riemann surfaces of genus g
depend on one complex parameter when g = 1 and on 3g — 3 complex
parameters when g > 2.

This Teichmiiller theory will not be dealt with here; for this see [S0].

EXERCISES (§19)
19.1. Let X be a compact Riemann surface. Prove

(a) d&® YX)=dd"§(X) = &P(X).
(b) Let # be the sheaf of harmonic functions on X. Then

HY(X, #) = 8P(X)/dd'§(X) = C.
(c) Let w e &'P(X). Prove that there exists a function f e §(X) such that
dd'f=w
if and only if

JJ w=0.

X

19.2. Let X = C/I" be a torus. For a function f € &(X) define its mean value M( /) by

M(f)= (U fdz A di) (H dz A dz)_
X X
For w = fdz + g dz ¢ &Y(X) let M(w):=M(f) dz + M(g) dz. Show
(@) I we Z(X)=Ker(6"(X)S6?(X)), then w and M(w) are

cohomologous.
(b) The mapping

M: #(X)— Harm!'(X)
induces an isomorphism

Rh!(X) > Harm!(X).
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§20. Abel’s Theorem

In this section we investigate when there exist meromorphic functions with
prescribed zeros and poles on a compact Riemann surface X. Clearly it is
necessary that the total order of the zeros equal the total order of the poles.
However on Riemann surfaces of genus g > 1 this condition is not sufficient.
Abel’s Theorem gives a necessary and sufficient condition for the existence of
such functions.

20.1 Functions with Prescribed Divisors. Suppose X is a Riemann sur-
face and D is a divisor on X. A meromorphic function f € M(X) is said to
be a solution of D if (f) = D. Thus the function f has precisely the zeros
and poles prescribed by the divisor D. If X is compact, then it is possible
for D to have a solution only if deg D = 0.

We also need the notion of a weak solution of D. Let

Xp={x¢e X:D(x) >0}

By a weak solution of D we mean a function f e &£(X ) with the following
property. For every point a € X there exists a coordinate neighborhood
(U, z) with z(a) = 0 and a function ¥ € &(U) with y(a) # 0, such that

f=¥z* onUn X,, where k= D(a). (*)

Clearly a weak solution fis a proper, i.e., meromorphic, solution precisely if
is holomorphic on X,. Two weak solutions f and g of D differ by a factor
¢ € &(X) which never vanishes.

If f; (resp. f3) is a weak solution of D, (resp. D,), then f:=f, f, is a weak
solution of the divisor D :=D; + D,. At those points a € X where

D(a) >0, but D;(a)<0 or D,(a)<0,

the product f, f is not defined, but using continuity it may be extended to
such points. Similarly f, /f, is a weak solution of the divisor D, — D,.

20.2. Logarithmic Differentiation. Suppose fis a weak solution of the divisor
D. Then the logarithmic derivative dfjf is a smooth 1-form on the comple-
ment of

Supp(D) = {x € X: D(x) # 0}.
If a € Supp(D) and k = D(a), then using (*) one has the representation

d_, %= W
Tk
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Now dyr /) is differentiable in a neighborhood of a and thus has no singulari-
ties. As in (13.1) this implies that for any 1-form ¢ € &V(X) with compact
support the integral

(%o

exists. For later use we also note that the 1-form d"f/f is differentiable on all
of X, for the local representation f= yz* implies d"f/f = d" /.

20.3. Lemma. Suppose a,, ..., a, are distinct points on the Riemann surface X
and k,, ..., k, € Z. Suppose D € Div(X) is the divisor with D(a;) = k; for j = 1,

.., n and D(x) =0 otherwise. Let f be a weak solution of D. Then for any
g € &(X) with compact support

1 = ndg = i kig(a;).

7

Proor. Choose disjoint coordinate neighborhoods (U}, z;) of the a; with
z(a;) = 0 such that on U; one may write f as

f=y;z% with y; € £(U;), Yi(x)# 0 forevery x e U;.

We may assume that z;(U;) < C is the unit disk for j = 1,
Suppose 0 < r; < r, < 1. There exist functions ¢; € & (X ) w1th

Supp(¢;) = {|z;] <ry} and @;|{]z;]| <r;j=1.

Letg;=¢;gforj=1,...,nand go =g — (g, + - + g,). Since Supp(go) is
compact in X' = X\{a,, ..., a,}, it follows from (10.20) that

|| ﬁAdqo_ - }] d( dff) 0.

Thus

U de/\dg— il g}[gmg, Zk || =i ndg;.
Now Stokes’ Theorem implies

([ Sendg = —tim [ afg )

U e20  cizi<rs =

=tim [ ¢,%) = 2niga) = 2nig(a) O
- %
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20.4. Chains, Cycles and Homology. By a 1-chain on a Riemann surface X
we mean a formal finite linear combination with integer coefficients,

k
c= Y me;, nel
i=1
where the ¢;: [0, 1] — X are curves. The integral over ¢ of a closed differential
form w € £&V(X) is defined by

The set of all 1-chains on X, which in a natural way is an abelian group, will
be denoted by C,(X). A boundary operator

J: C(X)— Div(X)

is defined as follows. Suppose ¢: [0, 1] — X is a curve. Set dc = 0 if ¢(0) =
¢(1). Otherwise let dc be the divisor with value + 1 at ¢(1)and — 1 at ¢(0) and
zero at all other points. For an arbitrary I-chain c¢=Y n;c¢; let
dc=Y n; dc;. Clearly

deg(dc) =0 for every ¢ € C{(X).

Conversely on a compact Riemann surface given any divisor D with

deg D = 0 there exists a 1-chain ¢ such that dc = D. For, a divisor D of

degree zero may be writtenasasum D = D, + --- + D,, where each D; takes

the value +1 at some point b;, —1 at some other point g; and is zero

otherwise. Let ¢; be a curve from a;to b;and c:==c; + - + ¢,. Then éc = D.
The kernel of the mapping 0,

Z(X):= Ker(Cl(X) 5 Div(X)),

is called the group of 1-cycles on X. In particular every closed curve is a
1-cycle.

Two cycles ¢, ¢’ € Z,(X) are said to be homologous if for every closed
differential form @ € £"(X) one has

f(l)=‘ .
e

<

The set of all homology classes of 1-cycles forms an additive group H,(X),
the 1st homology group of X. For y € H,(X) and a closed differential form
w € £V(X), the integral [, w is well-defined.

Two closed curves which are homotopic are also homologous. Hence
there is a group homomorphism 7, (X ) — H,(X). One can easily check that
this mapping is surjective. However it is not in general injective, since the
fundamental group is not always abelian.
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20.5. Lemma. Suppose X is a Riemann surface, c: [0, 1] - X is a curve and U
is a relatively compact open neighborhood of ¢([0, 1]). Then there exists a weak
solution f of the divisor dc with f | X\U = 1, such that for every closed differen-
tial form w € §'V(X) one has

d

"CU %H—,/\U).
X

Remark. Since df/f = 0 on X\U, the integral over X exists.

PrOOF
(a) We first consider the case where (U, z) is a coordinate neighborhood
on X such that z(U) = C is the unit disk and the curve c lies entirely in U.
For simplicity identify U with the unit disk.
Let a:=c(0) and b:=c(1). There exists r <1 such that ¢([0, 1]} <
{|z ] < r}. The function log((z — b)/(z — a)) has a well-defined branch in
{ |z| < 1}. Choose a function ¢ € &(U) with y|{|z| <r}=1 and
Y |{|z]| = r}=0, where r <+ < 1 and define f, € £(U\{a}) by

‘exp(w log %Z) ifr<|z| <1,

fo=< b

—a

3]

if |[z] <r.

(3]

Since fo|{r < |z| <1} =1, one can continuously extend f, to a function
fe &X\{a}), by defining it to be 1 on X\U. By construction fis a weak
solution of the divisor dc. Now suppose w € £'"(X) is a closed differential
form. Since w has a primitive on U, there exists a function g € £(X) with
compact support, such that w = dg on {|z| < r'}. Thus from Lemma (20.3)

i [l G o= gl rta=a)-st=[ o

2mi J.

(b) In the general case there exists a partition
0=ty <ty < <t,=1

of the interval [0, 1] and coordinate neighborhoods (U;, z;),j=1,...,n, on
X with the following properties:

(1) C([tj 1> J])C U « U
(ii) z(Uj)=C is the unit disk.

Letting ¢; denote the curve ¢|[t;_;, t;] and using (a) one can construct a
weak solutlon f; of the divisor dc; such that f;| X\U; = 1 and

J. 2m|’
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for every closed differential form w € £*(X). The product f+=f; - f, then
satisfies the conditions of the lemma. 0

20.6. Corollary. Suppose X is a compact Riemann surface. Then given any
closed curve o on X there exists a unique harmonic differential form
o, € Harm'(X) such that

[w:JI O, AW
J, "

for every closed differential form w € £V(X).

ProOF. Suppose f'is a weak solution of the divisor da = 0 which satisfies the
conditions of Lemma (20.5). Since fdoes not vanish, df/fis differentiable and
closed on all of X. By Theorem (19.12) there exists a differential form
6, € Harm'(X) and a function g € &£(X) such that

1 df

Tm?=01+dg

If w e &V(X) is closed, then dg A w = d(gw) and thus by Theorem (10.20)
1 oedf "
Lw—%gT /\w—g Gy A Q.
To prove the uniqueness, suppose ¢’ € Harm'(X) is a second solution of

the problem. Then for the difference t:= ¢, — ¢’ one has

” tAw=0 for every closed w € &M(X).
X

In particular one can choose w = 7 and thus {7,7> =0, ie, 1=0, —
o =0. ]

20.7. Abel’s Theorem. Suppose D is a divisor on a compact Riemann surface X
with deg D = 0. Then D has a solution if and only if there exists a 1-chain
¢ € C((X) with dc = D such that

fw =0 for every w e Q(X). (*)

Remark. Clearly the condition |, @ = 0 only has to be checked for a basis
of Q(X). If y € C,(X) is an arbitrary 1-chain with dy = D, then the condition
may be formulated as follows. There exists a cycle « € Z;(X), namely
o =7y — ¢, such that

[wszsz j=1,""g’
’y ;

where w,, ..., o, is a basis of Q(X).
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Proor
(a) First we show that the condition is sufficient. Suppose ¢ € C;(X)is a

1-chain with d¢ = D and which satisfies (*). By Lemma (20.5) there is a weak

solution f of the divisor D such that

’. o = L “. g‘

c 2mi . f

Aw for every w € &V(X) with dw = 0.

For every w € Q(X) one has by (*)

As noted in (20.2) one has ¢ :=d"fl/f € % '(X). By (19.10) there is a function
g € 6(X) with d'g = d"fjf. Set

F:=e 9.
Like f the function F is a weak solution of D and
d'F=(d"e %) f+e %d'f=—e %d'g+ e 9d"f=0.

Thus F is even a meromorphic solution of D.

(b) We now prove the necessity of the condition. We may assume that
D # 0. Let f be a meromorphic function on X with (f) = D. The function f
defines an n-sheeted covering f: X — P! for some n > 1. Suppose a,, ...,
a, € X are the branch points of fand let Y := P'\{f(a,), ..., f(a,)}. For every
differential form w e Q(X) we construct a holomorphic differential form
o = Trace(w) on P! in the following way. Every point y € Y has an open
neighborhood V such that f ~ (V) is the disjoint union of open sets Uy, ...,
U, < X and all the mappings f | U, - V are biholomorphic. Let p: V = U,
be the inverse of f | U, — V. Now let

Trace(w)|V =¢ptw + - + ofw.

If one carries out the same construction on an open neighborhood V' of
another point of Y, then on the intersection one gets the same differential
form. As in (8.2) one sees that one can holomorphically continue Trace(w) to
all of P!. Since Q(P') = 0, Trace(w) = 0.

Now let y be a curve on P! from oo to 0 which with the possible exception
of its end points lies entirely in Y. The preimage of y under f consists of n
curves ¢y, ..., ¢, which join the poles of f with the zeros of f. Then letting
c=c, + ' + c, one has dc = D and for every w € Q(X)

' W= v[.Trace(co) =0. O

c ¥
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20.8. Application to Doubly-Periodic Functions. Suppose y,, y, € C are
linearly independent over R and

P={tiy, +1,7,:0<t, <1,0<t, < 1),

Suppose zeros ay, ..., a, € P and poles by, ..., b, € P are prescribed, where
each point appears as often as its multiplicity demands. Then there exists a
meromorphic function which is doubly-periodic with respect to
I'= 2y, + Zy, and has zeros ay, ..., a, and poles b, ..., b, if and only if

> (a—by)eT.
K=1

ProoF. Let D be the divisor on C/T" determined by the prescribed zeros and
poles. Choose curves ¢, from b, to a, in C, e.g. straight line segments. Let
n: C — C/I" be the canonical projection and

c=moc;+ -+ mnec, e Cy(C/T).
Then dc = D. Let w € C/T') be the differential form on the torus induced
by the differential form dz on C. Then

n n

me= Y | dz= Y (a - by).

c k=1 "¢ k=1

Hence the result follows from the Remark right after the statement of Abel’s
Theorem. O

EXERCISES (§20)

20.1. Let X be a compact Riemann surface, « and 8 be closed curves in X and o, and
o be the harmonic 1-forms associated to « and f according to Corollary (20.6).
Show that

” G, A ap
b

is an integer. (This integer is the “intersection number” of « and 8.)
[Hint: Show that for /e &(X) and « a closed curve

1 df . .
i Jl —- is an integer.]

f
202. LetT' = Zy, + Zy, = C be a lattice, X = C/T and
a;: [0, 1] > X

be the closed curves defined by

a;(t) = m(ty;)

where n: C - C/T is the canonical projection. Find the harmonic forms G-
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20.3. Let X be a compact Riemann surface of genus g. Show that there exist closed
curves oy, ..., 3, on X such that

)
e

Harm'(X)= } Co,,.

j=1

20.4. Let T = C be a lattice. A theta function with respect to I' is a holomorphic
function

F:Cc-C
satisfying
F(z +y) = e"%F(z) foreveryzeC andyeT,
where L (z) = a,z + b, is an affine linear function depending on y.

(a) The Weierstrass o-function o: C — C is defined by

O-(z)::'r H (1 _E)ex (E +i2)
Lo U )P T

Show that o is a theta function with zeros of first order precisely at the
points of I'.

(b) Show that every doubly periodic meromorphic function with respect to I' is
the quotient of two theta functions.

§21. The Jacobi Inversion Problem

Abel’s Theorem tells us when a divisor of degree zero on a compact Riemann
surface has a solution which is a meromorphic function, i.e., when a divisor
is a principal divisor. In this section we will be concerned with a more
detailed study of the quotient group of divisors of degree zero modulo the
subgroup of principal divisors. It turns out that this group is isomorphic to a
complex g-dimensional torus, where ¢ is the genus of the Riemann surface.

21.1. Lattices. Suppose V is an N-dimensional vector space over R. An
additive subgroup I' = V is called a lattice if there exist N vectors yq, ...,
vy € V, which are linearly independent over R, such that

IF'=2Zy,+-+2Zyy.
Theorem. A subgroup T = V is a lattice precisely if both of the following
conditions hold:

(i) T is discrete, ie., there exists a neighborhood U of zero such that
I'nU=(0).
(i) T is contained in no proper vector subspace of V.

Remark. Every real N-dimensional vector space V has a unique topology
such that every isomorphism ¥ = RY is a homeomorphism.
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Proor. Clearly a lattice I < V satisfies conditions (i) and (ii). Now con-
versely suppose I' = V' is a subgroup satisfying conditions (i) and (ii). By
induction on N = dimg V we will show that there exist linearly independent
Vectors vy, ..., vy € V such that

=2y, 4+ + Zyy.
This is trivial for N = 0.

Now consider the induction step N — 1 — N. Since I is not contained in
any proper vector subspace of V, there exist N linearly independent vectors
Xy, ..., Xy € I'. Let V; be the vector subspace of V spanned by x,, ..., xy_;
and let I'; :==I" n V,. The induction hypothesis may be applied to I',. Thus
there exist linearly independent vectors y,, ..., yy_; € I’y = I such that

Fl = Zyl + 0+ Z’))N~1-

Every vector x € I" may be written uniquely in the form

x=cy(x)yy + + eyoy (X + c(x)xy,
where c;(x) and ¢(x) are real numbers. Since the parallelotope

Pi={iyr+ 4 Ayoyyy-y + Axy: A, A e [0, 17}

is compact, I' n P is finite. Hence there exists a vector yy € (I' A P)\V, such
that

c(yy) = min{c(x): x e (T ~ P)\V;} €]0, 1].

Now we claim that I' = I'; + Zy, . For, suppose x € I is arbitrary. Then
there exist n; € Z such that

N N-1
Xi=x = Yoy = Y Ay + Axy,
ji=1 j=1

where
O0<i;<l forj=1,...,N—1
and
0 <A <elyy)

Since x' T ~ P, it follows from the definition of vy that A =0. Thus
x"€I' n V; =T,. Hence all 4; are integers and thus are zero. This implies
x'=0,1e,

N
Xx= Y ny, €Ly + -+ Lyy. 0
=1

21.2. Period Lattices. Now suppose X is a compact Riemann surface of
genus g > 1 and wy, ..., w, is a basis of the vector space Q(X) of holomor-
phic 1-forms on X. Define a subgroup

Per(wy, ..., w,) = C*
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as follows. Per(w,, ..., ,) consists of all vectors

([w,, ’ sy ey ' wg) e C4,
where o runs through the fundamental group =,(X) (cf. 10.11).

Remark. It is also true (cf. 20.4) that

Per(w;, ..., w,) = {(Iawl e J;cog'): o€ Hl(X)}.

We will show that Per(w,, ..., w,)is a lattice in C?, where C? is considered as
a real 2g-dimensional vector space. This lattice is called the period lattice of
X relative to the basis (@, ..., w,).

For the proof we need a lemma.

21.3. Lemma. Suppose X is a compact Riemann surface of genus g. Then there
are g distinct points a,, ..., a, € X with the following property: Every holomor-
phic 1-form o e Q(X) which vanishes at all the points ay, ..., a, is identically
zero.

PrOOF. For a € X, let
H,={w € Q(X): w(a) =0}.

Every H, is either equal to Q(X) or else has codimension one in Q(X). Since
the intersection of all the H, is zero and Q(X) has dimension g, there exist g
points ay, ..., a, € X such that

H, nnH,=0.

1

These points satisfy the conditions of the Lemma. O

21.4. Theorem. Suppose X is a compact Riemann surface of genus g > 1 and
Wy, ..., 0, is a basis of YX). Then I :=Per(w,, ..., w,) is a lattice in C*.

ProOOF

(a) Choose points a, ..., a, as in the Lemma and disjoint simply con-

nected coordinate neighborhoods (U;, z;) of a; with z(a;) =0, forj = 1,...,
g. With respect to these coordinates let
w; = @;;dz; on U;.
By Lemma (21.3) the matrix
A= (@if(a))1<i.j<q
has rank g. Now define a mapping
F:U; x---xU,-»C*
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as follows: For x = (x,, ..., x,) e U; x -+ x U, let

F(xy, ..., x,) = (Fy(x), ..., Fy(x))
where

Fo)=Y | o, i=1..4

Here the integral j",,‘; w; is along any curve from a; to x; which lies in Uj;
since U, is simply connected, the integral is independent of the curve chosen.

The map F is complex differentiable with respect to the coordinates z,,
.., z; and has Jacobian matrix

aF;
1) = (52 9) = (0.
“J
Thus at the point a = (ay, ..., a,) the matrix J.(a) = A and is invertible.

Hence
W:=F(U, x - x Ug)cCg

is a neighborhood of F(a) = 0.
(b) Now we will show that I' n W = 0. For, suppose to the contrary that
there exists a point t € I' » (W\0). Then there exists

x=(xy,...,x)e Uy x-x U, x # a,
with F(x) € T. Renumbering, if necessary, we may assume
x;#a; forl<j<k andx;=a; forj>k,

where 1 < k < g. By Abel’s Theorem there exists a meromorphic function f
on X which has a pole of first order at a;, 1 <j < k, a zero of first order at
x;, 1 <j <k and is holomorphic otherwise. Let ¢;z; ' be the principal part
of fat a;. Of course ¢; # 0 for 1 <j < k. By the Residue Theorem (10.21)

k
0 =Res(fw;) = Y c;pia;) fori=1,...,g.
j=1

But this is not possible since the matrix (¢;;(a;)) has rank g. Thus the
assumption is false and we have shown that I is a discrete subgroup of C?.

{(c) Now we will show that I' is not contained in any proper real vector
subspace of C?. Otherwise, there would exist a non-trivial real linear form on
C?, which vanished identically on I'. Since every real linear form is the real

part of a complex linear form, one thus gets a vector (cy, ..., c,} € C?\0 such
that

g o
Re( Y ¢ J wj) =0 for every a € m,(X).
\j=1 a
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But from Corollary (19.8) it then follows that
w=cyw; + -+ ¢;w, =0, a contradiction!
This proves that I' is a lattice in C%. O

21.5. Remark. Theorem (21.4) tells us that there are 2¢ closed curves o, ...,
a,, on X such that the vectors

y‘,==(’. Wiy «-ns ' (ug)e(D”, v=1,...,2g,

are linearly independent over the reals and
Per(ml, e, (gg) =7y, +  + Iy,

One can easily see from this that the homology classes of ay, ..., a,, in
H,(X) are linearly independent over Z and generate H (X). Thus
H,(X)=z*.

21.6. The Jacobi Variety and the Picard Group. Suppose X is a compact
Riemann surface of genus g and w,, ..., w, is a basis of Q(X). Then

Jac(X):=C%Per(w,, ..., »,)

is called the Jacobi variety of X. Here we are considering Jac(X) only as an
abelian group. It also has the structure of a compact complex manifold (a
complex g-dimensional torus), similar to the tori defined in (1.5.d). This
structure will not be dealt with here. Note that the definition depends on the
choice of basis w, ..., w,, but the choice of a different basis leads to an
isomorphic Jac(X).

Let Divg(X) = Div(X) denote the subgroup of divisors of degree zero and
Div,(X) < Divy(X) the subgroup of principal divisors. The quotient

Pic(X) :=Div(X)/Div,(X)
is called the Picard group of X. We will also consider the subgroup
Picy(X) = Divy(X)/Divp(X)
of Pic(X). Since Div(X)/Divy(X) = Z, we have an exact sequence
0 — Picy(X) - Pic(X) - Z - 0.
Define a map
®@: Divy(X) — Jac(X)

as follows. Suppose D € Divy(X) and ¢ € C,(X) is a chain with éc = D. The
vector

(J'a)l, |wg) e C?
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is determined uniquely by D up to equivalence modulo Per(w,, ..., ®,). By
definition ®(D) is its equivalence class. Clearly ® is a group homomorphism.
Now Abel’'s Theorem says that the kernel of the mapping @ is equal to
Divp(X). Hence by passing to the quotient we get an injective mapping

j: Picy(X) — Jac(X).
The Jacobi inversion problem asks if this map is surjective. Actually this is
the case!
21.7. Theorem. For every compact Riemann surface X the mapping

Jj1 Pico(X) — Jac(X)

is an isomorphism.

Proor. Let p € Jac(X) be an arbitrary point which is represented by the
vector ¢ € C* For N a sufficiently large natural number, the vector (1/N)¢&
lies in the image of the mapping F considered in part (a) of the proof of
Theorem (21.4). This means that there exist points a;, x; € X and curves y;
from qg; to x;, forj=1, ..., g, such that if c:=y, + -+ + 74» then

(fwl, . lcwg) =%é.

Thus for the divisor D :=dc¢ one has

o(D) = ! ¢ mod Per(wy, ..., o,).

N
Now if § is the point of Picy(X) represented by the divisor ND, then j(#) = p.
This proves that j is surjective and thus an isomorphism. d
21.8. Suppose X is a compact Riemann surface of genusgand a,, ..., a, € X

are arbitrarily chosen points. Define a mapping
Y X? > Pico(X)

in the following way. For (x,, ..., x,) € X* let
g
Y(xi, .., x,) =Y (D, — D, )mod Divp(X);
ji=1

where D,, for x € X, is the divisor which has the value +1 at x but is
otherwise zero. Let

J: X?— Jac(X)
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be the composition of the mappings : X? — Picy(X) and j: Picy(X)—
Jac(X). Recalling the various definitions, one sees that

9

J(xl,...,xg)z(ZJ a)i) mod Per(w,, ..., w,).
j=1"aj 1<i<g

One has a sharper version of (21.7).

21.9. Theorem. With the same notation as above, the mapping
J: X9 Jac(X)

is surjective.

Proor. It suffices to show that y: X¢ — Picy(X) is surjective. But this is the
same as saying that every divisor D € Div,(X)is equivalent modulo Div,(X)
to a divisor of the form

g

YDy, = D) (xys-.-, x,) € X2

j=1
One sees this as follows. Let
D'=D+D, ++D,.

Then deg D' =g and by the Riemann-Roch Theorem (16.9) one has
dim H%X, 0p) = 1. Thus there exists a meromorphic function f # 0 on X
with (f)> — D', ie.

D= (f)+D =0.
Since deg D" = g, there are points x,, ..., x, € X such that
D"=D, + - +D,.
Thus

3. (0= Do) =D+ (/) o

Remark. It follows directly from the definition of the mapping J: X¢ —
Jac(X) that J(x,, ..., x,) remains invariant under any permutation of x, ...,
x,. Hence J induces a mapping S?X — Jac(X) of the g-fold symmetric pro-
duct of X into the Jacobi variety. One can define on $?X, as well as on
Jac(X), the structure of a compact complex g-dimensional manifold. Then
the mapping S?X — Jac(X) is holomorphic. Note that it is not bijective, but
one can show that it is bimeromorphic, i.e. induces an isomorphism between
the fields of meromorphic functions of Jac(X) and S¢X. For details, see [16].

21.10. Theorem. For every compact Riemann surface X of genus 1 the map-
ping J: X — Jac(X) is an isomorphism.
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Remark. Together with Corollary (17.13) this shows that the compact
Riemann surfaces of genus 1 are precisely the tori C/T.

Proor. The mapping J may be described in the following way. Suppose
w e QX)0, T :=Per(w) and a € X. Then for x € X, one has
J(x) = [ w mod I' e C/T = Jac(X).

Clearly J is a holomorphic mapping. By (21.9) J is surjective. By the way this
also follows directly from Theorem (2.7). The mapping J is also injective, for
otherwise by Abel’s Theorem there would exist a meromorphic function fon
X having a single pole of order one. This is impossible. For, in that case X
would be isomorphic to P! I

Remark. Suppose P(z) is a polynomial of degree 3 or 4 without repeated
roots and let X be the Riemann surface of the algebraic function ./P(z).
Then X has genus one (cf. 17.15) and

dz
P(z)

1s a basis of (X). Let I' = C be the period matrix of . The mapping
J: X = Jac(X) = C/T is then given by the “elliptic integral of the first kind ”

dz
-mod I"'e C/T".
V P(2)
Let F: C/T' - X be the inverse of J and let n: C - C/T"and p: X — P! be the
canonical projections. Then

f=poFon:C—P!

is a doubly-periodic meromorphic function. It was the great discovery of
Abel and Jacobi that the study of elliptic integrals could be replaced by the
study of doubly-periodic functions. The generalization of this question to
hyperelliptic integrals then lead to the Jacobi inversion problem. An account
of the history of this problem can be found in [63].

w =

J(x)= ':

EXERCISES (§21)

21.1. Let X be a compact Riemann surface and ¥ = X be an open subset such that
X\Y has non-empty interior. Let D be a divisor on X. Show that there exists a
function f'e .#*(X) such that

ord,(f) = D(x) foreveryxeY.

[Hint: Find a divisor D’ with support in X\Y such that D + D’ is a principal
divisor.]
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21.2. (a) Show that the polynomial
F(Z)’:423_922_93, g2, 93 €C,
has 3 distinct roots if and only if
93 — 2743 # 0.
(b) Let I = C be a lattice and
1 ( 1 1)
#(z) = o
(Z) 22 + w;\o (Z _ w)z wz)
be the associated Weierstrass §2-function. Show that £ satisfies the differ-
ential equation
92 =43 —g,9 —gs,
where
=60 N and g; = 140 ) 1
92= wel\0 (‘()4 g3 wel\0 w6

and that the torus C/T  is isomorphic to the Riemann surface X — P! of the
algebraic function /42 — g,z — g;5.
(c) Given g,, g5 € C with g3 # 2793, show that there is a lattice I’ = C such
that
1 1
g2=60 Z 2 andg3=140 Zr\o—b.

wel\0 w

[Hint: Use part (b) and Theorem (21.10).]



CHAPTER 3
Non-compact Riemann Surfaces

In many respects, function theory on non-compact Riemann surfaces is
similar to function theory on domains in the complex plane. Thus for non-
compact Riemann surfaces one has analogues of the Mittag-Leffler
Theorem and the Weierstrass Theorem as well as the Riemann Mapping
Theorem.

In this chapter we will first consider the Dirichlet Boundary Value Prob-
lem for harmonic functions on Riemann surfaces. This will then serve as a
tool in proving that every Riemann surface has a countable topology. Also it
will be needed later in the proof of the Riemann Mapping Theorem. With
the help of Weyl’s Lemma we will prove Runge’s Approximation Theorem.
And then from Runge’s Approximation Theorem we easily derive the
Theorems of Mittag-Leffler and Weierstrass. Also in this chapter we com-
plete the discussion, begun in §§10 and 11, concerning the existence of holo-
morphic functions with prescribed summands of automorphy. We also look
at the Riemann-Hilbert problem.

§22. The Dirichlet Boundary Value Problem

The existence theorems for holomorphic and meromorphic functions on
Riemann surfaces which we have so far considered are all essentially depen-
dent on Dolbeault’s Lemma (13.2) and the Finiteness Theorem (14.9). We
now prove another existence theorem on Riemann surfaces which is entirely
independent of these previous results, namely the solution of the Dirichlet
Problem for harmonic functions using Perron’s method.

175
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22.1. Suppose Y is an open subset of a Riemann surface X. Then a differen-
tiable function u € &(Y) is called harmonic if d'd"u = 0, cf. (9.14). With re-
spect to a local coordinate z = x + iy this is equivalent to

RN E:
A = | — —_ = U.
! (6x2 * 0y2)u 0

Every real-valued harmonic function u on a simply connected domain
G = X is the real part of a holomorphic function fe ¢(G). For, from
Theorem (19.4) it follows that the harmonic differential form du may be
written du = Re(dg) for some g € ¢(G). This implies u = Re(g) + const.

This observation allows one to derive quite easily the Maximum Prin-
ciple for harmonic functions. If a harmonic function u: Y » R on the
domain Y attains its maximum at a point x, € Y, then u is a constant. For,
suppose u = Re(f) where f is a function holomorphic on some neighbor-
hood of x,. Since |e/| = ¢, the holomorphic function e’ attains its maxi-
mum modulus at x,. Now the Maximum Principle for holomorphic
functions implies u is constant on a neighborhood of x,. Thus u is also
constant on all of Y, since Y is connected.

22.2. By the Dirichlet Problem on a Riemann surface X we mean the
following:

Suppose Y is an open subset of X and f: dY — R is a continuous function.
Find a continuous function u: ¥ —» R which is harmonic in Y and satisfies
u|dY = f. Suppose Y is compact and 8Y # (¥, ie, Y # X. If a solution
exists, then it is unique. For, the difference u; — u, of two solution u; has
boundary values zero. Because of the Maximum Principle for harmonic
functions one then has 0 < u; —u, <0on Y. Thus u; = u,.

For the disk

D(R)={zeC: |z| <R}, where R >0,

the Dirichlet Problem can be easily solved using the Poisson Integral.

22.3. Theorem. Suppose f: 0D(R) — R is continuous and let

_ 1 "R —z)? i0 *
u(z)_ﬂjo TR~ o /(RE") 46 Jor |z| <R (*)

and u(z):=f(z) for |z| = R. Then u is continuous on D(R) and harmonic on
D(R).

PrOOE. For z # ( let

_leP -zl

P(z,{): (—zF °
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Then P(z, {) = Re F(z, {). Thus (*) may be written as

u(z) = 51; jo "P(z, Re®) f (Re) d6

= 1«:(517E j:"F(z, Re*) f(Re®) dB)
- Re(zi”J’lI 0%

Since F(z, {) is holomorphic as a function of z, it follows that u is the real
part of a holomorphic function on D(R) and thus is harmonic.

The remaining point is to verify the continuity at the boundary. Using the
Residue Theorem, one has

" {+z d
2[ P(z, Re®) df = R(sz”RC_z C) 1.

Hence for {, € 8D(R), z € D(R) and letting { = Re® one has

&)ffd~2f P(z. O/ () ~ £ (o)) 40

Suppose ¢ > 0 is given. Since f is continuous, there exists 5, > 0 such that
| £0) — f(Lo)| <e/2for |{ —{o| < 8,. Also there is a constant M > 0 such
that | f({)| < M for every { € dD(R). Now split the interval [0, 2z] up into
two subsets. Namely let « be the subset of all those 6 € [0, 2n] such that
|Re® — {y| < Jp and let /3 be the rest. Then

|u(z) = £ (Co)| <5 f Pz {)= d9+2—jﬂP(z,C)2Md6

M i0
< +—n—fP(z,Re ) d6.

B

N ™

If |z — {o]| =8 < 8o/2, then for 6 € f one has
|Re” — z| = |Re® — {o| — |z — o] = 80/2
and

R+ |z|{R - |z]) _ _8R

|Re® — z|? (50/2) B o

P(z, Re’) =

Thus

e 16RM
[u(e) = S o)l <5 + =55 5=,

whenever |z — {,| is chosen sufficiently small. [
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22.4. Corollary. Suppose u: D(R) — R is a harmonic function. Then

1 2n

rr—z|?

5 u(re'?) do

" 2nl, |re® — z|

u(z)

for every r <R and |z| <r. In particular, u satisfies the *“Mean Value
Principle”

u(0) = — " u(re'®) do.

Because of the uniqueness of the solution of the Dirichlet Boundary
Value Problem this follows from (22.3).

22.5. Corollary. Suppose u,: D(R) - R, n € N, is a sequence of harmonic func-
tions which converges uniformly on compact subsets to a function u: D(R) - R.
Then u is also harmonic.

PROOF. By (22.4) for every r < R and all |z| < r one has
1 .2

u,(z) = ) P(z, re®)u,(re'®) db,

where P(z, () is the kernel defined in (22.3). Since the sequence u, converges
to u uniformly on 8D(r), this integral formula is also valid for the function u.
But then u is harmonic on D(r) by Theorem (22.3). O

22.6. Harnack’s Theorem. Suppose M € R and
Uy <Uy SU, < <M

is a monotone increasing, bounded sequence of harmonic functions
u,: D(R) = R. Then the sequence converges uniformly on every compact subset
of D(R) to a harmonic function u: D(R) — R.

PrOOF. Suppose K = D(R) is compact. Then there exist constants p < r < R
such that
Kci{zeC: |z| <p}.

Suppose ¢ > 0is given and let ¢’ :=¢(r — p)/(r + p). Since the sequence (u,(0))
is monotone increasing and bounded, there exists an N such that

n

u,(0) — u,(0)<¢ foreveryn=m=N.

Now apply the Poisson Integral Formula to the positive harmonic function
u, — u,,. Since for |z| < p one has

h~]

r+ ’z| <r+

0 z, re'®
< Plz,re )Sr— lz| —r—

El

A
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forallze K

1 W 2n . ) )
un(z) — u(z) === | P(z,re") (un(re®®) — u,(re’”)) do
2nty
1 J2n ) )
<Pl ) — o) do
_r+p _ .
- r—p (un(o) um(o)) <e.
Thus the sequence (u,) converges uniformly on K and by (22.5) its limit
function is also harmonic. J

22.7. We now return to the Dirichlet Problem on an arbitrary Riemann
surface X. Note that the property that a function is harmonic remains
invariant under biholomorphic mappings. Thus one can also solve the Dir-
ichlet Problem on all domains D < X which are relatively compact and are
contained in a chart (U, z) so that z(D) = C is a disk.

We need some additional notation. For any open set ¥ « X let Reg(Y)
denote the set of all subdomains D € Y such that the Dirichlet problem can
be solved on D for arbitrary continuous boundary values f: D — R. For any
continuous function u: Y - R and D € Reg(Y) let P,u denote the contin-
uous function on Y which coincides with u on Y\D and solves the Dirichlet
problem on D for the boundary values u|éD.

Let (Y denote the vector space of all continuous real-valued functions
on Y. Clearly for every u, v € ¥5(Y), 4 € R, the following hold:

(i) Pp(u + v)= Ppu+ Ppu,
(i) Pp(Au) = APpu,
(i) u <v=>Ppu < P,v.

A function u e €R(Y) is harmonic precisely if Ppu)=u for every
D € Reg(Y).

22.8. Definition. A continuous function u: Y — R is called subharmonic if
Ppu>u for every D € Reg(Y).

It follows directly from the definition that if u, v: ¥ — R are subharmonic
functions and 1 is a non-negative real number, then u + v, Au and sup(u, v)
are subharmonic on Y.

A function u: Y — R is called locally subharmonic if u is subharmonic on a
neighborhood of every point of Y.

229. Theorem (The Maximum Principle for Locally Subharmonic Func-
tions). Suppose Y is a domain in a Riemann surface X andu: Y — R is a locally
subharmonic function. If u attains its maximum at some point x, € Y, then u is
constant.
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ProOOF. Let u(x,) =:c and
S:={xe Y:u(x)=c}

If S+ Y, then there exists a point a e S ~ Y. Since u is continuous,
u(a) = c. In every neighborhood of a there is a point x with u(x) < ¢. Hence
there is some open neighborhood D € Reg(Y) of @ such that u|dD is not
constantly equal to ¢. Moreover we may assume that u is subharmonic on
some neighborhood of D. Thus

u<Ppu=:v.
The function v is harmonic in D. Because
v|éD =u|dD <c,

the Maximum Principle for harmonic functions implies v < ¢ on D. Since
¢ = u(a) < v(a), v attains its maximum at a and thus is constantly equal to c.
But this contradicts the choice of D. Thus S =Y. 0

22.10. Corollary. If u: Y - R is locally subharmonic, then u is subharmonic.

ProoOF. Suppose D e Reg(Y) is arbitrary. Since P,u is harmonic on D,
vi=u—Pyu

is locally subharmonic on D. Since v|dD = 0, the Maximum Principle im-

plies v <0 on D. Thus P,u > u. 0O

22.11. Lemma. [f u: Y — R is subharmonic and B € Reg(Y), then Pyu is also
subharmonic.

PrOOF. Set v:= Pgzu and suppose D € Reg(Y) is arbitrary. We have to show
that P,v > v. On Y\D one has P,,v = v and on Y\B, because v > u, one has
Pyov > Ppu>u=nuo.

Thus v — P,v <0 on Y\(B n D). Since v — P, v is harmonic on B n D, it
follows that

v—Ppv<0 onBnD.
Hence Pov > vonall of Y. O
22.12. Lemma (Perron). Suppose M < €x(Y) is a non-empty set of subhar-
monic functions on Y with the following properties:

(i) u, v e M= sup(u, v) e M.
(ii) ue M, D € Reg(Y)=Ppue M.
(i) There exists a constant K € R such that

u<K foreveryueM.
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Then the function u*:. Y — R defined by
u*(x) = supf{u(x): u e M}

is harmonic on Y.
PROOF. Suppose a € Y and D e Reg(Y) is a neighborhood of a. Choose a
sequence u, € M, n € N, with

lim u,(a) = u*(a).
Because of (i) we may assume

Ug S Uy Sy <0
Let v, = Ppu,. Then one also has

U0SUISU2S"'.

By Harnack’s Theorem the sequence (v,) converges on D to a harmonic
function v: D — R and the following hold

v(a) =u*(a) and v <u* on D.

Now we claim that v(x) = u*(x) for every x € D. To see this, suppose
w, € M, ne N, is a sequence with

lim w,(x} = u*(x).

n—aw
Because of (i) and (ii) we may assume that
v, <w,=Ppw, andw, <w,,

for every n e N. Hence the sequence (w,) converges on D to a harmonic
function w: D — R with

v<w < u*,

Since v(a) = w(a) = u*(a), the Maximum Principle applied to the harmonic
function v — w on D implies v(y) = w(y) for every y € D. In particular,

o(x) = w(x) = u*(x),
and thus u* = w is a harmonic function on D. O
22.13. To solve the Dirichlet Problem we will now use the technique devised
by Perron. Suppose
fi0Y >R

is a continuous bounded function (we are not assuming that ¥ is compact)
and

K =sup{f(x): x e Y}
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Denote by 3, the set of all functions u € ¢(Y) with

(i) u| Y subharmonic,
(i) u|oY <f u<K.

B, is called the Perron class of f. By the lemma

u*=sup{u: u € P}
is harmonic on Y. For this to be a solution of the boundary value problem it
must satisfy
lim w*(y) = £ (x)

y=x

yeY
for every point x € dY. Under certain conditions this will be the case, but not
in general.

22.14. Definition. A point x € dY is called regular if there is an open
neighborhood U of x and a function B € €x(Y n U) with the following
properties:

(i) B|Y n U is subharmonic
(ii) B(x)=0 and B(y) <0 forevery ye Y n U\{x}.

The function f is called a barrier at x.

Remark. Suppose x € Y is a regular boundary point of Y and Y, is an
open subset of Y with x € dY,. Then x is a regular boundary point of Y.
This follows directly from tHe definition. Hence, as a consequence, if Y has a
regular boundary (i.e., every boundary point is regular), then every con-
nected component of Y also has a regular boundary.

22.15. Lemma. Suppose x € 8Y is a regular boundary point, V is a neighbor-
hood of x and m and c are real constants with m < c¢. Then there exists a
function v € €x(Y) with the following properties:
(i) v|Y is subharmonic,
() v(x)=¢, V|YNnV<e,
(iii) | V\V = m.

Proor. Without loss of generality we may assume ¢ = 0. Suppose U is an
open neighborhood of x and f € ¥&x(Y n U} is a barrier at x. By shrinking
V if necessary, we may assume V € U. Then

sup{B(y): ye oV n Y} <.
Thus there exists a constant k > 0 such that

kB|oV A Y <m.
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Define

- sup(m, kf) on Y n V
m on Y\V.

Then v is continuous on Y, locally subharmonic on Y, thus subharmonic,

and also satisfies conditions (ii) and (iii). O

22.16. Lemma. Suppose Y is an open subset of a Riemann surface, f- Y — R is
a continuous bounded function and

u* =sup{u: u c P,

where P, is the Perron class of f. Then for every regular boundary point
xedY

lim u*(y) = f(x).

y—ox
yeY

Proor. Suppose ¢ > 0 is given. Then there exists a relatively compact open
neighborhood V of x with

fx)—e<fly)<f(x)+¢ foreveryyedY n V.
Suppose k and K are real constants such that
k<f(y)< K foreveryyedV.

(a) Using Lemma (22.15) choose a function v € ¥ g(Y) which is subhar-
monic on Y and satisfies

o(x) =f(x)— ¢
v|Y nV<fix)—ce
v|Y\W=k—c

Then v|3Y < f Thus v € P, and hence v < u*. Then
lim inf u*(y) > v(x) = f(x) — e.
y—x

(b) Again using Lemma (22.15) there exists a function w € (Y) which is
subharmonic on Y and satisfies

W) = ~/ ()
w|Y n V< ~f(x)
w|Y\V = —K.

For everyu e B, and y € Y n V one has u(y) < f(x) + & Thus

u(y)+w(y)<e foryedY n V.
As well
u(z) +w(z) < K- K=0 foreveryze Y n avV.
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Applying the Maximum Principle to the function u + w, which is subhar-
monic on Y ~ V, one has

u+w<e on¥YnVv.

Thus
ulYnV<e—w|l¥ nV foreveryue P,
Hence
lim sup u*(y) < e — w(x)=f(x) + e
ve
From (a) and (b) one has the result. O

22.17. Theorem. Suppose Y is an open subset of a Riemann surface X such that
all the boundary points of Y are regular. Then for every continuous bounded
function f* Y — R the Dirichlet Problem on Y can be solved.

This follows directly from Lemma (22.16).

We now point out a simple geometric condition which ensures that a
boundary point is regular. Since regularity is a local condition which is
invariant under biholomorphic mappings, it suffices to formulate this condi-
tion for Y < C.

22.18. Theorem. Suppose Y is an open subset of C and a € Y. Suppose there
exists a disk

D={zeC:|z—m| <r}, wheremeC,r>0,

such that a € D and D n Y = (. Then a is a regular boundary point of Y.
PROOF. Set ¢ :=(a + m)/2, see Fig. 6. Then
B(z) =log % —log |z —¢|

defines a barrier at a. Thus a is a regular boundary point. O

Figure 6
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ExERCISES (§22)

221. Let D=={z € C: |z| < R} and letu: D — R, be a nonnegative harmonic func-
tion. Prove Harnack’s inequality

7: u0) < u(z) < 2;{;{14(0) for every z e D.

22.2. Using Harnack’s inequality prove Liouville’s Theorem for harmonic functions.
Let u: C — R be a harmonic function which is bounded from above. Then u is
constant.

22.3. Suppose Y = C is open and u: Y — R is a continuous function such that for
every closed disk

Dla,r)={zeC:|z—a| <r}c¥

one has

Show that u is subharmonic.
22.4. Suppose Y = C is open, a € Y and there exists a line segment
S={a+(1-A)p:0<2<1] b#a
with ¥ n § = ¢&. Show that a is a regular boundary point of Y.

§23. Countable Topology

In this section we prove the Theorem of Radd which asserts that every
Riemann surface has a countable topology. (Clearly this is trivial for com-
pact Riemann surfaces.) Also for later use we construct special exhaustions
of non-compact Riemann surfaces.

23.1. Lemma. Suppose X and Y are topological spaces and - X - Y is a
continuous, open and surjective mapping. If X has a countable topology, then
so does Y.

ProoF. Let U be a countable basis for the topology on X and let
B={f(U): Uell}.

Then B is a countable family of open subsets of ¥ which we claim is a basis
for the topology of Y.

Suppose D is an open subset of Y and y € D. We have to show that there
exists ¥ € B with y e V < D. Since f is surjective, there exists x € X with
f(x)=y. The set f ~*(D) is an open neighborhood of x. Hence there exists
U e U with x e U = f (D). Thus V:=f(U) satisfies y e V < D. O
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23.2. Lemma (Poincaré—Volterra). Suppose X is a connected manifold, Y is a
Hausdorff space with countable topology and f: X — Y is a continuous,
discrete mapping. Then X has a countable topology.

ProoF. Suppose U is a countable basis for the topology on Y. Denote by 8B
the collection of all open subsets V of X with the following properties:

(i) V has a countable topology,
(ii) V is the connected component of a set f ~'(U) with U e U.

{(a) We claim that B is a basis for the topology on X. Suppose D is an
open subset of X with x € D. We have to show that there exists V € 8 with
x € V = D. Since f is discrete, there is a relatively compact open neighbor-
hood W < D of x so that W does not meet the fiber f ~!(f(x)). Now f (O W)
is compact and thus closed and does not contain the point f(x). Hence there
existsa U e U with f(x)e Uand U n f(6W) = . Let V be the connected
component of f ~!(U) which contains the point x. Since V n ¢W = (4, one
has ¥V < W and hence V has a countable topology, i.e., V € 8. This verifies
claim (a).

(b) Next we claim that for every 1, € 8 there exist at most countably
many V e B with V, n V # &. For every U € U the connected compon-
ents of f ~!(U) are disjoint. Since ¥, has countable topology it can only meet
countably many of these connected components. Since U is also countable,
the result follows.

(c) Now we show that B is countable. Fix V* ¢ 8 and define for ne N
the set B, = B as follows: B, consists of all ¥V € B such that there are 1},
Vi, ..., V, € B with

Vo=V* V,=V and Vo, n V& fork=1,..., n

Since X is connected, U,,E ~ B, = B. Thus it suffices to show that each B,
is countable. We do this by induction. Clearly 8B, = {V'*} is countable.
Suppose we already know that B, is countable. Then it follows directly from
(b) that B, , , is also countable.

This then proves that X has a countable topology. |

23.3. Theorem (Rado). Every Riemann surface X has a countable topology.

ProoF. Suppose U is a coordinate neighborhood on X. Choose two disjoint
compact disks K,, K; = U and set Y := X\(K, u K,). Since the boundary
0Y = 0K, u 0K satisfies the regularity condition of Theorem (22.18), there
is a continuous function u: ¥ - R, which is harmonic on Y, and which
satisfies the boundary conditions

u|0Ko=0 andu|dK, =1.

Hence w:=d'u is a non-trivial holomorphic 1-form on Y. Let f be any
holomorphic primitive for p* on the universal covering p: Y — Y. Since f'is
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not constant, the mapping f: ¥ - C satisfies the assumptions of Lemma
(23.2). Thus Y has a countable topology. By Lemma (23.1) Y then has a
countable topology. Since X = Y U U, the topology on X is also countable.

O

In the proof of Runge’s Approximation Theorem we will need to have
special exhaustions. These are constructed using a certain hull operator
which we now define.

23.4. Definition. Suppose X is a Riemann surface. For any subset Y = X let
#(Y) denote the union of Y with all the relatively compact connected com-
ponents of X\Y. An open subset Y < X is called Runge if Y = 4(Y), ie, if
none of the connected components of X\Y is compact. The following
properties can be checked quite easily:

(i) #(4(Y)) = #(Y) forevery Y c X.

(i) Y; = = 4(Y;) < 4(Ys).

Remark. If we want to indicate the dependence on X, we will write £(Y)
instead of 4(Y). Consider the following example. Let
Yi={zeC:1< |z|] <2}
Then Y may be thought of as either a subset of C or of C* and
4(Y)={zeC: |z| <2}
23.5. Theorem. Suppose Y is a subset of a Riemann surface X. Then the
Jfollowing hold:
(i) Y closed = 4(Y) closed
(il) Y compact = 4(Y) compact.

PROOF

(i) Suppose C;,j e J, are the connected components of X\Y. Since X\Y is
open and X is a manifold, all the C; are open. Let J, denote the subset of
those j € J such that C; is compact. Then

X\(Y) =) {C;:je \o}
Clearly this is an open set and thus #(Y) is closed.

(i) We may assume Y # ¥. Let U be a relatively compact open neigh-
borhood of Y and suppose the C; are as above.

Claim (a). Every C; meets U. Otherwise if some C; were contained in
X\U, then

C;< X\U < X\Y.
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Since C; is a connected component of X\Y, this would imply C; = C;. Thus
C; would be both open and closed. But this contradicts the fact that X is
connected.

Claim (b). Only finitely many C; meet dU. This follows from the fact that
dU is compact and is covered by the disjoint, open C;.

The assertion (ii) is now easily proved. Let C;, j € J,, be the relatively
compact connected components of X\Y and suppose C;,, ..., C;, are those

which meet dU. Then by (a) all the others are contained in U. Thus
#Y)cUuCju-uC,

is relatively compact and hence by (i) is in fact compact. |

23.6. Corollary. Suppose X is a non-compact Riemann surface. Then there is a
sequence K;, j € N, of compact subsets of X with the following properties:

(i) K;j=#(K;) for everyj,
(i) K,y = K; for everyj> 1,
(iii) (o K, = X.

PROOF. Since X has a countable topology, there exists a sequence of compact
subsets K @ K} < K, = -+ of X which cover X. We will construct the
sequence K; by induction. Let K := 4(Kj). Now suppose K, ..., K,, with
properties (i) and (ii) have already been constructed. There exists a compact
set M with K, U K,, = M. Set K, , *= #(M). Then the sequence K;,jeN
satisfies (i), (ii) and (iii). O

23.7. Lemma. Suppose K, and K, are compact subsets of a Riemann surface
X with K, = K, and #(K,) = K. Then there exists an open subset Y of X
which is Runge and satisfies K, < Y = K,. Moreover one may choose Y so
that its boundary is regular in the sense of solving the Dirichlet Problem.

Proor. Given x € K, there is a coordinate neighborhood U of x which
does not meet K. In U choose a compact disk D containing x in its interior.
Then finitely many such disks, say Dy, ..., D,, cover dK,. Set

Y=K,\(D, u - u D).

Then Yisopenand K; « Y = K,. Let C}, j € J, be the connected compon-
ents of X\K,. By assumption they are not relatively compact. Every D; is
connected and meets at least one C;. Hence no connected component of
X\Y is relatively compact, i.e,, ¥ = 4(Y). Finally, by Theorem (22.18) all the
boundary points of Y are regular. |

23.8. Theorem. Suppose Y is a Runge open subset of a Riemann surface X.
Then every connected component of Y is also Runge.
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ProoFr

(a) Suppose Y;, i € I, are the connected components of Y. Since Y is open
and X is a manifold, all the Y, are open. Let 4 := X\Y be the complement of
Y. The connected components A;, k € K, of 4 are by assumption closed but
not compact.

(b) We claim that Y; n 4 # (¥ for every i € I. Otherwise ¥, < Y. Since

Yoy Y=2
J¥Fi

it would then follow that Y, = Y;. But this contradicts the connectivity of X.

(c) Next we claim that C n 4 # (¥ for every connected component C of
X\Y;. Otherwise there would be a j # i such that C ~ Y; # . Since C is
closed and Y; is connected, it would then follow that ¥; = C. By (b) this
would imply C n 4 #+ ¢.

(d) Finally suppose C is a connected component of X\Y;. Then C meets
at least one A, by (c) and thus in fact C > 4,. Since A4, is not compact, C is
also not compact. Hence ¥, is Runge. O

23.9. Theorem. Suppose X is a non-compact Riemann surface. Then there
exists a sequence Y, € Y, € Y, € -+ of relatively compact Runge domains with
w Y, = X and so that every Y, has a regular boundary with respect to solving
the Dirichlet Problem.

Proor. The result will follow if we show that for every compact set K = Y
there exists a Runge domain Y € X which has a regular boundary and
contains K.

Given K, we can find a connected compact set K, > K and a compact set
K, with K, = K,. By Lemma (23.7) there is a Runge open set Y, with
K, < Y, « 4(K,) and a regular boundary. Let Y be the connected compon-
ent of Y; which contains K,. By (23.8) Y is also Runge and by the Remark in
(22.14) it has a regular boundary. O

EXERCISES (§23)

23.1. Suppose X is a Riemann surface and X — X is its universal covering. Show that
Deck(X/X) is countable.

23.2. Let Y < C be open and K a compact connected component of C\Y. Let (f,), . .,
be a sequence of polynomials which converges uniformly on every compact
subset of Y. Show that (f,) converges uniformly on K.

233. Suppose Y = C is an open subset such that every holomorphic function
f€ O(Y) can be approximated uniformly on every compact subset of Y by
polynomials. Conclude that Y = 4(Y).
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§24. Weyl’s Lemma

In this section we introduce the notion of distributions. These are gener-
alized functions. In the class of distributions differentiation is possible with-
out any restrictions. Hence it is possible to consider solutions of differential
equations in the sense of distributions. Now Weyl’s Lemma asserts that for
Laplace’s equation Au = 0 both kinds of solutions are the same, ie., every
harmonic distribution is a smooth function in the usual sense which satisfies
Laplace’s equation.

24.1. Suppose X is an open subset of the complex plane. Recall that £(X)
denotes the vector space of all the infinitely differentiable (with respect to the
real coordinates) functions f: X — C. By the support, denoted Supp(f'), of
such a function is meant the closure (in X) of the set {x € X: f(x) # 0}. Set

2(X)={fe &(X): Supp(f) is compact in X}.

Introduce the following notion of convergence in the vector space Z(X). A
sequence (f,), ., of functions in Z(X) converges to a function fe Z(X),
denoted f, > f, if:

(i) There exists a compact subset K = X such that Supp(f) < K and
Supp(f,) = K for every v € N.

(ii) Forevery « = (x;, ®,) € N? the sequence D%, converges uniformly on
K to D*f, where D* denotes the differential operator

a1 +az
. 0

~ e o

Thus convergence in Z(X) is a much stronger condition than either point-
wise or uniform convergence of sequences of functions.

24.2. Definition. Suppose X < C is open. A distribution on X is a continuous
linear mapping

T: 2(X)-C, T

Saying that T is continuous means that if f, 2 f, then T[f,] = T[], where
this latter convergence is that of a sequence of complex numbers. Denote by
2'(X) the vector space of all distributions on X.

24.3. Examples
(a) To every continuous function h € ¢(X) is associated a distribution
T, € 2'(X) as follows. For fe 2(X) let

TIf]= “ h(z)f(z) dx dy, where z = x + iy.
X
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Clearly the map fi— T,[ f] is linear and continuous. If hy, h, € €(X) and
T,[f]= T,,[f] for every f € 2(X), then h; = h,. Hence the (linear) map

$X)>2'(X), h—T,

is injective and one can identify a continuous function on X with its asso-
ciated distribution.
(b) Suppose a € X. For fe 2(X) set

11:=f(a).

This defines a distribution 6, € %'(X) which is called the Dirac delta distribu-
tion at the point a. Unlike Example (a), this distribution cannot be repre-
sented by a function.

24.4. The Differentiation of Distributions. Suppose h € &(X) and f e Z(X).
Then for every o = (a,, ,) € N?

” h(z)D?f (z) dx dy = (— 1)+ =2 ” f(2)D*h(z) dx dy.

This is proved by integrating by parts (¢, + a,) times and noting that since f
has compact support, all the integrals over the boundary are zero.
Hence, using the notation of Example (24.3.a),

Toul f]1= (1) T[D¥], where |a| =a;, + a,.
This motivates the following definition. For T € 2'(X) set
(D7) f1:=(—1)*T[D*¥] for every fe 2(X).

Since f, e f implies D°f, e D°f, the map D°T:%(X) — C is continuous, i.e.,
DT € 9'(X). This points out that for differentiable functions the derivative
in the usual sense and in the sense of distributions is the same.

24.5. Lemma. Suppose given an open subset X — C, a compact subset K — X
and an open interval I = R. Suppose g: X x I — C is an infinitely (real) differ-
entiable function with Supp(g) = K x I and T is a distribution on X. Then the
function t— T[g(z, t)] is infinitely differentiable on I and satisfies

2 tlote. 01 - 7. 26| ¢)

The subscript z indicates that T operates on g(z, t) as a function of z while
t is thought of as a parameter. Thus one may interchange the operation of
applying a distribution to a function depending on a parameter and differen-
tiation with respect to that parameter.
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Proor. It suffices to prove (*), since repeated application of this result will
show the infinite differentiability with respect to t. Since T is linear,

4 Tlate, 0] = lim | (Tlg(z, ¢ + 1)) = To(z. 1))
L g(z, t + h) —gl(z, 1)
=ym h '

For fixed t € I and sufficiently small h € R* let

fe) = (gles £+ ) — g(e. 1)
Then f, € 2(X) and

as h— 0.

Hence, because T is continuous,

lim T[f;] = Tz[ag(z’ 2 } O

h—0 ot

The next Lemma asserts that the operation of applying a distribution to a
function depending on a parameter may be interchanged with integration
with respect to that parameter.

24.6. Lemma. Suppose X, Y are open subsets of C and K = X, L < Y are

compact subsets. Further suppose g: X x Y — C is an infinitely (real) differen-
tiable function with Supp(g) = K x L. Then for any distribution T on X

TZJ'J"g(z,c)dédnJ ffT[g Olde dn,  {=¢+in

Proor. It follows from (24.5) that T,[g(z, {)] is infinitely differentiable with
respect to { = ¢ + in. Thus the integral on the right hand side is well-defined.
Suppose R c C is a rectangle with sides parallel to the axes which contains
L. Then the function g(z, {) extends as zero to K x R. For every integer
n > 0 partition R into n? subrectangles R, , v = 1,..., n?, by subdividing the
sides into n equal parts. Choose a point {,,, in each R,,,. Let F be the area of
R. Then the Riemann sums

F 22
==

2 9(z L)
v=1
g(z, ¢) dé dn. Since Supp(G,) = K for

n

n
converge as n — oo to the integral {f,
each n,

,,9_“ {)dédn asn— cc.
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Thus from the continuity of T it follows that

24.7. The Smoothing of Functions. Choose a function p € %(C) with the
following properties:

(i) Supp(p) = {zeC: |z| < 1}.
(ii) p Is invariant under rotations, i.e., p(z) = p(|z|) for every z € C.
(iii) ff¢ p(x + iy) dx dy = 1.

For e >0 and z e C set

pe(z) =

)

H Pe(x + iy) dx dy = 1.
C

Tl =

Then Supp(p,) = {z e C: |z| < ¢} and

Denote by D(z, ¢) the open disk with center z and radius ¢ and by D(z, &) its
closure.
If U < C is an open set, then

U®:={ze U: D(z, ¢) = U}

is also open.
Given a continuous function f: U —C, define a new function
sm, 2 U® - C by

(sm. )@)=[ oz = Of Q) de dn. (=& +in.
U

Clearly sm, fe &£(U"), since one can differentiate under the integral. The
function sm, f'is called a smoothing of f.

Remark. Naturally the definition depends on the choice of the function p.

24.8. Lemma. Suppose U c C is open, fe &(U) and ¢ > 0.
(a) For every a e N?
De(sm, £) = sm,(D).
(b) If z € U® and f is harmonic on D(z, ¢), then
(sm, f)z) =1(2).
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PrOOF
(a) For z € U" translation of the integration variable gives

(sm, 1)) =[] PO (= + ) d dn.

If<e

Thus

D(sm, £)=) = [[ PO (= + C) dé dn

[l <e

= [[ pulz = ODF ) d& dn = sm (D )(c).

U

(b) If f is harmonic on D(z, ¢), then for every r € [0, ¢[ it satisfies the
Mean Value Principle (22.4)

1 W2n

flz) == ‘ f(z + re') do.

2n /)y

Thus

(sm, /)2) = [[ plO)f (= +C) d& dn

[ <e

. po(F)f(z + re®)r dr dO

OS‘T.SE
0<o<2n

= | pulr)rdr-22f(2) =1 (2).
0
since
1= ' ‘ (& +in) dé dn=2n ' o (r)r dr. |
" e
24.9. Theorem (Weyl's Lemma). Suppose U is an open set in C and T is a

distribution on U with AT = 0. Then T is a smooth function.

In other words, if T: Z(U) - C is a linear functional such that T[A@] = 0
for every @ € 2(U), then there exists a function h € §(U) with Ah = 0 and

T f]= ” h(z)f(z) dx dy for every fe Z(U).
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PROOF. Suppose ¢ > 0 is arbitrary. For z € U the function {— p,({ — z) has
compact support in U. Hence

h(z):=T[p.(C - 2)]

is defined. By (24.5) the function z— h(z) belongs to &(U"). Obviously it is
enough to prove that for every function e 2(C) with Supp(f) < U* one
has

T[/]= |

U@

h(z)f(z) dx dy. (1)

The function sm, f has compact support in U and by (24.6) one has

rlsm, 11~ T[] 06 = /(0 dx dy

N (2)
= H h(z)f(z) dx dy.

Ut

By (13.3) there exists a function y € £(C) with Ay = f. The function  is
harmonic on V:=C\Supp(f). Thus by (24.8.b)

Y =smgy on V¢,
Hence ¢ = — sm_y has compact support in U and by (24.8.a) satisfies
Ap = AW — smp) = Ay — sm, AY = f— sm, .
Since AT =0, one has T[Ap] = 0. Thus
TLf]=Tlsm, f+ Ap] = T[sm, ]
Combining this with (2) then yields (1). O

24.10. Corollary. Suppose T is a distribution on the open set U = C with
(6T/0z) = 0. Then T is a holomorphic function on U.

PROOE. Since (6T/0z) = 0,

oo

Thus T e &(U) by (24.9). Because (67/0z) =0, T is holomorphic. O

Remark. The proof given here for Weyl’s Lemma in the plane carries over
almost word for word for harmonic functions on R". But Weyl’s Lemma is
only a special case of a general regularity theorem for elliptic differential
operators on differentiable manifolds, cf. [35], [43].
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EXERCISES (§24)

24.1. Let X be an opensubset of C and T, € &'(X), v € N, a sequence of distributions
in X. A sequence (T,),. -, is said to converge to a distribution T € 2'(X) if

T.[o] = Tp] for every ¢ € Z(X).
Denote this by T, r T. Show that if T, > T, then
DT, > DT,

for every differential operator

a\*{é\»
p= (2 (7 .
ox) \éy

242. Let Y = C be open. A sequence of continuous functions f,: ¥ — C is said to
converge weakly to a continuous function f: Y — C if

H fop dx dy— H fo dx dy for every ¢ € Z(X).
v ¥

Show that if all the f, are harmonic {resp. holomorphic) and converge weakly to
£, then f'is also harmonic (resp. holomorphic).

§25. The Runge Approximation Theorem

The classical Runge Approximation Theorem asserts that on a simply con-
nected domain Y = C every holomorphic function can be approximated,
uniformly on compact sets, by functions which are holomorphic on all of C
(and thus by polynomials). This theorem was generalized by Behnke-Stein
[51] to arbitrary non-compact Riemann surfaces X. In order to approximate
all holomorphic functions on an open subset Y = X by functions holomor-
phic on X, one has to replace the assumption that Y is simply connected by
the assumption that no connected component of X\Y is compact. The proof
we present is based on a functional analytic proof using Weyl’s Lemma which
was first given by Malgrange [55].

25.1. Suppose X is a Riemann surface and ¥ < X is an open subset. We
would like to introduce the structure of a Fréchet space on the vector space
&(Y) of differentiable functions on Y. To do this, choose a countable family
of compact sets K; = Y, j e J, with { ] K; =Y and such that each K is
contained in some coordinate neighborhood (U;, z;). For jeJ and
v = (vy, v;) € N? define a semi-norm pj,: £(Y) —» R, by

pi(f) = sup |Dj f(a)|.

acK;

0\ 0\
D‘: = | — P —
! (5)‘1') (0)’,')

where
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is the appropriate differential operator relative to the coordinates
z;= x; + iy;. These countably many semi-norms p;, define a topology on
£(Y). A neighborhood basis of zero is given by finite intersections of sets of

the form

Upj,. e)={fe (V) pp(f) <& &>0.

Then convergence f, — f with respect to this topology means uniform con-
vergence of the functions and all of their derivatives on every K;. With this
topology &(Y) is a Fréchet space. One can easily check that this topology is
independent of the choice of K; and (U;, z;). On the vector subspace
O(Y) = &(Y) the induced topology coincides with the topology of uniform
convergence on compact subsets. For, in the case of holomorphic functions
uniform convergence on compact subsets implies the uniform convergence
on compact subsets of all the derivatives. Analogously one can introduce the
structure of a Fréchet space on the vector space % *(Y) of (0, 1)-formson ¥
with differentiable coefficients. An element w € &% '(Y) may be written
w =f;dz; on U;, where f; € £(U; n Y). Set

pi(w):= sup |Dj fi{a)|.

ackK;

Then the Fréchet structure is obtained as above from the semi-norms p;, .

25.2. Lemma. Suppose Y is an open subset of a Riemann surface X. Then
every continuous linear map T: &(Y)— C has compact support, i.e., there
exists a compact subset K = Y such that

T[f1=0 for everyfe &(Y) with Supp(f) <= Y\K.
An analogous result is also true for &% ().

ProoF. Since T is continuous, there exists a neighborhood % of zero in £(Y)
such that | T[f]| < 1 for every f e %. By the definition of the topology on
&(Y) there exist elements j,, ..., j, € J, Vi, ..., v,, € N? and ¢ > 0, where the
notation is the same as in (25.1), such that

UPjyp €) O O UPD.,, E) = U.

Let K=K, v -+ U K; . We now show that if fe &(Y) with Supp(f) =
Y\K, then T[f]= 0. Namely for arbitrary 1 > 0,

pj]vl(if) == pjmvm(j'f) = 0
Thus Af € % and | T[Af]| < 1. But thisimplies | T[f]| < 1/Aforevery 4 >0
and this is possible only if T[f]=0. O

25.3. Lemma. Suppose Z is an open subset of a Riemann surface X and
S: &% YX)—> C is a continuous linear mapping with S[d"g] =0 for every
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g € &(X) with Supp(g) € Z. Then there exists a holomorphic 1-form o € Q(X)
such that

S[w] = H CA®

for every w &€ &% '(X) with Supp(w) € Z.

ProOOF. Suppose z: U —> V < C is a chart on X which lies in Z. Identify U
with V. For ¢ € 2(U) denote by ¢ any 1-form in £° *(X) which equals ¢ dz
on U and zero on X\U. Then the mapping

Su: 2(U)—~C, ¢~ S[¢]

is a distribution on U which vanishes on all functions of the form
@ = 0g/dz,g € 2(U),ie., dSy/0z = 0. Hence by Corollary (24.10) there exists
a unique holomorphic function h e ¢(U) with

S[a] = JJ h(z)p(z) dz ~ndz  for every @ € 2(U).

U

Setting o, = h dz, we get

= Hol,/\a)
n

for every w € &% 1(U) with Supp(w) € U

Now if we carry out the same construction with respect to another chart
Z': U - V', then we get a 1-form o, € Q(U’) with the corresponding proper-
ties. Hence

H Gyn@ = H Oy AW
g i

for every w € &% *(X) with Supp(w) € U n U". This implies ¢, = o, on
U n U’. Thus the g, piece together to give a 1-form o € (Z) such that

S[w] = J’ A (*)

z

for every w € &% '(X) whose support is compact and lies in a chart inside Z.
If o € £% '(X) is an arbitrary 1-form with Supp(w) € Z, then using a parti-
tion of unity one can write w = w; + -+ + w,, where each w; satisfies (*).
Thus

oA W. O

sfo)= 3 slo) = 3, [Jono,= |

—

<.
I
—
N
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254. Theorem. Suppose Y is a relatively compact open Runge subset of a
non-compact Riemann surface X. Then for every open subset Y with
Y < Y' € X the image of the restriction map O(Y') — O(Y) is dense, where the
topology is uniform convergence on compact subsets.

ProoF. Denote by f: £(Y') — &(Y) the restriction map. In order to prove
that B(¢(Y")) is dense in ¢(Y) we can use the Hahn-Banach Theorem (c.f.
Appendix B.9). It suffices to show the following. If T: &(Y) — C is a contin-
uous linear functional with T|B(O(Y')) = 0, then T|¢(Y) = 0.

To prove this, define a linear mapping

S: 6% 1(X)>C
in the following way. By (14.16) given w e £° '(X) there exists a function
fe &(Y') with d'f = w|Y". Then set

Sl]=T1/| Y]
This definition is independent of the choice of the function f. For, if
d'g =ow|Y', then f— g € O(Y’) and thus by assumption T[(f — g)|Y] = 0.
We will now show that S is also continuous. Consider the vector space

Vi={{w, f)e &* (X)) x £(Y): d'f=w]| Y}

Since d”: £(Y’) —» &° '(Y') is continuous, V is a closed vector subspace of
&% 1(X) x &(Y’) and thus is a Fréchet space. Now the projection pr,: V —
&% 1(X) is surjective and thus by the Theorem of Banach is open. Also the
mapping # o pr,: V' — &(Y) is continuous. Since the diagram

v L2, g(y)

&% X)) ———C

is commutative by definition, S is continuous because T is.
By Lemma (25.2) there exists a compact subset K — Y with
(1) T[f]=0 for every f'e &(Y) with Supp(f) = Y\K

and a compact subset L < X with
(2) S[w] = 0 for every w € £ *(X) with Supp(w) = X\L.

If g e £(X) is a function with Supp(g) € X\K, then S[d"g] = T[g|Y]=0.
Thus by Lemma (25.3) there exists a holomorphic 1-form ¢ € Q(X\K) such
that

Slw] = H oCAW
X\k
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for every w € &% '(X) with Supp(w) € X\K. Because of (2) it must be the
case that ¢| X\(K u L) = 0. Every connected component of X\4(K) is not
relatively compact and hence meets X\(K u L). Thus by the Identity
Theorem ¢ | X\4(K) =0, ie.

(3) S[w] =0 for every w € &% *(X) with Supp(w) € X\4(K).

Now suppose fe ¢(Y). We have to show T[f]=0. Since Y is Runge,
#(K) = Y. Hence there is a function g € (X)) with f = g in a neighborhood
of #(K) and Supp(g) € Y. Then T[f]= T[g| Y] by (1) and T[g| Y] = S[d"g]
by the definition of S. Since g is holomorphic on a neighborhood of 4(K),
one has Supp(d”g) € X\4(K) and thus S[d"g] =0 by (3). Collecting these
statements together we have T[f] = 0 for every f'e O(Y). O

25.5. The Runge Approximation Theorem. Suppose X is a non-compact
Riemann surface and Y is an open subset whose complement contains no com-
pact connected component. Then every holomorphic function on Y can be
approximated uniformly on every compact subset of Y by holomorphic func-
tions on X.

Proor. It suffices to consider the case when Y is relatively compact in X.
Suppose fe ¢(Y), a compact subset K = Y and ¢ > 0 are given. By (23.9)
there exists an exhaustion Y, € Y, € --- of X by Runge domains with
Y, =Y € Y,. By Theorem (25.4) there is a holomorphic function f; € (O(Y;)
with

”fl _fHK <27,

where | | denotes the supremum norm on K.
Now using Theorem (25.4) and induction one gets a sequence of functions
Jn € O(Y,) with

[

For every n e N the sequence (f,),., converges uniformly on Y,. Hence
there exists a function F € ()(X), holomorphic on all of X, which on each ¥,
is the limit of the sequence (f,),~,. Thus, by construction, |[F — [/ <e.

¥,., <2 "¢ foreveryn=>2.

25.6. Theorem. Suppose X is a non-compact Riemann surface. Then given a
1-form @ € &% *(X) there exists a function [ € §(X) with d"f = w.

Proor. For every relatively compact open subset Y € X there exists by
(14.16) a function g € &(Y) with d"g = w | Y. Now the proof is similar to the
proof of Theorem (13.2), namely one uses an exhaustion process.
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Suppose Y, € Y; € Y, € --- is an exhaustion of X by Runge domains
(23.9). By induction on n we will construct functions f,e &(Y,) such that

(i) d’f, = | X,
(i) | fors =Sollyao, <27

To begin choose any function f; € &(Y,) which is a solution of the differen-
tial equation d"f, = w|Y,. Now suppose f;, ..., f, have been constructed.
There exists g,., € &(Y,.,) with d'g,,; =w|Y,,;. On Y, one has
dg,. =d"f, and thus g,,, — f, is holomorphic on Y,. By the Runge
Approximation Theorem there exists h € (Y, ;) such that

1Gns1 —Sa) = Blly,., <277
Set fui1=gns1 — h- Then d’f, , =d"g,, = 60| Y.+, and
[ fary = fallya <270
As in the proof of (13.2) it now follows that the functions f, converge to a
solution f e &(X) of the differential equation d"f = w. O

EXERCISES (§25)

25.1. Let X be a Riemann surface and S: £'¥(X) — C a continuous linear functional
such that S[d'd"g] =0 for every g € §(X). Prove that there is a harmonic
function h € £(X) such that

Slw] = ” hw for every w € £2(X) with compact support.
)

25.2. Let Y = C be open. Given any g € £(Y) show that there exists an f € £(Y) such
that

Af=g.

§26. The Theorems of Mittag-Leffler and
Weierstrass

We now consider the problem of constructing meromorphic functions on
non-compact Riemann surfaces having prescribed principal parts, resp.
having zeros and poles of given orders. These are analogues of the Theorems
of Mittag-Leffler and Weierstrass in the complex plane. For compact
Riemann surfaces the comparable problems were looked at in sections 18
and 20. While in the compact case there are particular conditions which are
necessary in order for a solution to exist (Theorems 18.2 and 20.7), it turns
out that in the non-compact case the analogues of the Theorems of Mittag—
Leffler and Weierstrass hold without any restriction.
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26.1. Theorem. Suppose X is a non-compact Riemann surface. Then

H'(X, 0) =0.

ProOF. By the Dolbeault Theorem (15.14) one has HY(X, 0)x
&% Y(X)/d"€(X). But by Theorem (25.6) &% '(X)=d"6(X) and thus
H(X, ©) =0, 0

Remark. Theorem (26.1) is a special case of Theorem B of Cartan-Serre
which is valid on arbitrary n-dimensional Stein manifolds, c.f. [32], [34].

26.2. We now recall the notion of a Mittag-Leffler distribution, c.f. (18.1).
Suppose U = (U,); ., is an open covering of a Riemann surface X. A family
¢ = (fi)i o, of meromorphic functions f; € .#(U,) is called a Mittag-Leffler
distribution if the differences f; — f; are holomorphic on U; n Uj, i€, the
functions have the same principal parts. By a solution of y one means a
global meromorphic function f e .#(X) such that for each i € I the differ-
ence f— f; is holomorphic on U;. The family of differences f;;:=f; —
f;€O(U;n U;) defines a cocycle (fi;)e Z'(U, ¢). We proved in (18.1) that
u has a solution precisely if this cocycle is a coboundary, ie.,
(fij) e B'(Y, ©). Thus by Theorem (26.1) we have the following.

26.3. Theorem. On a non-compact Riemann surface every Mittag-Leffler dis-
tribution has a solution.

We now turn to the analogue of the Weierstrass Product Theorem. Given
a divisor D: X — Z on a Riemann surface X one would like to find a mero-
morphic function f € .#*(X) which has the same zeros and poles, counting
multiplicities, as D, ie., (f) = D, c.f. definitions (16.1) and (16.2). Recall that
the notion of a weak solution was defined in (20.1).

26.4. Lemma. Every divisor D on a non-compact Riemann surface X has a
weak solution.

Proor
(a) Choose a sequence K, K, ... of compact subsets of X with the

following properties:
(i) K;=#4(K;) foreveryj=>1,

(i) K;= K, foreveryj=>1,

(iii) szl K, =X.
This is possible by (23.6).

(b) We claim that given a, € X \K; and a divisor 4, with Ay(ae) = 1 and
Ao(x) = 0 for x # ay, then there exists a weak solution ¢ of 4, with
p|K;=1.
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In order to prove the claim, note that since K; = 4(K ), the point a, lies in
a connected component U of X\K; which is not relatively compact. Hence
there exists a pointa; € U\K;,, and a curve ¢, in U with initial point a; and
end point a,. By Lemma (20.5) there is a weak solution ¢, of the divisor dc,
with ¢, |K; = 1. Repeating the construction gives a sequence of points
a,e X\K;,,,veN,curves ¢, in X\K;, , froma,,, toa, and weak solutions
o, of the divisors dc, with ¢, | K, , = 1. Then dc, = A, — A4, ,, where A4, is
the divisor which takes the value 1 at a, and is zero otherwise. Thus the
product @q¢, - - - ¢, is a weak solution of the divisor A, — A,,,. The
infinite product

=11 o
v=0

converges, since on any compact subset of X there are only finitely many
factors which are not identically 1. Now ¢ is the desired weak solution of the
divisor 4.

(c) Now suppose D is an arbitrary divisor on X. For v e N set

|D(x), ifxeK,.1\K,,

D=0 itx gk, K.,
where K, = (. Then
D=3%D,.
v=0

Since D, is non-zero only at a finite number of points, by (b) there is a weak
solution ¥, of the divisor D, with y | K, = 1. The product

=11,
v=0
is thus a weak solution of D. O

26.5. Theorem. On a non-compact Riemann surface X every divisor
D € Div(X) is the divisor of a meromorphic function f € M*(X).

Proor. Since the problem has a solution locally, there exists an open cover-
ing U = (U;); ., of X and meromorphic functions f; e .#*(U;) such that the
divisor of f; coincides with D on U;. We may assume that all the U, are
simply connected. On the intersection U; n U; the functions f; and f; have
the same zeros and poles, ie.,

% e OXU; n U;) foreveryi jel

v

Now suppose ¥ is a weak solution of D. This exists by (26.4). Then y =y, f;
on U;, where the function ; € £(U;) has no zeros. Since U; is simply
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connected, there exists a function ¢; € §(U;) with y; = e¥, ie., Y = e®f; on
U;. Then on U; n U; one has
@i~ Qi f' (U U *
€ —76 U n Uy) *)

JI

and thus ¢;;==¢; — @; € O(U;, n U,). Since ¢;; + ¢; = @y on any triple
intersection, the family ¢;; is a cocycle (¢;;)eZ'(4, ©). Because
H'(X, 0) =0, this cocycle splits. Thus there exist holomorphic functions
g; € O(U;) with

Q=@ —@;=¢;—¢g; onU;,n U;
for every i, j € I. From (*) one gets e% ™% = f, /f;, ie.,
ef; = e%; on U, n Uj.
Hence there exists a global meromorphic function f e .#*(X) with [ = €%,

on U, for every iel. Since f and f; define the same divisor on U;, one has

(f)=D. 0

26.6. Corollary. On every non-compact Riemann surface X there is a holomor-
phic 1-form w € Q(X) which never vanishes.

PROOF. Suppose g is a non-constant meromorphic function on X and
fe #*(X)is a function with divisor — (dg). Then w :=f dg is a holomorphic
1-form on X which has no zeros. O

26.7. Theorem. Suppose X is a non-compact Riemann surface and (a,), . , is a
sequence of distinct points on X which has no point of accumulation. Then
given arbitrary complex numbers c,€C there exists a holomorphic function
feO(X) with f(a,) = c, for every veN.

Proor. By Theorem (26.5) there is a function he (¢O(X) which has a zero of
order 1 at each a, and is otherwise non-zero. For ie N let

U, := X\U{a,}.
Then U == (U,),.  is an open covering of X. Define g;e .#(U;) by g; = ¢;/h.
Fori#j
UinU; = X\{a,: veN}.

Thus 1/h is holomorphic on U; U;. Hence (g;)e C°(U, .#) is a Mittag-
Leffler distribution on X which by (26.3) has a solution ge .#(X). Let
f =gh. On U; one has

f=gh=gh+(g—g)h=c+(g—g)h
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Since g — g; is holomorphic on U; and h(q;) = 0; it follows that f'e ¢(X) and
fla;)=c; for everyie N. 0

26.8. Corollary. Every non-compact Riemann surface X is Stein, i.e., the fol-
lowing hold:

(i) Given any two points x, y € X, x # y, then there exists a holomorphic

function f e O(X) with f(x) £ 1(y).
(i) Given a sequence (x,), ., in X having no points of accumulation, then
there exists a holomorphic function f € O(X) with im sup,_ ., | f(x,)| = oo.

Remark. The Theorems of Mittag-Leffler and Weierstrass for non-
compact Riemann surfaces were first proved by H. Florack [54] using the
methods developed by Behnke-Stein [51]. The analogues of these problems
in several complex variables (the first and second Cousin problems) played
an important role in the development of the theory of Stein manifolds (c.f.
[53], [59], [61]). Also, the use of cohomology to solve these problems stems
from that theory.

EXERCISES (§26)
26.1. Let X be a non-compact Riemann surface. Prove
H'Y(X, Q)=0.
[Hint: Using Corollary (26.6) show that Q = (]
26.2. Let X be a non-compact Riemann surface.
(a) Given any w € £&@(X) show that there exists /'€ £(X) with
dd'f=w.
(b) Let # be the sheaf of harmonic functions on X. Show that
H'\(X, #) =0.

26.3. Show that on a non-compact Riemann surface every meromorphic function is
the quotient of two holomorphic functions.

26.4. Let X be a non-compact Riemann surface and suppose f, g € ¢(X) are holo-
morphic functions which have no common zero.

(a) Show that the following sequence of sheaves is exact
003502500,

a(¥) = (¥g, —vf)
Blon 02) =01/ + ¢29.
(b) Show that there exist holomorphic functions ®, ¥ € ¢(X) such that
Of + Wg = 1.

where
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26.5. Let X be a non-compact Riemann surface and let

k
U=Y (X)f;, fieO(X).
ji=1

be a finitely generated ideal in ¢(X). Prove that 2l is a principal ideal.
[Hint: Consider the divisor D on X defined by

D(x) = min ord.(f})

and let fe ¢(X) be a holomorphic function with (f)= D. Verify that
A = O(X)f]

26.6. Let X be a non-compact Riemann surface and D a divisor on X. Prove

(a) H'(X, 0p) = 0,
) H'(X, M) = 0.

§27. The Riemann Mapping Theorem

The Riemann Mapping Theorem asserts that any simply connected
Riemann surface, which is not isomorphic either to P! or C, can be mapped
biholomorphically onto the unit disk. This means that the universal cover-
ing of an arbitrary Riemann surface is always isomorphic to one of three
normal forms: the Riemann sphere, the complex plane or the unit disk. The
Riemann Mapping Theorem was presented by Riemann in his dissertation
in 1851, but not in its most general form and not with a completely accept-
able proof. The first complete proofs were given by H. Poincaré and P.
Koebe in the year 1907.

27.1. For a Riemann surface X denote by Rh}(X) := Q(X)/d0(X) the “ holo-
morphic” deRham group, cf. (15.15). If X is simply connected, then every
holomorphic 1-form on X has a primitive (10.7) and thus Rh}(X) = 0. We
will prove the Riemann Mapping Theorem for Riemann surfaces X satisfy-
ing the seemingly more general condition Rh}(X) = 0. However, one con-
sequence of this will be that Rhj(X) = 0 implies X is simply connected.

27.2. Lemma. Suppose X is a Riemann surface with Rh}(X) = 0. Then

(i) For every holomorphic function f: X — C* a logarithm and a square root
of f exist, i.e., there exist functions g, h € O(X) such that ¢® = f and h* = f.

(i) Every harmonic function u: X — R is the real part of a holomorphic
function f: X - C.

PRrOOF
(i) £~ * dfis a holomorphic 1-form on X. Since Rh(X) = 0, there exists a
function g € O(X) with dg = f ! df. By adding a constant to g if necessary,
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we may assume that for some point a € X one has ¢ = f(a). Now
d(fe™®) = (df )™ — fe ™ 1 df = 0
and thus fe™? is constantly equal to 1. Hence ¢ = f.
Taking h:=e%? one has h* = f.
(i) By Theorem (19.4) there is a holomorphic 1-form w € Q(X) with
du = Re(w). Since Q(X) = dO(X), one has du = Re(dyg) for some g € O(X).
Thus u = Re(g) + const. O

27.3. Theorem. Suppose X is a non-compact Riemann surface and Y € X is a
domain with Rh(Y) = 0. Suppose also that the boundary of Y is regular with
respect to solving the Dirichlet problem. Then there exists a biholomorphic
mapping of Y onto the unit disk D.

ProoF. Choose a point a € Y. By Weierstrass’ Theorem (26.5) there exists a
holomorphic function g on X which has a zero of first order at a and does
not vanish on X\a. By Theorem (22.17) there exists a function u: ¥ —» R,
continuous on Y and harmonic on Y, with

u(y) = log|g(y)| for every y e aY. (*)
By Lemma (27.2.ii) u is the real part of a holomorphic function h € ¢(Y). Set

f=e""g e O(Y).

Now we claim that f maps Y biholomorphically onto the unit disk D.
First we will show f(Y) = D. For y € Y\a one has

LFn | = €7 | g(y)| = e8I,

Hence the function | f'| which is defined on Y can be continued to a contin-
uous function ¢: ¥ — R which because of (*) is identically equal to 1 on 8Y.
Then the Maximum Principle implies | f(y)| <1 for every ye ¥, ie,
f(Y)<=D.

Now we will show that the mapping f: Y — D is proper. To do this, it
suffices to show that for every r < 1 the preimage Y, of the disk {z e C:
|z| <r}is compact in Y. But

YL=peY:|f())| <ri={yeT:o) <1

and thus Y, is a closed subset of the compact set Y and so is compact.
Since f: Y — D is proper, each value is attained equally often (Theorem

4.24). But the value zero is taken exactly once. Thus f: Y — D is bijective and

hence biholomorphic. O

27.4. The general Riemann Mapping Theorem can be derived from
Theorem (27.3) by using an exhaustion process. To do this we require a few
additional tools.
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Notation. For r € 10, o] let
D(r)={zeC: |z] <r}
In particular D(1) = D is the unit disk and D(o0) = C is the complex plane.

The following observation is a simple consequence of Cauchy’s Integral
Formula. Suppose f: D(r) = D(r') is a holomorphic mapping. Then

-

O] <

~

27.5. Lemma. Suppose G = C is a domain such that C\G has interior points
and suppose wy € G. Then the set

{fe O(D):f(D)= G and f(0) = w,}

is a compact subset of /(D) with respect to the topology of uniform convergence
on compact subsets.

PrROOF. Suppose a is an interior point of C\G. Then the mapping
z — 1/(z — a) takes the domain G biholomorphically onto a subdomain of
some disk D(r) with r < co. Hence the result follows from Montel’s
Theorem. 0

27.6. Theorem. The set ¥ of all schlicht (= injective) holomorphic functions
f: D — C with f(0) =0 and f'(0) = 1 is compact in (D).

PrOOF

(a) Suppose (f,)..: 1s a sequence of functions in .. It suffices to show
that there is a subsequence which converges to a function fe ..

Denote by r, the maximum radius such that D(r,) = f,(D). Thenr, < 1
since the inverse ¢, of f, maps D(r,) into D and hence 1 = ¢,(0) < 1/r,.
Choose a point a, € dD(r,) with a, ¢ f,(D) and set g, =/, /a,. Then

D cg,(D) and1¢g,(D)

(b) Since g,(D) is homeomorphic to D and thus is simply connected, there
exists a holomorphic function :g,(D)—C* with (0)=i and
¥(z)> = z — 1 for every z € g,(D). Set h,:=y = g,. Thus h} =g, — 1.

We claim that w € h,(D) implies —w ¢ h,(D). For, otherwise we would
have w = h,(z,) and —w = h,(z,) for z,, z, € D. But then w? = (—w)* im-
plies g,(z,) = g.(z;) and since g, is injective, z; = z,. Hence w = —w and
thus w=h,(z)=0. However this implies g,(z,)=1 which is a
contradiction.

(c) Because D < g,(D), one has U:=y(D)< h,(D). Thus (=U)n

h,(D) = &. By Lemma (27.5) the sequence (h,) has a convergent sub-
sequence. Since f, = a,(1 + h?) and |a,| <1 for every n, the sequence (f,)
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also has a convergent subsequence ( f,,) which converges to some function
f: D - C. Clearly, f(0) =0 and f'(0) = 1, so fis not constant.

(d) The remaining point is to show that f'is schlicht. If this were not the
case, then there would exist an a € C such that f — a would have at least two
zeros in D. Then one could find an r < 1 such that f— a has, counting
multiplicities, at least k > 2 zeros in D(r) and does not vanish on éD(r). Then
Lo

f(z)—adz'

lz|=r

Thus every function sufficiently close to f also takes the value a k times,
contradicting the fact that every f,, is schlicht. O

27.7. Lemma. Suppose R € |0, o] and Y is a proper subdomain of D(R) with
0 € Y and Rhg(Y) = 0. Then there exists an r < R and a holomorphic map
S2 Y = D(r) with f(0) = 0 and '(0) = 1.

Proor. First consider the case R < oo. Without loss of generality we may
assume R =1 and thus Y < D. By assumption there is a point a € D\Y.
Define a biholomorphic map ¢: D — D by

z—a

?l2)=1 —az’

Then 0¢ ¢(Y) and thus by Lemma (27.2) there exists g € ¢(Y) with
g* = ¢|Y. Clearly g(Y) = D. Set

¥(z) ==Z;é, where b :=g(0).
1— bz
The mapping h:=y - g: Y — D satisfies #(0) = 0 and
¢O _ 1 1-|a

7 =H(0) =y’ (b)g’'(0) = y'(b)

_L1+ b
2
since b*> = —a. Thus |y| > 1. Now letting r == 1/|y| and f=h/y, the map
f: Y - D(r) has the desired properties.
The case R = oo is handled similarly. |

29(0) 1—[p]* 2b

27.8. Lemma. Suppose X is a non-compact Riemann surface with Rhj(X) =0
and Y = X is a Runge domain. Then Rhy(Y) = 0 as well.

PROOF. Suppose w € Q(Y) is an arbitrary holomorphic 1-form on Y. We
have to show that w has a primitive. By Corollary (26.6) choose a holomor-
phic 1-form wg on X which has no zeros. Then @ = fw, for some f e €(Y).
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By the Runge Approximation Theorem there exists a sequence f, € ¢(X),
n e N, which converges uniformly on compact subsets in Y to f. Hence for
every closed curve « in Y the integrals L fuwo converge to |, . Since every
1-form f, w, has a primitive on X, |, f,wo, = 0. Thus |, @ = 0. Since all the
periods of w vanish, by Theorem (10.15) w has a primitive. O

27.9. The Riemann Mapping Theorem. Suppose X is a Riemann surface with
Rh}(X)=0. Then X can be mapped biholomorphically onto either the
Riemann sphere P!, the complex plane C or else the unit disk D.

Remark. As was pointed out in (27.1), the assumption Rhg(X ) = 0 holds
whenever X is simply connected. Since P?, C and D are simply connected,
the Riemann Mapping Theorem shows that the converse also holds.

ProOF

(a) If X is compact, then every holomorphic function on X is constant
and so d@(X) = 0. Hence Rhg(X) = 0 implies Q(X) = 0, i.e., X has genus 0.
By Corollary (16.13) X is biholomorphic to P!.

(b) Now assume X is non-compact. By Theorem (23.9) there exists an
exhaustion Y, € Y; € Y, € -*- of X by Runge domains Y, whose boundaries
are regular with respect to solving the Dirichlet problem. By Lemma (27.8)
Rh;(Y,) = 0 for every n. Thus by Theorem (27.3) every Y, is biholomorphic
to the unit disk. Choose a point a € Y, and a coordinate neighborhood
(U, z) of a. Then there exists a real number r, > 0 and a biholomorphic
mapping

Ju: ¥, D(r,)
with

fla)=0 and % (a) =L

(c) Now r, <r,,, for every n. To see this note that the mapping

hi=f, .1 ofat:D(r,) > D(rys 1)

satisfies #(0) =0 and h'(0) = | and thus by the Remark in (27.4) one has
1=H(0)<r,, /r,. Let

R:=lim r, € ]0, oo].
We will now show that X is mapped biholomorphically onto D(R).

(d) We claim that there exists a subsequence (f,, )k of the sequence
(f.)n< », such that for every m the sequence (f,,| ¥,)i> . converges uniformly
on compact subsets of Y,,. The mapping z—f§ '(roz) maps D biholo-
morphically onto Y,. Set

gn(2) ==r—10 Sulfot(rez)), n=0.
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Then g,: D—C is a schlicht holomorphic function with g,0)=0 and
g,(0) = 1. Hence by Theorem (27.6) there is a subsequence (£, )i - of the
sequence (f,), which converges uniformly on compact subsets of Y, . By the
same reasoning there is a subsequence (f,,,) of this sequence which con-
verges uniformly on compact subsets of Y;. Repeating this process we get for
each m a subsequence (f, ) of the previous subsequence which converges
uniformly on compact subsets of Y,,. Set f, :=f, . Then the sequence
(fuk < -, has the desired property.

Suppose f € ((X) is the limit of the sequence (f,,), i.e. fis that holomor-
phic function on X which coincides on every Y, with the limit of the se-
quence (f,, | Y, )i=m- The mapping f: X — C is injective and satisfies

df
f(@)=0 and & (@) = 1.

(¢) Finally we claim f maps X biholomorphically onto D(R). Since it is
obvious that f(X) < D(R), it suffices to show f: X — D(R) is surjective. Sup-
pose the contrary. Then by Lemma (27.7) there exists an r < R and a holo-
morphic mapping g: f(X)— D(r) with g(0) = 0 and g'(0) = 1. Choose n so
large that r, > r. Then the mapping

h=g-f-f;" D(r,) = D(r)

satisfies #(0) = 0 and #'(0) = 1. Since r < r,, this is not possible. This contra-
diction shows that f: X - D(R) is surjective and thus the proof of the
Riemann Mapping Theorem is complete. |

Mk *

27.10. Suppose X is a Riemann surface and X is its universal covering. Since
X is simply connected, we may apply the Riemann Mapping Theorem to it.
It is standard to call X elliptic, parabolic or hyperbolic depending on whether
its universal covering is isomorphic to P!, C or D.

Suppose G = Deck(X/X) is the group of covering transformations of the
universal covering. Every ¢ € G is an automorphism of X, i.e., a biholomor-
phic mapping of X onto itself. Also the group G acts without fixed points
and discretely on X, ie.,

(i) If o € G\{id}, then ox # x for every x € X.
(ii) For every x € X the orbit

Gx:={ox:0 € G}
is a discrete subset of X,

Property (i) follows since each covering transformation is uniquely
determined once one knows the image of any point. Property (ii) holds since
the covering p: X — X is Galois and thus Gx = p~ }(p(x)).

The Riemann surface X may be thought of as the quotient of X modulo
G, i.e., two points of X arc identified if one can be transformed into the other
by some element of G. Thus every hyperbolic Riemann surface is a quotient
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of the unit disk D modulo a group of automorphisms of D acting without
fixed points and discretely.

27.11. Lemma
(a) Every automorphism of P' has a fixed point.
(b) Suppose G is a group of automorphisms of C which acts discretely and
without fixed points. Then G is one of the following:
(i) G = {id}.

(i) G consists of all translations of the form
Iz 4 ny, nelrz,

where y is a fixed non-zero complex number.
(i11) G consists of all translations of the form

Zbz + ny, + my,, nmelZ

where v, and y, are two fixed complex numbers linearly independent over R.

PrOOF
(a) As is well known, the automorphisms of P! are linear fractional
transformations of the form

az+b
ZH> N
cz+d

ad — be # 0.

Every such transformation has at least one fixed point.
(b) The automorphisms of C are affine linear mappings of the form

z>az + b, acC* beC.

If a # 1, then this transformation has a fixed point. Thus the group G con-
sists only of translations z+— z + b. Let I be the orbit of zero under G. Then
I' is a discrete additive subgroup of C and G consists of all translations
z—>z + b, where beI. Let V= C be the smallest real vector subspace
containing I'. Depending on whether dimg V' is 0, 1 or 2 one has case (i), (ii)
or (iii). This follows from Theorem (21.1). O

27.12. Theorem

(a) The Riemann sphere P! is elliptic.

(b) The complex plane C, the punctured plane C* and all tori C/T" are
parabolic.

(c) Every other Riemann surface is hyperbolic.

Thus, in particular, a compact Riemann surface is elliptic, parabolic or
hyperbolic depending on whether its genus is zero, one or greater than one.
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Remark. Compact Riemann surfaces of genus one are also called elliptic
curves. As this is easily confused with the above terminology, P! is seldom
called an elliptic Riemann surface.

PRrROOF. The assertions (a) and (b) are clear. One only has to show that if X is
not hyperbolic, then it is isomorphic to one of the surfaces listed in (a) or (b).

Case 1. The universal covering of X is isomorphic to P!. Then Lemma
(27.11.a) implies X itself is isomorphic to P'.

Case 2. The universal covering of X is isomorphic to C. Then the group
G of covering transformations is, by (27.11.b), either (i), (ii) or (iii). In case (i)
X is isomorphic to C and in case (ii) to C*, for then the covering is isomor-
phic to

i
C - C*, ZHexp(TT)nz).
Finally in case (iii) X is a torus. O

A simple consequence is the so-called Little Theorem of Picard.

27.13. Theorem. Suppose f: C — C is a non-constant holomorphic function.
Then f takes every value ¢ € C with at most one exception.

PRrOOF. Suppose f did not take two distinct values a, b € C. By Theorem
(27.12) the Riemann surface X :=C\{qa, b} is hyperbolic. Hence the mapping
f:C > X can be lifted to a mapping - C — X, where X is the universal
covering of X. Since X is isomorphic to the unit disk, it follows from Liou-
ville’s Theorem thatfand thus also f are constant. Contradiction! O

EXERCISEs (§27)

27.1. Let X be a Riemann surface and
L X > C\{0, 1}, veN,

be a sequence of holomorphic functions which do not take the values 0 and 1.
Suppose there exists a point x, € X such that (f,(x,)), . , converges to a point
¢ € C\{0, 1}. Prove that there exists a subsequence (f, )i, Which converges
uniformly on every compact subset of X to a holomorphic function

f: X —»C\{O, 1}.

[Hint: Let X — X and D — C\{0, 1} be the universal coverings (D is isomorphic
to the unit disk). Consider suitable liftings ,: X — D of the f, and use the
classical theorem of Montel.]
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27.2. Prove the “Big Theorem of Picard:” Let
U={zeC:0< |z| <r}, wherer>0,
and
ffU-C

a holomorphic function having an essential singularity at the origin. Then
attains every value ¢ € C with at most one exception.
[Hint: Consider the sequence of functions

LU= f()=22)
and use Ex. 27.1.]

§28. Functions with Prescribed Summands of
Automorphy

In §10 we saw that the integration of differential forms on a Riemann surface
X gives rise to additively automorphic functions whose summands of auto-
morphy determine a “period homomorphism” 7,(X)— C. Behnke-Stein
[51] proved that conversely given any homomorphism 7,(X) = C on a non-
compact Riemann surface X there always exists a holomorphic 1-form
having these periods. In this section we prove the Theorem of Behnke-Stein.
At the same time we investigate arbitrary functions having non-constant
summands of automorphy.

28.1. Cohomology of Groups. Suppose G is a group whose operation is
written multiplicatively and A is a G-module, i.e., an additive abelian group
together with a mapping

GxA—A, (o, a)—aa
satisfying the following:
(i) o(a + b)=ga + ab,

(ii) o(ta) = (o7)a,
(ili) ea = a,
for every o, T € G and a, b € A. The identity of G is denoted by &. A mapping
G- A, or—a,
is called a crossed homomorphism if
a,,=a,+oa, foreveryo,teG.

If G operates trivially on 4, ie., oca = a for every ¢ € G, then a crossed
homomorphism is nothing but a group homomorphism in the usual sense.
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The set of all crossed homomorphisms G — A has the natural structure of an

additive group and will be denoted by Z!(G, A4). Special crossed homo-

morphisms are obtained in the following way. Suppose fe 4 is fixed and
a, =f—af foreveryoeg.

Then

to=f=0tf=f—of + of = o1 = (f = of ) + o(f — 1f )
=a,+ o0a,.

Crossed homomorphisms which arise in this way are called coboundaries.
They form a subgroup of Z'(G, 4) which will be denoted by B*(G, 4). The
quotient

HY(G, A)=Z(G, A)/B\(G, A)

is called the 1st cohomology group of G with coefficients in the G-module A.

28.2. Summands of Automorphy. Suppose p: Y — X is an unbranched holo-
morphic covering mapping between Riemann surfaces and G := Deck(Y/X)
is its group of covering transformations. Then ¢(Y) is a G-module, if one
defines gf € ((Y) by af :=f - ¢! forany ¢ € G and f € ¢(Y). The differences

a,=f—af e OY), cgeG,

are called the summands of automorphy of f. By (28.1) the summands of
automorphy of f define a crossed homomorphism

G - 0(Y), ora,.

If the covering is Galois (Definition 5.5) and all the summands of auto-
morphy of a function f'e ¢(Y) are zero, then the function flies in the subring
p*(O(X) = O(Y) and thus may be identified with a function on X.

One can do the same thing for the meromorphic functions .#(Y) and the
differentiable functions &(Y).

28.3. Galois Coverings. The notation will be the same as in (28.2). Assume
p: Y — X is Galois. Every point x € X has a connected open neighborhood
U such that

p_1<U) = U Vb
AeA
where the V, are disjoint open subsets of Y and the mappings p|V; — U are
homeomorphisms. Now we construct a homeomorphism
p:p Y (U)-> U x G,

where G has the discrete topology, in the following way. Choose an index
Ao € A. Then for every 1 e A there is precisely one o € G such that
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a(V,,)=V,. For yeV, set o(y)=(p(y), o). This maps V, homeomor-
phically onto U x {¢} and implies that ¢ is a homeomorphism. The map-
ping ¢ is fiber-preserving, i.e., the diagram

"U)—2—>UxG

\/

is commutative. Moreover ¢ is compatible with the action of G, i.e., @(y) =
(x, o) implies ¢(ty) = (x, 7o) for every 7 € G. We will call such a fiber-
preserving homeomorphism

p:p Y(U)-UxG

which is compatible with the action of G a G-chart of the Galois covering
p: Y > X. A G-chart has a decomposition ¢ =(p, n), where n: p~(U) - G
is a mapping such that

n(zy) =t(y) forevery yep '(U) and1eG.

28.4. Theorem. Suppose X and Y are non-compact Riemann surfaces,
p: Yo X is a holomorphic unbranched Galois covering map and
G = Deck(Y/X) is its group of covering transformations. Then given any
crossed homomorphism

G - ((Y), oca,,

there exists a holomorphic function f € ((Y) having summands of automorphy
a

Remark. Theorem (28.4) asserts that H(G, ¢’(Y)) = 0. This is also true for
arbitrary Stein manifolds (Stein [62], Serre [59]).

PROOF
(a) Choose an open covering U = (U;);.; of X and G-charts

@i=(p.n):p (U)—= Ui xG.
Now on Y;:=p~'(U,) define functions f;: ¥; > C by

fx(y) = am(_v)(y) for Cvery y € Y; .

Clearly f; is holomorphic on Y;.
(b) We now claim that f; — of; = a, on Y, for every ¢ € G. For y € Y, one
has by definition

(sz)(y) :.fi(Of ly) = amta‘ l.v)(of ly) =d, ‘rli(y)(a~ ly)'
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The relation a,, = a, + aga, with t:=¢" '5,(y) implies
a,(y) = a,(y) — alo"'y)
= am(y)(y) — d,- lm(,v)((77 1}’) =f1(}’) - (G/‘"z)(y)

Thus the functions f; have the desired automorphic behavior on Y;.

(c) By (b) the differences g;;==f; — f; € ¢(¥; n Y;) are invariant under
covering transformations and thus may be considered as elements
g:;; € C(U; n U;). Obviously g;; + g, = gy on any triple intersection and
thus the family (g;;) is a cocycle in Z'(U, ). Because H'(X, ") = 0, this
cocycle splits. Hence there exist elements g; € ¢/(U;) with

gij=¢:—¢g; onU;,n U,

Consider the g; as functions on Y; which are invariant under covering trans-
formations. Then the functions

Ji=fi—g:€ O(Y))
also satisfy f; — of; = a, for every o &€ G. On any intersection ¥; n Y, one has
T *./7;' =fi—fi—9i—9)=9;— (9 - g;)=0.

Hence the f; piece together to give a global function f e ¢(Y) withf — of = a,
for every o € G. O

28.5. Theorem. Suppose X and Y are Riemann surfaces, p: Y — X is a holo-
morphic unbranched Galois covering map and G = Deck(Y/X) is its group of
covering transformations. Then given any crossed homomorphism

G- &(Y), g—a,,

there exists a differentiable function f € £(Y) having summands of automorphy
a,.
PrOOF. This is proved in the same way as Theorem (28.4), except the sheaf ¢/
is replaced by the sheaf &. This is possible since H'(X, &) =0 for every
Riemann surface, regardless of whether it is compact or not (Theorem 12.6).

a

28.6. Theorem (Behnke-Stein). Suppose X is a non-compact Riemann surface
and

n(X)—-C, ara,,
is a group homomorphism. Then there exists a holomorphic 1-form w € Q(X)

with

" w=a, foreveryagen (X)

ag
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Proor. For the universal covering p: X — X one has Deck(X/X) = n,(X).
By Theorem (28.4) there exists a holomorphic function F € (¢(X) having the
constant summands of automorphy a, . Then by Theorem (10.13) the differ-
ential dF can be considered as a 1-form on X and it has the periods «,.
0

28.7. Theorem. Suppose X is a compact Riemann surface and
m,(X)—-C, o da,,
is a group homomorphism. Then there is a unique harmonic 1-form

€ Harm!(X) with

[ w=a, foreveryaoemn,(X)

‘a

PROOF. Similar to (28.6) it follows from Theorem (28.5) that there exists a
closed 1-form @ e &"(X) with

a

" ®=a, foreveryoe m(X).

Ya

By Theorem (19.12) there exists a harmonic 1-form w € Harm*(X) and a
function f e &£(X) with

=w+ df

Clearly & and o have the same periods. The uniqueness follows from (19.8).

]

EXERCISES (§28)
28.1. Let X be a Riemann surface. Prove
H'(X, C) = Hom(n,(X), C).
28.2. Let X be a non-compact Riemann surface and let
Rh{(X) = Q(X /do(X)
be the “holomorphic” deRham group. Prove
H(X, C) = Rhi(X).

28.3. Let g: C — C be a holomorphic function. Prove that there exists a holomorphic
function f: C — C such that

fz+1)=f(z) + g(z) for every z € C.

[Hint: Consider the Galois covering ex: C — C*, ex(z) = ¢*™%, and construct
suitable summands of automorphy

Z-0(C)]
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§29. Line and Vector Bundles

In the consideration of many problems of analysis on manifolds the follow-
ing situation arises. To every point x of the manifold X there is associated a
vector space E, which depends in some continuous (or if X is a Riemann
surface, holomorphic) way on x. This leads to the notion of a vector bundle
on X, which we now make precise.

29.1. Definition. Suppose E and X are topological spaces and p: E— X is a
continuous mapping. Further suppose that every fiber E, :=p~'(x) has the
structure of an n-dimensional vector space over C. Then p: E — X, or simply
E, is called a vector bundle of rank n on X if every point a € X has an open
neighborhood U such that there exists a homeomorphism h of E;, »==p~ (U)
onto U x C" with the following properties:

(i) h is fiber-preserving, i.e., the following diagram

EU——)UXCn

is commutative.

(i) For every x € U the mapping h | E, is a vector space isomorphism of
E, onto {x} x C"=C".
The mapping h: Ey —» U x C"is called a local trivialization or linear chart of

E over U. If I = (U,),, is an open covering of X and h;: Ey, — U; x C" are
local trivializations, then the family of all the h; is called an atlas of E.

29.2. Definition. A vector bundle of rank » is called trivial if there exists a
global linear trivialization h: E— X x C".

Thus a vector bundle is always locally trivial. For local considerations
the notion of a vector bundle tells us nothing which is new. It only plays a
role when one is dealing with global problems.

29.3. Definition. A [ine bundle is a vector bundle of rank one.

29.4. Theorem. Suppose E — X is a vector bundle of rank n on the topological
space X and h;: Ey, —» U; x C* i € I, is an atlas of E. Then there are unique
continuous mappings

gl} U Ia) U — GL(n C)
such that the mappings
Qoij::hi o hj_lj(Uiﬁ UJ-)XC"*(U.'F\ UJ)XC"
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satisfy
@i{x, t) = (x, gij(x)t) for every (x, t) e (U; n Uj) x C".
On U, n U; n U, one has the “ cocycle relation™
9ij9ik = Yik -

Notation. The mappings g;; are called the transition functions and the
family (g;;) is the cocycle associated to the atlas (h;).

PRrROOF. The mapping
pij=hi hy (Ui Uy) x €= (U; n Uy x C

is a fiber-preserving homeomorphism which, restricted to every fiber, is an
isomorphism of vector spaces. Hence for every x € U; n U, there exists a
matrix g;;(x)€ GL(n, C) with

Pijlx, 1) = (x, gij(x)1).

Since ¢;; is a homeomorphism, the correspondence x — g, ;(x) is continuous.
The relation g;;g;, = g follows from the corresponding one for the map-

pings ¢;;. O

29.5. Definition. Suppose X is a Riemann surface, £ — X is a vector bundle
of rank n on X and

9N = {hi; EU,'_’ U, xC"ie I}

is an atlas of E. The atlas 9 is said to be holomorphic if the associated
transition functions

g;: Uy n U; > GL(n, C)

are holomorphic.

Two atlases 21 and W' of E are called holomorphically compatible if
A U A" is a holomorphic atlas. One can easily check that holomorphic
compatibility of atlases is an equivalence relation. An equivalence class of
holomorphically compatible atlases is called a holomorphic linear structure.

A holomorphic vector bundle on a Riemann surface X is a vector bundle
E — X together with a holomorphic linear structure. A holomorphic vector
bundle E ~ X is called holomorphically trivial if its holomorphic linear struc-
ture contains an atlas consisting of the single chart E - X x C".

29.6. Cocycles. Suppose X is a Riemann surface. For U open in X let
GL(n, (U)) denote the group of all invertible n x n-matrices with
coefficients in @(U). For ¥V <= U one has the natural restriction mapping
GL(n, ¢(U)) » GL(n, ¢(V)). This defines a sheaf GL(n, ¢’) of groups on X
which for n > 2 is not abelian. If i = (U;),, is an open covering of X, let
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Z'(1, GL(n, ()) denote the set of all 1-cocycles with values in GL(n, ¢') with
respect to U, i.e., all families (g;;);. ;. With

g;; € GL(n, O(U; n Uy))
and
9ij9ix = Y ON UnU;nU,

for every i, j, ke I. Note that for n > 2 the set Z'(U, GL(n, V) is not a
group with respect to component-wise multiplication.

If 2 is a holomorphic atlas of a vector bundle on X, then the family of
transition functions of 91 is a cocycle with values in GL(n, ¢’). Conversely
given such a cocycle one can construct a holomorphic vector bundle. We
now prove this.

29.7. Theorem. Suppose X is a Riemann surface, Y = (U,),, is an open
covering of X and (g;;)€ Z'(1, GL(n, ©)). Then there exists a holomorphic
vector bundle p: E — X of rank n and a holomorphic atlas

{hit Ey,» U, xC"iel}

of E, whose transition functions are the given g;;.

PRrOOF. Let
E=[) UxC"x{i}jc X xC"x I
iel
Give E' the topology induced from X x C" x I, where I has the discrete
topology. On E' introduce the following equivalence relation:

(x, t, i)~ (x, t, j)esx=x" and t = g;(x)t.

Because of the cocycle relation g;; g, = gu, it is easy to check that this really
is an equivalence relation. Let E := E'/ ~ | together with the quotient topo-
logy, and let k: E' —> E be the canonical quotient map. Since the equivalence
relation is compatible with the projection E'— X, the induced mapping
p: E— X is continuous. The fibers p~!(x) have a natural structure of an
n-dimensional vector space over C. As well

Ey,=p HU;) = x(U; x C" x {i})

and x|U; x C" x {i}— E,, is a homeomorphism. Local trivializations
h;t E;,— U; x C" can now be defined as the inverses of these home-
omorphisms followed by the identifications U; x C" x {i} = U; x C". By
construction the transition functions of the atlas (h;) are the given g;;. O

29.8. Definition. Suppose p: E — X is a vector bundle on a topological space
X and U is a subset of X. A section of E over U is a continuous mapping
f:U— Ewith po f=id,.
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The condition p - f = id;, means that f assigns to each x € U an element
f(x)e E,. If hjt E;,— U; x C" is a local trivialization of E then one can
associate to the section f'a unique continuous function f;: U, n U — C"such
that

hi(f(x)) = (x, fi(x)) for every x e U; n U.

The function f; is called a representation of the section f with respect to the
local trivialization h; .

29.9. Definition. Suppose p: E — X is a holomorphic vector bundle of rank n
on the Riemann surface X and {h;: E;, —» U; x C", i € I} is an atlas of the
holomorphic linear structure on E. A section f: U — E over an open subset
U < X is said to be holomorphic if its representation f; with respect to every
local trivialization h; is a holomorphic mapping f;: U; n U — C". Of course
f; is to be understood as an n-tuple of holomorphic functions U; n U — C.

Clearly the definition is independent of the choice of atlas. The set of all
holomorphic sections of E over U has the natural structure of a vector space,
which we denote by ¢x(U). With the natural restriction mappings one gets
the sheaf (’; of holomorphic sections of E.

Suppose (g;;)e Z'(U, GL(n, )) is the cocycle associated to the atlas
{h;: Ey,— U; x C", i e I}. The representations f;: U; n U — C" of a section
f€ Og(U) satisfy the relation

filx) = gij(x) fi(x) foreveryxe U, n U;n U. *)
Hence (g(U) is isomorphic to the vector space of all families (f;);.,, with
fie O(U; n U,

which satisfy (*). Note (0g(U;) is isomorphic to ¢(U,)". If E is holomor-
phically trivial, then the sheaf ¢’ is isomorphic to ¢".

We now give two important examples of holomorphic line bundles on
Riemann surfaces.

29.10. The Holomorphic Cotangent Bundle. Suppose X is a Riemann surface
and (U,, z;), i € I, is a covering by coordinate neighborhoods. On U; n U;
the function g;;=dz;/dz; is holomorphic and does not vanish. Thus the
family (g;;) defines a cocycle in Z'(U, (¢*) with respect to the covering
U = (U;)ic;- Let T*(X) be the line bundle associated to the cocycle (g;;).
T*(X) is called the holomorphic cotangent bundle or canonical line bundle of
X. The sheaf of holomorphic sections of T*(X) is isomorphic to the sheaf Q
of holomorphic 1-forms on X. This isomorphism can be described as fol-
lows. Suppose w € Q(U). Then on U; n U one may write w = f; dz; with
fie O(U;n U).On U; nU;n U one has f; = f; dz; /dz; = g;; f;. Thus the
family (f;) defines a holomorphic section of T*(X) over U. Conversely every
family (f;) of holomorphic functions f; € O(U; n U) with f, =g, f; on
U, U; n U gives rise to a 1-form w € QU) with w =f; dz; on U; n U.
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29.11. The Line Bundle of a Divisor. Suppose D is a divisor on the Riemann
surface X. To D we can associate a holomorphic line bundle E, such that the
sheaf of holomorphic sections of Ej, is isomorphic to the sheaf ¢, of mero-
morphic multiples of —D (cf. 16.4). There exists an open covering
U = (U;);; of X and meromorphic functions y; € .#(U;) with (y;) = D on
U;. Then

g,-]-==l>€’: € C*U; n Uy,

J

since ¥; and ; have the same zeros and poles on U; n U;. The family g, ;
forms a cocycle (g;))e Z'(U, ©*). Let E, be the holomorphic line bundle
corresponding to this cocycle (cf. Theorem (29.7)).

Suppose Uisopenin X andf € O,(U),ie. (f) = — D on U. Then there are
holomorphic functions f; € @(U; n U)such thatf = f; /iy;on U; n U. Hence
on any intersection U; n U; n U one has

fi _J; _

s and thus f; = g;; f;.
Hence the family (f;) defines a holomorphic section of E, over U. Con-
versely any holomorphic section of E,, over U is given by a family () of
holomorphic functions f; € O(U; n U) with f; = g,; f;. Then f; i}, = f; /i) ;on
Uin U;n U. Thus there is a meromorphic function fe .#(U) with
S=fi/bion U; n U for every i € I. Therefore f € Op(U).

We will now prove several facts about cohomology with values in the
sheaf of holomorphic sections of vector bundles, which are analogous to
what we did in §14 for the sheaf (. For the sake of variety we will use
different methods this time.

29.12. Lemma. Suppose X is a Riemann surface, E is a holomorphic vector
bundle on X and Y is a relatively compact open subset of X. Then for every
open subset Y, = Y the restriction mapping HYY, Og)— HXY,, Og) is
surjective.

PROOF. There are finitely many open sets U, = X, i =1, ..., r, which are
biholomorphic to open sets in C, with Y = U, U - U U, and for which
there exist holomorphic linear charts h;: E; — U; x C". For every open
subset V' < U, one then has
HY(V, Og) = HY(V, ¢) =0,

cf. Theorem (26.1). Set

k

Yo=Y u (J U
i=1

i

Clearly it suffices to show that the mappings
HY(Y,, Op) > H' (Y-, Op)



224 3 Non-compact Riemann Surfaces

for k =1, ..., r are surjective. Fix k and let
Vi=UinY, fori=1..r,
Vi=V, fori#k and V,=U,.

Then B = (V) <<, is a Leray covering of Y,_; and 8" = (V);<i<, is @
Leray covering of Y,. Hence Z'(B, €g)=2Z'(B', (g), since
VA V;=Vin V; for every i # j. Thus H'(®’, ()~ H'(8, () is surjec-
tive. ]

29.13. Theorem. Suppose Y is a relatively compact open subset of a Riemann
surface X and E is a holomorphic vector bundle on X. Then H'(Y, () is finite
dimensional.

ProoF. There is an open set Y’ with Y € Y € X and opensets V, € U;,i =1,
..., r, in X with the following properties:
(i) U;=1 V=%, Uzr'zl U= Y.

(ii) Every U, is biholomorphic to an open subset of C.

(iii) On every U, there is a holomorphic linear chart h;: Ey, — U; x C™.

Now U = (U;) and B = (V) are Leray coverings of Y’ resp. Y for the
sheaf O,. By Lemma (29.12) it follows that the restriction mapping
H'(U, ) — H(B, Oy) is surjective. This implies that the mapping

@: CO(B, O;) x Z U, Op) » Z(B, Op)
(n, &)= 3(n) + B(E)

is surjective, where f: Z'(U, () - Z'(B, () is the restriction map. One
can make the spaces Z'(U, (), Z(B, ¢;) and C°(B, () into Fréchet
spaces in the following way. First Cg(U;n Uj) = O(U;~ U,)" with the top-
ology of uniform convergence on compact subsets is a Fréchet space. Thus
sois C*(U, Og) = [];. ; Ox(U; n U;) with the product topology. It is easy to
see that Z'(U, () is a closed subspace of C'(1, ). Thus it is likewise a
Fréchet space. The topologies on Z!(B, () and C°(B, () are defined
similarly. With respect to these topologies the mappings o: C%(B, )~
Z(B, ) and B: Z'(U, Cg)— Z'(B, Cg) are continuous. Then Montel’s
Theorem implies that § is even compact. Hence

Wi CO(B, ) x Z'(U, Cg) > Z'(B, (g)
(n, &) Bln)
is also compact. By the Theorem of L. Schwartz (cf. Appendix B.11) the
mapping
o — W CO(B, Cp) x Z'(U, Ox) > Z1(B, U)
(1, &) on
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as the difference of a surjective and a compact continuous linear operator
between Fréchet spaces, has a finite codimensional image. However the
image of @ —y is the vector space B'(B, ¢’;) of all coboundaries in
Z'(B, Og). Thus H'(Y, Og) =~ H'(B, ;) is finite dimensional. O

29.14. Corollary. Suppose E is a holomorphic vector bundle on a compact
Riemann surface X. Then H' (X, Oy) is finite dimensional.

29.15. Meromorphic Sections. Suppose E is a holomorphic vector bundle of
rank n on the Riemann surface X. Let U = X be an open set over which a
holomorphic linear chart h: E; > U x C" exists and let a be a point of U. A
section fe Op(U\{a}) can be represented with respect to this chart by an
n-tuple of holomorphic functions (fi, ..., f,) € ©(U\{a})". The point q is
called a pole of order m of £, if all the f; have either a pole of order < m or else
a removable singularity at ¢ and at least one f; does have a pole of order m at
a. This definition is independent of the choice of linear chart at a.

By a meromorphic section of E over an open subset Y = X one means a
holomorphic section fe ¢x(Y’) over an open subset Y’ < Y such that the
following hold:

(i) Y\Y" is a discrete subset of Y.
(ii) f'has a pole at every a e Y\Y".

Similar to Theorem (14.12) one can now prove the following.

29.16. Theorem. Suppose E is a holomorphic vector bundle on a Riemann
surface X and Y is a relatively compact open subset of X. Then given any
a € Y there exists a meromorphic section of E over Y which has a pole at a and
is holomorphic on Y\{a}.

29.17. Corollary. Every holomorphic vector bundle on a compact Riemann
surface has a global meromorphic section which does not vanish identically.

29.18. Line Bundles and Divisors. Suppose E is a holomorphic line bundle on
a Riemann surface X and y is a global meromorphic section of E, which
does not vanish identically. Then the divisor D of s is well-defined. For
a € X let D(a) be the order of y at a with respect to a holomorphic linear
chart of E on some neighborhood of a. This order is independent of the
chart. Now we claim that the sheaf @ of holomorphic sections of E is
isomorphic to the sheaf ¢/, of meromorphic multiples of —D. For, if
fe #(U) with (f) = —D on U, then fi is a holomorphic section of E over
U. Conversely for every section ¢ € 0x(U) the quotient f = @/ is a well-
defined meromorphic function in .#(U) with (f)> —D on U.
This may be considered in some sense to be the converse of (29.11).
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We are now in the position to interpret the Picard group of a compact
Riemann surface as a cohomology group. Recall (cf. 21.6) that the Picard
group of a compact Riemann surface X is defined as

Pic(X) = Div(X)/Div,(X).

29.19. Theorem. Let X be a compact Riemann surface. Then there is a natural
isomorphism of groups

H'(X, 0*) > Pig(X).

PROOF

(a) Define a map a: HY(X, O*)— Pic(X) as follows. Suppose
&e HY(X, 0%) is represented by a cocycle (g;;) Z'(u, 0*) for some open
covering U = (U;);; of X. By Theorem (29.7) there is a line bundle E —» X
associated to this cocycle. Then E has a non-trivial meromorphic section f
by Corollary (29.17). This section is given by a family of meromorphic
functions f; € #(U;), i = I, satisfying

_f,:g”_f} OnU‘-ﬁUj.

Since f does not vanish identically, we even have f; e .#*(U,) for everyi e I.
Let D be the divisor of f; i.e.,

D(x)=ord,(f;) ifxe U,.
Clearly this does not depend on the choice of i with x € U;. Now define
«(¢) =D mod Divp(X).

In order that o be well-defined, this definition must be independent of the
various choices made. For example, let

dij =f;/f, 2];/];7

where f;, fie #4*(U,). Then f/f, =f/f; on U, U,. Hence the f/f; piece
together to define a global meromorphic function ¢ € .#*(X). If D and D
are the divisors of f = (f});.; and f= (fi);., respectively, we have

D=D+(9),

and thus D and D differ only by a principal divisor. We leave it to the reader
to show that «(¢) is also independent of the choice of cocycle (g;;) represent-
ing &. It is easy to see that « is a group homomorphism.

(b) The surjectivity of « follows from (29.11). To prove the injectivity, we
have to show that if

gij=f.'/fj, fie'/”*(Ui)
and the divisor of (f;),; is principal, then the cocycle (g;;) lies in B'(U, O*).
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Indeed, let ¢ e .#*(X) be a meromorphic function having the same divisor
as the family (f;);.,. Then

Ji
gl. = e @,* Ui
e o)
and g;; = g,/g;. Hence (g.,-)EBl(u, 0*). 0

EXERCISES (§29)

29.1. Let X be a Riemann surface and n: E — X be a holomorphic vector bundle of
rank n on X. A holomorphic subbundle F = E of rank k is a subset such that
the following holds. For every x € X there exists a holomorphic local
trivialization

h:E,-»UxC", Ey ==~ 1(U),
of E with x € U such that
h(Fy)= U x (C* x 0)
where Fy =Ey n F.
(a) Let f: X — E be a holomorphic section of E which never vanishes. For
x ¢ X define F,=C - f(x) = E,. Show that
Fi=|) F,cE

xeX
is a holomorphic subbundle of E of rank 1.
(b) Let f be a meromorphic section of E over X. Show that there exists a

unique subbundle F < E of rank 1 such that fis a meromorphic section
of F.

29.2. Let L — X be a line bundle on a compact Riemann surface X. The degree of L is
defined as deg(L) == deg(D), where D is the divisor of a meromorphic section s
of L over X.

(a) Show that deg L is well-defined, i.e., it is independent of the choice of the
meromorphic section s.
(b) On P! let U = (U,, U,) be the covering given by

Up={zeC:|z| <l+sg}, U={zeP:|z|>1—-¢}, O<e<l

Let L be the holomorphic line bundle on P! defined by some given transition
function

gi12° Uy n Uz'—’c*.

Prove that

1 g912(2)
deg L = d_
g 2mi j1:]:1 g12(2)

[Hint: First consider the special case g;2(z) = z*]
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§30. The Triviality of Vector Bundles

In this section we show that every holomorphic vector bundle on a non-
compact Riemann surface is trivial. This will be used in the next section to
solve the Riemann-Hilbert problem.

30.1. Theorem. Suppose E is a holomorphic vector bundle of rank n on a
Riemann surface X. Let U = (U;);.; be an open covering of X, h;: Ey —
U; x C" iel, be a holomorphic atlas for E and (g;;)€ Z'(1, GL(n, ©)) be the
corresponding cocycle of tramsition functions. Then the following are
equivalent:

(i) E is holomorphically trivial.
(ii) There exist n global holomorphic sections F, ..., F, of E such that for
each point x € X the vectors Fi(x), ..., F,(x) € E, are linearly independent.
(iii) The cocycle (gi;) splits, ie, there exists a cochain
(g:)e C°(U, GL(n, ©)) with

gi;=9:i9; 0 onU;nU; foreveryi,jel.

ProoF

(i) = (ii). Since E is holomorphically trivial, the holomorphic linear struc-
ture of E contains a chart h: E—~ X x C". Let ey, ..., e, be the standard unit
vectors of C". Define sections F,, v=1, ..., n, of E by

h(F (x)) = (x, e,) for every x € X.

Then the F, are holomorphic and linearly independent in every fiber.

(ii) = (iii). Any section F, may be represented relative to any chart h; as
an n-tuple of holomorphic functions fi, € O(U;), p =1, ..., n. Let g; be the
matrix (f%,); <, v<n. Then g; € GL(n, O(U})), since Fy, ..., F, are linearly
independent in each fiber. Moreover on U; n U; one has

gi=gyg; and thus g;=gig; ",

ie. the cocycle (g;;) splits.

(ii)= (i). Using the charts h;: E;, —» U; x C" we will construct a linear
chart h: E— X x C" which is holomorphically compatible with all the h;.

Suppose v e Ey, and h(v) =:(x, t). Then set h(v):=(x, g; 't). This
definition is independent of the choice of chart. For, suppose v € Ey,; as well
and hy(v) = (x, t'). Then t = g;;t' = g;g; 't and thus g7 't = g; ¢ . Finally it
follows directly from the definition of  that {h: E—» X x C"} is holomor-
phically compatible with the atlas consisting of all the h;. O

30.2. Lemma. Suppose X is a non-compact Riemann surface and E is a holo-
morphic vector bundle on X. If E has a non-trivial global meromorphic section,
then E also has a global holomorphic section which has no zeros.
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PrOOF. Suppose [ is a non-trivial meromorphic section of E over X and
A < X is the discrete subset consisting of its zeros and poles. Suppose a € A
and h: E; —» U x C" is a holomorphic linear chart of E on an open neigh-
borhood U of a. Relative to the chart h we may represent f as (f3, ..., f,)
e . #(U)". Let k(a) be the minimum of the orders of the functions f, at the
point a. By Weierstrass’ Theorem (26.5) there exists a meromorphic function
¢ € .#(X) which at each point a € A has order — k(a) and is holomorphic
and non-zero on X \A. Then F := ¢f'is a holomorphic section of E which has
Nno zeros. O

30.3. Theorem. Every holomorphic line bundle E on a non-compact Riemann
surface X is holomorphically trivial,

PRrOOF. Suppose (7 + Y, € Y; € Y, € * - is a sequence of relatively compact
Runge domains in X with { ) ¥, = X. By Theorem (29.16) over every Y,
there is a meromorphic section. Thus by (30.2) there is also a holomorphic
section which does not vanish. Hence E is trivial over each Y, by Theorem
(30.1). It then follows from the Runge Approximation Theorem that every
holomorphic section of E over Y, can be approximated uniformly on com-
pact subsets by holomorphic sections of E over Y, ;. Let f € Og(Y;) be a
section which is not zero at some point a € Y,,. One can now construct a
sequence f, € Og(Y,), v = 1, such that lim,_,, f,(a) # 0 and such that for
each v € N the sequence (), | Y,),-, converges in Og(Y,). Then the limit of the
sequence (f,) is a section € Og(X) which does not vanish identically. As
above this implies that E is trivial over X. O

30.4. Theorem. Every holomorphic vector bundle E on a non-compact Riemann
surface X is holomorphically trivial.

Proor. The theorem will be proved by induction on n, the rank of E.
Theorem (30.3) is the case n = 1. Now assume the result has been proved for
all bundles of rank #» — 1 and suppose E is a bundle of rank n.

(a) First we assume that there exists a section F, € ¢z(X ) which does not
vanish anywhere. Since E is locally trivial, there exists an open covering
U = (U,);.; of X with the property that for every i € I there are sections F',

., Fi_ | € 0g(U,) such that Fi(x), ..., Fi_ (x), F,(x) are linearly indepen-
dent for every x € U;. On any intersection U; m U; these systems are related
to each other in the following way:

(=)= () w

where F' denotes the column vector withentries F¥, ..., Fi_ |, the matrix G¥ is
an element of GL(n — 1, O(U;~ Uj)) and a” is a column vector with n — 1
rows having coefficients in O(U; n U;). Then GYG*=G* on
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U;n U; n U,. Hence by the induction hypothesis there exist matrices
G' € GL(n — 1, 0(U;)) with

G'=G(G')™" onU,nU,.
Setting F* = (G*)” 'F* and using (1) gives

()= () 8

for some b e O(U; n U;y~'. On U; n U; n Uy one has the relation
bY + b'* = b*. Since H'(U, () = 0, one can thus find holomorphic column
vectors b' € O(U;"" ! having (n — 1) rows with

b"=b"—b onU,n U,
Set F = F' — b'F,. Then it follows from (2) that

B _ (P UnU
F,,‘—F,,-on in Uj.

Hence the F' piece together to form a global (n — 1)-tuple (Fy, ..., F,_)
€ Ox(X)'~'. By construction F,(x),..., F,(x) are linearly independent for
every xe€ X. Thus E is holomorphically trivial.

(b) We still have to show that E has a holomorphic section which does
not vanish. By Theorem (29.16) and Lemma (30.2) this is the case over any
relatively compact domain Y < X. Thus by (a) one has that E is trivial over
Y. As in the proof of (30.3) one can now construct with the help of the Runge
Approximation Theorem a non-trivial holomorphic section of E over X. By
Lemma (30.2) then E also has a nowhere vanishing holomorphic section.
This completes the proof of the theorem. |

30.5. Corollary. Suppose X is a non-compact Riemann surface. Then
HY (X, GL(n, 0)) = 0.
In particular, HY(X, 0*) = 0. »
Proor. Now H!(X, GL(n, ¢)) =0 means that for every open covering

U = (U;) of X every cocycle (g;;)€ Z' (U, GL(n, O)) splits. But this is equi-
valent to the triviality of holomorphic vector bundles on X. O

ExEercises (§30)

30.1. Show that on any Riemann surface X (compact or not) one has
HY(X, #*)=0.
[Hint: Use the exact cohomology sequence of Ex. 16.4.]

30.2. Let X be a Riemann surface. For U < X open, let SL(n, O(U)) be the group of
all n x n-matrices of determinant 1 with coefficients in ¢(U). Together with the
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natural restriction maps this defines a sheaf SL(n, ¢’) on X. Prove that on a
non-compact Riemann surface X

H'(X, SL(n, ¢)) =0,

ie, for every cocycle (g;)e Z'(M, SL(n, ©)) there exists a cochain
(9:) € C°(U, SL(n, ©)) such that

g,'jzgigj_l on Ul-ﬂ Uj.

§31. The Riemann—Hilbert Problem

In §11 we saw that the automorphic behavior of a fundamental system of
solutions of a linear differential equation on a Riemann surface X gives rise
to a homomorphism T: #,(X)— GL(n, C). This homomorphism associates
to each o € m,(X) the factor of automorphy T, by which the fundamental
system is multiplied when it is analytically continued along ¢. Conversely
one may ask if given any homomorphism T n;(X) - GL(n, C), there exists
a linear differential equation on X such that the automorphic behavior of a
fundamental system of solutions is exactly given by the homomorphism T.
This is called the Riemann-Hilbert problem. In this section we present the
solution of the Riemann-Hilbert problem on non-compact Riemann sur-
faces using the method of H. Rohrl [57].

31.1. Factors of Automorphy. Suppose p: Y - X is a holomorphic un-
branched covering mapping between Riemann surfaces and G = Deck(Y/X)
is its group of covering transformations. A holomorphic mapping ®: Y —
GL(n, C) is called multiplicatively automorphic with constant factors of
automorphy T, e GL(n, C), g € G, if

o® =®T, foreveryoed.

In this case one can easily show that the correspondence g+ T, is a group
homomorphism G — GL(n, C), cf. (11.6). The following theorem is analo-
gous to Theorem (28.4).

31.2. Theorem. Suppose X and Y are non-compact Riemann surfaces,
p: Y>> X is a holomorphic unbranched Galois covering map and
G :=Deck(Y/X) is its group of covering transformations. Then given any
homomorphism

T:G— GL(n, C), o—T,,

there exists a holomorphic mapping ®: Y — GL(n, C) with the factors of auto-
morphy T,, i.e., c® = ®T, for every o € G.
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PROOF

(a) There exist an open covering U = (U;);., of X and G-charts

@i=(p,m): p”(U)—> Ui x G,
cf. (28.3). Now define on Y, := p (U, functions ¥;: ¥, > GL(n, C) by
Wi(y):=T,y-: forevery ye Y.

Since ¥, is locally constant, in particular it is holomorphic.

(b) Suppose y € Y, and ¢ € G. Then

a¥(y)=Po" V) = Tyo-1p = Tyn-1a

= Ty T, =Y:))T,.
Thus the functions ¥; exhibit the desired automorphic behavior on Y,.

(¢) By (b) the products F;;:==¥;¥; ' € GL(n, O(Y; ~ Y})) are invariant
under covering transformations. Thus they may be considered as elements
F;;€GL(n, O(U;~ U;)) and so define a cocycle (F;)e Z'(U, GL(n, 0)).
Since H'(X, GL(n, ©)) =0 by (30.5), this cocycle is a coboundary. Thus
there exist elements F;e GL(n, O(U;)) with

F;=FF;' onU,n Uj.
Now consider the F; as elements of GL(n, ¢/(Y;)) which are invariant under
covering transformations and set

®,:=F; '¥; e GL(n, O(Y))).
Then o®; = F '6¥, = F{'¥; T, = @, T, for every ¢ € G. On any intersec-
tion Y, n Y;,

O\, =V RF VY, =R, =YY =

ie, ®;=®;. Thus the ®; piece together to give a global function
® € GL(n, €O(Y)) with 6@ = ®T, for every g € G. O

31.3. Corollary. Suppose X is a non-compact Riemann surface and
T: ny(X)— GL(n, C), o—T,,

is a group homomorphism. Then there exists amatrix A € M(n x n, (X)) and
a fundamental system of solutions of the differential equation dw = Aw on the
universal covering of X which has the T, as factors of automorphy.

ProOOF. By (11.6) one only has to apply Theorem (31.2) to the universal
covering p: X - X of X. O

31.4. Suppose X is a non-compact Riemann surface, S < X is a closed
discrete subset and X’ := X\S. Then, in particular, one can apply Corollary
(31.3) to X'. But we would like to sharpen the result of the corollary so that
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the resulting differential equation has at most regular singular points at all
the points a € S. In order to be able to carry over the definition in (11.12) to
this general case, we first prove the following lemma.

Lemma. Using the same notation as above, suppose p: Y — X' is the universal
covering of X'. Further suppose (U, z) is a coordinate neighborhood of a point
a € S with the following properties:

(i) z(U) = C is the unit disk and z(a) = 0.
(i) U ~ S = {a}.

Suppose Z is any connected component of p~ '(U\a). Then p| Z - U\a is the
universal covering of U\a.

ProoF. By Weierstrass” Theorem (26.5) there exists a holomorphic function
f€ 0(X) which has a zero of first order at a but is otherwise non-zero. Then
w =df/f is a holomorphic 1-form on X'. Let y be the positively oriented
curve in U corresponding to |z| = $. Then

- df
w=| = =2ni
[o=]%
Now the mapping p|Z — Ula is a covering map. Thus we may apply
Theorem (5.10) to it. If p| Z — U\a were not the universal covering, then this
mapping would be isomorphic to the covering

D* - D*, z 2k

for some positive integer k, where D* denotes the punctured unit disk. But
then there would exist k liftings y,, ..., y, of y whose productc =y, -+ y,isa
closed curve. This implies

k k.

[p*wz Y fp*a)z Y ]w=2k7ri.
e i=1 "y j=1"y

But on the other hand |, p*w = 0, since a primitive for p*w exists on Y. This

contradiction proves that p| Z — U\a must be the universal covering. []

Now, using the same notation, suppose dw = Aw, where Ae
M(n x n, Q(X’)), is a linear differential equation on X’ and ®e GL(n, ¢(Y))
is a fundamental system of solutions. Then the differential equation is said to
have a regular singular point at a € S if for every connected component Z of
p~'(U\a) the function ®|Z satisfies the condition given in (11.12).

31.5. Theorem. Suppose X is a non-compact Riemann surface, S is a closed
discrete subset of X and X' = X\S. Further suppose a homomorphism

T: 7, (X')— GL(n, C), o—T,,
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is given. Then there exists a differential equation dw = Aw, where
A € M(n x n, Q(X")), which has a regular singular point at every a € S, and a
Sfundamental system of solutions ® € GL(n, O(Y)) of dw = Aw on the universal
covering p: Y — X' of X' with the factors of automorphy T,.

PRrOOF. Suppose S = {a;: i € I}. For every i choose a coordinate neighbor-
hood (U, z;) of a; satisfying conditions (i) and (ii) of Lemma (31.4). We may
assume 0 ¢ 1. Let J:=1 U {0} and set U, :=X". Then U :=(U;);., is an
open covering of X. For i # jone has U; n U; = X'. Further let Y, := Y and
Y;:=p YU, \q) for every i e I.

By Theorem (31.2) there exists a function ¥, € GL(n, (¢(Y,)) such that
oW, =W, T, for every ¢ € n,(X’). For every i € I there exist, by Theorem
(11.10), elements ¥; € GL(n, (’(Y;)) which have regular singular points and
display the same automorphic behavior as ¥, | Y;. Hence for i, j e I, i # ,

F;=¥¥7'eGL(n O(Y; n Y)))
is invariant under covering transformations and thus may be considered as

an element F;e GL(n, O(U;n Uj)). For every jelJ, let
F;;==1¢€ GL(n, O(U;)). Then

(Fi)e Z*(, GL{n, 0))
is a cocycle. Because H'(X, GL(n, ©)) =0, this cocycle is a coboundary.
Thus there exist F; € GL(n, ©(U;)) such that
Fj=FF;' onU,nU,.
Now, for every j € J, define
®;:=F; "¥; e GL(n, 0(Y))).

As in (31.2) the @; piece together to form a global function ® € GL(n, (¢(Y))
which satisfies @ = ®T, forevery ¢ € n,(X). On U, \g; one has ® = F; '¥,.
Since ¥, has regular singular points and F; ! is holomorphic on all of U;, it
follows that @ also has regular singular points. As well @ is a fundamental
system of solutions of the differential equation dw = Aw, where
A=d® - @' may be considered as an element 4 € M(n x n, Q(X")), since
it is invariant under covering transformations. This completes the proof of
the theorem. O

EXERCISES (§31)

31.1. Let X and Y be non-compact Riemann surfaces, p: ¥ — X be an unbranched
holomorphic Galois covering and G := Deck(Y/X). Let

a: G- GL(n, 0(Y)), owa,
be a crossed homomorphism, i.e. a map satisfying

a,, = a,(ca,) foreveryas,1€G.
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Prove that there exists a holomorphic matrix ®: Y — GL(n, C) such that
a, = ®(c®)"! for every geG.

31.2. Letg:C — GL(n, C) be a holomorphic invertible matrix. Show that there exists
a holomorphic matrix f: C - GL(n, C) such that

fz+1)=f(2)g(z) for every zeC.

[Hint: Consider the Galois covering ex: C — C*, ex(z) :=e>"*, and apply Ex.
31.1]



Appendix

A. Partitions of Unity

Partitions of unity are an important tool in the study of differentiable mani-
folds and have been used throughout this book. As an aid to the reader we
now gather together some of the main facts concerning them. Proofs may be
found in the literature, e.g., [40], [43], [45] or [48].

A.1. By the support Supp(f) of a real or complex valued function f on a
topological space X is meant the closure of the set {x € X: f(x) # 0.

The standard example of a C* function, i.e. an infinitely differentiable
function, g: R” —» R, whose support is the closed ball of radius ¢ > 0, is given
by

exp (— ! ) for ||x|| < e
g(x) = 22 — |x|®

0 for ||x]| = e

Here ||x|| = (|x,|* + - + |x,|*)"/? denotes the euclidean norm on R". This
function can now be used to construct all the other C*® functions which we
will need.

A.2. An n-dimensional manifold is a Hausdorff topological space X with the
property that every point a € X has an open neighborhood homeomorphic
to an open subset of R". A homeomorphism ¢: U — V ofan openset U < X
onto an open set ¥V = R" is called a chart on X. Two charts ¢,: U, > V;,
i =1, 2, are said to be differentiably compatible if the mapping

@20 @110 (U Uy) = 9y(Uy 0 Uy)
237
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and its inverse are both infinitely differentiable. Now one can define differen-
tiable manifolds in an analogous way to Riemann surfaces (cf. §1), but replac-
ing biholomorphic compatibility by differentiable compatibility. In
particular Riemann surfaces are special 2-dimensional differentiable
manifolds.

On a differentiable manifold one has the notion of a differentiable func-
tion, i.e., a function which is C* with respect to every chart.

A.3. Definition. Suppose X is a differentiable manifold and U = (U)),,, is
an open covering of X. Then by a differentiable partition of unity subordinate
to U one means a family (g;),, of differentiable functions g;: X - R with
the following properties:

(i)0<g;<1 foreveryiel.
(ii) Supp(g;) = U; foreveryie I
(iii) The family of supports Supp(g;), i € 1, is locally finite, i.e., every point
a € X has a neighborhood V such that

V ~ Supp(g;) # & for only finitely many i e I.
(]V) Ziel g, = 1

(Because of (iii) the sum in (iv) is well-defined.)

Ad. Theorem. Suppose X is a differentiable manifold which has a countable
topology. Then for every open covering U of X there exists a differentiable
partition of unity subordinate to .

A.S. Corollary. Suppose X is a differentiable manifold, K is a compact subset
of X and U is an open neighborhood of K. Then there exists a differentiable
Sunction f: X — R such that Supp(f)€ U and f |K = 1.

ProorF. We may assume that X has a countable topology. Otherwise, just
replace X by some relatively compact open neighborhood of K. Now sup-
pose U is a relatively compact open neighborhood of K which is contained
in U and let U, =X\K. There exists a differentiable partition of unity
(91, g2) subordinate to the covering U = (U, U,). Then f =g, is the
desired function. |

B. Topological Vector Spaces

We now present the notions and facts from functional analysis which we
have used. Further details and the proofs may be found, for example, in [44),
[47].
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B.1. By a vector space we will always means a vector space over the field of
complex numbers. A topological vector space is a vector space E, together
with a topology, such that the operations of addition

Ex E>E, (x, y)>x+y,
and scalar multiplication
Cx E->E, (4, ) Ax,

are continuous maps. In particular, for every a € E, the translation E — E,
X+ a + x, is a homeomorphism. Thus the topology of E is determined once
one knows what a neighborhood basis of zero is. For, if 8 is a neighbor-
hood basis of zero, then the translated sets a + U, U € B, form a neighbor-
hood basis of a.

B.2. Semi-norms. By a semi-norm on a vector space E is meant a mapping
p: E— R with the following properties:

(i) p(x + y)< p(x)+ p(y) forallx,ye E
(ii) p(Ax) = |A|p(x) forall leC, x € E.

From (i) and (ii) it follows that p(x) > O for every x € E. If, in fact, p(x) = 0
only for x =0, then p is called a norm.

A family p;, i € 1, of semi-norms on a vector space E induces a topology
on E. For iy, ..., i, el, ¢>0, the sets of the form

Upiy, ---» P, €)' ={x € E: max(p;,(x), ..., p; (x)) < &}

are a neighborhood basis of zero. Note that this topology is Hausdorff
precisely if p,(x) = O for every i € I implies x = 0.

A topological vector space is said to be locally convex if its topology can
be induced in the above way by a family of semi-norms.

B.3. Frechet Spaces. A sequence (x,),. ., of elements in a topological vector
space is called a Cauchy sequence if for every neighborhood U of zero there
exists an ny € N such that

X, — X, U foreveryn mz>n,.
A topological vector space E is called a Fréechet space if the following hold:

(i) The topology of E is Hausdorff and can be defined by a countable
family of semi-norms.

(i) E is complete, ie., every Cauchy sequence in E is convergent.
A Frechet space E is metrizable. For, suppose p,, n € N, is a family of
semi-norms which defines the topology on E. If for x, y € E one sets

¥ g Plx =)
d(x’ y) n§02 1+ pn(x - y)’
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then d: E x E - R is a metric on E which induces the same topology as the
semi-norms p,, n € N.

A closed vector subspace F = E of a Fréchet space is also a Fréchet space.
If E;, i €1, is a countable family of Fréchet spaces, then [[;., E; with the
product topology is also a Fréchet space.

B.4. A typical example of a Fréchet space is the vector space ()(X) of holo-
morphic functions on an open set X = C with the topology of uniform
convergence on compact subsets. This topology is induced by the semi-
norms py, where
pi(f)=sup [ f(x)],
xekK

as K runs through the compact subsets of X. This topology is also defined by
countably many semi-norms py_, where K,,, neN, is any sequence of com-
pact subsets of X with | J,. K, = X.

B.5. Banach Spaces, Hilbert Spaces. A complete normed vector space is
called a Banach space. Thus a Banach space is a Fréchet space whose
topology is defined by a single norm. This is usually denoted | ||.

A Hilbert space E is a Banach space whose norm is derived from a scalar
product

ie, [|x]| = m

If A is a vector subspace of a Hilbert space E, then its orthogonal
complement

{, > ExE->C,

At={ye E:{y,x) =0 forevery x € A}
is a closed vector subspace of E. If A4 itself is closed, then E = A @ 4*.

B.6. Theorem of Banach. Suppose E and F are Fréchet spaces and f: E — F is
a continuous linear surjective mapping. Then f is open.

B.7. Corollary. Suppose E and F are Banach spaces and f: E — F is a contin-
uous linear surjective mapping. Then there exists a constant C > 0 such that
for every y € F there is an x € E with

fx)=y and x| < Cly|.

ProoF. Let U :={x € E: ||x| < 1}. Since by the Theorem of Banach fis open,
there exists an ¢ > 0 such that

fU)sV={yeF: |y <e}.

Let C:=2/¢. Now suppose y € F is given. If y = 0, choose x = 0. Otherwise,
A:=|y|| > 0. The element y, := (1/AC)y lies in V and thus there exists x, € U
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with f(x,) = y,. Then for x :=ACx,, one has f(x) = y and
x|l = AC||x, || < A€ = C|y]. O

B.8. Hahn—Banach Theorem. Suppose E is a locally convex topological vector
space, Ey, — E is a vector subspace and ¢,: Eq — C is a continuous linear
functional. Then there exists a continuous linear functional ¢: E — C such that

(PIE0=€D0-

B.9. Corollary. Suppose E is a locally convex topological vector space and
A< Bc E are vector subspaces. If every continuous linear functional
¢: E— C such that ¢ | A = 0 satisfies | B =0, then A is dense in B.

PrOOF. Suppose A is not dense in B. Then there exists b, € B such that
by ¢ A. Let E;:=A@ Cb, and define a linear functional ¢,: E; — C by
@ola + Aby):=Afor ae A, 2 € C. It is easy to check that ¢, is continuous.
By the Hahn-Banach Theorem ¢, extends to a continuous linear functional
@: E—C. Then ¢|A =0, but ¢|B # 0, which is a contradiction. O

B.10. Compact Mappings. A linear mapping yv: E — F between two topolo-
gical vector spaces E and F is called compact or completely continuous, if
there exists a neighborhood U of zero in E such that y(U) is relatively
compact in F. In particular, a compact linear mapping is continuous.

Example. Suppose X is an open subset of C and Y € X is a relatively
compact open subset of X. Then the restriction mapping
B:O0X)->0(Y), fi=f]|Y,
is compact. One sees this as follows. Since Y is compact in X, it follows that

U:={fe O(X):sup | f(x)] <1

xe¥Y

is a neighborhood of zero in ¢(X). By Montel’s Theorem the set

M=o o sup fa0)] <1

yeY

is compact in ¢(Y). The claim now follows since f(U) = M.

B.11. Theorem of L. Schwartz. Suppose E and F are Frechet spaces and ¢,
v: E — F are continuous linear mappings such that ¢ is surjective and s is
compact. Then the image of the mapping ¢ — . E — F has finite codimension
in F.

For the proof see [60].
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Complex atlas 2
Complex structure 2
Connecting homomorphism 123
Continuation, analytic 44, 46, 47
Coordinate, local 2
Coordinate neighborhood 5
Cotangent bundle, holomorphic 222
Cotangent space 61
Cotangent vectors of type (1, 0) resp.
0,1) 62
Covering 96
finer 98
Leray 101
Covering map 24
branched 20ff.
Galois 33, 52
normal 33
regular 33
universal 31ff.
Covering space associated to a presheaf
42
Covering transformation 31ff,, 33
Critical value 29
Crossed homomorphism 214
Curve 13
closed 17
inverse 15
lifting property 25
null-homotopic 17
l-cycle 161

1187,

Deck transformation 31ff, 33
Degree of a divisor 127
Delta distribution of Dirac 191
Differential 61
abelian 65
Differential equation
Bessel's 92ff.
linear 81ff, 84
Differential form 59fT.
antiholomorphic 153
closed 67

Author and Subject Index

differentiable 63
of degree one 62
of degree two 65
of type (1, 0) resp. (0, 1) 62
exact 67
exterior differentiation of 66
harmonic 154
holomorphic 63
integration of 68ff.
meromorphic 64
primitive of 70
pull-back of 67
support of 77
Dirac, Paul Adrien Maurice (b. 1902)
Dirac delta distribution 191
Dirichlet, Peter Gustav Lejeune
(1805-1859)
Dirichlet problem
Discrete 20
Distribution 190
differentiation of 191
Divisor 127
canonical
degree 127
line bundle of a 223
multiple of 127
principal 127
Divisor, (weak) solution of 159
Dolbeault, Pierre (b. 1924)
Dolbeault’s Lemma 105ff.
Theorem of 125

175fF.

127

Doubly periodic function 12, 148, 165
Duality Theorem of Serre  132ff,, 138
Elementary differential 152

Elementary symmetric functions 48
Elliptic curve 213

Elliptic integrals of the first kind
Elliptic Riemann surface 211
Embedding 143
Epimorphism of sheaves
Essential singularity 63
Exact cohomology sequence
Exact differential form 67
Exact sequence of sheaves
Exponential of matrices 86
Exterior differentiation of forms 66
Exterior product 65

173

120
118,123

120



Author and Subject Index

Factors of automorphy 85
Fiber of a map 20
Fiber-preserving mapping 20
Finer covering 98
Finiteness theorem 109f., 149
Florack, Herta (b. 1921) 205
Fréchet, Maurice (1878-1973)
Fréchet space 239
Free homotopy 19
Fuchs, Lazarus (1833-1902)
singularity of Fuchsian type 89
Function
additively automorphic 74
algebraic 48ff,, 54
doubly periodic 12, 148, 165
elementary symmetric 48
harmonic 67
holomorphic $
locally subharmonic 179
meromorphic 7
multi-valued holomorphic
(meromorphic) 20
schlicht 208
smoothing 193
square integrable 109
subharmonic 179
Weierstrass - 13
Function germ
holomorphic 42
meromorphic 42
Fundamental group 13ff, 17
Fundamental Theorem of Algebra 12
Fundamental system of solutions 85

Galois, Evariste (1811-1832)
Galois covering 33, 52, 215
Gauss, Carl Friedrich (1777-1855)
Gaussian number plane (complex

plane) 3
Genus 115
Germ

of holomorphic function 42
of meromorphic function 42
Globally generated sheaf 142

Hahn, Hans (1879-1934)
Hahn-Banach Theorem 241

251

Harmonic differential form 154
Harmonic function 67
Harnack, Axel (1851-1888)

Harnack’s inequality 185

Harnack’s Theorem 174
Hilbert, David (1862-1943)

Hilbert space 240

Riemann-Hilbert problem 231ff.
Hodge, William Vallance Douglas

(1903-1975)

Theorem of deRham-Hodge 157
Holomorphic cotangent bundle 222
Holomorphic function 5
Holomorphic

function germ 42

linear structure 220

mapping 6

section 222

vector bundle 220
Holomorphically

compatible 2

trivial 220
Homologous 161
Homology group 161

Homomorphism

connecting 123

crossed 214
Homotopy 13ff.

free 19
Hurwitz, Adolf (1859-1919)

Riemann-Hurwitz formula 140
Hyperbolic Riemann surface 211
Hyperelliptic 141

Identity Theorem 6, 43

Immersion 143

Index of speciality 130

Inductive limit 99

Integral, elliptic 173

Integration of differential forms 68ff.
Inverse curve 15

Isomorphic Riemann surfaces 6

Jacobi, Carl Gustav Jakob (1804-1851)
173
inversion problem
variety 170

1661, 171

Koebe, Paul (1882-1945) 206
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L?norm 109
Lattice 166
Leray, Jean (b. 1906)
Leray covering 101
Leray’s Theorem 101
Lifting 22
of curves 23
uniqueness of 22
Limit, inductive 99
Line bundle 219ff.
of a divisor 223
Linear chart 219
Linear differential equation 81ff.
Liouville, Joseph (1809-1882)
Liouville’s Theorem 12
Liouville’s Theorem for harmonic
functions 185
Local coordinate 5
Local subharmonic function 179
Maximum Principle 179
Local trivialization 219
Locally arcwise connected 14
Locally convex 239
Locally trivial 219

Malgrange, Bernard (b. 1928) 196
Manifold 2, 237
differentiable 238
Mapping
biholomorphic 6
compact 241
completely continuous 241
fiber-preserving 20
holomorphic 6, 10ff.
proper 28
Maximal analytic continuation 46
Maximum Principle 11
Mean Value Principle 178
Meromorphic 7
Meromorphic differential form 64
Meromorphic function 7
Meromorphic function germ 42
Meromorphic section 225
Mittag-Leffler, Magnus Gosta
(1846-1927)
Mittag-Leffler distribution
residue of 133
solution of 146, 152

133, 146

Author and Subject Index

Theorem of 201ff.
Monodromy Theorem 45
Monomorphism of sheaves 120
Multiplicatively automorphic 231
Multiplicity 10, 29
Multi-valued holomorphic

(meromorphic) function 20

n-sheeted holomorphic covering
map 30
Neumann, Carl Gottfried (1832-1925)
function 94
Norm 239
Normal covering 33
Null-homotopic 17
Number of sheets 26

*-operator 153

Parabolic Riemann surface 211

Partition of unity 238

Pathwise connected 14

Period 73
homomorphism 73
lattice 167

Perron, Oskar (1880-1975)

Picard, Emile (1856-1941)
big Theorem of 214
little Theorem of 213
Picard group 170

Poincare, Jules Henri (1854-1912) 206
Theorem of Poincaré-Volterra 186

Poisson, Siméon Denis (1781-1840)
Poisson integral 176

Pole 7

Presheaf 40

Primitive 70

Principal divisor 127

Proper mapping 28

Puiseux, Victor (1820-1883)
Puiseux expansions 57ff.

Pull-back of differential forms 67

175, 180

Rado, Tibor (1895-1965)
Ramification point 21

185, 186



Author and Subject Index

Rank of a vector bundle 219
Refining map 98
Regular
boundary point 182
covering 33
singular point 89
Removable singularity 63
Removable Singularities Theorem,
Riemann’s 5
Residue 63, 132
of a Mittag-Leffler distribution 133
Residue Theorem 80
Restriction homomorphism 40
deRham, Georges (b. 1903)
deRham group 125
holomorphic deRham group 206
Theorem of 126
Theorem of deRham-Hodge 157
Riemann, Bernhard (1826-1866)
Riemann-Hilbert problem 231ff.
Riemann-Hurwitz formula 140
Riemann Mapping Theorem 206ff,
210
Riemann’s Removable Singularities
Theorem 5

Riemann-Roch Theorem 126ff, 129
Riemann sphere 3
Riemann surface 3

Roch, Gustav (1839-1866)
Riemann-Roch Theorem 126ff, 129

Rohrl, Helmut (b. 1927) 231
Roots 28
Runge, Carl (1856-1927)
Runge Approximation Theorem
196ff., 200
Runge subset 187

Schlicht function 208
Schwartz, Laurent (b. 1915)
Theorem of 241
Section 221
holomorphic 222
meromorphic 225
Semi-norm 239
Sequence, exact 120
Serre, Jean-Pierre (b. 1926)
Serre Duality Theorem
Sheaf 40ff.

132ff, 138
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Sheaf axioms 40
Sheaf homomorphism 118
Short exact sequence 120
Simply connected 17
Singularity
essential 63
of Fuchsian type 89
removable 63
Skyscraper sheaf 128
Solution
of a divisor 159
of a Mittag-Leffler distribution
146, 202ff.
Solutions, fundamental system of 85
Sphere, Riemann 3
Square integrable
cochain 111
function 109
Stalk 40
Star-operator 153
Star-shaped 18
Stein, Karl (b. 1913)
216, 217
Stokes, George Gabriel (1819-1903)
Theorem 78
Subharmonic function 179
Summand of automorphy 74, 215
Support
of a differentiable form 77
of a function 77, 190, 237

196, 205, 214,

Theta function 166

Topological vector space

Torus 4

Total branching order 140

Transition functions 220

Triviality of vector bundles 219, 228ff.

Type (1, 0) resp. (0, 1), cotangent
vectors of 62

238fT.

Unbranched holomorphic map 21
Uniformizing parameter 5
Universal covering 31ff.

Vector bundle 219ff.
holomorphic 220
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Vector (continued)
holomorphically trivial 220
rank of a 219
trivial 219
Volterra, Vito (1860-1940)
Theorem of Poincaré-Volterra 186

Weierstrass, Karl (1815-1897)

Author and Subject Index

Weierstrass’ Theorem 201fT.
Weierstrass §?-function 13
Weierstrass point 150
weight of a Weierstrass point 150
Weyl, Hermann (1885-1955)
Lemma 190ff, 194
Wronski, Josef-Maria (1778-1853)
Wronskian determinant  148ff.
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