


Springer 
New York 
Berlin 
Heidelberg 
Barcelona 
Hong Kong 
London 
Milan 
Paris 
Singapore 
Tokyo 

Graduate Texts in Mathematics 81 
Editorial Board 

S. Axler F.W. Gehring K.A. Ribet 



Graduate Texts in Mathematics 

1 TAKEun/ZARING. Introduction to Axiomatic Set Theory. 2nd ed. 
2 OXTOBY. Measure and Category. 2nd ed. 
3 SCHAEFFER. Topological Vector Spaces. 
4 HILTON!STAMMBACH. A Course in Homological Algebra. 
5 MAC LANE. Categories for the Working Mathematician. 
6 HUGHES/PIPER. Projective Planes. 
7 SERRE. A Course in Arithmetic. 
8 TAKEun/ZARING. Axiometic Set Theory. 
9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory. 
10 COHEN. A Course in Simple Homotopy Theory. 
11 CONWAY. Functions of One Complex Variable. 2nd ed. 
12 BEALS. Advanced Mathematical Analysis. 
13 ANDERSON/FULLER. Rings and Categories of Modules. 
14 GOLUBITSKY GUILEMIN. Stable Mappings and Their Singularities. 
15 BERBERIAN. Lectures in Functional Analysis and Operator Theory. 
16 WINTER. The Structure of Fields. 
17 ROSENBLATT. Random Processes. 2nd ed. 
18 HALMOS. Measure Theory. 
19 HALMOS. A Hilbert Space Problem Book. 2nd ed., revised. 
20 HUSEMOLLER. Fibre Bundles. 2nd ed. 
21 HUMPHREYS. Linear Algebraic Groups. 
22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic. 
23 GREUB. Linear Algebra. 4th ed. 
24 HOLMES. Geometric Functional Analysis and Its Applications. 
25 HEWfIT/STROMBERG. Real and Abstract Analysis. 
26 MANES. Algebraic Theories. 
27 KELLEY. General Topology. 
28 ZARISKI/SAMUEL. Commutative Algebra. Vol. I. 
29 ZARISKI/SAMUEL. Commutative Algebra. Vol. II. 
30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts. 
31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra. 
32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory. 
33 HIRSCH. Differential Topology. 
34 SPITZER. Principles of Random Walk. 2nd ed. 
35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed. 
36 KELLEY/NAMIOKA et al. Linear Topological Spaces. 
37 MONK. Mathematical Logic. 
38 GRAUERT/FRITZSCHE. Several Complex Variables. 
39 ARVESON. An Invitation to C· -Algebras. 
40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed. 
41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed. 
42 SERRE. Linear Representations of Finite Groups. 
43 GILLMAN/JERISON. Rings of Continuous Functions. 
44 KENDIG. Elementary Algebraic Geometry. 
45 LOEVE. Probability Theory I. 4th ed. 
46 LoEVE. Probability Theory II. 4th ed. 
47 MOISE. Geometric Topology in Dimentions 2 and 3. 

continu.ed after inda 



Otto Forster 

Lectures on 
Riemann Surfaces 
Translated by Bruce Gilligan 

With 6 Figures 

Springer 



Otto Forster 
Mathematisches Institut 
Univeritiit Miinchen 
Theresienstrasse 39 
W-8000 Miinchen 2 
Federal Republic of Germany 

Editorial Board 

S. Axler 
Mathematics Department 
San Francisco State University 
San Francisco, CA 94132 
USA 

K.A. Ribet 
Department of Mathematics 
University of California at Berkeley 
Berkeley, CA 94720-3840 
USA 

Bruce Gilligan (Translator) 
Department of Mathematics 
University of Regina 
Regina, Saskatschewan 
Canada S4S 0A4 

F.W. Gehring 
Mathematics Department 
East Hall 
University of Michigan 
Ann Arbor, MI 48109 
USA 

Mathematics Subject Classification (1991): 30-01, 30 Fxx 

Library of Congress Cataloging in Publication Data 

Forster, Otto, 1937-
Lectures on Riemann surfaces. 

(Graduate texts in mathematics; 81) 
Translation of: Riemannsche Fliichen. 
Bibliography: p. 
Includes indexes. 
1. Riemann surfaces. 1. Title. I!. Series. 

QA333.F6713 515'.223 81-9054 
AACR2 

Title of the Original German Edition: Riemannsche Fliichen, Heidelberger 
Taschenbiicher 184, Springer-Verlag, Heidelberg, 1977 

© 1981 by Springer-Verlag New York Inc. 
Sottcover reprint of the hardcover 1st edition 1981 
All rights reserved. No part of this book may be translated or reproduced in any form 
without written permission from Springer-Verlag, 175 Fifth Avenue, New York, 
New York 10010, U.s.A. 

9 8 7 6 5 4 (Corrected fourth printing, 1999) 

ISBN-13: 978-1-4612-5963-3 
001: 10.1007/978-1-4612-5961-9 

e-ISBN-13: 978-1-4612-5961-9 



Contents 

Preface 

Chapter 1 
Covering Spaces 

§1. The Definition of Riemann Surfaces 
§2. Elementary Properties of Holomorphic Mappings 
§3. Homotopy of Curves. The Fundamental Group 
§4. Branched and Unbranched Coverings 
§5. The Universal Covering and Covering Transformations 
§6. Sheaves 
§7. Analytic Continuation 
§8. Algebraic Functions 
§9. Differential Forms 

§1O. The Integration of Differential Forms 
§11. Linear Differential Equations 

Chapter 2 
Compact Riemann Surfaces 

§12. Cohomology Groups 
§13. Dolbeault's Lemma 
§14. A Finiteness Theorem 
§15. The Exact Cohomology Sequence 
§16. The Riemann-Roch Theorem 
§17. The Serre Duality Theorem 
§18. Functions and Differential Forms with Prescribed 

Principal Parts 

vii 

1 

1 
10 
13 
20 
31 
40 
44 
48 
59 
68 
81 

96 

96 
104 
109 
118 
126 
132 

146 

v 



VI 

§19. Harmonic Differential Forms 
§20. Abel's Theorem 
§21. The Jacobi Inversion Problem 

Chapter 3 
Non-compact Riemann Surfaces 

§22. The Dirichlet Boundary Value Problem 
§23. Countable Topology 
§24. Weyl's Lemma 
§25. The Runge Approximation Theorem 
§26. The Theorems of Mittag- Leffler and Weierstrass 
§27. The Riemann Mapping Theorem 
§28. Functions with Prescribed Summands of Automorphy 
§29. Line and Vector Bundles 
§30. The Triviality of Vector Bundles 
§31. The Riemann-Hilbert Problem 

Appendix 

A. Partitions of Unity 
B. Topological Vector Spaces 

References 

Symbol Index 

Author and Subject Index 

Contents 

153 
159 
166 

175 

175 
185 
190 
196 
201 
206 
214 
219 
228 
231 

237 

237 
238 

243 

247 

249 



Preface 

This book grew out of lectures on Riemann surfaces which the author gave 
at the universities of Munich, Regensburg and Munster. Its aim is to give 
an introduction to this rich and beautiful subject, while presenting methods 
from the theory of complex manifolds which, in the special case of one 
complex variable, turn out to be particularly elementary and transparent. 

The book is divided into three chapters. In the first chapter we consider 
Riemann surfaces as covering spaces and develop a few basics from topology 
which are needed for this. Then we construct the Riemann surfaces which 
arise via analytic continuation of function germs. In particular this includes 
the Riemann surfaces of algebraic functions. As well we look more closely at 
analytic functions which display a special multi-valued behavior. Examples 
of this are the primitives of holomorphic i-forms and the solutions of linear 
differential equations. 

The second chapter is devoted to compact Riemann surfaces. The main 
classical results, like the Riemann-Roch Theorem, Abel's Theorem and the 
Jacobi inversion problem, are presented. Sheaf cohomology is an important 
technical tool. But only the first cohomology groups are used and these are 
comparatively easy to handle. The main theorems are all derived, following 
Serre, from the finite dimensionality of the first cohomology group with 
coefficients in the sheaf of holomorphic functions. And the proof of this is 
based on the fact that one can locally solve inhomogeneous Cauchy-
Riemann equations and on Schwarz' Lemma. 

In the third chapter we prove the Riemann Mapping Theorem for simply 
connected Riemann surfaces (or Uniformization Theorem) as well as the 
main theorems of Behnke-Stein for non-compact Riemann surfaces, i.e., the 
Runge Approximation Theorem and the Theorems of Mittag-Leffler and 
Weierstrass. This is done using Perron's solution of the Dirichlet problem 
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Vlll Preface 

and Malgrange's method of proof, based on Weyl's Lemma, of the Runge 
Approximation Theorem. In this chapter we also complete the discussion of 
Stein's Theorem, begun in Chapter 1, concerning the existence of holomor-
phic functions with prescribed summands of automorphy and present 
Rbhrl's solution of the Riemann-Hilbert problem on non-compact Riemann 
surfaces. 

We have tried to keep the prerequisites to a bare minimum and to 
develop the necessary tools as we go along. However the reader is assumed 
to be familiar with what would generally be covered in one semester courses 
on one complex variable, on general topology and on algebra. Besides these 
basics, a few facts from differential topology and functional analysis have 
been used in Chapters 2 and 3 and these are gathered together in the 
appendix. Lebesgue integration is not needed, as only holomorphic or differ-
entiable functions (resp. differential forms) are integrated. We have also 
avoided using, without proof, any theorems on the topology of surfaces. 

The material presented corresponds roughly to three semesters of lec-
tures. However, Chapters 2 and 3 presuppose only parts of the preceding 
chapters. Thus, after §§1, 6 and 9 (the definitions of Riemann surfaces, 
sheaves and differential forms) the reader could go directly to Chapter 2. 
And from here, only §§ 12-14 are needed in Chapter 3 to be able to handle 
the main theorems on non-compact Riemann surfaces. 

The English edition includes exercises which have been added at the end 
of every section and some additional paragraphs in §§8, 17 and 29. As well, 
the terminology concerning coverings has been changed. Thanks are due to 
the many attentive readers of the German edition who helped to eliminate 
several errors; in particular to G. Elencwajg, who also proposed some of 
the exercises. Last but not least we would like to thank the translator, 
B. Gilligan, for his dedicated efforts. 

Munster 
May, 1981 

Addendum to Fourth Corrected Printing 

O. FORSTER 

For the second and fourth printing a number of misprints and errors have 
been corrected. I wish to thank B. Gilligan, B. Elsner and O. Hien for pre-
paring lists of errata. 

April 1999 O. FORSTER 



CHAPTER 1 

Covering Spaces 

Riemann surfaces originated in complex analysis as a means of dealing with 
the problem of multi-valued functions. Such multi-valued functions occur 
because the analytic continuation of a given holomorphic function element 
along different paths leads in general to different branches of that function. It 
was the idea of Riemann to replace the domain of the function with a many 
sheeted covering of the complex plane. If the covering is constructed so that 
it has as many points lying over any given point in the plane as there are 
function elements at that point, then on this" covering surface" the analytic 
function becomes single-valued. Now, forgetting the fact that these surfaces 
are "spread out" over the complex plane (or the Riemann sphere), we get 
the notion of an abstract Riemann surface and these may be considered as 
the natural domain of definition of analytic functions in one complex 
variable. 

We begin this chapter by discussing the general notion of a Riemann 
surface. Next we consider covering spaces, both from the topological and 
analytic points of view. Finally, the theory of covering spaces is applied to 
the problem of analytic continuation, to the construction of Riemann sur-
faces of algebraic functions, to the integration of differential forms and to 
finding the solutions of linear differential equations. 

§ 1. The Definition of Riemann Surfaces 
In this section we define Riemann surfaces, holomorphic and meromorphic 
functions on them and also holomorphic maps between Riemann surfaces. 

Riemann surfaces are two-dimensional manifolds together with an addi-
tional structure which we are about to define. As is well known, an 
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2 1 Covering Spaces 

n-dimensional manifold is a Hausdorff topological space X such that every 
point a E X has an open neighborhood which is homeomorphic to an open 
subset of IW. 

1.1. Definition. Let X be a two-dimensional manifold. A complex chart on X 
is a homeomorphism cP: U -> V of an open subset U c X onto an open 
subset V c C. Two complex charts CPi: Ui -> V;, i = 1,2 are said to be holo-
morphically compatible if the map 

CP2 c CPl 1 : CPI(U I n U2)->CP2(U I n U2 ) 

is biholomorphic (see Fig. 1). 

Figure! 

A complex atlas on X is a system 12( = {CPi: Ui -> V;, i E l} of charts which 
are holomorphically compatible and which cover X, i.e., UiE/ U i = X. 

Two complex atlases 121 and 121' on X are called analytically equivalent if 
every chart of 12( is holomorphically compatible with every chart of 12('. 

1.2. Remarks 
(a) If cP: U -> V is a complex chart, U I is open in U and VI := cp( U d, then 

cP I U I -> VI is a chart which is holomorphically compatible with cP: U -> V. 
(b) Since the composition of biholomorphic mappings is again biholo-

morphic, one easily sees that the notion of analytic equivalence of complex 
atlases is an equivalence relation. 

1.3. Definition. By a complex structure on a two-dimensional manifold X we 
mean an equivalence class of analytically equivalent atlases on X. 

Thus a complex structure on X can be given by the choice of a complex 
atlas. Every complex structure L on X contains a unique maximal atlas 11(*. 
If 11( is an arbitrary atlas in L, then I1l* consists of all complex charts on X 
which are holomorphically compatible with every chart of \H. 



I The Definition of Riemann Surfaces 3 

1.4. Definition. A Riemann surface is a pair (X, L), where X is a connected 
two-dimensional manifold and L is a complex structure on X. 

One usually writes X instead of (X, L) whenever it is clear which complex 
structure L is meant. Sometimes one also writes (X, where is a re-
presentative of L. 

Convention. If X is a Riemann surface, then by a chart on X we always 
mean a complex chart belonging to the maximal atlas of the complex struc-
ture on X. 

Remark. Locally a Riemann surface X is nothing but an open set in the 
complex plane. For, if <P: V --+ V c C is a chart on X, then <P maps the open 
set V c X bijectively onto V. However, any given point of X is contained in 
many different charts and no one of these is distinguished from the others. 
For this reason we may only carryover to Riemann surfaces those notions 
from complex analysis in the plane which remain invariant under biholo-
morphic mappings, i.e., those notions which do not depend on the choice of 
a particular chart. 

1.5. Examples of Riemann Surfaces 
(a) The Complex Plane C. Its complex structure is defined by the atlas 

whose only chart is the identity map C --+ C. 
(b) Domains. Suppose X is a Riemann surface and Y c X is a domain, 

i.e., a connected open subset. Then Y has a natural complex structure which 
makes it a Riemann surface. Namely, one takes as its atlas all those complex 
charts <P: V --+ Von X, where V c Y. In particular, every domain Y c C is a 
Riemann surface. 

(c) The Riemann sphere !p 1. Let !p I ,= C U {oo}, where 00 is a symbol not 
contained in C. Introduce the following topology on !pl. The open sets are 
the usual open sets V c C together with sets of the form V U {oo}, where 
V c C is the complement of a compact set K c C. With this topology !pI is a 
compact Hausdorff topological space, homeomorphic to the 2-sphere S2. Set 

V 1 ,=!pI\{00}=C 

V2 ,=!pI\{O}=C* U {oo}. 

Define maps <Pi: Vi --+ C, i = 1,2, as follows. <PI is the identity map and 

( )._{1/Z forzEC* 
<P2 Z .- o for z = 00. 

Clearly these maps are homeomorphisms and thus !pI is a two-dimensional 
manifold. Since V I and V 2 are connected and have non-empty intersection, 
!pI is also connected. 



4 1 Covering Spaces 

The complex structure on pi is now defined by the atlas consisting of the 
charts <Pi: U i C, i = 1, 2. We must show that the two charts are holo-
morphically compatible. But <Pl(U l (l Uz) = <Pz(U l (l Uz) = C* and 

<Pl ZI-+1/z, 
is biholomorphic. 

Remark. The notation pi comes from the fact that one may consider pi 
as the 1-dimensional projective space over the field of complex numbers. 

(d) Tori. Suppose WI' W2 EO C are linearly independent over 1Ft Define 

r:= LZw l + 7l.W2 = {nwl + mwz: n, m EO LZ}. 

r is called the lattice spanned by WI and W z (Fig. 2). Two complex numbers 
z, z' EO C are called equivalent mod r if Z - Z' EO r. The set of all equivalence 
classes is denoted by c/r. Let rc: C c/r be the canonical projection, i.e., 
the map which associates to each point Z EO C its equivalence class mod r. 

Figure 2 

Introduce the following topology (the quotient topology) on c/r. A 
subset U c c/r is open precisely if rc-I(U) c C is open. With this topology 
c/r is a Hausdorff topological space and the quotient map rc: C c/r is 
continuous. Since C is connected, c/r is also connected. As well c/r is 
compact, for it is covered by the image under rc of the compact 
parallelogram 

P:={,1W 1 + j.1W2: A, j.1 EO [0, 1]}. 

The map rc is open, i.e., the image of every open set V c C is open. To see this 
one has to show that V:= rc l(rc(V)) is open. But 

V = U (w + V). 
WEr 

Since every set W + V is open, so is V. 
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The complex structure on c/r is defined in the following way. Let V c C 
be an open set such that no two points in V are equivalent under r. Then 
V ,= n( V) is open and n I V --+ V is a homeomorphism. Its inverse qJ: V -> V 
is a complex chart on c/r. Let 'll be the set of all charts obtained in this 
fashion. We have to show that any two charts qJi: Vi --+ V;, i = 1,2, belong-
ing to '2l are holomorphically compatible. Consider the map 

1jJ'=qJ2 qJll: qJI(V I n V 2 )--+qJ2(V I n V 2 ). 

For every ZEqJl(V l n V 2 ) one has n(ljJ(z)) = qJl l (z) = n(z) and thus 
ljJ(z) - Z E r. Since r is discrete and IjJ is continuous, this implies that 
ljJ(z) - z is constant on every connected component of qJI(V 1 n V 2)' Thus IjJ 
is holomorphic. Similarly IjJ - I is also holomorphic. 

Now let c/r have the complex structure defined by the complex atlas'll. 

Remark. Let Sl = {z E C: I z I = 1} be the unit circle. The map which 
associates to the point of c/r represented by A.WI + flW2, (i., f1 E IR), the 
point 

is a homeomorphism of c/r onto the torus Sl x Sl. 

1.6. Definition. Let X be a Riemann surface and Y c X an open subset. A 
function f: Y --+ C is called hoLomorphic, if for every chart 1jJ: V --+ V on X the 
function 

f IjJ - I: 1jJ( V n Y) --+ C 

is holomorphic in the usual sense on the open set 1jJ( V n Y) c C. The set of 
all functions holomorphic on Y will be denoted by (I)(Y). 

1.7. Remarks 
(a) The sum and product of holomorphic functions are again holomor-

phic. Also constant functions are holomorphic. Thus ((i(Y) is a C-algebra. 
(b) Of course the condition in the definition does not have to be verified 

for all charts in a maximal atlas on X, just for any family of charts covering 
Y. Then it is automatically fulfilled for all other charts. 

(c) Every chart 1jJ: V --+ Von X is, in particular, a complex-valued func-
tion on V. Trivially it is holomorphic. One also calls IjJ a local coordinate or 
a uniformizing parameter and (V, 1jJ) a coordinate neighborhood of any point 
a E V. In this context one generally uses the letter Z instead of 1jJ. 

1.8. Theorem (Riemann's Removable Singularities Theorem). Let V be an 
open subset of a Riemann surface and let a E V. Suppose the function 
f E (I(V\{a}) is bounded in some neighborhood of a. Then f can be extended 
uniquely to a function J E 0( V). 
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This follows directly from Riemann's Removable Singularities Theorem 
in the complex plane. 

We now define holomorphic mappings between Riemann surfaces. 

1.9. Definition. Suppose X and Yare Riemann surfaces. A continuous map-
ping f: X ---> Y is called holomorphic, if for every pair of charts l/Jl: U 1 ---> VI 
on X and l/Jz: Uz ---> Vz on Y withj{U1) c Uz , the mapping 

l/J2 f l/Jl1: VI ---> V2 

is holomorphic in the usual sense. 
A mapping f: X ---> Y is called biholomorphic if it is bijective and both 

f: X ---> Y and f - 1: Y ---> X are holomorphic. Two Riemann surfaces X and 
Yare called isomorphic if there exists a biholomorphic mappingf: X ---> Y. 

1.10. Remarks 
(a) In the special case Y = C, holomorphic mappings f: X ---> Care 

clearly the same as holomorphic functions. 
(b) If X, Y and Z are Riemann surfaces andf: X ---> Y and g: Y ---> Z are 

holomorphic mappings, then the composition g= f: X ---> Z is also 
holomorphic. 

(c) A continuous mapping f: X -+ Y between two Riemann surfaces is 
holomorphic precisely if for every open set V c Y and every holomorphic 
function l/J E ((:I(V), the" pull-back" function l/J c f: f-l(V) -+ C is contained 
in (!(f-l(V)). This follows directly from the definitions and the remarks 
(1.7.c) and (1.10.b). 

In this way a holomorphic mapping f: X -+ Y induces a mapping 

f*(l/J) = l/J :f 

One can easily check thatf* is a ring homomorphism. If g: Y ---> Z is another 
holomorphic mapping, W is open in Z, V:=g-I(W) and U :=f-l(V), then 
(g c f)*: ((:I(W) ---> (q U) is the composition of the mappings g*: 0(W) -+ @(V) 
andf*: ((:1(V)--->0'(U), i.e., (g of)* =f* c g*. 

1.11. Theorem (Identity Theorem). Suppose X and Yare Riemann surfaces 
and fl' f2: X -+ Yare two holomorphic mappings which coincide on a set 
A c X having a limit point a E X. Thenfl andf2 are identically equal. 

PROOF. Let G be the set of all points x E X having an open neighborhood W 
such that fl I W = f21 w. By definition G is open. We claim that G is also 
closed. For, suppose b is a boundary point of G. Thenfl(b) = f2(b) sincefl 
and are continuous. Choose charts cp: U -+ V on X and l/J: U' -+ V' on Y 
with b E U and j;(U) cU'. We may also assume that U is connected. The 
mappings 

gi := l/Jo j; 0 cp - 1: V ---> V' c C 
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are holomorphic. Since U n G f 0, the Identity Theorem for holomorphic 
functions on domains in C implies gl and g2 are identically equal. Thus 
fl I U = f21 U. Hence h E G and thus G is closed. Now since X is connected 
either G = 0 or G = X. But the first case is excluded since a E G (using the 
Identity Theorem in the plane again). Hence andf2 coincide on all of X. 

o 
1.12. Definition. Let X be a Riemann surface and Y be an open subset of X. 
By a meromorphicfunction on Y we mean a holomorphic functionf: Y' -> C, 
where Y' c Y is an open subset, such that the following hold: 

(i) Y\ Y' contains only isolated points. 
(ii) For every point p E y\ Y' one has 

Iimlj{x)1 = 00. 
x-p 

The points of y\ Y' are called the poles of f The set of all meromorphic 
functions on Y is denoted by . If( Y). 

1.13. Remarks 
(a) Let (U, z) be a coordinate neighborhood ofa pole p offwith z(p) = O. 

Then f may be expanded in a Laurent series 

,,:::; - k 

in a neighborhood of p. 
(b) .11( Y) has the natural structure of a C-algebra. First of all the sum 

and the product of two meromorphic functions/, g E .if( Y) are holomorphic 
functions at those points where both f and 9 are holomorphic. Then one 
holomorphically extends, using Riemann's Removable Singularities 
Theorem, f + 9 (resp. /g) across any singularities which are removable. 

1.14. Example. Suppose n 2:: 1 and let 

F(z) = z" + CIZ"-I + ... + en, 

be a polynomial. Then F defines a holomorphic mapping F: C -> C. If one 
thinks ofC as a subset of /pI, then limz_ooIF(z)1 = 00. Thus FE.:lt(/P I ). 

We now interpret meromorphic functions as holomorphic mappings into 
the Riemann sphere. 

1.15. Theorem. Suppose X is a Riemann surface andfE .J((X). For each pole 
p off, definef{p):= 00. Thenf: X -> /pI is a holomorphic mapping. Conversely, 
iff: X -> /pI is a holomorphic mapping, thenfis either identically equal to 00 or 
elsef- I( (0) consists of isolated points andf: X\f- l( 00) -> C is a meromorphic 
function on X. 



1 Covering Spaces 

From now on we will identify a meromorphic functionf EO <4t'(X) with the 
corresponding holomorphic mapping f: X -> [p 1. 

PROOF 

(a) Let f EO ./II(X) and let P be the set of poles off Then f induces a 
mapping f: X -> [p I which is clearly continuous. Suppose rp: U -> V and 
t/;: U' -> V' are charts on X and [pI resp. withJ(U) c U'. We have to show 
that 

9 ,= tlf f rp- 1: V -> V' 

is holomorphic. Since f is holomorphic on X\P, it follows that 9 is holomor-
phic on V\rp(P). Hence by Riemann's Removable Singularities Theorem, 9 is 
holomorphic on all of V. 

(b) The converse follows from the Identity Theorem (1.11). 0 

1.16. Remark. From (1.11) and (1.15) it follows that the Identity Theorem 
also holds for meromorphic functions on a Riemann surface. Thus any 
functionf EO .it(X) which is not identically zero has only isolated zeros. This 
implies that .1t'(X) is a field. 

EXERCISES 

1.1. (a) One point compactijication of[R". For n 2: lletx be a symbol not belonging 
to [R". Introduce the following topology on the set X ,= [R" U {oo}. A set 
U c X is open, by definition, if one of the following two conditions is 
satisfied: 

(i) 00 ¢ U and U is open in c:;t;" with respect to the usual topology on [R". 

(ii) x E U and K ,= X\U is compact in [R" with respect to the usual topology 
on [;.!n. 

Show that X is a compact Hausdorff topological space. 
(h) Stereographic projection. Consider the unit II-sphere 

S" = {(XI' ... , x.+d E [I;l"+l: XI + ... + X;+I = 1} 

and the stereographic projection 

0-: S· -> [Rn U {oo) 

given by 

11 -=-- Ix (X 10 ... , x.) if X. + I 1 
u(xI, ... ,x.+d'=j -.+1 

\ 00, if Xn + 1 = 1. 

Show that u is a homeomorphism of S· onto X. 

1.2. Suppose 

(; E GL(2, C). 
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Show that the linear fractional transformation 

1(z) = az + b, 
cz + d 

which is holomorphic on {z E C: cz + d =1= OJ, can be extended to a meromorphic 
function on pi (also denoted byf). Show thatf: pi --> pi is biholomorphic, i.e.,f 
is an automorphism of pl. 

1.3. Identify pi with the unit sphere in 1Ri 3 using the stereographic projection 

0': S2 --> C u {oo 1 ":' pi 

defined in Ex. 1.1. Let SO(3) be the group of orthogonal 3 x 3-matrices having 
determinant 1, i.e., 

SO(3) = {A E GL(3, 1Ri): AT A = 1, det A = I}. 

For every A E SO(3), show that the map 

(J • A - 0'- I: Jl>l ...... pi 

is biholomorphic. 
[Hint: Use the fact that every matrix A E SO(3) may be written as a product 
A = Al ... A k , where 

or else is a matrix of the form 

with B E SO(2).] 

1.4. Let f = ZWI + ZW2 and f' = ZW'1 + ZW'2 be two lattices in C. Show that 
f = f' if and only if there exists a matrix A E SL(2, Z) : = {A E GL(2, Z): 
det A = I} such that 

1.5. (a) Let f, r' c C be two lattices. Suppose Ct. E C * such that Ct.f c f'. Show that 
the map C --> C, Z f--> Ct.Z induces a holomorphic map 

C/f --> C/f', 

which is biholomorphic if and only if Ct.f = f'. 
(b) Show that every torus X = C/f is isomorphic to a torus of the form 

X(r):=C/(Z + b), 

where r E C satisfies Im(r) > O. 

(c) Suppose E SL(2, Z) and Im(T) > O. Let 

, ar + b 
r := cr + d' 

Show that the tori X(r) and X(r') are isomorphic. 
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§2. Elementary Properties of Holomorphic Mappings 

In this section we note some of the elementary topological properties of 
holomorphic mappings between Riemann surfaces. Using these we show 
that one can easily derive some of the famous theorems of complex analysis, 
e.g., Liouville's Theorem and the Fundamental Theorem of Algebra. 

2.1. Theorem (Local Behavior of Holomorphic Mappings). Suppose X and 
Yare Riemann surfaces andf: X -> Y is a non-constant holomorphic mapping. 
Suppose a E X and b ,= 1(a). Then there exists an integer k 1 and charts 
cP: U -> V on X and 1/1: U' -> V' on Y with the following properties: 

(i) a E U, cp(a) = 0; bE U', I/I(b) = O. 
(ii)1(U)c U'. 

(iii) The map F'=I/I cf cp-I: V-> V' is given by 

F(z) = Zk for all z E V. 

PROOF. First we note that there exist charts CPI: U I -> VI on X and 
1/1: U' -+ V' on Y such that properties (i) and (ii) are satisfied if one replaces 
(U, cp) by (U I , cpd. Now it follows from the Identity Theorem that the 
function 

is non-constant. Since II (0) = 0, there is a k :0,. 1 such that 11 (z) = 19(z) , 
where g is a holomorphic function on V! with g(O) 1- O. Hence there exists a 
neighborhood of 0 and a holomorphic function h on this neighborhood such 
that hk = g. The correspondence Zl-+ zh(z) defines a biholomorphic mapping 
IX: V2 -+ V of an open neighborhood V2 c VI of zero onto an open neighbor-
hood V of zero. Let U ,= cpll(V2)' Now replace the chart CPI: U I -+ VI by the 
chart cP: U -+ V where cP = ex c cP I' Then by construction the mappmg 
F = 1/1 0 f n cp .. ! satisfies F(z) = Zk. 0 

2.2. Remark. The number k in Theorem (2.1) can be characterized in the 
following way. For every neighborhood U 0 of a there exist neighborhoods 
U c Uo of a and W of b = j{a) such that the setf-I(y) n U contains exactly 
k elements for every point YEW, Y 1- b. One calls k the multiplicity with 
which the mapping f takes the value b at the point a or one just says that f 
has multiplicity k at the point a. 

2.3. Example. Letj{z) = Zk + CI Zk-I + ... + Ck be a polynomial of degree k. 
Then f can be considered as a holomorphic mapping f: /pI -+ /pI where 
1(00) = 00 (cf. §1). Using a chart about 00, one can easily check that 00 is 
taken with multiplicity k. 
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2.4. Corollary. Let X and Y be Riemann surfaces and let f: X ---+ Y be a 
non-constant holomorphic mapping. Thenfis open, i.e., the image of every open 
set under f is open. 

PROOF. It follows directly from Theorem (2.1) that if U is a neighborhood of 
a point a E X then!lU) is a neighborhood of the pointj{a). This impliesfis 
open. 0 

2.5. Corollary. Let X and Y be Riemann surfaces and let f: X ---+ Y be an 
injective holomorphic mapping. Then f is a biholomorphic mapping of X onto 
j{X). 

PROOF. Since f is injective, in the local description of f given by Theorem 
(2.1), one always has k = 1. Hence the inverse mapping f- 1 : .!lX) ---+ X is 
holomorphic. 0 

2.6. Corollary (Maximum Principle). Suppose X is a Riemann surface and 
f: X ---+ IC is a non-constant holomorphic function. Then the absolute value off 
does not attain its maximum. 

PROOF. Suppose that there were a point a E X such that 

R:= If(a)1 = sup{lf(x)l: XE X}. 

Then 

j(X) c K := {z E IC: I z I R}. 

Sincej{X) is open, it lies in the interior of K. This contradicts the assumption 
thatj{a) E oK. 0 

2.7. Theorem. Suppose X and Yare Riemann surfaces. Suppose X is compact 
andf: X ---+ Y is a non-constant holomorphic mapping. Then Y is compact andf 
is surjective. 

PROOF. By (2.4)j{X) is open. Since X is compact,j{X) is compact and thus 
closed. Since the only subsets of a connected topological space which are 
both open and closed are the empty set and the whole space, it follows that 
j{X) = Y. Thusfis surjective and Y compact. 0 

2.8. Corollary. Every holomorphic function on a compact Riemann surface is 
constant. 

This follows from Theorem (2.7) since IC is not compact. 

2.9. Corollary. Every meromorphic function f on (pI is rational, i.e., can be 
written as the quotient of two polynomials. 
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PROOF. The function f has only finitely many poles. For if it did have 
infinitely many poles then they would have a limit point and by the Identity 
Theoremfwould be identically equal to 00. We may assume the point 00 is 
not a pole of f Otherwise consider III instead off Now suppose at> ... , 
a" E C arc the poles off and 

- I 

h,(z) = I C,j(Z - aY, 
j= -k\ 

is the principal part off at the pole a" for v = I, ... , n. Then the function 
g:= f - (hI + ... + h") is holomorphic on [pI and thus a constant by Corol-
lary (2.8). From this it follows that f is rational. 0 

2.10. Liouville's Theorem. Every bounded holomorphic function f: C -> C is 
constant. 

PROOF. By Riemann's Removable Singularities Theorem (2.8)fcan be analy-
tically continued to a holomorphic mappingf: [pI -> C. By Corollary (2.8)f 
is constant. 0 

2.11. The Fundamental Theorem of Algebra. Let n ;::: 1 and let 

f(z) = z" + c I z" - I + ... + Cn 

be a polynomial with coefficients c, E C. Then there exists at least one point 
a E C such that f{a) = O. 

PROOF. The polynomial f may be considered as a holomorphic mapping 
f: pI -> pI, where j(O'J) = O'J. By Theorem (2.7) this mapping is surjective 
and thus 0 E f(C). 0 

2.12. Doubly Periodic Functions. Suppose WI, w 2 E C are linearly indepen-
dent over IR and r:= ?!'WI + ?!'W2 is the lattice spanned by them. A mero-
morphic function/: C -> pI is called doubly periodic with respect to r, if 

j{z) = j(z + w) for every Z E C and W E r. 
Clearly, for this to hold it suffices thatt{z) = j(z + WI) = j(z + W2} for every 
z E C. Let n: C -> c/r be the canonical map. Then the doubly periodic 
function f induces a function F: c;r -> [p I such that f = Fen. It follows 
directly from the definition of the complex structure on c/r that F is a 
meromorphic function on c/r. Conversely, for any meromorphic function 
F: IC/r -> pI, the compositionf = F- n: IC --> !pI is a meromorphic function 
which is doubly periodic with respect to r. Thus the meromorphic functions 
on the torus c/r are in one-to-one correspondence with the meromorphic 
functions on C, doubly periodic with respect to r. Hence from Theorem (2.7) 
we have: 
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2.13. Theorem. Every doubly periodic holomorphic junction f: C -> C is 
constant. Every non-constant doubly periodic meromorphic junctionf: C -> [pI 

attains every value c E [p I . 

EXERCISES (§2) 

2. L Let r c C be a lattice. The Weierstrass j·}-function with respcct to r is defined 
by 

1 (I I ) Pr(z)=z+I ---2-2' 
z wel\O (z - OJ) (0 

(a) Prove that PI' is a doubly periodic meromorphic function with respect to r 
which has poles at the points of r. [Hint: First consider the derivative 

Pdz) = -2 I __ 
(,) E r (z - co) J 

(b) Let f E j((C) be a doubly periodic function with respect to r which has its 
poles at the points of r and which has the following Laurent expansion 
about the origin 

00 

f{z) = I Ck Z\ where C-2 = I, C-l = Co = O. 
k= - 2 

Provethatf= PI' 

2.2. Suppose X is a Riemann surface and f: X -> C is a non-constant holomorphic 
function. Show that Re(f) does not attain its maximum. 

2.3. Suppose f: IC -> IC is a holomorphic function, whose real part is bounded from 
above. Then f is constant. 

2.4. Suppose f: X -> Y is a non-constant holomorphic map and 

f*: ((( Y) -> f (X), f*(qJ) ,= <P f 

Show thatf* is a ring monomorphism. 

2.5. Suppose Pb ... , Pn are points on the compact Riemann surface X and 
X' ,= X\{Pb ... , Pn}. Suppose 

f: X' -> IC 

is a non-constant holomorphic function. Show that the image off comes arbi-
trarily close to every C E C. 

§3. Homotopy of Curves. The Fundamental Group 

In this section we present some of the topological results connected with the 
notion of homotopy of curves. 

By a curve in a topological space X we mean a continuous mapping 
u: I -> X, where 1'= [0, 1] c IR is the unit interval. The point a := u(O) is 
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called the ini tial pain t and b ,= u( 1) the end point of u. One also says that u is 
a curve from a to b or that the curve u joins a to b. 

Let us recall that a topological space X is called arcwise connected or 
pathwise connected if any two points a, hEX can be joined by a curve. An 
arcwise connected space is also connected, i.e., there does not exist a decom-
position X = U I U U 2 where Uland U 2 are non-empty disjoint open sets. 
A topological space is called locally arcwise connected if every point has a 
neighborhood basis of arcwise connected sets. In particular this is always the 
case for manifolds. A connected, locally arcwise connected space X is 
(globally) arcwise connected. For one can easily show that the set of all 
points x E X which can be joined with a given point a E X is both open and 
closed. 

3.1. Definition. Suppose X is a topological space and a, hEX. Two curves u, 
v: I ----> X from a to h are called homotopic, denoted u v, if there exists a 
continuous mapping A: I x I ----> X with the following properties: 

(i) A(t, 0) = u(t) for every tEl, 
(ii) A (t, 1) = v( t) for every tEl, 

(iii) A(O, s) = a and A(l, s) = b for every S E I. 

Remark. If one sets us(t) ,= A(t, s), then every Us is a curve from a to band 
Uo = U, U 1 = v. The family of curves (us)O,;s,;l is said to be a deformation of 
the curve u into the curve v or a homotopy from u to v, cf. Fig. 3. 

b 

Figure 3 

3.2. Theorem. Suppose X is a topological space and a, b E X. Then the notion 
of homotopy is an equwalence relation on the set of all curves from a to b. 

PROOF. Reftexitivity and symmetry are clear. As to the transitivity, suppose 
u, v, w: I ----> X are three curves from a to b with u v and v w. We must 
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show that 14 w. By assumption there exist continuous mappings A, 
B: I x I --+ X such that for every t, s E I the following hold: 

Define C: I x I --+ X by 

A(t, 0) = u(t), 

A(t, 1) = B(t, 0) = v(t), 

B(t, 1) = w(t), 

A(O, s) = B(O, s) = a, 

A(I, s) = B(I, s) = b. 

C(t s):={A(t,2S) 
, B(t, 2s - 1) for 1 s 1. 

Then C is continuous and is a homotopy from u to w. o 
3.3. Lemma. Suppose u: I --+ X is a curve in the topological space X and 
cp: I --+ I is a continuous mapping such that cp(O) = ° and cp( 1) = 1. Then the 
curves 14 and u c cp are homotopic. 

PROOF. Define A: I x I --+ X by 

A(t, s) := 14((1 - s)t + scp(t)). 

Then A is continuous and 

A(t, 0) = u(t), 

A(O, s) = u(O) 

A (t, 1) = (u c cp)( t) 

A(1, s) = 14(1) 

for every t, s E I. Thus 14 and u c cp are homotopic. o 
3.4. Definition. Suppose a, band c are three points in a topological space X, 
u: I -> X is a curve from a to b and v: I -> X is a curve from b to c. 

(i) The product curve 14 . v: I --+ X from a to c is defined by 

(u . v)(t):= {U(2t) for 0 t 1, 
v(2t - 1) for 1 t 1. 

(ii) The inverse curve 14- : I -> X from a to b is defined by 

u- (t):= 14(1 - t) for every tEl. 

The product curve u . v first traces the points of the curve u and then those of 
the curve v but at twice the speed. The inverse curve u- passes along the 
same points as u but in the opposite direction. 

One can easily check that if u 1, U 2: I --+ X are homotopic curves from a to 
b and Vb v2 : I -> X are homotopic curves from b to c, then UI • VI U2 . V2 

and 141 U2' 
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3.5. Definition. Suppose X is a topological space and a E X. By the constant 
curve at a is meant the constant mapping uo: I X, i.e., uo(t) = a for every 
t E /. 

3.6. Theorem. Suppose X is a topological space and a, h, c EX. Suppose u, I" 
w: I X are curves in X such that 

u(O) = a, u(l) = b = v(O), v(1) = c = w(O), w(l) = d. 

Further let Uo be the constant curve at a, 1'0 the constant curt:e at b. Then the 
following homotopies exist: 

(i) Uo . u u U . 1'0' 

(iii) (u . v) . w U . (v' w). 

PROOF 

(i) By the definition of the product of curves 

(uo ' u)(t) = Juo(2t) = u(O) for 0 ::s; t::s; 1, 
\u(2t-l) for1::s;t::s;1. 

Thus Uo . u = u .," !/J, where !/J: I I is the parameter transformation defined 
by !/J(t) = 0 for 0 ::s; t ::s; 1, !/J(t) = 2t - 1 for -! ::s; t ::s; 1. Thus it follows from 
Lemma (3.3) that Uo . u u. Similarly u . Vo u. 

(ii) By definition 

(u . u- )(t) = 2t) 

Now define A: I x I X by 

A(t s)'- Ju(2t(1 - s)) 
, .- \u(2(1 - t)(1 - s)) 

for 0 ::s; t::s; !, 
for 1 ::s; t::s; I. 

for 0 ::s; t ::s; 1, 
for 1 ::s; t ::s; 1. 

Then A is a homotopy from U . u- to the point curve uo . 
(iii) One can easily check that 

(u . v) . w = (u . (v . w)) !/J, 

where !/J: I I is the parameter transformation given by: 

(a) !/J(O) = 0, !/J(t) = i, !/J(l) = 1 
(b) !/J is affine linear on each of the intervals [0, n [t, H 1 J. 

Hence the result follows from Lemma (3.3). o 
Remark. Analogous to (iii) is the following fact. If u l , ... , Un arc curves in 

X such that the initial point of each Uk+ I equals the end point of Uk, then 
bracketing the product U l . U2 ..... Un in various ways corresponds to 
taking various parameter transformations !/J: I I such that !/J(O) = 0 and 
!/J( 1) = 1. In particular all such bracketings are homotopic. 
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3.7. Definition. A curve u: I -> X in a topological space X is called closed if 
u(O) = u( 1). A closed curve u: I -> X with initial and end point a is said to be 
null-homotopic if it is homotopic to the constant curve at a. 

3.8. Theorem and Definition. Suppose X is a topological space and a E X is a 
point. The set 1t t (X, a) of homotopy classes of closed curves in X with initial 
and end point a forms a group under the operation induced by the product of 
curves. This group is called the fundamental group of X with base point a. 

Notation. For any closed curve u denote by cl(u) its homotopy class. Thus 
the group operation in 1t t (X, a) is by definition cl(u) cl(v) = cl(u' v). 

PROOF. The fact that the group operation is well-defined follows from the 
remark at the end of Definition (3.4). Theorem (3.6) implies that the opera-
tion is associative and the class of null homotopic curves is the identity 
element. Inverses satisfy 

o 
3.9. Dependence on the Base Point. Suppose X is a topological space and a, 
bE X are points which are joined by a curve w. Then a mapping 

can be defined as follows: 

j(cl(u)) :=cl(w- . U . w). 

One easily sees that this mapping is an isomorphism. Thus for an arcwise 
connected space X the fundamental group is essentially independent of the 
base point and we often just write 1t1 (X) instead of 1t1 (X, a). Note however 
that the isomorphism 1t1 (X, a) -> 1t t (X, b) depends in general on the curve w 
joining a to b used in its construction. If W t is another curve from a to band 
fl: 1t t(X, a)->1tI(X, b) is defined by 

ft(cl(u» :=cl(wl . U· wd, 

then the automorphism 

F:=flt of: 1tt(X, a)->1tI(X, a) 

satisfies F(cl(u» = cl(wt . w- . u . W· wl), i.e., 

F(IX) = I' . IX • 1'-1 for every IX E 1tt(X, a), 

where I' denotes the homotopy class of the closed curve W t . W-. Thus if 
1t t (X, a) is abelian, then this shows that 1t t (X, a) and 1tt(X, b) are canon-
ically isomorphic. 

3.10. Definition. An arcwise connected topological space X is called simply 
connected if 1t I (X) = O. 
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Remark. Although the group operation in 1[, (X) is written multiplica-
tively, one writes 1[,(X) = 0 if 1[,(X) only contains the identity. 

3.11. Theorem. Suppose X is an arcwise connected, simply connected topologi-
cal space and a, bE X. Then any two curves u, v: I -+ X from a to bare 
homotopic. 

PROOF. Let Uo (resp. vo) be the constant curve at a (resp. b). Now ndX, b) 
=0 implies v- and thus v'(v- But v'(v- 'u)-
(v· v-) . u Uo . u u and V· Va v by Theorem (3.6), i.e., u v. 0 

3.12. Examples 
(a) A subset X c !Ri" is called star-shaped with respect to a point a E X if 

for every point x E X the straight line segment Aa + (1 - A)X, 0 :<:;; A :<:;; 1, is 
contained in X. Every star-shaped subset X c !Ri" is simply connected. For 
suppose u: I -+ X is a closed curve with initial and end point a (with a as 
above). Then 

A:lxI-+X, A(t, s) :=sa + (1 - s)u(t) 

is a homotopy from u to the point curve at a. Thus 1[ dX, a) = O. In particu-
lar, the complex plane C and every disk in C are simply connected. As well 
C\!Ri+ and q!Ri_ are simply connected, where IR+ (resp. !Ri_) denotes the 
positive (resp. negative) real axis. 

(b) The Riemann sphere pi is also simply connected. One can see this as 
follows. Let VI :=pl\{oo} and V 2 :=pl\{O}. Since VI and V 2 are homeo-
morphic to C, they are simply connected. Now suppose u: I -+ pi is any 
closed curve starting and ending at O. Since I is compact and u is continuous, 
one can find finitely many, not necessarily closed, curves U 1, ... , 

U 2. + , : I -+ pi with the following properties: 

(i) The product 

is, up to a parameter transformation, equal to the curve u and thus is 
homotopic to u. 

(ii) The curves u2k+ 1, k = 0, ... , n, lie entirely in VI, and the curves U 2ko 

k = 1, ... , n, lie entirely in V 2' The initial and end points of the U2k are 
different from 00. Now by Theorem (3.11) one can find curves uZ ko homoto-
pic to U2b lying entirely in V 2 \{ oo}. Then 

is homotopic to v and thus to u as weB and lies in V l' Since n 1 (V d = 0, v' is 
null homotopic. Thus u is nuB homotopic too. 

3.13. Definition. Suppose X is a topological space and u, v: I -+ X are two 
closed curves in X, which do not necessarily have the same initial point. 
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Then the curves u and v are called free homotopic as closed curves, if there 
exists a continuous mapping A: [ x [ --+ X with the following properties: 

(i) A(t, 0) = u(t) 
(ii) A(t, 1) = v(t) 

(iii) A(O, s) = A(I, s) 

for every t E [, 

for every tEl, 
for every s E I. 

Remark. If one sets us(t):= A(t, s), then each Us is a closed curve in X and 
Uo = u, U 1 = v. The family of curves us, ° ::; s ::; 1, gives a deformation of the 
curve u into the curve v. Let w(t):= A (0, t), 0::; t s 1. Then w is a curve 
which joins a:= u(O) = u(l) to b:= v(O) = v(I). Note that for each s the point 
w(s) is the initial and end point of the curve Us' It is easy to see (cf. Fig. 4) 
that u is homotopic, while keeping the initial and end point a fixed, to the 
curve w . v . w - . 

Figure 4 

3.14. Theorem. A pathwise connected topological space X is simply connected 
if and only if any two closed curves in X are free homotopic as closed curves. 

The proof is simple and is left to the reader. 

3.15. Functorial Behavior. Suppose f: X --+ Y is a continuous mapping be-
tween the topological spaces X and Y. If u: I --+ X is a curve in X, then 
f 0 u: I --+ Y is a curve in Y. If u, u': I --+ X are homotopic, thenf a u,f 0 u' are 
also homotopic. Hence f induces a mapping 

f",: 1tl(X, a) --+ 1tl(Y,j{a)) 

of the fundamental groups. This mapping is a group homomorphism, since 
fa (u . v) = (f au) . (f a v). If g: Y --+ Z is another continuous mapping, 
then (g 0 f)", = g", a f", . 

EXERCISES (§3) 

3.1. (a) Suppose X is a manifold and U b U 2 c X are two open, connected and 
simply connected subsets such that VI n V 2 is connected. Show that 
VI u V 2 is simply connected. 

(b) Using (a) show that S' for n 2 is simply connected. 

3.2. Suppose X and Yare arcwise connected topological spaces. Prove 
ltdX x Y) ltdX) X It\(Y). 
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3.3. Let (X, a) and (Y, b) be topological spaces with base points a E X and bEY. Let 
f, g: X ...... Y be two continuous maps withj(a) = g(a) = b. Thenfand 9 are called 
homotopic if there exists a continuous map 

F: X x [0, 1] ...... Y 

such that F(x, 0) = j(x) and F(x, 1) = g(x) for every x E X and F(a, t) = b for 
every t E [0, 1]. Consider the induced maps 

f*, g*: ITdX, a) ..... ITl(Y' b). 

Show that f* = 9 * iff and 9 are homotopic. 

§4. Branched and Unbranched Coverings 

Non-constant holomorphic maps between Riemann surfaces are covering 
maps, possibly having branch points. For this reason we now gather 
together the most important ideas and results from the theory of covering 
spaces. 

4.1. Definition. Suppose X and Yare topological spaces and p: Y -> X is a 
continuous map. For x E X, the set p-l(X) is called the fiber of p over x. If 
y E p-l(X), then one says that the point y lies over x. If p: Y -> X and 
q: Z -> X are continuous maps, then a map f: Y -> Z is called jiber-
preserving if p = q J. This means that any point y E Y, lying over the point 
x E X, is mapped to a point which also lies over x. 

A subset A of a topological space is called discrete if every point a E A has 
a neighborhood V such that V (l A = {a}. A mapping p: Y -> X, between 
topological spaces X and Y, is said to be discrete if the fiber p - l(X) of every 
point x E X is a discrete subset of Y. 

4.2. Theorem. Suppose X and Yare Riemann surfaces and p: Y -> X is a 
non-constant holomorphic map. Then p is open and discrete. 

PROOF. By (2.4) the map p is open. If the fiber of some point a E X were not 
discrete, then, by the Identity Theorem (1.11), P would be identically equal to 

0 

If p: Y -> X is a non-constant holomorphic map, then we will say that Y is 
a domain over X. 

A holomorphic (resp. meromorphic) functionf: Y -> IC (resp.f: Y -> pi) 
may also be considered as a multi-valued holomorphic (meromorphic) func-
tion on X. If x E X and p-I(X) = {y/ j E J}, then the ftyJ, j E J, are the 
different values of this multi-valued function at the point x. Of course it 
might turn out that p-l(X) is a single point or is empty. 
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As an example, suppose Y = C, X = C* and p = exp: C --> C*. Then the 
identity mapping id: C --> C corresponds to the multi-valued logarithm on 
C*. For, the set exp-l(b), where bE C*, consists of exactly the various 
values of the logarithm of b. The following diagram illustrates this. 

C id • C 
'" 

"'j log 

C* 

4.3 Definition. Suppose X and Yare Riemann surfaces and p: Y X is a 
non-constant holomorphic map. A point y E Y is called a branch point or 
ramification point of p, if there is no neighborhood V of y such that p I V is 
injective. The map p is called an unbranched holomorphic map if it has no 
branch points. 

4.4. Theorem. Suppose X and Yare Riemann surfaces. A non-constant holo-
morphic map p: Y --> X has no branch points if and only ifp is a local homeo-
morphism, i.e., every point y E Y has an open neighborhood V which is mapped 
homeomorphically by p onto an open set U in X. 

PROOF. Suppose p: Y --> X has no branch points and y E Yis arbitrary. Since 
y is not a branch point, there exists an open neighborhood V of y such that 
p I V is injective. Since p is continuous and open, p maps the set V homeo-
morphically onto the open set U ;= p(V). 

Conversely, assume p: Y --> X is a local homeomorphism. Then for any 
y E Y there exists an open neighborhood V of y which is mapped homeo-
morphically by p onto an open set in X. In particular, pi V is injective 
and y is not a branch point of p. 0 

4.5. Examples 
(a) Suppose k is a natural number :2: 2 and let Pk: C --> C be the mapping 

defined by Pk(Z) ;= Zk. Then 0 E C is a branch point of Pk and the mapping 
Pk I C* --> C is unbranched. 

(b) Suppose p: Y --> X is a non-constant holomorphic map, y E Y and 
x ;= p(y). Then y is a branch point of p precisely if the mapping p takes the 
value x at the point y with multiplicity :2: 2, cf. (2.2). By Theorem (2.1) the 
local behavior of p near y is just the same as the local behavior of 
the mapping Pk in example (a) near the origin. 

(c) The mapping exp: C --> C* is an unbranched holomorphic map. For 
exp is injective on every subset V c C which does not contain two points 
differing by an integral multiple of 21[i. 

(d) Suppose r c C is a lattice and 1[: IC --> IC/r is the canonical quotient 
mapping, cf. (1.5.d). Then n is unbranched. 
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4.6. Theorem. Suppose X is a Riemann swface, Y is a Hausdorff topological 
space and p: Y X is a local homeomorphism. Then there is a unique complex 
structure on Y such that p is holomorphic. 

Remark. By (2.5) it follows that p is even locally biholomorphic. 

PROOF. Suppose CP1: U 1 V c IC is a chart of the complex structure of X 
such that there exists an open subset U c Y with pi U ---> U 1 a homeo-
morphism. Then cP := CP1 '. p: U ---> V is a complex chart on Y. Let '21 be the 
set of all complex charts on Y obtained in this way. It is easy to see that the 
charts of '21 cover Y and are holomorphically compatible with one anothcr. 
Now let Y have the complex structure defined by '2l. Then the projection p is 
locally biholomorphic and so, in particular, is a holomorphic mapping. 

Uniqueness may be proved as follows. Suppose '2(' is another complex 
atlas on Y such that the mapping p: (Y, '2(') ---> X is holomorphic and thus 
locally biholomorphic. Then the identity mapping (Y, '21) ---> (Y, '2[') is 
locally biholomorphic and thus is a biholomorphic mapping. Hence '2( and 
'2(' define the same complex structure. 0 

4.7. The Lifting of Mappings. Suppose X, Yand Z are topological spaces and 
p: Y ---> X and f: Z ---> X are continuous maps. Then by a lifting of f with 
respect to p is meant a continuous mapping g: Z ---> Y such thatf = p . g, l.e., 
the following diagram commutes. 

?l Y 

g j, 
f 

Z--..... X 

4.8. Theorem (Uniqueness of Lifting). Suppose X and Yare HausdorfTspaces 
and p: Y ---> X is a local homeomorphism. Suppose Z is a connected topological 
space and f: Z ---> X is a continuous mapping. If g1' 9 2: Z ---> Yare two li[tings 
off and g1(ZO) = g2(zo)for some point Zo E Z then g1 = g2' 

PROOF. Let T:={z E Z: g1(Z)=g2(Z)}, The set T is closed, since it is the 
preimage of the diagonal A c Y x Y under the mapping (gj, 92): Z---> 
Y x Y. We claim that T is also open. Let Z E T and let g1(Z) = g2(Z) =: y. 
Since p is a local homeomorphism, there exists a neighborhood V of y which 
is mapped by p homeomorphically onto a neighborhood U of p(y) =f{z). 
Since g1 and 92 are both continuous, there is a neighborhood W of Z with 
gi( W) c V. Now let cP: U ---> V be the inverse of pi V U and note that cP is 
continuous. Because p gj = f, one has gj 1 W = cP c (.f 1 W) for i = 1, 2. Thus 
g1 1 W = g21 Wand WeT. Hence T is open. Since Z is connected and Tis 
non-empty, T = Z and thus g1 = g2' 0 
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4.9. Theorem. Suppose X, Y and Z are Riemann surfaces, p: Y ---> X is an 
unbranched holomorphic map and f: Z ---> X is any holomorphic map. Then 
every lifting g: Z ---> Y off is holomorphic. 

PROOF. Suppose c E Z is an arbitrary point and let b := g( c) and a := p(b) = 
fic). There exist open neighborhoods V of band U of a such that p I V ---> U is 
biholomorphic. Suppose cp: U ---> V is the inverse map. Since g is continuous, 
there is an open neighborhood W of c such that g( W) c V. But f = p. g 
implies g I W = cp c (f I W) and thus g is holomorphic at the point c. 0 

Consequence. Suppose X, Y and Z are Riemann surfaces and p: Y ---> X 
and q: Z ---> X are unbranched holomorphic maps. Then every continuous 
fiber-preserving map f: Y ---> Z is holomorphic. For f is a lifting of p with 
respect to q. 

Lifting of Curves. Suppose X and Yare Hausdorff spaces and p: Y ---> X is 
a local homeomorphism. We are particularly interested in the lifting of 
curves u: [0,1] ---> X. By Theorem (4.8) a lifting u: [0,1] ---> Y ofu, ifit exists 
at all, is uniquely determined once the lifting of the initial point is specified. 

In the following we again let I := [0, 1]. 

4.10. Theorem (Lifting of Homotopic Curves). Suppose X and Yare Haus-
dorff spaces and p: Y ---> X is a local homeomorphism. Suppose a, b E X and 
a E Y is a point such that p(a) = a. Further suppose a continuous mapping 
A: I x I ---> X is given such that A(O, s) = a and A(l, s) = bfor every S E I. Set 

u,(t) := A(t, s). 

If every curve Us can be Wted to a curve Us with initial point a, then Uo and UI 
have the same end point and are homotopic. 

PROOF. Define a mapping A: I x 1---> Y by A(t, s):= us(t). 

Claim (a) There exists f;O > 0 such that A is continuous on [0, I:o[ x I. 

Proof There are neighborhoods V of a and U of a such that p I V ---> U is a 
homeomorphism. Let cp: U ---> V be the inverse map. Since A(O x I) = {a} 
and A is continuous, there exists 1:0 > 0 such that A([O, 1'0] x I) c U. Be-
cause of the uniqueness of the lifting of curves, one has 

usl [0,1:0] = cp " usl [0, f;O] for every s E I. 

Thus A = cpo A on [0,1'0] x I and this implies A is continuous on [0, £o[ x I. 

Claim (b) The mapping A is continuous on all of I x I. 

Proof Suppose to the contrary that there is a point (to, <J) E I x I at which A 
is not continuous. Let, be the infinum of all those t such that A is not 
continuous at (t, <J). By (a),:;:. 1:0' Let x :=A(" 0") and y:=A(" IT) = £l".(,). 
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There are neighborhoods V of y and U of x such that p / V --+ U is a homeo-
morphism. Let qJ: U --+ V be the inverse. Since A is continuous, there exists 
E > 0 such that A(llr) x I,(a)) c U, where 

1,(0 = {tEl: / t - / < e}. 
In particular uAIlr)) c U and thus 

u,,/I,(r) = qJ 0 u,,/I,(r). 

Choose t1 E I,(r) with t1 < r. Then 

A(t1' a) = uAt1) E V. 

Since A is continuous at (t1> a), there exists b > 0, b :$; e, such that 

A(t1' s) = us(td E V for every s E 16(a). 

Because of the uniqueness of liftings it now follows that for every s E I.,{a) 

us/I,(r) = qJ 0 us/IF.(r). 

Thus A = qJ 0 A on le(r) x 16(a). But this contradicts the definition of (r, a). 
Thus A is continuous on I x I. 

Since A = P 0 A and A({l} x I) = {b}, it follows that A({l} x I) c p-1(b). 
Since p-1(b) is discrete and {I} x I is connected, A({l} x I) consists of a 
single point. This implies that the curves Uo and u1 have the same end point 
and, by means of A, they are homotopic. 0 

Covering Maps. We would now like to give a condition which will ensure 
that the lifting of curves is always possible. 

4.11. Definition. Suppose X and Yare topological spaces. A mapping 
p: Y -+ X is called a covering map if the following holds. 

Every point x E X has an open neighborhood U such that its preimage 
p-1(U) can be represented as 

p-1(U)= Ul-j, 
jeJ 

where the Vj, j E J, are disjoint open subsets of Y, and all the mappings 
p / Vj -+ U are homeomorphisms. In particular, p is a local homeomorphism. 

4.12. Examples 
(a) Let D = {z E C: / z / < I} be the unit disk in the complex plane and let 

p: D -+ C be the canonical injection. Then p is a local homeomorphism, but 
not a covering map. For, no point a E C with / a / = 1 has a neighborhood U 
with the property required in the definition. 

(b) Let k be a natural number z 2 and let 
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Then Pk is a covering map. For, suppose a E C* is arbitrary and choose 
bE C* with Pk(b) = a. Since Pk is a local homeomorphism, there are open 
neighborhoods Vo of band U of a such that Pk I Vo -> U is a homeomorphism. 
Then 

p;l(U) = Vo u wVo u ... U Wk-1VO , 

where w is a kth primitive root of unity, say w = exp(2ni/k). It is clear that 
the sets V;:= wjVo, j = 0, ... , k - 1, are pairwise disjoint and each 
Pk I Vi -> U is a homeomorphism. 

(c) The mapping exp: C -> C* is a covering map. 

PROOF. Suppose a E C* and bE C with exp(b) = a. Since exp is a local homeo-
morphism, there exist open neighborhoods Vo of band U of a such that 
exp I Vo -> U is a homeomorphism. Then 

exp -l( U) = U v" , where v,,:= 2nin + Vo. 

Clearly the v" are pairwise disjoint and each map exp I v" -> U IS a 
homeomorphism. 

(d) Suppose r c C is a lattice and n: C -> c/r is the canonical quotient 
mapping. In the same way as in example (c) one can show that n is a 
covering map. 

4.13. Definition. A continuous map p: Y -> X is said to have the curve lifting 
property if the following condition holds. For every curve u: [0, 1] -> X and 
every point Yo E Y with p(Yo) = u(o) there exists a lifting u: [0, 1] -> Y of u 
such that u(o) = Yo. 

4.14. Theorem. Every covering map p: Y -> X of topological spaces X and Y 
has the curve lifting property. 

PROOF. Suppose u: [0, 1] -> X is a curve and Yo E Y with p(yo) = u(O). Because 
of the compactness of [0, 1] there exists a partition 

0= to < t 1 < ... < tn = 1 

and open sets Uk c X, k = 1, ... , n, with the following properties: 

(i) u([tk-t> tkD c Uk, 
(ii) P-1(Uk ) = UjElk Vkj ' 

where the Vij C Yare open sets such that p I Vi j -> Uk are homeomorphisms. 
Now we shall prove by induction on k = 0, 1, ... , n the existence of a lifting 
u I [0, t k ] -> X with u(o) = Yo. For k = ° this is trivial. So suppose k z 1 and 
u I [0, tk - d -> X is already constructed and let U(tk - 1 ) =: Yk-l' Since 
P(Yk-l)=U(tk-dE Ub there exists jEJk such that Yk-l E J!;.j. Let 



26 1 Covering Spaces 

rp: Uk --> l'k j be the inverse of the homeomorphism pi Vkj --> Uk' Then if we 
set 

Ul[t k - I , tk]:=rp (UI[tk - 1, tkJ), 

we obtain a continuous extension of the lifting u to the interval [0, tkJ. 0 

4.15. Remark. Suppose X and Yarc Hausdorff spaces, p: Y --> X is a cover-
ing map and Xo EO X, Yo EO Yare points with p(Yo) = Xo' Then by (4.14) and 
(4.8) for every yurve u: [0, 1] --> X with u(o) = Xo there exists exactly one 
lifting fi: [0, I] --> Y such that fi(O) = Yo' When the curve u is closed, the 
lifting a need not be closed. An example of this is the following. Let 
X=Y=C*, 

p: C* --> C*, Zf---+ Z 2, 

and Xo = Yo = I. Define the curve u: [0, 1] --> C* by u{t) = e2rrit• Then u has 
initial and end point 1 and is thus closed. But u(t):= e1tit defines a lifting 
fi: [0, 1] --> C * of u with respect to p which has initial point 1 and end point 
-1. 

However from Theorem (4.10) it follows that every lifting of a closed 
null-homotopic curve is again closed and null-homotopic. 

4.16. Theorem. Suppose X and Yare Hausdorff spaces with X pathwise con-
nected and p: Y ---> X is a covering map. ThenjOr any two points xo, Xl EO X 
the sets p-l(XO) and p-I(xd have the same cardinality. In particular, ifY is 
non-empty, then p is surjective. 

The cardinality of p-l(X) for x EO X is called the number of sheets of the 
covering and may be either finite or infinite. 

PROOF. Construct a mapping rp: p l(xo)--->p-l(Xl) in the following way. 
Choose a curve u: [0, 1] ---> X joining Xo to X I' If y EO P - l{XO) is an arbitrary 
point, then there exists precisely one lifting a: [0, 1] --> Y of u such that 
u(O) = y. Set rp(y):= u{ 1) EO P - 1 (x I)' The uniqueness of liftings then implies 
that the mapping just constructed is bijective. 0 

Remark. In general the bijective mapping constructed in the proof 
depends on the choice of the curve u. Thus in general there is no well-defined 
way to enumerate globally the" sheets" of a covering. 

4.17. Theorem. Suppose X and Y are Hausdorff spaces and p: Y --> X is a 
covering map. Further, suppose Z is a simply connected, pathwise connected 
and locally pathwise connected topological space and/,: Z --> X is a continuous 
mapping. Thenfor every choice o.f'points Zo EO Z and Yo EO Y withj{zo) = p(Yo) 
there exists precisely one lifting]: Z --> Y such that Jtzo) = Yo' 
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Remark. In the following proof the only properties of the mapping p that 
are used are that it is a local homeomorphism and has the curve lifting 
property. 

PROOF. Define the mapping]: Z --> Y in the following way. Suppose z E Z is 
an arbitrary point and u: 1--> Z is a curve from Zo to z. Then v ,= f 0 u is a 
curve in X with initial point fizo) and end point fiz). Let v: 1--> Y be the 
unique lifting of L' which has initial point Yo. Then set fiz) ,= u( 1). This 
definition is independent of the choice of curve u from Zo to z. For, suppose 
U 1 is another curve from Zo to z. Then u1 is homotopic to u. Thus VI ,= f U I 

and V = U are also homotopic. By Theorem (4.10) the liftings VI of VI and 
1: of V with 1)1(0) = 1;(0) = Yo have the same end point. Hence .1{z) is well-
defined. Also by construction f = p .1 

All that remains to be proved is that the mapping]: Z --> Y is continuous. 
Let z E Z, Y = .ltz) and suppose V is a neighborhood of y- We must show that 
there exists a neighborhood W of z such that fiW) c V Since p is a local 
homeomorphism, we may assume, possibly by shrinking V, that there is a 
neighborhood U of p(y) = fiz) such that p I V --> U is a homeomorphism. Let 
cp: U --> V be its inverse. Since f is continuous and Z is locally path wise 
connected, there exists a pathwise connected neighborhood W of z such that 
fiW) c U. 

Now we claim thatfiW) c V To see this suppose that the curves u, v and 
f' are defined as above. Let z' E W be an arbitrary point and let u' be a curve 
from z to z' which lies entirely in W. Then the curve v' ,= f u' lies entirely in 
U and V' := cp .. v' is a lifting of u' with initial point y. Hence the product u . V' 
is a lifting of v . v' = f r (u . u') with initial point Yo. Thus 

fiz') = (i,· v')(I) = £i(l) E V o 

4.18. Example (The Logarithm of a Function). Suppose X is a simply con-
nected Riemann surface and f: X --> I[: * is a nowhere vanishing holomorphic 
function on x. We would like to find the logarithm of 1, i.e., find a holo-
morphic function F: X --> I[: such that exp(F) = f But this just means that F 
is a lifting off with respect to the covering exp: I[: --> I[: *, i.e., 

F 

f 
X-----+II[:* 

If Xo E X and c E I[: is any solution of the equation eC = fix o), then by 
Theorem (4.17) there exists a lifting F: X --> I[: of the required kind with 
F(xo) = c. By Theorem (4.9), F is holomorphic. Also any other solution of 
the problem differs from F by an additive constant 2nin, n E 7l.. 
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As a special case suppose X is a simply connected domain in I[: * and 
j: X -+ 1[:* is the canonical injection, i.e., j(Z) = z. Then every lifting ofj with 
respect to exp is nothing more than a branch of the function log on X. 
Analogously one can construct various roots of a nowhere vanishing holo-
morphic function f: X -+ C * on any simply connected Riemann surface X. 
To do this one uses the covering in Example (4.12.b). 

4.19. Theorem. Suppose X is a manifold, Y is a Hausdorffspace and p: Y -+ X 
is a local homeomorphism with the curve lifting property. Then p is a covering 
map. 

PROOF. Suppose Xo E X is an arbitrary point and Yj,j E J, are the preimages 
of Xo with respect to p. Take U to be an open neighborhood of Xo which is 
homeomorphic to a ball and let f: U -+ X be the canonical injection. From 
the remark in Theorem (4.17) it follows that for every j E J there is a lifting 
k U -+ Y off such that J:.(xo) = Yj. Let Vi Now one can easily 
convince oneself that 

je.l 

that the Vi are pairwise disjoint open sets and that every mapping p I Vi -+ U 
is a homeomorphism. 0 

4.20. Proper Mappings. Recall that a locally compact topological space is a 
Hausdorff space such that every point has a compact neighborhood. A 
continuous mappingf: X -+ Y between two locally compact spaces is called 
proper if the preimage of every compact set is compact. For example this is 
always so if X is compact. A proper mapping is closed, i.e., the image of 
every closed set is closed. This follows from the fact that in a locally compact 
space a subset is closed precisely if its intersection with every compact set is 
compact. 

4.21. Lemma. Suppose X and Yare locally compact spaces and p: Y -+ X is a 
proper, discrete map. Then the following hold: 

(a) For every point x E X the set p-l(X) is finite. 
(b) If x E X and V is a neighborhood of p - 1 (x), then there exists a neigh-

borhood U of x with p-l(U) c V. 

PROOF 
(a) This follows from the fact that p-l(X) is a compact discrete subset of 

Y. 
(b) We may assume that V is open and thus Y\ V is closed. Then 

p( Y\ V) =, A is also closed and x ¢ A. Thus U ,= X\A is an open neighbor-
hood of x such that p-l(U) c V. 0 
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4.22. Theorem. Suppose X and Yare locally compact spaces and p: Y ---> X is 
a proper local homeomorphism. Then p is a covering map. 

PROOF. Suppose x E X is arbitrary and let p-I(X) = {Yb ... , Yn}, where 
Yi =1= Yj for i =1= j. Since p is a local homeomorphism, for every j = 1, ... , n 
there exists an open neighborhood I1j of Yj and an open neighborhood Vj of 
x, such that p I Wi ---> Vj is a homeomorphism. We may assume that the »j 
are pairwise disjoint. Now WI U ... U w" is a neighborhood of p-I(X). Thus 
by(4.21.b)thereexistsanopenneighborhoodVc VI (\ ... (\ Vnofxwith 
p-I(V) C WI U ... U w". If we let Vj:= »j (\ p-I(V), then the Vj are dis-
joint open sets with 

p-I(V) = VI U ... U v" 
and all the mappings pi Vj ---> V, j = 1, ... , n are homeomorphisms. 0 

4.23. Proper Holomorphic Mappings. Suppose X and Yare Riemann sur-
faces and f: X ---> Y is a proper, non-constant, holomorphic mapping. It fol-
lows from Theorem (2.1) that the set A of branch points off is closed and 
discrete. Since f is proper, B := j{A) is also closed and discrete. One calls B 
the set of critical values of I 

Let Y':= y\B and X' := X \f - I (B) c X \A. Then f I X' ---> Y' is a proper 
unbranched holomorphic covering and by (4.22), (4.16) and (4.21.a) it has a 
well-defined finite number of sheets n. This means that every value c E Y' is 
taken exactly n times. In order to be able to extend this statement to the 
critical values b E B as well, we have to consider the multiplicities. 

For x E X denote by v(f, x) the multiplicity, in the sense of (2.2), with 
whichftakes the valuesj(x} at the point x. Then we will say thatftakes the 
value c E Y, counting multiplicities, m times on X, if 

m = L v(f, x). 
XEp-l(c) 

4.24. Theorem. Suppose X and Yare Riemann surfaces and f: X ---> Y is a 
proper non-constant holomorphic map. Then there exists a natural number n 
such that f takes every value c E Y, counting multiplicities, n times. 

PROOF. Using the same notation as in (4.23) let n be the number of sheets of 
the unbranched covering f I X' ---> Y'. Suppose b E B is a critical value, 
f-I(b) = {XI, ... ,xr } and kj:= v(f,Xj). By (2.1) and (2.2) there exist 
disjoint neighborhoods Vj of Xj and Vj of b such that for every c E Vi \ {b } 
the set f I (c) (\ consists of exactly kj points (j = I, ... , r). By Lemma 
(4.21.b) we can find a neighborhood V c VI (\ ... (\ Vr of b such that 
I-I (V) C VI U ... U V r • Then for every point c E V (\ Y' we have 
that I-I (c) consists of kl + ... + kr points. On the other hand, for C E Y'the 
cardinality of p-I(C) is equal to n. Thus n = kl + ... + kr · 0 
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Remark. A proper non-constant holomorphic map will be called an n-
sheeted holomorphic covering map, where n is the integer found in the 
previous Theorem. Note that holomorphic covering maps are allowed to 
have branch points. If we wish to emphasize that there are none, then we will 
specifically say that the map is unbranched. If we speak of a topological 
covering map or if there is no complex structure, then we mean a covering 
map in the sense of (4.11). 

4.25. Corollary. On any compact Riemann surface X every non-constant 
meromorphic junction f: X -t pI has as many zeros as poles, where each is 
counted according to multiplicities. 

PROOF. The mapping/: X -t pI is proper. o 

4.26. Corollary. Any polynomial of nth degree 

j(z) = zn + alZn- 1 + ... + an EO C[z] 

has, counting multiplicities, exactly n zero. 

PROOF. By (2.3) we may consider f as a holomorphic mapping/: pI -t pI 
which, counting multiplicities, takes the value (fJ exactly n times. 0 

EXERCISES (§4) 

4.1. Let X '=C\{±1), Y'=C\{(nj2) + kn, k E z). Show that 

sin: Y -> X 

is a topological covering map. Consider the foHowing curves in X. 

u: [0, 1] -> X, u(t) ,= 1 - eZrrit 

v: [0, 1] -> X, v(t) ,= -1 + e2 • it • 

Let WI: [0, 1] -> Y be the lifting of u . v with WI(O) = 0 and W2: [0, 1] -> Y be the 
lifting of v . u with W2(0) = 0. Show that 

WI (1) = 2n 

w2(1) = -2n. 

Conclude that nl(X) is not abelian. 

4.2. Let X and Y be arcwise connected Hausdorff topological spaces and f: Y -> X 
be a covering map. Show that the induced map 

f*: nl(Y) -> ndX) 

is injective. 
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4.3. Let X and Y be Hausdorff spaces and p: Y --> X be a covering map. Let Z be a 
connected, locally arcwise connected topological space and f: Z -> X a contin-
uous map. Let c E Z, Q '=j{c) and bEY such that p(b) = Q. Prove that there 
exists a lifting 1: Z --+ Y of fwith j(c) = b if and only if f.nj (Z, c) c p.nj (Y, b). 

4.4. (a) Show that 
tan: e --> [p 1 

is a local homeomorphism. 
(b) Show that tan(e) = [pl\{±i} and 

tan: e --> [pl\{ ±i} 

is a covering map. 
(c) Let X = (:I{it: t E lit I t I ::,. I}. Show that for every k E 1l. there exists a 

unique holomorphic function arctank: X --> e with 

tan arctank = id x 

and 

(the kth branch of arctan). 

4.5. Determine the ramification points of the map 

§5. The Universal Covering and Covering 
Transformations 

Amongst all the covering spaces of a manifold X, there is one which deserves 
to be called the" largest," namely, the universal covering. All other covering 
spaces can be obtained from this one as quotients, and what happens to the 
universal covering when it is acted on by the group of "covering trans-
formations" is closely related to the fundamental group of X. An investiga-
tion of these ideas is the focus of attention in this section. 

5.1. Definition. Suppose X and Yare connected topological spaces and 
p: Y -> X is a covering map. p: Y -> X is called the universal covering of X if 
it satisfies the following universal property. For every covering map 
q: Z -> X, with Z connected, and every choice of points Yo E Y, Zo E Z with 
p(Yo) = q(zo) there exists exactly one continuous fiber-preserving mapping 
f: Y -> Z such thatj{yo) = Zo· 

A connected topological space X has up to isomorphism at most one 
qniversal covering. For, with the above notation, suppose q: Z -> X is also a 
universal covering. Then there exists a fiber-preserving continuous mapping 
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g: Z Y such that g(zo) = Yo. The composItIOns g c f: Y Y and 
fog: Z Z are continuous fiber-preserving mappings such that 
g ", j{yo) = Yo and f ') g(zo) = Zo . Because of the universality condition there 
can exist only one continuous fiber-preserving mapping in each case which 
satisfies these conditions. Thus g. f = id y and f c g = idz . Hence f: Y Z is 
a fiber-preserving homeomorphism. 

5.2. Theorem. Suppose X and Yare connected manifolds, Y is simply con-
nected and p: Y X is a covering map. Then p is the universal covering of X. 

PROOF. This follows directly from the definition and Theorem (4.17). 0 

5.3. Theorem. Suppose X is a connected manifold. Then there exists a con-
nected, simply connected manifold X and a covering map p: X x. 

By Theorem (5.2) X X is the universal covering of X. 

PROOF. Pick a point Xo E X. For x E X let n(xo , x) denote the set of 
homotopy classes of curves having initial point Xo and end point x. Let 

X :={(x, c.<): x E X, c.< E n(xo, x)}. 

Define the mapping p: X ---> X by p(x, (X):= x. We will now define a topology 
on X so that X becomes a connected, simply connected Hausdorff manifold 
and p: X X is a covering map. 

Suppose (x, (X) E X and U c X is an open, connected, simply connected 
neighborhood of x. Define a subset [U, (X] c X as follows: [U, C(] consists of 
all points (y, fJ) E X such that y E U and fJ = cl(u . v), where u is a curve 
from Xo to x such that (X = c1(u) and v is a curve from x to y which lies 
completely in U. (Since U is simply connected, fJ is independent of the choice 
of the curve v.) Now let 'B be the system of all such sets [U, (Xl 

Claim (a) m is the basis for a topology on X. 

Proof 
(i) Clearly every point of X lies in at least one [U, 4 

(ii) Suppose (z, y) E [U, (X] n [V, fJ]. Then z E Un V and there exists an 
open, connected and simply connected neighborhood We U n V of z. 
Then, as one can easily check, 

(z, y) E [W, y] c [U, c.<] n [V, fJ]. 
From (i) and (ii) the claim follows. 

Claim (b) The mapping p: X ---> X is a local homeomorphism and in 
particular is continuous. This follows from the fact that for every [U, (X] E 'B 
the mapping pi [U, (X] ---> U is a homeomorphism. 

Claim (c) X is Hausdorff. 
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It suffices to show that any two points (x, IX), (x, P) E g, where IX 1= p, have 
disjoint neighborhoods. Suppose U c X is an open, connected, simply con-
nected neighborhood of x. Then [U, ex] n [U, P] = 0. Otherwise there 
would be an element (y, y) in the intersection. Suppose w is a curve in U 
from x to y and ex = cl(u), p = cl(v). Then by definition y = cl(u . w) = 
cl(v . w). Thus cl(u) = cl(v). But this contradicts the assumption that ex 1= p. 

Claim (d) g is connected and p: g -+ X has the curve lifting property 
and thus by (4.19) is a covering map. Suppose u: [0, 1] -+ X is a curve with 
initial point Xo' For s E [0, 1] let us: [0, 1] -+ X be the curve defined by 
us(t):= u(st). (The curve Us runs along the points of the curve u correspond-
ing to parameter values t E [0, s].) Further suppose v is a closed curve with 
initial and end point Xo. Then the mapping 

14: [0, 1] -+ g, tl---+ (u(t), cl(v . ut )) 

is continuous and is a lifting of u with 14(0) = (xo, cl( v)). This follows directly 
from the definition of the topology on g. Finally, suppose w: [0, 1] -+ X is a 
curve with arbitrary initial point Xl := w(O), IX E n(xo, Xl) and v is a curve 
from Xo to x 1 with cl( v) = IX. Then it is easy to see that the lifting of u := V • W 

with 14(0) = (xo, e), where e is the homotopy class of the constant curve at 
Xo, gives rise to a lifting of w with w(O) = (x 1, ex). 

Claim (e) g is simply connected. 
Let w: [0,1] -+ g be a closed curve with initial and end point (xo, e). Then 

u := pow is a closed curve in X with u(O) = Xo. Now let u: [0, 1] -+ g be the 
lifting of u, which exists by claim (d), where v is chosen to be the constant 
curve at xo. Because of the uniqueness of liftings, U = w. Thus u( 1) = 
(xo, cl(u» = (xo, e) and hence u is null-homotopic. By Theorem (4.10) w is 
also null-homotopic and thus X is simply connected. 

This completes the proof of Theorem (5.3). 0 

Remark. In particular, one can construct the universal covering of any 
Riemann surface and by (4.6) this universal covering is, in a natural way, a 
Riemann surface as well. 

5.4. Definition. Suppose X and Yare topological spaces and p: Y -+ X is a 
covering map. By a covering transformation or deck transformation of this 
covering we mean a fiber-preserving homeomorphismj: Y -+ Y. With opera-
tion the composition of mappings, the set of all covering transformation of 
p: Y -+ X forms a group which we denote by Deck(YjX). If there is any 
chance of confusion, then we will write Deck(Y!. X) instead of Deck(YjX). 

5.5. Definition. Suppose X and Yare connected Hausdorff spaces and 
p: Y -+ X is a covering map. The covering is called Galois (the terms normal 
and regular are also in common usage) if for every pair of points Yo, Yl E Y 
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with p(Yo) = P(Yl) there exists a covering transformationf: Y -+ Y such that 
j{yo) = Yt· 

Remark. By Theorem (4.8) there exists at most one covering trans-
formationf: Y -+ Y withj{yo) = Yl' for fis a lifting of p: Y -+ X. 

Example. The mapping p: I[: * -+ I[: *, Z f--+ Zk, is a covering map. It is Galois 
since for any Z1> Z2 E 1[:* with p(zd = P(Z2), one has Z2 = WZI where W is a 
kth root of unity and the mapping Z f--+ WZ is a covering transformation. 

There is a connection between Galois coverings and Galois field exten-
sions, cf. (8.12). 

5.6. Theorem. Suppose X is a connected manifold and p: X -+ X is its univer-
sal covering. Then p is Galois and Deck(X/X) is isomorphic to thefundamental 
group 7rl(X), 

PROOF 

(a) Suppose Yo, Yl E X with p(Yo) = P(Yl)' By the definition of the 
universal covering there exists a continuous fiber-preserving mapping 
f: X -+ X withj{yo) = Yl' We have to show thatfis a homeomorphism. This 
can be seen as follows. As above there exists a continuous fiber-preserving 
mapping g: X -+ X with g(Yd = Yo. But thenf 0 g and go fare continuous 
fiber-preserving mappings of X into itself such that f 0 g(yd = Yl and 
g C ,t(Yo) = Yo. Again from the definition of the universal covering it follows 
that f ,'. g and g c f are both the identity map of X. Thus f is a homeo-
morphism and hence a covering transformation. This shows the covering 
X --> X is Galois. 

(b) Suppose Xo E X and Yo E X is a point with p(Yo) = Xo. Define a 
mapping 

<1>: Deck(X/X) --> 7rt(X, xo) 

as follows: Suppose a E Deck(X/X) and v is a curve in X with initial point 
Yo and end point a(yo). (The homotopy class of v is uniquely determined 
since X is simply connected.) The curve p c v in X has initial and end point 
Xo. Let <I>(a) be the homotopy class of po v. 

(i) <I> is a group homomorphism. Suppose a, r E Deck(X;X) and v (resp. 
w) is a curve in X with initial point Yo and end point a(yo) (resp. r(yo)). Then 
a c w is a curve with initial point a(yo) and end point ar(yo). Also 
p c (a 0 w) = pow. The product curve v . (a c w) has initial point Yo and 
end point ar(yo). Thus 

<I>(ar) = cl(p 0 (v· (ac w)) = cl(p 0 v)cl(p 0 (a c w)) 

= cl(p 0 v)cl(p c w) = <I>(a)<I>(r). 

(ii) <I> is injective. 
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Suppose (J E Deck(X/X) and v is a curve in X from Yo to (J(Yo). Assume 
$((J) = E, i.e., p 0 v is null-homotopic. Since v is a lifting of p 0 v, it follows 
from (4.10) that the end point (J(Yo) of v is the same as the initial point Yo. 
This implies (J = id x. 

(iii) $ is surjective. 
Suppose oc E n1 (X, xo) and u is a curve representing oc. Let v be a lifting of u 

to X with initial point Yo and suppose the end point of v is Yl. Then there 
exists (J E Deck(X/X) such that (J(Yo) = Yt. From the definition of $ one has 
$((J) = oc. This completes the proof. D 

5.7. Examples 
(a) exp: C C* is the universal covering of C*, since C is simply con-

nected. For nEll. let 'n: C C be translation by 2nin. Then exp('n(z)) = 
exp(z + 2nin) = exp(z) for every z E C and thus 'n is a covering 
transformation. If (J is any covering transformation, then exp((J(O)) = 
exp(O) = 1 and thus there exists n E 7l. such that (J(O) = 2nin. Since 'n(O) = 
2nin as well, (J = 'n. Thus 

Deck(C C*) = {'.: n E ll.}. 

Since the last group is isomorphic to 7l., 

(b) Let 

H = {z E C: Re(z} < O} 

be the left half plane and 

D* = {z E C: 0 < I z I < I}. 

Then exp: H D* is the universal covering of the punctured unit disk. As in 
Example (a) one can show that the group of covering transformations con-
sists of all translations by integral multiples of 2ni and that nl(D*) ll.. 

(c) Suppose r = ll.YI + 7l.Y2 is a lattice in C. Then the canonical quotient 
mapping C ..... c/r is the universal covering of the torus c/r. For Y E r 
denote by 'y: C C translation by y. Analogous to Example (a) one can 
show that Deck(C C/r) fry: )' E n. Thus 

nl(C/r) r ll. x ll.. 

Consequence. There does not exist any meromorphic function on C doubly-
periodic with respect to r which mod r has a single pole of first order. 

PROOF. Such a function would define a holomorphic mappingf: c/r ..... pI 
which takes the value 00 only once. By (4.24) and (2.5}fwould be biholo-
morphic and in particular n I (C/r) n I (P I) = 0, a contradiction! D 
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Remark. Later (18.3) we will give necessary and sufficient conditions for 
the existence of a doubly periodic meromorphic function with prescribed 
principal parts. However it is worth noting that one can make the above 
observation using only topological reasons. 

5.8. Definition. Suppose X and Yare topological spaces, p: Y -> X is a cover-
ing map and G is a subgroup of Oeck(Y/X). Two points y, y' E Yare called 
equivalent modulo G, if there exists (J E G such that (J(Y) = y'. Clearly this 
really is an equivalence relation on Y. 

5.9. Theorem. Suppose X and Yare connected manifolds, q: Y -> X is a cover-
ing map and p: X -> X is the universal covering. Let f: X -> Y be a continuous 
fiber-preserving mapping, which by the definition of the universal covering 
exists. Thenfis a covering map and there exists a subgroup G c Deck(X/X) 
such that two points X, x' E X are mapped onto the same point by f precisely if 
they are equivalent modulo G. Moreover G ndY). 

PROOF. First we will show thatfis a local homeomorphism. Suppose x E X, 
p(x) =, sand f(x) =, y. Since p is a local homeomorphism, there exist open 
neighborhoods WI of x and U I of s, such that p I WI -> U I is a homeo-
morphism. Since q is a covering map, there exists an open connected neigh-
borhood U of s contained in U I and pairwise disjoint open sets V;, i E I, 
such that q- I( U) = U V; and q I V; -> U is a homeomorphism for every i E I. 
Let V be the particular V; containing the point y and let W:= p - I (U) n WI. 
Then y Ef(W) c q-I(U) and since j{W) is connected, it follows that 
f( W) = V. Since p I W -> U and q I V -> U are homeomorphisms,f I W -> V is 
also a homeomorphism. Thus f is a local homeomorphism. 

In order to prove that f is a covering map, consider a curve v in Y with 
initial point Yo and a point Xo E X withj{xo) = Yo. We have to show that the 
curve v can be lifted to X with initial point Xo. Since p: X -> X is a covering 
map the curve q " v in X may be lifted to a curve u in X with initial point Xo. 

Then the curves f D U and v in Yare both liftings of the curve q 0 v and have 
the same initial point Yo. Thus they coincide. But this means that u is the 
desired lifting of v. Thusfis a covering map by Theorem (4.19). 

Let G := Deck(X IY). This is a subgroup of Oeck(X IX). Since X is simply 
connected, f: X -> Y is the universal covering of Y and so is Galois. Hence 
G nl(Y) andf(x) = fix') precisely if there exists (J E G such that (J(x) = x'. 
This completes the proof of Theorem (5.9). 0 

We will now use Theorem (5.9) to determine all the covering spaces of the 
punctured unit disk D* = {z E IC: 0 < I z I < I}. 

5.10. Theorem. Suppose X is a Riemann surface and f: X -> D* is an un-
branched holomorphic covering map. Then one of the following holds: 
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(i) II the covering has an infinite number of sheets, then there exists a 
biholomorphic mapping qJ: X -+ H of X onto the left half plane such that 
diagram (1) is commutative. 

X --,-'" --+1 H 

\/p (1) 

D* 

(ii) If the covering is k-sheeted (k < 00), then there exists a biholomorphic 
mapping qJ: X -+ D* such that diagram (2) is commutative, where Pk: D* -+ D* 
is the mapping z f-+ Zk. 

X '" 1 D* 

\} (2) 

D* 

Thus every covering map of D* is either isomorphic to the covering given 
by the logarithm or else by the kth root. 

PROOF. Since exp: H -+ D* is the universal covering, there exists a holo-
morphic mapping ljt: H -+ X such that exp = f 0 ljt. Let G c Deck(H/D*) be 
the corresponding subgroup. 

(i) If G consists only of the identity, then ljt: H -+ X is a biholomorphic 
map. Then the mapping qJ: X -+ H, which we are looking for, is the inverse 
mapping of ljt. 

(ii) Now 
Deck(H/D*) = {Tn: n E Z}, 

where Tn: H -+ H denotes the translation Z f-+ Z + 2nin. Thus for every sub-
group G c Deck(H/D*) which is not the identity, there exists a natural 
number k ;::> 1 so that 

G = {Tnk : n E Z}. 

Let g: H -+ D* be the covering map defined by g(z) = exp(z/k). Then g(z) = 
g(z') precisely if z and z' are equivalent modulo G. Hence there exists a 
bijective mapping qJ: X -+ D* such that the diagram 

H 

1\ 
X '" ,D* 

is commutative. Since ljt and g are locally biholomorphic, qJ is biholo-
morphic. It is now easy to check that diagram (2) is commutative and the 
Theorem is proved. 0 
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5.11. Theorem. Suppose X is a Riemann surface, D is the unit disk and 
.f: X D is a proper non-constant holomorphic map which is unbranched over 
D* = D\{O}. Then there exists a natural number k 2: 1 and a hiholomorphic 
mapping q>: X D such that the diagram 

\) (*) 

D 

is commutative, where Pk(Z) := Zk. 

PROOF. Let X*:=J-l(D*). Then f/X*--.D* is an unbranched proper 
holomorphic covering map. By the previous Theorem there is a commuta-
tive diagram 

\J. 
D* 

for some biholomorphic mapping (p: X* D*. We claim thatf-l(O) con-
sists of only one point. To the contrary suppose J - 1(0) consists of n points 
b[, ... , bn where n 2: 2. Then there exist disjoint open neighborhoods V; of bi 

and a disk D(r) = {z E IC: / z / < r}, 0 < r ::; 1, such that 

(**) 

Let D*(r) = D(r)\{O}. Since f-l(D*(r» is homeomorphic to Pi: I(D*(r» = 
D*(Vr), it is connected. Since every point bi is an accumulation point of .r I(D*(r», f-l(D(r» is also connected. But this contradicts (**). Thus 
.r 1(0) consists of a single point hEX. Hence by defining q>(b) :=0 one can 
continue the mapping q>: X* D* to a biholomorphic mapping q>: X D 
which makes the diagram (*) commutative. 0 

EXERCISES (§5) 

5.1. Let X=C\{±I}, and Y=C\{(n/2)+kn: kEel} (cf. Ex. 4.1.). Prove that 

Deck(Y X) consists of the following transformations 

(i) fk(Z) = Z + 2kn, k EO l 
(ii) gk(Z) = -z + (2k + I)n, k EO l. 

Calculate the products fk .r;, fk ... g/, g/ J.., {h ' g/. 
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5.2. Let X be a connected manifold and p: X -> X be its universal covering. Let 
G c Deck(X/X) be a subgroup, Y ,= X/G be the quotient of X by the equi-
valence relation defined in 5.H and q: Y -> X be the map induced by p. Show that 
q is a covering map which is Galois if and only if G is a normal subgroup of 
Deck(X/X). In the latter case 

Deck(Y/X);- Deck(X/X)/G. 

5.3. Determine the covering transformations of 

tan:C->1P1\{i, -i) 

(cf. Ex. 4.4). 

5.4. Let r, r' c C be lattices and 

f: c/r --> Cjr' 

a non-constant holomorphic map withj(O) = O. Show that there exists a unique 
ex E C* such thatexr c r' and the following diagram is commutative 

where F(z) = rxz and nand n' are the canonical projections. Prove that f is an 
unbranched covering map and 

5.5. Let X ,= q{2, - 2}, Y ,= q{ ± 1, ± 2}, and let p: Y --> X be the map 

p{z) ,= Z3 - 3z. 

Prove that p is an unbranched 3-sheeted holomorphic covering map. Calculate 
Deck(Y/X) and show that the covering Y --> X is not Galois. 
[H int: Use the fact that every biholomorphic map f: Y --> Y extends to an auto-
morphism of [pll.] 

5.6. Let X ,= q{O, I}, Y ,= q{O, ± i, ± iJ2} and let p: Y --> X be the map 

p(Z)'={Z2 + If 

Prove that p is an unbranched 4-sheeted covering map, which is not Galois and 
that 

Deck(Y/X) = lid, <p}, 

where <p(z) ,= -z. 

5.7. Suppose X and Yare connected Hausdorff spaces. Show that every 2-sheeted 
covering map p: Y -> X is Galois. 
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§6. Sheaves 

In complex analysis one frequently has to deal with functions which have 
various domains of definition. The notion of a sheaf gives a suitable formal 
setting to handle this situation. 

6.1. Definition. Suppose X is a topological space and :1: is the system of open 
sets in X. A presheaf of abelian groups on X is a pair (ff, p) consisting of 

(i) a family.'#' = (,'#'(V))UE 1 of abelian groups, 
(ii) a family p = V E 1, V cU of group homomorphisms 

ff(V) -+ ff(V), where V is open in V, 

with the following properties: 

= id$'"(u) for every V E :1:, 

pt;, , = for We V c V. 

Remark. Generally one just writes ff instead of (ff, p), The homo-
morphisms are called restriction homomorphisms. Instead of for 
f E ff(V) one writes just f I v. Analogous to presheaves of abelian groups 
one can also define presheaves of vector spaces, rings, sets, etc. 

6.2. Example. Suppose X is an arbitrary topological space. For any open 
subset V c X let '/&'( V) be the vector space of all continuous functions 
f: V -+ C. For V c V let '/&'( V) -+ '/&'( V) be the usual restriction mapping. 
Then ('/&', p) is a pre sheaf of vector spaces on X, 

6.3. A pre sheaf ff on a topological space X is called a sheafiffor 
every open set V c X and every family of open subsets Vi c V, i E I, such 
that V = Ui E I Vi the following conditions, which we will call the Sheaf 
Axioms, are satisfied: 

(I) Iff, 9 E ff( V) are elements such that f I Vi = 9 I Vi for every i E I, 
thenf= g. 

(II) Given elements.t; E ff( Vi), i E I, such that 

.t;IVin Vj=.f}IVin Vj foralli,jEI, 

then there exists an f E ff( V) such that f I Vi = .t; for every i E I. 

Remark. The element f, whose existence is assured by (II), is by (I) 
uniquely determined. 

Applying (I) and (II) to the case V = 0 = Ui E 121 Vi implies ff(0) con-
sists of exactly one element. 
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6.4. Examples 
(a) For every topological space X the presheaf C(i defined in (6.2) is a 

sheaf. Both Sheaf Axioms (I) and (II) are trivially fulfilled. 
(b) Suppose X is a Riemann surface and C0( V) is the ring of holomorphic 

functions defined on the open set VeX. Taking the usual restriction map-
ping C0( V) -+ (o( V) for V c V one gets the sheaf (0 of holomorphic functions 
on X. The sheaf uK of meromorphic functions on X is defined analogously. 

(c) For an open subset V of a Riemann surface X let (r:*(V) be the 
multiplicative group of all holomorphic maps f: U -+ C*. With the usual 
restriction maps (0* is a sheaf of (multiplicative) abelian groups. The sheaf 
uK* is defined analogously: For any open set U c X, ,-4t*(V) consists of all 
meromorphic functions f E j{(V) which do not vanish identically on any 
connected component of V. 

(d) Suppose X is an arbitrary topological space and G is an abelian 
group. Define a presheaf'!J on X as follows : For any non-empty open subset 
V c X let '!J( V) := G and let '!J(0) := O. As for the restriction mappings, let 

= idG if V =f 0 and let be the zero homomorphism. If G contains at 
least two distinct elements 910 92 and if X has two disjoint non-empty open 
subsets V I, U 2, then '!J is not a sheaf. This is because Sheaf Axion (II) does 
not hold. For, since VI n vz = 0, one has 911 VI n V 2 = 0 = 

921 U 1 n V z but there is no f E '!J( U 1 U V 2) = G such thatf I VI = 91 and 
fIU 2 =92' 

(e) One can easily modify the previous example to obtain a sheaf. For 
any open set U, let @(V) be the abelian group of all locally constant map-
pings 9: V -+ G. Then if V is a non-empty connected open set, one has 
@(U) = G. For V c V let @(U)-+ @(V) be the usual restriction. Then @ is a 
sheaf on X which is called the sheaf of locally constant functions with values 
in G. Often it is just denoted by G. 

6.5. The Stalk of a Presheaf. Suppose :F is a presheaf of sets on a topological 
space X and a E X is a point. On the disjoint union 

U ,o/'(V), 
V3a 

where the union is taken over all the open neighborhoods V of a, introduce 
an equivalence relation 71 as follows: Two elementsf E :F(V) and 9 E 

are related f '"a 9 precisely if there exists an open set W with a EWe U n V 
such that f I W = 9 I w. One can easily check that this really is an equi-
valence relation. The set of all equivalence classes, the so-called inductive 
limit of ff(V), is given by 

lim :F(U):= ( U ,o/'(V)) / ;; , 
U3. V3a I 

and is called the stalk at the point a. If ff is a presheaf of abelian groups 
(resp. vector spaces, rings), then the stalk :Fa with the operation defined on 
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the equivalence classes by means of the operation defined on representatives, 
is also an abelian group (resp. vector space, ring). 

For any open neighborhood U of a, let 

Pa: ff(U) -- ll'a 

be the mapping which assigns to each elementf E ff(U) its equivalence class 
modulo 72. One calls Pa(f) the germ off at a. As an example consider the 
sheaf (!J of holomorphic functions on a domain X c IC. Let a EX. A germ of 
a holomorphic function cp E is represented by a hoi om orphic function in an 
open neighborhood of a and thus has a Taylor series expansion L:'=o 
cv(z - a)Y with a positive radius of convergence. Two holomorphic functions 
on neighborhoods of a determine the same germ at a precisely if they have 
the same Taylor series expansion about a. Thus there is an isomorphism 
between the stalk (0 0 and the ring C{Z - a} of all convergent power series in 
z - a with complex coefficients. In an analogous way, the ring J{ a of germs 
of meromorphic functions at a is isomorphic to the ring of all convergent 
Laurent series 

00 

Ldz - a)'·, k E 71., C,. E C, 
y=k 

which have finite principal parts. 
For any germ of a function cP E (!)a the value of the function, cp(a) E C, is 

well-defined, i.e., is independent of the choice of representative. 

6.6. Lemma. Suppose ff' is a sheaf of abelian groups on the topological space 
X and U c X is an open subset. Then an element f E ff'( U) is zero precisely if 
all germs Px(f) E ffx, x E U, vanish. 

This follows directly from Sheaf Axiom (I). 

6.7. The Topological Space Associated to a Presheaf. Suppose X is a topolo-
gical space and ff' is a presheaf on X. Let 

1ff'1 := U ff'x 
xeX 

be the disjoint union of all the stalks. Denote by 

p: Iffl--X 

the mapping which assigns to each element cp E ff' x the point x. Now intro-
duce a topology on I ff' I as follows: For any open subset U c X and an 
element f E ff'( U), let 

[U,j]:= {Px(f): x E U} c I ff' I· 
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6.S. Theorem. The system !B of all sets [U, fJ, where U is open in X and 
f E ff( U), is a basis for a topology on I ff I. The projection p: I ff I -+ X is a 
local homeomorphism. 

PROOF 

(a) To see that !B forms a basis for a topology on Iff I, one has to verify 
the following two conditions: 

(i) Every element q> E I ff I is contained in at least one [U, f]' This is 
trivial. 

(ii) If q> E [U, fJ n [V, g], then there exists a [W, h] E !B such that q> E 

[W, h] c [U, fJ n [V, g]. For suppose p(qJ) = x. Then x E Un V and 
qJ = pAt) = Px(g). Hence there exists an open neighborhood We U n V 
of x such thatf I W = 9 I W =: h. This implies qJ E [W, h] c [U,f] n [V, g]. 

(b) Now we will show that p: I ff I --+ X is a local homeomorphism. 
Suppose qJ E Iff I and p(qJ) = x. There exists a [U, fJ E !B with qJ E [U, f]' 
Then [U,j] is an open neighborhood of qJ and U is an open neighborhood of 
x. The mapping pi [U, fJ --+ U is bijective and also continuous and open as 
one sees immediately from the definition. Thus p: I ff I -+ X is a local 
homeomorphism. D 

6.9. Definition. A presheaf ff on a topological space X is said to satisfy the 
Identity Theorem if the following holds. If Y c X is a domain and f, 
g E ff(Y) are elements whose germs Pa(f) and Pa(g) coincide at a point 
a E Y, thenf= g. 

For example, this condition is satisfied by the sheaf (!) (resp . . ,11) of holo-
morphic (resp. meromorphic) functions on a Riemann surface X. 

6.10. Theorem. Suppose X is a locally connected Hausdorffspace and ff is a 
presheaf on X which satisfies the Identity Theorem. Then the topological space 
I ff I is H ausdorjJ. 

PROOF. Suppose q>1' qJ2 E I ff I and qJl * qJ2' We have to find disjoint neigh-
borhoods of qJl and qJ2' 

Case 1. Suppose p(qJd =: x "# y := P(qJ2)' Since X is Hausdorff, there exist 
disjoint neighborhoods U and V of x and y respectively. Then p-l(U) and 
p-l(V) are disjoint neighborhoods of qJl and qJ2' respectively. 

Case 2. Suppose p(qJd = P(qJ2) =:x. Suppose the germs qJi E ffx are re-
presented by elements/; E ff(UJ, where the Ui are open neighborhoods of x, 
i = 1, 2. Let U c U 1 n U 2 be a connected open neighborhood of x. Then 
[U, Ii I U] are open neighborhoods of qJ;. Now suppose there exists ljJ E 

[U, fll U] n [U, f21 u]. Let p(ljJ) = y. Then ljJ = py(fd = Py(f2)' From the 
Identity Theorem it follows thatfll U = f21 U, thus qJl = qJ2' Contradiction! 
Hence [U,fl I U] and [U,f21 U] are disjoint. D 
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EXERCISES (§6) 

6.1. Suppose X is a Riemann surface. For U c X open, let U) be the vector space 
of all bounded holomorphic functionsJ: U -> C. For V c U let gat U) -> Jl(V) be 
the usual restriction map. Show that Jl is a presheaf which satisfies sheaf axiom 
(I) but not sheaf axiom (II). 

6.2. Suppose X is a Riemann surface. For U c X open, let 

Show that .17 with the usual restriction maps is a presheaf which does not satisfy 
sheaf axiom (I). 

6.3. Suppose § is a presheaf on the topological space X and p: I § I -> X is the 
associated covering space. For U c X open, let §-( U) be the space of all sections 
of p over U, i.e., the space of all continuous maps 

J: U ---> 1·cJ'" I 

with p f = id u . Prove the following: 

(a) .F together with the natural restriction maps is a sheaf, 
(b) There is a natural isomorphism of the stalks 

§7. Analytic Continuation 

Next we consider the construction of Riemann surfaces which arise from the 
analytic continuation of germs of functions. 

7.1. Definition. Suppose X is a Riemann surface. u: [0,1] --> X is a curve and 
a:= u(O), b := u(I). The holomorphic function germ !/J E (l/b is said to result 
from the analytic continuation along the curve u of the holomorphic function 
germ <P E (0 if the following holds. There exists a family <P, E (I/'U(I) , t E [0, 1] 
of function germs with <Po = <P and <Pl = !/J with the property that for every 
T E [0, 1] there exists a neighborhood T c [0, 1] of T, an open set V c X 
with u( T) c V and a function J E (':( V) such that 

PU(t)(f) = <P, for every t E T. 

Here PU(t)(f) is the germ ofJat the point u(t). Because of the compactness of 
[0, 1] this condition is equivalent to the following (see Fig. 5). There exist a 
partition ° = to < t1 < ... < tn - 1 < tn = 1 of the interval [0, 1], domains 
Vi c X with U([ti- 1o t;]) c Vi and holomorphic functions I; E l'9( V;) for 
i = 1, ... , n such that: 

(i) cp is the germ off1 at the point a and !/J is the germ offn at the point b. 
(ii) 1; I J-i = 1;+ 1 I J-i for i = 1, ... , n - 1, where J-i denotes the connected 

component of Vi II Ui+ 1 containing the point u(tJ 



7 Analytic Continuation 45 

Figure 5 

If one carries out the construction given in (6.7) for the sheaf (! of holo-
morphic functions, then one gets a map p: 1 (!J 1 ---> X. The next Lemma 
shows that one can interpret analytic continuation along a curve by means 
of this map. 

7.2. Lemma. Suppose X is a Riemann surface and u: [0, 1] ---> X is a curve in X 
with u(o) =: a and u(l) =: b. Then afunction germ IjJ E (C b is the analytic contin-
uation of a function germ ({J E 0 a along u precisely if there exists a lifting 
u: [0, 1] ---> 1 (I: 1 of the curve u such that u(o) = ({J and u( 1) = 1jJ. 

PROOF 
(a) Suppose IjJ E (Cb is the analytic continuation of ({J E (!) a along u. Let 

({Jt E mU(f) for t E [0, 1] be the family of function germs as given in the 
Definition (7.1). It follows directly from the definition of the topology of 
1 (!) 1 that the correspondence t I-> ({Jt represents a continuous mapping 
u: [0,1] ---> 1(01. Thus U is a lifting of u with u(o) = ({Jo = ({J and u(l) = ({J1 = 1jJ. 

(b) Suppose there is a lifting u: lO, 1] ---> m ofu with u(O) = ({J and u(l) = 1jJ. 
For t E [0, 1], let ({Jt := u(t). Then ({Jt E (!Ju(t) and ({Jo = ({J, ({J1 = 1jJ. Let r E [0, 1] 
and suppose [U,j] c 1 (!; 1 is an open neighborhood of u(r). Then there exists 
a neighborhood T c [0, 1] of r such that u(T) c [U,fJ. This implies 
u(T) c U and ({Jt = u(t) = PU(f)(f) for every t E T. But this means that IjJ is 
the analytic continuation of ({J along u. 0 

Because of the uniqueness of liftings (Theorem 4.8) it follows from the 
lemma that if the analytic continuation of a function germ exists, then it is 
uniquely determined. Another consequence of the lemma is the Monodromy 
Theorem. 

7.3. Monodromy Theorem. Suppose X is a Riemann surface and uo , 
u 1: [0, 1] ---> X are homotopic curves from a to b. Suppose us, ° :;;; s :;;; 1, is a 
deformation of Uo into uland ({J E (C a is a function germ which admits an 
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analytic continuation along every curve us' Then the analytic continuations of 
<p along Uo and Ul yield the same function germ t/l E (! b' 

PROOF. Apply Theorem (4.10) to the local homeomorphism I f) I ...... X, 
noting that I cr I is Hausdorff by Theorem (6.10). 0 

7.4. Corollary. Suppose X is a simply connected Riemann surface, a E X and 
(P E fa is a function germ which admits an analytic continuation along every 
curve starting at a. Then there exists a globally defined holomorphic junction 
f E (( (X) such that Pa(f) = <po 

Remark. Because of the Identity Theorem, f is uniquely determined. 

PROOF. For any x E X let t/lx E fx be the function germ which results from the 
analytical continuation of <p along any curve from a to x. Since X is simply 
connected, t/l x is independent of which curve is chosen. Set .t{x) := t/l x(x). 
Thenfis a holomorphic function on X such that PaC!) = (p. 0 

7.5. In general, even if the analytic continuation of some function germ is 
possible along two curves with the same initial and end points, then the 
resulting germs at the end point may be different. Thus if we consider all the 
germs arising by analytic continuation from the given function germ we get a 
multi-valued function. Our next task is to look at this situation and to make 
the details precise. 

Suppose X and Yare Riemann surfaces and (!/x and (7)y are the sheaves of 
holomorphic functions on them. Suppose p: Y ...... X is an unbranched holo-
morphic map. Since p is locally biholomorphic, for each y E Y it induces an 
isomorphism p*: ((x. p(y) ...... (( Y.),' Let 

p*: (Jy.}' ...... ((x. p(y) 

be the in verse of p*. 

7.6. Definition. Suppose X is a Riemann surface, a E X is a point and <p E (!a 

is a function germ. A quadrupel (Y, p,/, b) is called an analytic continuation 
of <p if: 

(i) Y is a Riemann surface and p: Y ...... X is an unbranched holomorphic 
map. 

(ii) f is a holomorphic function on Y. 
(iii) b is a point of Y such that p(b) = a and 

P*(Pb(f)) = <po 

An analytic continuation (Y, p, j; b) of <p is said to be maximal if it has the 
following universal property. If (Z, q, g, c) is any other analytic continuation 
of <p, then there exists a fiber-preserving holomorphic mapping F: Z ...... Y 
such that F(c) = band F*(f) = g. 
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A maximal analytic continuation is unique up to isomorphism. Namely, 
using the above notation, if (Y, p,f, b) and (Z, q, g, c) are two maximal analytic 
continuations of cP, then there exists a fiber-preserving holomorphic map-
ping G: Y --> Z such that G(b) = c and G*(g) = f The composition FoG is a 
fiber-preserving holomorphic mapping of Y onto itself which leaves the 
point b fixed. Hence by Theorem (4.8) one has FoG = id y . Similarly 
G c F = idz and thus G: Y --> Z is biholomorphic. 

7.7. Lemma. Suppose X is a Riemann surface, a E X, cP E (!Ja and (Y, p,f, b) is 
an analytic continuation of cp. Then if v: [0, 1] --> Y is a curve with v(O) = band 
v(1) =: y, then the function germ t/I := p*(py(f)) E (!,'P(y) is an analytic continua-
tion of cp along the curve u := p 0 v. 

PROOF. For t E [0, 1] let CPt := P*(Pv(t)(f)) E (!J p(v(t» = (!Ju(t)· Then CPo = cp and 
CPl = p*(fy) = t/I. Suppose to E [0, 1]. Since p: Y --> X is a local homeo-
morphism, there exist open neighborhoods V c: Yand U c: X of v(to) and 
p(v(to)) = u(to) resp. such that p I V --> U is biholomorphic. Let q: U --> V be 
the inverse mapping and let g :=q*(f I V) E (!J(U). Then = 
for every 1'/ E V. There exists a neighborhood T of to in [0, 1] such that 
v(T) c: V, i.e., u(T) c: U. For every t E T 

PU(t)(g) = P*(PV(,)(f)) = cp,. 

This proves that t/I is an analytic continuation of cp along u. o 
7.S. Theorem. Suppose X is a Riemann surface, a E X and cp E {!; a is a holo-
morphic function germ at the point a. Then there exists a maximal analytic 
continuation (Y, p,f, b) of cp. 

PROOF. Let Y be the connected component of I (!J I containing cp. Let P also 
denote the restriction of the mapping p: I (!J I --> X to Y. Then p: Y --> X is a 
local homeomorphism. By Theorem (4.6) there is a complex structure on Y 
so that it becomes a Riemann surface and the mapping p: Y -+ X is holo-
morphic. Now define a holomorphic function f: Y --> C as follows. By 
definition every 1'/ E Y is a function germ at the point p(1'/). Setj(1'/) := 1'/(p(1'/)). 
One easily sees that f is holomorphic and = 1'/ for every 1'/ E Y. 
Thus if one lets b := cp, then (Y, p, I, b) is an analytic continuation of cp. 

N ow we will show that (Y, p,f, b) is a maximal analytic continuation of cp. 
Suppose (Z, q, g, c) is another analytic continuation of cp. Define the map 
F: Z -+ Yas follows. Suppose' E Z and q(O =:x. By Lemma (7.7) the func-
tion germ q*(p,(g)) E (7) .. arises by analytic continuation along a curve from a 
to x from the function germ cp. By Lemma (7.2) Y consists of all function 
germs which are obtained by the analytic continuation of cp along curves. 
Hence there exists exactly one 1'/ E Y such that q*(p,(g)) = 1'/. Let F(O = 1'/. It 
is easy to check that F: Z -+ Y is a fiber-preserving holomorphic map such 
that F(c) = band F*(f) = g. 0 
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Remark. The analytic continuation of meromorphic function germs can 
be handled by using the techniques employed in this section for holo-
morphic function germs. One just looks at the map I j{ I -+ x. So far we 
have disregarded branch points but in the next section we will also consider 
these for the special case of algebraic functions. 

EXERCISES (§7) 

7.1. Suppose X and Yare Riemann surfaces, p: Y -> X is a holomorphic (un-
branched) covering map and f: Y -> C is a holomorphic function. Let bEY, 
u ,= p(b) and qJ ,= P*(Pb(f)) E cr Q' Prove that (Y, P, f, b) is a maximal analytic 
continuation of qJ if and only if the following condition is satisfied: For any two 
distinct points bj, b2 E P- I(a) the germs qJ1 ,= P*(PbJf)) and qJ2 ,= P*(Pb,(f)) 
are differen t. 

7.2. Suppose X is a Riemann surface and a E X. Suppose rp E fa admits an analytic 
continuation along every curve in X which starts at a. Let (Y, p, f, b) be the 
maximal analytic continuation of qJ. Prove that p: Y -> X is a covering map. 

§8. Algebraic Functions 

One of the first examples of a multi-valued function which one encounters in 
complex analysis is the square root w = Jz. This is a particular case of an 
algebraic function, i.e., a function w = w(z) which satisfies an algebraic equa-
tion wn + al (Z)w"-l + ... + an(z) = 0, where the coefficients av are given 
meromorphic functions of z. In this section we present the construction of 
the Riemann surfaces of algebraic functions. It turns out that they are proper 
coverings such that the number of sheets equals the degree of the algebraic 
equation. 

8.1. The Symmetric Functions. Suppose X and Yare Riemann 
surfaces, n: Y -+ X is an n-sheeted unbranched holomorphic covering map 
and f is a meromorphic function on Y. Every point x E X has an open 
neighborhood V such that n - 1 (V) is the disjoint union of open sets 
VI' ... , V. and n: V. -+ V is biholomorphic for v = 1, ... , n. Let Tv: V -+ V, 
be the inverse mapping of n I Vv -+ V and let/.. ,= f = f Tv' Suppose Tis 
an indeterminate and consider 

n 

TI (T - jJ = P + C1 p-l + .. , + Cn • 

v=1 

Then the Cv are merom orphic functions in V and 

where Sv denotes the 11th elementary symmetric function in n variables. If one 
carries out this same construction in a neighborhood V' of another point 
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X' EX, then one gets the same functions c 1, ... , cn • Thus these functions 
piece together to give global meromorphic functions c l , ... , Cn E u#(X), 
which we call the elementary symmetric functions off with respect to the 
covering Y X. 

8.2. Theorem. Suppose X and Yare Riemann surfaces and n: Y X is an 
n-sheeted branched holomorphic covering map. Suppose A c X is a closed 
discrete subset which contains all the critical values ofn and let B = n-1(A}. 
Suppose f is a holomorphic (resp. meromorphic) function on Y\B and 
c l , ... , Cn E 0(X\A) (resp. E j/(X\A)) are the elementary symmetricjimctions 
of f Then f may be continued holomorphically (resp. meromorphically) to Y 
precisely if all the Cv may be continued holomorphically (resp. mero-
morphically) to X. 

The Theorem ensures that the elementary symmetric functions of a func-
tionf E U#(Y) are also defined when the map Y -> X is a branched holomor-
phic covering. 

PROOF. Suppose a E A and bb"" bm are the preimages of a. Suppose (U, z) is 
a relatively compact coordinate neighborhood of a with z(a) = 0 and 
UnA = {a}. Then V:=n-l(U) is a relatively compact neighborhood of 
each of the bfl' 

1. First consider the case f E (1:( Y\B). 

(a) Assume f may be continued holomorphically to all the points bfl' 
Thenfis bounded on V\{bt. ... , bm}. This implies that all the Cv are bounded 
on U\{a}. By Riemann's Removable Singularities Theorem they may all be 
continued holomorphically to a. 

(b) Suppose all the Cv may be continued holomorphically to a. Then all 
the Cv are bounded on U\{a}. But this impliesfis bounded on V\{b 1, .•• , bm}, 

for, if y E V\{bb ... , bm} and x = n(y), then 

f(yt + Cl (x)f(yt- l + ... + cn(x) = O. 

Again Riemann's Removable Singularities Theorem implies that f may be 
continued holomorphically to every point bfl' 

2. Now suppose f E jt( y\B). 

(a) Assume f may be continued meromorphically to all points bfl' The 
function cp:= n*z E 0(V) vanishes at all the points bl" Thus cp"f may be 
continued hoiomorphically to all the points bl1 if k is sufficiently large. The 
elementary symmetric functions of cp"f are Zkvcv and by the first part of the 
proof they may be continued holomorphically to a. Thus all the C v may be 
continued meromorphically to a. 

(b) Suppose all the Cv may be continued meromorphically to a. U sing the 
above notation one has: For k sufficiently large all the Zkvcv admit holo-
morphic continuations to a. Thus cpkf admits a holomorphic continuation to 
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all the points bp • This implies thatfmay be continued meromorphically to 
all of the points bl,. 0 

For later use note that the proof does not use the fact that Y is connected. 
Thus the Theorem also holds in the case that Y is a disjoint union of finitely 
many Riemann surfaces. 

If n: Y ----> X is a non-constant holomorphic map between Riemann sur-
faces X and Y, then for any meromorphic function f on X the function 
n*f:= f' n is a meromorphic function on Y. Thus there is a map 

n*: .H(X) ----> o/{{(Y) 

which is a monomorphism of fields. 

8.3. Theorem. Suppose X and Yare Riemann surfaces and n: Y ---t X is a 
branched holomorphic n-sheeted covering map. ,t' f E A(Y) and 
c1 , •.. , Cn E j{(X) are the elementary symmetric functions of j; then 

f" + (n*cdf"- 1 + ... + (n*cn- df + n*cn = O. 

The monomorphism n*: A(X) ----> A( Y) is an algebraic field extension of 
degree :s: n. Moreover, if there exist an f E ,M,(Y) and an x E X with preimages 
y \0 ... , Yn E Y such that the values j(y J for v = 1, ... , n are all distinct, then 
the field extension n*: ----> ,/({(Y) has degree n. 

Remark. We will see later (cf. (14.13) and (26.6)) that the last statement of 
the Theorem is always fulfilled. 

PROOF. The existence of the equation 
n 

r + I (n*cJf"-V = 0 
v= 1 

follows directly from the definition of the elementary symmetric functions 
off 

Let L := A( Y) and K := n* j{(X) c L. Then every f E L is algebraic over 
K and the minimal polynomial off over K has degree.::; n. Suppose E Lis 
an element for which the degree no of its minimal polynomial is maximal. 
We claim L = K(fo). Choose an arbitrary element f ELand consider the 
field K(fo, f). By the Theorem of the Primitive Element there exists gEL 
such that K(fo,f) = K(g). By the definition of no one has dimK K(g) .::; no. 
On the other hand, 

dimK K(fo,f) 2:: dimK K(fo) = no· 

Thus K(fo) = f) and f E K(fo)· 
Finally if the degree of the minimal polynomial off over K were equal to 

m < n, then f would be able to take at most m different values over every 
point x EX. 0 
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S.4. Theorem. Suppose X is a Riemann surface, A c X is a closed discrete 
subset and let X' = X\A. Suppose Y' is another Riemann surface and 
n': Y' --> X' is a proper unbranched holomorphic covering. Then n' extends to a 
branched covering of X, i.e., there exists a Riemann surface Y, a proper holo-
morphic mapping n: Y --> X and a fiber-preserving biholomorphic mapping 

cp: y\n-l(A) --> Y'. 

PROOF. For every a E A choose a coordinate neighborhood (Va' za) on X 
with the following properties: za(a) = 0, za( Va) is the unit disk in IC and 
Va n Va' = 0 if a f d. Let V: = Ua \{a}. Since n': Y' --> X' is proper, 
n'-l(U:) consists of a finite number of connected components V:v ' 

v = 1, ... , n(a). For every v the mapping n'l V:,,--> V: is an unbranched 
covering. Let its covering number be kav ' By Theorem (5.10) there exist 
biholomorphic mappings (av: V:v --> D* of V:v onto the punctured unit disk 
D* = D\{O} such that the diagram 

V:v D* I 

. j Xa" 

U* z. D* I a 

is commutative, where nav(O = (ka ,. 

Now choose" ideal points" Pav' a E A, v = 1, ... , n(a), i.e., pairwise 
distinct elements of some set disjoint from Y'. Then on 

Y := Y' U {Pav: a E A, v = 1, ... , n(a)} 

there exists precisely one topology with the following property. If W;, i E I is 
a neighborhood basis of a, then 

{PaJ U (n'-l(W;) n V:J, i E I, 

is a neighborhood basis of Pav and on Y' it induces the given topology. This 
makes Y into a Hausdorff space. Define n: Y --> X by n(y) = n'(y) for y E Y' 
and n(PaJ = a. Then, as one easily checks, n is proper. 

In order to make Y into a Riemann surface, add to the charts of the 
complex structure of Y' the following charts. Let Va" = V:" U {PaJ and let 

be the continuation of the mapping (av: V:v --> D* described above which is 
obtained by defining (av(Pav) := O. Since the last mapping is biholomorphic 
with respect to the complex structure of Y', the new charts (av: Vav --> Dare 
holomorphically compatible with the charts of the complex structure of Y'. 
The mapping n: Y --> X is holomorphic. Since Y\n- 1 (A) = Y' by construc-
tion, we may choose cp: y\n-l(A) --> Y' to be the identity mapping. This then 
shows the existence of a continuation of the covering n': Y' --> X'. 0 
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The following Theorem shows that the continuation of the covering, 
whose existence was just proven, is uniquely determined up to isomorphism. 

8.5. Theorem. Suppose X, Y and Z are Riemann surfaces and n: Y -> X, 
r: Z -> X are proper holomorphic covering maps. Let A c X be a closed 
discrete subset and let X' := X\A, Y' := n- I (X') and Z' := r- 1 (X'). Then every 
fiber-preserving biholomorphic nwpping (J': Y' -> Z' can be extended to afiber-
preserving biholomorphic mapping (J: Y ---> Z. In particular every covering 
transformation a' E Deck(Y'/X') can be extended to a covering transformation 
(J E Deck(Y/X). 

PROOF. Suppose a E A and (U, z) is a coordinate neighborhood of a such that 
z(a) = 0 and z(U) is the unit disk. Let U* = U\{a}. Moreover we may 
assume that U is so small that nand T are unbranched over U*. Let 
Vb 00., v,. (resp. Wb 00., Wm) be the connected components of n- I( U) (resp. 
T-I(U)). Then V::= Vv \n-l(a) (resp. W::= \T-I(a)) are the connected 
components of n- 1 ( U*) (resp. r- 1 ( U*)). 

Since (Jlln-I(U*) ---> r-I(U*) is biholomorphic, n = m and one may re-
number so that = Since nl -> U* is a finite sheeted un-
branched covering, Vv n n-l(a) (resp. w,. n ,-l(a)) consists by Theorem 
(5.11) of exactly one point b, (resp. cJ Hence a' I rr- 1( U*) -> T- 1( U*) can be 
continued to a bijective mapping n-l(U) ---> r-l(U) which assigns to bv the 
point cv ' Since n I Vv ---> U and T I w,. ---> U are proper, the continuation is a 
homeomorphism and by Riemann's Removable Singularities Theorem it is 
biholomorphic as well. (The Removable Singularities Theorem applies since 
Vvand Wv are isomorphic to the unit disk by Theorem (5.11).) If one now 
applies this construction to every exceptional point a EO A, then one gets the 
desired continuation a: Y -> Z. 0 

Theorem (8.5) makes the following definition meaningful (cf. Definition 
5.5). 

8.6. Definition. Suppose X and Yare Riemann surfaces and rr: Y -> X is a 
branched holomorphic covering. Let A c X be the set of critical values of n 
and let X' := X\A and Y':= rr l(X'). Then the covering Y ---> X is called 
Galois if the covering Y' ---> X' is Galois. 

8.7. Lemma. Suppose Cl' 00', Cn are holomorphic functions on the disk 

D(R) = {z EO IC: I z I < R}, R >0. 

Suppose Wo EO IC is a simple zero of the polynomial 



8 Algebraic Functions 53 

Then there exist an r, 0 < r ::; R, and a function cp holomorphic on the disk D(r) 
such that cp(O) = Wo and 

cpn + c 1 cpn - 1 + ... + Cn = 0 on D(r). 

PROOF. For z E D(R) and w E IC let 

F(z, w) = wn + cl(Z)Wn - 1 + ... + cn(z). 

There exists an I-: > 0 such that the function w 1---+ F(O, w) has a unique zero Wo 

in the disk {w E IC: I w - Wo I ::; £}. Now because of the continuity of F there 
exists an r with 0 < r ::; R sllch that in the set 

{{z,w)EIC 2 : Izl <r, Iw-wol=£} 

the function F has no zeros. For fixed z E D(r) the integral 

n{z) r Fw(z, w) d 
2m F(z, w) w, 

gives the number of zeros of the function w 1---+ F(z, w) in the disk with radius 
£ and center Wo. Since n(O) = 1 and n depends continuously on z, one has 
n{z) = 1 for every z E D(r). By the Residue Theorem the zero of w 1---+ F{z, w) 
in the disk I w - Wo I < £ is equal to 

cp(z) = _1. i' w F w(z, w) dw. 
2ni 'Iw- wol F(z, w) 

Since the integral depends holomorphically on z, the function z 1---+ cp{z) is 
holomorphic on D{r) and F{z, cp(z)) = 0 for every z E D(r). 0 

8.8. Corollary. Let (1\ be the ring ()fholomorphicfunction germs at a point x ()f 
a Riemann surface and let 

P(T) = yn + CI yn-l + ... + Cn E (I\[T). 

Suppose that the polynomial 

p{T):= yn + cl(X)yn-1 + '" + cn{x) E iC[T] 

has n distinct zeros WI, ... , wn. Then there exist elements CP1> ... , CPn E (!) x such 
that CPv(x) = Wv and 

n 

P(T) = TI (T - cP,). 
v= 1 

8.9. Theorem. Suppose X is a Riemann surface and 

P{T) = yn + C1 yn-l + ... + Cn E A(X)[T] 

is an irreducible polynomial of degree n. Then there exist a Riemann surface Y, 
a branched holomorphic n-sheeted covering 1t: Y ..... X and a meromorphic 
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function FE ,4f(Y) such that (n*P)(F) = O. The triple (Y, n, F) is uniquely 
determined in thefollowing sense. If(Z, r, G) has the corresponding properties, 
then there exists exactly one fiber-preserving biholomorphic mapping a: Z ---> Y 
such that G = a* F. 

To simplify the terminology (Y, n, F) is called the algebraic function defined 
by the polynomial P(T). 

Remark. The classical case is when X is the Riemann sphere [pl. Then by 
(2.9) the coefficients Cv of the polynomial P(T) are rational functions in one 
variable. Since [pI is compact and n: Y ---> [pI is proper, Y is also compact. 

PROOF. Let L1 E .11(X) be the discriminant of the polynomial P(T). (L1 is a 
certain polynomial in the coefficients of P.) The discriminant can not vanish 
identically, for otherwise P would be reducible. There exists a closed discrete 
subset A c X such that at every point x E X' := X\A all the functions c1, •.. , 

Cn are holomorphic and L1(x) f O. Then for every x E X' the polynomial 

pAT):= T" + c1(X)T"-1 + ... + cn(x) E qT] 

has n distinct zeros. Now we will use the topological space I ( I ---> X asso-
ciated to the sheaf (I, cf. (6.7). Let Y' c I (I' I be the set of all the function 
germs cp E (I}x, X E X', which satisfy the equation P( cp) = 0 and let 
n' : Y' ---> X' be the canonical projection. By Corollary (8.8) for every point 
x E X' there exist an open neighborhood U c X' and holomorphic func-
tions fl> ... ,In E (i;'( U) such that 

n 

P(T) = TI (T - JJ on U. 
\'= 1 

Then n'-l( U) = 1 [U,J]' The [U,JJ are disjoint and n' I [U,fJ ---> U is a 
homeomorphism. This shows that Y' ---> X' is a covering map. The connected 
components of Y' are Riemann surfaces which also admit covering maps 
over X'. Letf: Y' --> C be defined by f(cp):= cp(n'(cp)). Thenfis holomorphic 
and by construction 

f(y)" + cl (n'(y))f(y)"-1 + ... + cn(n'(y)) = 0 

for every y E Y'. By Theorem (8.4) the covering n': Y' --> X' may be continued 
to a proper hoiomorphic covering n: Y ---> X, where we identify Y' with 
n-I(X'). By Theorem (8.2) f may be extended to a meromorphic function 
FE A(Y), for which 

(n*P)(F) = F" + (n*cdF"-1 + ... + n*cn = O. 

Now we will show that Y is connected and thus a Riemann surface. Suppose 
this is not the case. Then Y has finitely many connected components 
Y1 , ••• , Yk and n I Y; ---> X is a proper holomorphic ni-sheeted covering, where 
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Lni = n. Using the elementary symmetric functions of F I 1'; one gets poly-
nomials Pi(T) E A(X)[T] of degree ni such that 

P(T) = PI (T)P2(T) ... Pk(T). 

But this contradicts the assumption that P(T) is irreducible. 

Uniqueness. Suppose (Z, r, G) is another algebraic function defined by the 
polynomial P(T). Let B c Z be the union of the poles of G and the branch 
points of r and let A' := r(B). Let 

X" :=X'\A', 

Define a fiber-preserving mapping (J": Z" --> Y" in the following way. Let 
z E Z", ,(z) = x and cP E ((x be the function germ cP := '* Gz . Then P(cp) = O. 
By the construction of Y' one sees that cp is a point of Y' over x and thus 
cP E Y". Set O""(z) = cp. From the definition it follows directly that 0"" is con-
tinuous. Since 0"" is fiber-preserving, (J" is thus holomorphic. Moreover, 0"" is 
proper since n I Y" --> X" is continuous and r I Z" --> X" is proper. Hence 0"" is 
surjective. Because Y" --> X" and Z" --> X" have the same number of sheets, 
0"": Z" --> Y" is biholomorphic. Also from the definition of 0"" one gets 
G I Z" = (O"")*(F I Y"). By Theorem (8.5) 0"" can be extended to a fiber-
preserving biholomorphic mapping 0": Z --> Y for which one then has 
G = (J* F. The mapping (J is in fact uniquely determined by the property 
G = O"*F. For, otherwise there would exist a covering transformation 
1:(: Y --> Y different from the identity such that 1:(* F = F. But this is not 
possible since F assumes distinct values on the fiber n- \x) over every point 
XEX'. 0 

8.10. Example. Suppose J(z) = (z - ad ... (z - an) is a polynomial with 
distinct roots ai' ... , an E C. Consider J as a meromorphic function on the 
Riemann sphere [pl. The polynomial P(T) = T2 - J is irreducible over 
.4t([pI) and defines an algebraic function which is usually denoted by JJ(z). 
Its Riemann surface n: Y --> [pI may be described using the above construc-
tion as follows. Let 

X' := [pI \A and Y':= n- I (X'). Then n: Y' --> X' is an unbranched holo-
morphic two-sheeted covering. This implies that every function germ cp E (9 x' 

where x E X', such that cp2 = Jean be analytically continued along every curve 
lying in X'. Now consider the covering over neighborhoods of the excep-
tional points. 

(a) For each j E {I, ... , n} choose rj > 0 sufficiently small that no other 
point of A lies in the disk 
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Since the function g(z) = Ok*j (z - Uk) no zeros in Vj and Vj is simply 
connected, there exists a holomorphic function h: Vj --+ iC such that h2 = g. 
Thus 

J(z) = (z - aj )h(z)2 

on V j . Suppose 0 < p < r j , e E IR and let ( = aj + peiO• By Lemma (8.7) 
there exists a function germ CPr; E (!r; such that CPt = J and 

cp,(n = JP eiO/ 2h(n· 

If one continues this function germ along the closed curve ( = aj + peiO, 
o ::; e ::; 2n, then one obtains the negative of the original germ. Let 
Vj:=Vj\{aj} and Vj:=n-1(Vj). Then n: Vj--+ Vj is a connected two-
sheeted covering as in Theorem (5.l0.ii) with k = 2. For otherwise 
n: Vj --+ Vj would split into two single-sheeted coverings and the analytic 
continuation of the function germ CPr; along the curve (= aj + peiO, 
o ::; e ::; 2n, would lead back to the same function germ. Hence the Riemann 
surface Y has exactly one point over the point aj. 

(b) Suppose r> max{ la11, ... , lanl} and let 

V* :={z E iC: Izl > r}. 

Then V:= V* U {oo} is a neighborhood of 00, which is isomorphic to a disk, 
and which contains no other points of A. On V one can writeJ = z"F, where 
F is a holomorphic function having no zeros in V. Now we distinguish two 
cases: 

(i) n odd. Then there exists a meromorphic function h on V such that 
J(z) = zh(zf· 

(ii) n even. Then there exists a meromorphic function h on V such that 
J(z) = h(Z)2. 

Let V*:= n- 1(V*). Now one shows, the same as above, that in case (i) 
n: V* ---+ V* is a connected two-sheeted covering and thus Y has precisely 
one point over 00. But in case (ii) n: V* ---+ V* splits into two single-sheeted 
coverings and thus when n is even Y has two points over 00. 

8.11. If X and Yare Riemann surfaces and n: Y --+ X is a branched holo-
morphic covering map, then Deck(YjX) has a representation into the auto-
morphism group of the field A(Y) defined in the following way. For 
a E Deck(YjX) let aJ:=J 0 a-I. Clearly the correspondence Jl-+aJ is an 
automorphism of A(Y). The mapping 

Deck(YjX) ---+ Aut(.$t(Y)) 

is a group homomorphism. For suppose a, ' E Deck(YjX). Then for every 
JE A(Y) 

(a,)J=Jo (a,r 1 =J0 ,-1 c a-I = a(fc ,-1) = a('J). 
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Trivially every such invariant the functions of 
the subfield n*,it(X) c ,.ft(Y) and thus is an element of the Galois group 
Aut(jt(Y)/n*j((X)). 

8.12. Theorem. Suppose X is a Riemann surface, K :=.4l'(X) is the .field of 
meromorphic junctions on X and P(T) E K[T] is an irreducible monic poly-
nomial of degree n. Let (Y, n, F) be the algebraic function defined by P( T) and 
L = ,it(Y). By means of the monomorphism n*: K --> L consider K as a 
subfield of L. Then L: K is afield extension of degree nand L K[T]/(P(T)). 
Every covering transformation 0:: Y --> Y of Y over X induces an automorphism 
f af:= f' a - 1 of L leaving K fixed and the mapping 

Deck(Y/X) --> Aut(L/K) 

which is so defined, is a group isomorphism. The covering Y --> X is Galois 
precisely if the field extension L: K is Galois. 

PROOF. The fact that L: K is a field extension of degree n follows from the last 
statement of Theorem (8.3). Since P(F) = 0, there is a homomorphism 
K[T]/{P{T)) --> L. Since both these fields are of degree n over K, this is an 
isomorphism. 

The mapping Deck(Y/X) --> Aut(L/K) is injective, because crF =1= F for 
any covering transformation a which is not the identity. This mapping is 
also surjective. For, suppose rx E Aut(L/K). Then (Y, n, rxF) is also an alge-
braic function defined by the polynomial P( T). Thus by the uniqueness 
statement of Theorem (8.9) there exists a covering transformation 
r E Deck(Y/X) such that rxF = r*F. If a :=r-l, then 

aF=F a-1=F r=r*F=rxF. 

Since L is generated by F over K, the L coincides 
with rx. 

The last statement of the Theorem follows from the fact that Y is Galois 
over X (resp. L is Galois over K) precisely when Deck(Y/X) (resp. 
Aut(L/K)) contains n elements. 0 

8.13. Puiseux Expansions. Denote by lC{{z}} the field of all Laurent series 
with finite principal part 

00 

cp(z) = I c"Z", 
v=k 

converging in some punctured disk {O < I z I < r}, where r > 0 may depend 
on the element cpo Then C{{z}} is isomorphic to the stalk 0 of the sheaf ,.ft 
of meromorphic functions in the complex plane and is the quotient field of 
IC{ z}. 

Consider an irreducible polynomial 

F(z, w) = wn + + ... + an(z) E C{{z}}[w] 
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of degree n over the field C{{z}}. For some r > 0, all the coefficients a v are 
meromorphic functions on 

D(r):={z E C: Izl < r}, 

and thus F may also be considered as an element of ,#(D(r))[w]. It is clear 
that F is also irreducible over the field A'I(D(r)). Now suppose that r has 
been chosen so small that for every a E D(r )\0 the polynomial 

F(a, w) E C[w] 

has no mUltiple roots. Let (Y, n, f) be the algebraic function defined by 
F(z, w) E .it'(D(r))[w] in the sense of Theorem 8.9. Then n: Y -4 D(r) is an n-
sheeted proper holomorphic map which is ramified only over the origin. By 
Theorem (5.11) there exists an isomorphism 

ex: D(p) -4 Y, 
/-

P = V'r, 
such that 

n(ex(()) = (" for every ( E D(p). 

Since F(n, f) = 0, it follows that 

F((", rp(()) = 0, where rp :=f ex. 

This proves the following Theorem. 

8.14. Theorem (Puiseux). Let 

F(z, w) = w" + a1(z)w"-1 + ... + an(z) E C{{z}}[w] 

be an irreducible polynomial of degree n over thefield q{z}}. Then there exists 
a Laurent series 

oc 

rp(() = I Cv(V E C{{m 
l'=k 

such that 

F((", rp(()) = 0 

as an element ()(C{{m. 

Remarks 
(1) If all of the coefficients av are holomorphic, i.e., a v E qz}, then 

rp E C{O as well. This follows from the fact that in this case the function f 
considered in (8.13) is holomorphic on Y. 

(2) Another way of expressing the assertion of the Theorem is to say that 
the equation 

F(z, w) = 0 
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can be solved by a Puiseux series 

'" 
w = <p(ifz) = L c"z,,/n. 

,,=k 

(3) We can interpret the Theorem of Puiseux in the following algebraic 
way. By means of the map 

C{{z}} -> C{{m, 

C{{m becomes an extension field of q{z}} of degree n. A basis of C{{m over 
C{{z}} is given by 1, (, ... , (n-1. The series <p(n is a root of F in this extension 
field. Let c be a primitive nth root of unity, e.g. e = e2TCi /n. Then for k = 0, 
1, ... , n - 1 we have (ekn" = (" and hence 

F((n, <p(ekO) = 0. 

Thus <p(ekn E C{{m is also a root of the polynomial F. It is easy to see that 
the series <p(eko. k = 0, 1, ... , n - 1, are distinct. Thus qg}} is a splitting 
field of the polynomial F E C{{z}}[w]. 

EXERCISES (§8) 

8.1. Suppose X and Yare compact Riemann surfaces such that J/(X) and A(Y) are 
isomorphic as C-algebras. Prove that X and Yare isomorphic. 
[H int: Represent X and Y as the Riemann surfaces of algebraic functions defined 
by one and the same irreducible polynomial P E A(lP'l )[T]. Also use the fact 
(proved in Corollary {14.13}} that on a compact Riemann surface the mero-
morphic functions separate points.] 

8.2. Let X and Y be compact Riemann surfaces, at. ... , an EX, bt. ... , bm E Yand 
X' ,=X\{at. ... , an}, Y' ,= Y\{bt. ... , bm }. Show that every isomorphism 
J: X' -+ Y' extends to an isomorphism]: X -+ Y. 

8.3. Let F(z, w) '=w 2 - Z3 W + z E C{{z}}[w]. 
(a) Show that F is irreducible over C{{z}}. 
(b) Determine the Puiseux expansion 

00 

w = L cv Z,·/2 
v-""O 

of the algebraic function defined by F(z, w} = O. 

§9. Differential Forms 

In this section we introduce the notion of differential forms on Riemann 
surfaces. It is important to consider not only holomorphic and meromorphic 
forms but also forms which are only differentiable in the real sense. 
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9.1. Suppose U is an open subset of C. We identify C with by writing 
z = x + iy, where x and yare the standard real coordinates on Denote 
by 6"( U) the C-algebra of all those functions f: U -4 C which are infinitely 
differentiable with respect to the real coordinates x and y. Besides the partial 
derivatives (a/ax) and (%y), we also consider the differential operators 

+ oi 2 ox oy 

As is well-known, the Cauchy-Riemann equations say that the vector space 
&( U) of holomorphic functions on U is the kernel of the mapping 
(%i): t5'(U) -4 t5'(U). 

9.2. By means of the complex charts one can define the notion of differen-
tiable function on any Riemann surface X. For any open subset Y c X, let 
6"(Y) consist of all functions f: Y -4 C such that for every chart 
z: U -+ V c C on X with U c Y there exists a function] E 6"(V) withf I U = 

] 0 z. Clearly the function]is uniquely determined by f, for] = f 0 1/1, where 
1/1: V -4 U is the inverse of z: U -4 V. 

Together with the natural restriction mappings one gets the sheaf 6" of 
differentiable functions on the Riemann surface X. In the following differen-
tiable will always mean infinitely differentiable. 

If (U, z), where z = x + iy, is a coordinate neighborhood on X, then the 
differential operators 

can be defined in the obvious way. 
Suppose a is a point in X. Then the stalk 6" a consists of all the germs of 

differentiable functions at the point a. Denote by nta c t5' a the vector sub-
space of all function germs which vanish at a and by nt; c nta the vector 
subspace of those function germs which vanish to second order. A function 
germ qJ E nta is said to vanish to second order if it can be represented by a 
function f such that, with respect to a coordinate neighborhood (U, z 
= x + iy) of a, one has 

of of 
ax (a) = oy (a) = O. 

This definition is independent of the choice of the local coordinate z. 

9.3. Definition. The quotient vector space 
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is called the cotangent space of X at the point a. If U is an open neighbor-
hood of a and f E C( U), then the differential da fETal) off at a is the element 

daf:= (f - f(a))mod lll;. 
Note that the functionf - f(a) vanishes at the point a and thus represents an 
element of llla. By definition its equivalence class modulo lll; is da f 

9.4. Theorem. Suppose X is a Riemann surface, a E X and (U, z) is a coordin-
ate neighborhood of a, where z = x + iy is the decomposition of z into its real 
and imaginary parts. Then the elements dax and daY form a basis of the 
cotangent space Tal). As well (daz, da z) is a basis of Tal). Iffis afunction which 
is differentiable in a neighborhood of a, then 

PROOF 

(a) First we will show that dax and daY span Tal). Let t E and sup-
pose cp E Illa is a representative of t. Expanding cp in a Taylor series about a 
yields 

cp = CI(X - x(a)) + C2(y - y(a)) + .p, 

where cl , C2 E IC and.p E Ill; . Taking equivalence classes modulo m;, we get 

(b) Now we claim dax and daY are linearly independent. For, CI dax + 
C2 daY = 0 implies 

Then taking partial derivatives with respect to x and y, one has CI = C2 = o. 
(c) Suppose f is differentiable in a neighborhood of a. Then 

of of 
f - f(a) = ox (a)(x - x(a)) + oy (a)(y - y(a)) + g, 

where g vanishes at a to second order. Thus 

Similarly, one can prove the corresponding results for (daz, daz). 0 
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9.5. Cotangent Vectors of Type (1, 0) and (0, 1). Suppose (U, z) and (U', z') 
are two coordinate neighborhoods of a E X. Then 

oz' cz (a)='c E C*, 
iF" 

(a) = c, 

and 

a.,.' iF" 
a: (a)=O. 

This implies da Z' = C da Z and da Z' = C da Z. 
Thus the one-dimensional vector subspaces of ral " which are spanned by 

da Z and da ::, are independent of the choice oflocal coordinate (U, z) about a. 
Introduce the following notation: 

By construction = 0 E8 r,;. I. The elements of 0 (resp. 1) are 
called cotangent vectors of type (1,0) (resp. (0, 1». 

If f is differentiable in a neighborhood of a, define f and d; fby 

Then 

= % (a) d"z, = % (a) dC/z. 

9.6. Definition. Suppose Y is an open subset of the Riemann surface X. By a 
differential form of degree one, or simply a 110rm, on Y we mean a mapping 

w: Y -> U 
aE Y 

with w(a) E nl) for every a E Y. If w(a) E 0 (resp. w(a) E 1) for every 
a E Y, then w is said to be of type (1,0) (resp. of type (0, i». 

9.7. Examples 
(a) Suppose f E g( Y). Then the mappings df, d'j, d''j, which are defined by 

(d"f)(a) ,= f, 

for every a E Y, are i-forms. Clearly a functionfis holomorphic precisely if 
d'f = 0. 

(b) Suppose w is a i-form on Y and f: Y -> C is a function. Then the 
mappingfw defined by (fw)(a) ,= f(a)w(a) is also a i-form on Y. 

Remark. If (U, z) is a complex chart with z = x + iy, then every I-form on 
U may be written 

w = f dx + g dy = qJ dz + tjJ dz, 
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where the functions.f, g, cp, !/J: U -> C are not necessarily continuous in 
general. 

9.S. Definition. Suppose Y is an open subset of a Riemann surface X. A 
I-form OJ on Y is called differentiable (resp. holomorphic) if, with respect to 
every chart (U, z), OJ may be written 

OJ =fdz + 9 dz on Un Y, wheref, 9 E aO(U n Y), 

resp. 

w =fdz on Uri Y, wherefE 0(U n Y). 

Notation. For any open subset U of a Riemann surface X we will denote 
by ao(l)(U) the vector space of differentiable I-forms on U, by ,.g1, O(U) (resp. 
gO, l(U)) the subspace of g(1)(U) of differential forms of type (1,0) (resp. 
(0,1)) and by n(U) the vector space of hoI om orphic 1-forms. Together with 
the natural restriction mappings 6,(1), 1,"1, 0, gO. 1 and n are sheaves of vector 
spaces over X. 

9.9. The Residue. Suppose Y is an open subset of a Riemann surface, a E Y 
and w is a holomorphic I-form on y\{a}. Let (U, z) be a coordinate neigh-
borhood of a such that U c Y and z(a) = O. Then on U\{a} one may write 
OJ =fdz, wherefE (i";(U\{a}). Let 

rz= - 00 

be the Laurent series expansion off about a with respect to the coordinate z. 
If Cn = 0 for every n < 0, then OJ may be holomorphically continued to all of 
Y. In this case a is called a removable singularity of w. If there exists k < 0 
such that Ck =1= 0 and Cn = 0 for every n < k, then OJ has a pole of kth order at 
a. If there are infinitely many n < 0 with Cn =1= 0, then w has an essential 
singularity at a. 

The coefficient c 1 is called the residue of OJ at a and is denoted by 

C - 1 = Resa(OJ). 

The next lemma shows that this definition makes sense. 

Lemma. The residue is independent of the choice of chart (U, z). 

PROOF. Suppose V is an open neighborhood of a, 

Claim (a) If 9 is holomorphic on V\{a}, then the residue of dg at a equals 
zero and is thus independent of the choice of chart. 
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PROOF. Let (U, z) be any coordinate neighborhood of a with z(a) = 0 and 
suppose 

L 

g = I cnzn 

n:::; - 00 

is the Laurent series expansion of g about a. Then 

and thus the coefficient of Z-1 dz is zero. 

Claim (b) If ip is a holomorphic function on V which has a zero of first 
order at a, then Resa( ip - 1 dip) = 1 and is thus independent of the choice of 
chart. 

PROOF. Suppose (U, z) is a chart at a with z(a) = o. Then ip = zh, where h is 
holomorphic at a and does not vanish there. Thus dip = h dz + z dh and 

dip 
ip 

h dz + z dh 
zh 

dz dh 
=- +-h . 

z 

Since h(a) =F 0, the differential form h- 1 dh is holomorphic at a and thus has 
residue zero. This implies 

(dip) (dZ) Resa .--;;; = Resa z = 1. 

Now using (a) and (b) one can easily finish the proof. With respect to a 
chart (U, z) with z(a) = 0 let OJ = f dz, where 

w 

f= I cnzn. 
n= - 'Xl 

Let 

-2 C eX) C 
g:= I _n_zn+l + I _--"_zn+l 

n=on+I 

Then OJ = dg + c 1 Z - 1 dz. From (a) and (b) one has Resa(OJ) = C _ [, which 
is independent of the chart. 0 

9.10. Meromorphic Differential Forms. A I-form OJ on an open subset Y of a 
Riemann surface is said to be a meromorphic differential form on Y if there 
exists an open subset Y' c Y such that the following hold: 

(i) OJ is a holomorphic I-form on Y', 
(ii) Y\ Y' consists of only isolated points, 

(iii) OJ has a pole at every point a E Y\ Y'. 
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Let A(1) ( Y) denote the set of all meromorphic I-forms on Y. With the natural 
algebraic operations and the usual restriction mappings ,A(I) is a sheaf of 
vector spaces over X. The meromorphic i-forms on X are also called abelian 
differentials. As well an abelian differential is said to be of the first kind ifit is 
holomorphic everywhere, of the second kind ifits residue is zero at everyone 
of its poles and of the third kind otherwise. 

9.11. The Exterior Product. In order to be able to define differential forms of 
degree two, we have to recall some properties of the exterior product of a 
vector space with itself. Let V be a vector space over C. Then A 2 V is the 
vector space over C whose elements are fihite sums of elements of the form 
VI /\ V2 for Vb V2 E V. One has the following rules 

(VI + V2)/\ V3 = V 1 /\ V3 + V2/\ V3 

for Vb V2, V3 E V and A E C. If (e 1, ... , en) is a basis of V, then the elements 
ei /\ ej , for i < j, form a basis of A 2 V. In fact these properties completely 
characterize A 2 V. 

Now we will apply this to the cotangent space Tal) of a Riemann surface 
X at a point a. Set 

:= A 2 r"t). 
Let (U, z) be a coordinate neighborhood of a, where z = x + iy. Then, it 
follows from what was just said, that da x /\ da y is a basis of r/). Another 
basis is da z /\ da Z = - 2i da x /\ da y. Thus r,,2) has dimension one. 

9.12. Definition. Suppose Y is an open subset of a Riemann surface X. A 
2-form on Y is a mapping 

where w(a) E r,,2) for every a E Y. The form w is called differentiable on Y if, 
with respect to every complex chart (U, z) on X, it can be written 

w=fdz/\dz withfEg(Un Y), 

where w = f dz /\ dz means that w(a) = f(a) da z /\ da z for every a E U n Y. 
Denote by g(2)(y) the vector space of all differentiable 2-forms on Y. 

Examples If WI' W2 E g(1)(y) are i-forms, then one can define a 2-form 
WI /\ W2 E g(2)( Y) by letting 

(Wl/\w2)(a):=wl(a)/\w2(a) 

for every a E Y. For f E C(Y) and w E g(2)(y) one gets a new 2-form 
fw E g(2)(y) by defining (fw)(a) = f(a)w(a) for every a E Y. 
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9.13. Exterior Differentiation of Forms. We now define derivations d, d', 
d": C(1)(U) --+ C(2)(U), where U is an open subset of a Riemann surface. 
Locally a differentiable I-form may be written as a finite sum 

w = I.Jk dgk , 

where the fk and gk are differentiable functions, e.g., w = f1 dz + f2 dz where 
z is a local coordinate. Set 

dw:= I dfk /\ dg k , 

d'w := I d'fk /\ dg b 

d"w := I d''fk /\ dgk· 

Now one has to show that this definition is independent of the representa-
tion w = Lfk dgk. We will do this for the operator d, the other cases being 
similar. 

Suppose w = Lfk dgk = Lh dg j . Choose a particular coordinate neigh-
borhood (U, z), where z = x + iy. One has to show that L dft/\ dgk = 
I d]j /\ dgj • Because 

Ogk Ogk 
dgk = ox dx + oy dy, 

with a corresponding expression for dgi , one has by assumption 

'\'j' Ogk = '\'J:. ogj 
L... k ox L... J ox ' 

Lf Ogk = IT ogj 
k oy J oy . 

Taking appropriate partial derivatives with respect to x and y and sub-
tracting yields 

I (Ofk Ogk _ Ofk 09k) = I (olj ogj _ olj O?/j) 
oy ox ox oy oy ox ox oy . 

On the other hand 

'\' d'l' d = '\' (Ofk Ogk _ oft 09k) d d 
L... '.Ik /\ gk L... ox oy oy ox X /\ y, 

with a corresponding formula for L dh /\ dgj . The result follows 
immediately. 

9.14. Elementary Properties. Suppose U is an open subset of a Riemann 
surface,f E C( U) and w E C(1)( U). Then 

(i) ddf = d'd'f = d"d''f = O. 
(ii) dw = d'w + d"w, 

(iii) d(fw) = df /\ W + f dw with similar rules for d' and d". 

These rules are straightforward consequences of the definitions; e.g., 
ddf= d(l' df) = dl/\df= O. 
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From (i) and (ii) one gets 

d'dNf = - dN d'f, 

since 0 = (d' + dN)(d' + dN)f= d'dNf + dNd'! 
With respect to a local chart (U, z), where z = x + iy, one has 

, N alf _ 1 (a lf alf) 
dd'f= azaz dz l\dz=2i OXl + ayl dXl\dy. 
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Hence a differentiable function f, defined on an open subset of a Riemann 
surface, is called harmonic if d'd''f = O. 

9.15. Definition. Suppose Y is an open subset of a Riemann surface. A differ-
entiable I-form OJ E (S(l)(y) is called closed if dOJ = 0 and exact if there exists 
f E 6'(Y) such that OJ = df 

Remark. Because ddf = 0, every exact form is closed. However the con-
verse is not true in general. We shall look at this question in more detail in 
the next section. 

9.16. Theorem. Suppose Y is an open subset of a Riemann surface. Then the 
following hold: 

(a) Every holomorphic l:form OJ E Q(Y) is closed. 
(b) Every closed OJ E 0"1. O(Y) is holomorphic. 

PROOF. Suppose OJ is a differentiable I-form of type (1,0). With respect to a 
coordinate neighborhood (U, z) one may write OJ = f dz for some differen-
tiable function f Then 

dOJ = df 1\ dz = (Z dz + dZ) 1\ dz = - dz 1\ dz. 

Thus dOJ = 0 is equivalent to (afjaz) = 0 and the results follow. 0 

Consequence. If u is a harmonic function, then d'u is a holomorphic 
I-form. For, dd'u = dNd'u = O. 

9.17. The Pull-Back of Differential Forms. Suppose F: X --+ Y is a holo-
morphic mapping between two Riemann surfaces. For every open set 
U c Y the map F induces a homomorphism 

F*(f) := f 0 F. 

Generalizing this one can define corresponding mappings for differential 
forms 

k = 1,2. 
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(Using the same symbol F* should cause no confusion.) Locally a I-form 
(resp. 2-form) may be written as a finite sum IJj dgj (resp. IJj dgj 1\ dhj), 
where the functions fJ, gj' hj are differentiable. Set 

F* (L fJ dgj ) = L (F*fJ) d(F*gJ, 

F*( LfJ dg j 1\ dhj) = L (F*jj) d(F*gj) 1\ d(F*h j). 

It is easy to check that these definitions are independent of the local re-
presentations chosen and hence piece together to give unique global vector 
space homomorphisms For fE6'(U) and 
WE 8(l)(U) one has 

(i) F*(df) = d(F*f), 
(ii) F*(dJ) = d'(F*f), 

F*(dw) = d(F*w), 
F*(d'w) = d'(F*w), 

with corresponding formulas for d". 

Consequence. Ir.f E 6'( U) is harmonic, then F*f = fe FE 8'(F- l(U)) is also 
harmonic. For, d'd"(F*f) = d'(F*d''f) = F*(d'd''f) = o. 

EXERCISES 

9.1. Suppose p'=exp: C --+C* is the universal covering ofC* and w is the holo-
morphic I-form dz/z on C*. Find p*w. 

9.2. Prove that the holomorphic I-form 

dz 
1 + Z2' 

which is defined on IC\{ ± i}, can be extended to a holomorphic I-form w on 
/P'l\{±i}. Let 

p'=tan: C --+ /P'l\{±i} 
(cf. Ex. 4.4) and find p*w. 

9.3. Suppose p: Y --+ X is a holomorphic mapping of Riemann surfaces, a E X, 
bE p-l(a) and k is the multiplicity of pat b. Given any holomorphic I-form w 
on X\{a} show that 

§10. The Integration of Differential Forms 

Differential I-forms can be integrated along curves. If the form is closed, 
then the integral only depends on the homotopy class of the curve. Thus on 
any simply connected surface X the indefinite integral of a closed I-form, 
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where the integration takes place along a curve with fixed initial point and 
variable end point, is a well-defined function on X. In general the integration 
of closed forms yields multi-valued functions. But these functions display a 
very special kind of multi-valued behavior. This will be looked at more 
closely in this section. As well we consider the integration' of 2-forms. This 
will be useful in transforming line integrals into surface integrals and will 
also be needed to prove the Residue Theorem. 

A. Differential 1-Forms 

10.1. Suppose X is a Riemann surface and WE 0,(1)(X). Further suppose that 
a piece-wise continuously differentiable curve in X is given. This means there 
is a continuous mapping 

c: [0, 1]--> X 

for which there exists a partition 

° = to < t 1 < ... < tn = 1 

of the interval [0, 1] and charts (Uk' Zk)' Zk = Xk + iYk, k = 1, ... , n, such 
that c([tk_ 1> tk]) c Uk and the functions 

have continuous first order derivatives. The integral of W along the curve c is 
defined in the following way. On Uk one may write W as W = dXk + gk dh, 
where the functions h, gk are differentiable. Set 

One can easily check that this definition is independent of the choice of 
partition and charts. 

10.2. Theorem. Suppose X is a Riemann surface, c: [0, 1] --> X is a piece-wise 
continuously differentiable curve and F E g(X). Then 

r dF = F(c(l)) - F(c(O)). 
'c 

PROOF. Choose a partition ° = to < t I < ... < tn = 1 and charts ( Uk, Zk) as 
above. On Uk one has 
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Thus 

r dF = I ftk (OF + (c(t)) dyk(C(t))) dt 
"c k=l "tk- [ oXk dt CYk dt 

Jl (-1 (:tF(c(t))) dt 

" I (F(C(tk)) - F(c(tk- d)) = F(c(l)) - F(c(O)). o 
k=l 

10.3. Definition. Suppose X is a Riemann surface and OJ E !,,(l)(X). A func-
tion F E 6"(X) is called a primitive of OJ if dF = OJ. 

By (9.15) any differential form which has a primitive is necessarily closed. 
But the primitive of a differential form is not unique. If F is a primitive of OJ 

and c E IC, then F + (' is also a primitive of OJ. Conversely any two primitives 
differ by a constant. For, if dF = 0, it follows, for example using Theorem 
(10.2), that F is a constant. 

Using Theorem (10.2) one can easily compute any line integral of a 
differential form if one knows one of its primitives. And it also follows from 
the Theorem that the integral of an exact differential form along a curve 
depends only on the initial and end points of the curve. 

10.4. The Local Existence of Primitives. Suppose U ,= {z E C: I z I < r}, 
where r > 0, is an open disk about zero in C and OJ E g(l)(U). The differen-
tial form OJ may be written 

OJ = f dx + 9 dy, 1, 9 E 0'( U), 

where x, yare the usual real coordinates on [R2 C. Assume that w is closed, 
i.e., dOJ = O. Since 

( og iJf) dw=dfAdx+dgAdy= --;;- dXAdy, ex oy 

this is equivalent to (ogjox) = (of/oy). We will prove that w has a primitive F 
which is given by the integral 

1 

F(x, y) ,= { (f(tx, ty)x + g(tx, ty)y) dt, for (x, y) E U. 
'0 

One sees directly that F is infinitely differentiable. One has only to verify 
that dF = OJ, i.e., (oF/iJx) = f and (DF/i5y) = g. Differentiating under the 
integral sign, we get 

_oF_(:....x-,' .Yc.:.') = (tx, ty)tx + (tx, ty)ty + f(tx, ty )) dt. 
ox ·0 yX uX 
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Since 

og 
ox 

one then has 

of and dd f(tx, ty) = Of (tx, ty)x + °olf (tx, ty)y, 
oy 1 uX Y 

y) = (( t :t f(tx, ty) + f(tx, ty )) dt 

1 d 
= f -d (tf(tx, ty)) dt = f(x, y) . 

• 0 t 

Similarly, (oF/oy) = g. This proves that dF = w. 

71 

In the special case that w is holomorphic, the proof of the existence of a 
primitive on the disk U is much easier. Namely, in this case one has 

w = f dz withf E @(U). 

Let 
00 

f(z) = 
n=O 

be the Taylor series expansion off Then defining 

00 c 
F(z):= L _n_zn+l 

n=O n + 1 

gives us a function FE @(U) such that dF = w. 
Globally a primitive of a closed differential form exists in general only as 

a multi-valued function. This is made precise in the next theorem. 

10.5. Theorem. Suppose X is a Riemann surface and w E C(1)(X) is a closed 
differential form. Then there exist a covering map p: X -+ X with X connected, 
and a primitive F E C(X) of the differential form p*w. 

PROOF. Let ff' be the sheaf of primitives of w. This is defined as follows. For 
an open set U c X let ff'( U) consist of all functions f E C( U) such that 
df = w on U. The sheaf ff' satisfies the Identity Theorem (cf. Definition 
(6.9)), since any two elementsflJ2 E ff'(U), where U is a domain in X, differ 
by a constant. Consider the associated space p: I ff' I -+ X. By Theorem 
(6.10) the space 1ff'1 is Hausdorff. Now we will show that p: I ff' I -+ X is a 
covering map. For every point a E X there exist by (10.4) a connected open 
neighborhood U and a primitivef E ff'(U) of w. Thenf + c, for c E C, are all 
the primitives of w on U. Hence 

p-l(U) = U [U,J + c]. 
C E <C 
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The sets [U, f + c) are pairwise disjoint and all the mappings 
pl[U, f + c) -+ U are homeomorphisms. This proves that p: Iff I -+ X is a 
covering map. Let X c Iff I be a connected component. Then piX -+ X is 
also a covering map. Since X is a set of function germs, a function F: X -+ C 
is defined in a natural way by F(cp) :=cp(p(cp)). It then follows directly from 
the definitions that F is a primitive of p*w. 0 

10.6. Corollary. Suppose X is a Riemann surface, n: X -+ X its universal 
covering and WE g(1)(X) a closed differential form. Then there exists a primi-
tive f E <t,(X) of n*w. 

PROOF. Let p: X -+ X be the covering map construction in (10.5) and let 
FE g(X) be a primitive of p*w. Since n: X -+ X is the universal covering, 
there exists a holomorphic fiber-preserving mapping T: X -+ X. Let 
f:=T*F E g(X). Thenfis a primitive ofT*(p*w) = n*w. 0 

10.7. Corollary. On a simply connected Riemann surface X every closed differ-
ential form w E g(1)(X) has a primitive F E g(X). 

This follows from (10.6) since id: X -+ X is the universal covering. 

10.S. Theorem. Suppose X is a Riemann surface and p: X -+ X is its universal 
covering. Suppose w E g(1)(X) is a closed differential form and F E g(X) is a 
primitive of p*w. If c: [0, 1] -+ X is a piece-wise continuously differentiable 
curve and c: [0, 1] -+ X is a lifting of c, then 

r w = F(c(l)) - F(c(O)). 
·c 

PROOF. For every piece-wise continuously differentiable curve v: [0, 1] -+ X 
and every differential form w E g(1)(X) one has 

J p*w = J w. 
v p.v 

This follows directly from the definitions. The theorem then follows from 
Theorem (10.2). 0 

10.9. Remark. Theorem (10.8) now gives a way to define the integral of a 
closed differential form along an arbitrary (continuous) curve c: [0, 1] -+ X, 
namely by the given formula. This definition is independent of the choice of 
the primitive F of p*w, for any two primitives only differ by a constant and 
taking the difference kills this. The definition is also independent of the 
lifting of the curve c. For suppose u and v are two liftings of c. Since the 
covering p: X -+ X is Galois (cf. 5.6), there is a covering transformation (J 
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such that v = (J 0 u. Since p 0 (J = p, one has (J*(p*w) = p*w. Thus (J* F is 
also a primitive of p*w and so (J* F - F = const. Hence 

F(v(l)) - F(v(O)) = (J*F(u(l)) - (J*F(u(O)) = F(u(l)) - F(u(O)) 

and thus the value of the integral is the same for both liftings. 

10.10. Theorem. Suppose X is a Riemann surface and W E t&'(1)(X) is a closed 
differential form. 

(a) If a, b E X are two points and u, v: [0, 1] X are two homotopic curves 
from a to b, then 

J w = J w. 
u v 

(b) If u, v: [0, 1] X are two closed curves which are free homotopic, then 

J w = J w. 
u v 

PROOF 
(a) Let p: g X be the universal covering and suppose u, v: [0, 1] g 

are liftings of u and v resp. with the same initial point. By Theorem (4.10) u 
and v also have the same end point. Hence the result follows from Theorem 
(10.8). 

(b) Suppose the curve u has initial and end point Xo and the curve v has 
initial and end point x l' Then there exists a curve w from Xo to x 1 such that u 
is homotopic to w . V· w-, cf. (3.13). Hence by (a) one has 

J w = J w = f w + J w - J w = J w. 
u W·V·W- w v w v 

o 

10.11. Periods. Suppose X is a Riemann surface and w E t&'(l)(X) is a closed 
differential form. Then by Theorem (10.10) one can define the integral 

a :=J' W u , 
u 

by choosing any curve representing the homotopy class (J and integrating 
along that curve. These integrals are called the periods of w. Clearly 

J w = J w + J w for (J, T E 1tl(X), 
tf· t (J t 

Thus one gets a homomorphism 1t 1 (X) C of the fundamental group of X 
into the additive group C. This homomorphism is called the period homo-
morphism associated to the closed differential form w. 
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Example. Suppose X = C*. By (5.7.a) 7r1(C*) ll.. A generator Of7r1(C*) 
is represented by the curve u: [0, 1] -> C*, u(t) = e21[it. Let w:= (dz/z), where 
z is the canonical coordinate. Then 

. . dz I w = I - = 27ri. 
"'u "11 Z 

Hence the period homomorphism of w is 

ll. -> C, n I--> 27rin, 

where we have explicitly realized the isomorphism ll. 7r1(C*) by the corre-
spondence n I--> cl(u"). 

10.12. Summands of Automorphy. Suppose X is a Riemann surface and 
p: X -> X is its universal covering. The group G:= Oeck(X/X) of covering 
transformations of the universal covering, as was observed in (5.6), is isomor-
phic to the fundamental group of X. If a E G andf: X -> C is a function, then 
we can define a function af: X -> C by af:= f 0 a-I. If g: X -> C is another 
function, then a(f + g) = af + ag and aUg) = (af)(ag). Also for a, T E G 
one has (aT)f = a{Tf). 

A function f: X -> C is called additively automorphic with constant sum-
mands of automorphy, if there exist constants afT E C, a E G, such that 

f - af = afT for every a E G. 

The constants a", which are uniquely determined by J, are called the sum-
mands of automorphy of f Then af - aTf = at for any a, T E G, since 
f - rf= at· Thus 

a"t = f - aTf = (f - a!) + (af - aT!) = afT + at· 

Hence the correspondence a I--> a" is a group homomorphism 
Oeck(X/X) -> C. 

Any functionf: X -> C which is invariant under covering transformations, 
i.e., af = f for every a E G, is an example of an additively automorphic 
function. In particular its summands of automorphy are all zero. For any 
such function there exists a function fo: X -> C such that f = p*fo. If f is 
differentiable (resp. holomorphic) then fo is differentiable (resp. holo-
morphic) as well. 

10.13. Theorem. Suppose X is a Riemann surface and p: X -> X is its univer-
sal covering. 

(a) If WE g(1)(X) is a closed differentialform and FE g(X) is a primitive of 
p*w, then F is additively automorphic with constant summands of automorphy. 
Its summands of automorphy a", a E Oeck(X/X), are, with respect to the 
isomorphism 7r1(X) Oeck(X/X), exactly the periods of w. 
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(b) Conversely suppose F E C(X) is an additive automorphic function with 
constant summands of automorphy. Then there exists precisely one closed 
differential form WE CO)(X) such that dF = p*w. 

PROOF 

(a) If (J is any deck transformation, then because p a (J- 1 = P the function 
(JF is also a primitive of p*w. Thus 

-au := uF - F 

is a constant. Suppose Xo E X and Zo E X is a point with p(zo) = Xo' Suppose 
(J E Deck(X/X). By (5.6) the element a- E 1l:1(X, xo) which is associated to (J 
can be represented as follows. Choose a curve v: [0, 1] -+ X with v(O):= 
Yo:= (J-l(ZO) and v(I):= Zo = (J(Yo). Then u:= po v is a closed curve in X 
and a- = cl(u). By Theorem (10.8) the periods of w with respect to a- are given 
by 

i w = F(v(l» - F(v(O» = F(zo) - F(u-1(zo» = -au· 

(b) If F has summands of automorphy a" E C, then for every 
(J E Deck(X/X) one has 

(J*(dF) = d(J*F = d(F + a,,) = dF. 

Thus the closed differential form dF is invariant under covering trans-
formations. Since p: X -+ X is locally biholomorphic, there exists 
WECO )(X) such that dF = p*w. Clearly w is uniquely determined and is 

D 

10.14. Example. Suppose r = lYI + lY2, where Yl, Y2 E C are linearly 
independent over IR, is a lattice in C. Let X := c/r. 

The canonical quotient mapping 1l:: C -+ X is also the universal covering 
map and Deck(C/X) is the group of all translations by vectors Y E r, cf. 
(5.7.c). Consider the identity map z: C -+ C. Then the function z is additively 
automorphic under the action of Deck(C/X) with summands of automorphy 
ay = y, Y E r. Hence dz is invariant under covering transformations. Thus 
there exists a holomorphic differential form WE Q(X) such that p*w = dz 
and whose periods are exactly the elements of the lattice r. 

10.15. Theorem. Suppose X is a Riemann surface. A closed differential form 
W E C(I)(X) has a primitive f E C(X) if and only if all the periods of ware zero. 

PROOF. If w has a primitive, then by (10.2) all its periods are zero. 
Conversely, suppose that all the periods of ware zero. By Corollary (10.6) 

there exists, on the universal covering p: X -+ X, a primitive FE ,f(X) of 
p*w. By (10.3), F has summands of automorphy O. Thus there is anf E C(X) 
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such that F = p*f Then this function is a primitive of w, since p*w = dF = 
d(p*f) = p*(df) implies w = df 0 

Remark. If all the periods of w vanish, then by Theorem (10.2) one gets a 
special primitive of w from the integral 

f(x):= rX w . 
• Xo 

Here Xo E X is a fixed arbitrary point and the integral is along any curve 
from Xo to x (the integral is in this case independent of the choice of curve). 

10.16. Corollary. Suppose X is a compact Riemann surface and WI' Wz E Q(X) 
are two holomorphic differential forms which define the same period homo-
morphism 7r I (X) -+ IC. Then WI = W2. 

PROOF. The difference W := WI - Wz has zero periods and thus has a primi-
tive f E 0(X). Since X is compact,j is constant and thus w = df = O. 0 

B. Differential 2-Forms 

10.17. Next we look at integration of differential 2-forms in the complex 
plane. Suppose U c C is open and w E 6"(2)( U). Then w may be written 

i 
w = f dx /\ dy = 2. f dz /\ dz, where f E 6"( U). 

Assume that f vanishes outside of a compact subset of U. Then define 

JJ w:= jJf(x, y) dx dy, 
u u 

where the right-hand side is the usual double integral. 
Now suppose V is another open subset of C and cp: V ---> U is a biholo-

morphic mapping. If cp = u + iv is the splitting of cp into its real and imagin-
ary parts, then by the Cauchy-Riemann equations the Jacobian determinant 
of the mapping cp is 

a(u, u) _ au au au au _ 1 '12 ----- --- - cp 
a(x, y) axay ayax . 

Thus the transformation formula for the integral becomes 

JJfdX dy = JJ (J 0 cp)1 cp' 12 dx dy. 
u v 
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On the other hand, 

rp*(dz;\ dz) = drp;\ dip = (rp' dz);\ W dz) = I rp'I2 dz;\ dz 

and thus rp*w = (f, rp)lrp'12 dx;\dy. Hence 

1'1' w = rr rp*w . 
., 
u v 
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10.18. Now suppose X is a Riemann surface. By the support of a differential 
form w on X we mean the closed set 

Supp(w) ,= {a EX: w(a) =1= O}. 

The support Supp(f) of a function f: X ---> IC is defined analogously. 
(a) Suppose rp: U ---> V is a chart on X and w E g(2)(X) is a differential 

form whose support is compact and contained in U. Then (rp-I )*w is a 
differential form with compact support in V c IC and thus one can define 

JJ w ,= JJ w ,= JJ (rp-I )*w. 
x u v 

This definition is independent of the choice of chart. For, suppose 
rp I: U I ---> VI is another chart with Supp(w) cUI' Without loss of generality 
we may assume U = U I (otherwise take the intersection). Then 

t/I ,= rp I ' rp - I: V ---> VI 

is a biholomorphic mapping. Since 

(rp-I)*W = (rp1l t/I)*w = t/I*((rp1l)*w), 

by (10.17) one has 

JJ (rp-l)*W = JJ (rp1l)*w. 
v v, 

Thus SIx w is defined independently of the choice of chart. 
(b) Now suppose w E g(2)(X) is an arbitrary differential form with com-

pact support. Then there exist finitely many charts rpk: Uk ---> Vb k = 1, ... , n 
such that 

n 

Supp(w) C U Uk' 
k=1 

Then one can find functions fk E 0"(X) with the following properties (a 
so-called "partition of unity," cf. Appendix A): 

(i) Supp(fd c Ub 

(ii) D=Jk(X) = 1 for every x EO Supp(w). 
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Then J;, co is a differential form with Supp(J;, co) (£: Uk and 

Define 

Here the right-hand side is defined by (a). Again it is straightforward to 
check that the definition is independent of the choice of charts and functions 
k 

10.19. Later on we want to use a special case of Stokes' Theorem in the 
plane. Suppose U c C is open and A c U is a compact subset with smooth 
boundary oA. Then for every differential form co E 6"(1)(U) 

rr dco = r co. 
"'.4' ·rA 

Here the boundary is oriented so that the outward pointing normal of A and 
the tangent vector to oA in this order determine a positively oriented basis of 
the plane. 

We will need the theorem only in the case that A is a disk or an annulus 

A = {z E C: c Izi R}, O<c<R. 

In the second case, oA consists of the positively oriented circle I z I = Rand 
the negatively oriented circle I z I = c. Then Stokes' Theorem for 
co = f dx + g dy says 

We would now like to prove this fotmula directly by introducing polar 
coordinates z = re i6 , i.e., 

x = r cos e, y = r sin e. 

First we look at the case co = g dy. Thus dco = (og/ox) dx 1\ dy. Noting that 

o 0 sin e 0 - = cos e-ox or - - -r-oe' 
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and letting g(r, e) := g(re iO ), one gets 

rr dw = JJ 
'A e$lzl$R 

JJ 

og J,j' ox dx dy = . 
e5, r'5: R 

0$0$ 2" 

cos e - - -- - r dr de ( og sin e og) 
or r (J() 

(cos e :r (rg) - :e (sin eg) ) dr de. 

Now for every fixed r E [e, R] 

.2n 0 10 =2" 
Jo ofJ (sin e g) de = sin fJ g(r, fJ) 0=0 = o. 

Then 

fJ .2" ( . R 0 ) 
'A dw = Jo cos fJ J

e 
a;. (rg) dr dfJ 

,2" . 2" 

= I g(R, fJ)R cos e de - f g(e, e)£ cos e de 
'0 • 0 

= J 9 dy - r 9 dy = r w. 
Izl=R 'Izl=< • ,'A 

79 

The case w = f dx is reduced to the case just considered by making the 
change of coordinates (x, (y, - x) and noting that this transformation 
has Jacobian determinant 1. This proves Stokes' Theorem for an annulus. 
The case of the disk is obtained by letting /; -> o. 

10.20. Theorem. Suppose X is a Riemann surface and w E g(l)(X) is a differ-
ential form with compact support. Then 

JJ dw = O. 
x 

PROOF. By multiplying by a partition of unity as in (lO.l8.b) we may write w 
as a sum w = WI + '" + W n , where each W k has compact support which lies 
entirely in one chart. 

Without loss of generality we may thus assume X = C. 
Choose R > 0 so large that 

Supp(w) C {z E C: Izl < R}. 

Then 

J J dw = J J dw = J w = J 0 = o. 
c 

o 



80 1 Covering Spaces 

10.21. The Residue Theorem. Suppose X is a compact Riemann surface and 
aI' ... , an are distinct points in X. Let X' :=X\{al' ... , an}. Then for every 
holomorphic 1jorm WE n(X'), one has 

n 

L Resak(w) = O. 
k=1 

PROOF. Choose coordinate neighborhoods (V k, zd of the ak such that 
Vj n V k = 0 ifj 1= k. Also we may assume that zk(ak) = 0 and Zk(Vk) C Cis 
a disk. For every k = 1, ... , n choose a function fk with compact support 
Supp(fd C V k such that there exists an open neighborhood Vk C V k of ak 
withfk I Vk = 1. Set g := 1 - (fl + ... + f,,). Then g I Vk = O. Thus gw may be 
continued to the point ak by assigning it the value zero, and may thus be 
considered as an element of g(l)(X). By (10.20) 

JJ d(gw) = O. 
x 

Since W is holomorphic, dw = 0 on X'. On Vk n X' one hasfkw = wand 
thus d(fk w) = O. Hence w) may be considered to be an element of 
'jg(2\X) whose support is a compact subset of Vk\{ak}' Now d(gw) = 

- L d(ikw} implies 

kt JJ = O. 
x 

Hence the proof will be complete once we show 

JJ d(fk W ) = -2ni Resak(w). 
x 

Since the support of d(fk ())) is contained in Vk: we only have to integrate 
over V k' Using the coordinate Zk we may identify V k with the unit disk. 
There exist 0 < f, < R < 1 such that 

But then 

= - J ()) = - 2ni Resa.(w) 
IZkl =< 

by the Residue Theorem in the complex plane. o 
10.22. Corollary. Any non-constant meromorphic function f on a compact 
Riemann surface X has, counting multiplicities, as many zeros as poles. 
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PROOF. The differential form w := dflfis holomorphic except at the zeros and 
poles off If a E X is a zero (resp. pole) of mth order off, then Resa{w) = m 
(resp. Resa{w) = - m). Hence the result follows from the Residue Theorem. 

o 
Remark. We already proved this Corollary in (4.25) using coverings. 

EXERCISES (§1O) 

10.1. Let X be a Riemann surface and w be a holomorphic i-form on X. Suppose cp 
is a primitive of w on a neighborhood of a point a E X and (Y, p, f, b) is a 
maximal analytic continuation of cpo Prove 

(a) p: Y X is a covering map 
(b) Jis a primitive of p*w 
(c) The covering p: Y X is Galois and Deck(Y/X) is abelian. 

iO.2. Let X = c/r be a torus. Given any homomorphism 

a: C 

show that there exists a closed I-form WE ,g>(I)(X) whose period homo-
morphism is equal to a. 

10.3. Suppose X is a Riemann surface and W E .,/((l)(X) is a meromorphic i-form on 
X which has residue zero at every pole. Show that there is a covering p: Y X 
and a meromorphic function F E "/((X) such that dF = p*w. 

10.4. Let r c C be a lattice. Use the Residue Theorem to show that there is no 
meromorphic functionJE .,/((C/r) having a single pole of order 1. 

§11. Linear Differential Equations 

In this section we consider linear differential equations of the form 
w' = A{z)w, where A{z) is a given n x n matrix which depends holo-
morphically on z. A vector-valued function w = w{z) is sought which 
satisfies the differential equation. Locally, for any given initial condition 
w(zo) = wo, there always exists a unique holomorphic solution. This solu-
tion may be continued along every curve in the domain of definition of A. 
However this continuation is, in general, no longer a single-valued function. 
It turns out that closer consideration of this multi-valued behavior gives a 
good insight into the structure of the solutions. 

11.1. Notation. Denote by M{n x m, iC) the vector space of all n x m 
matrices with coefficients in IC and by GL(n, IC) the group of all invertible 
n x n matrices with complex coefficients. If X is a Riemann surface, then a 
mapping 

A: X --> M{n x m, IC) 
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is called holomorphic if all the coefficients ai/ X e are holomorphic. The 
set of all holomorphic mappings A: X -> M(n x m, e) will be denoted by 
M(n x m, m(X)). One can define GL(n, m(X)) similarly. 

11.2. Theorem. Suppose A E M(n x n, m(D)) is a holomorphic n x n-matrix 
on the disk 

D :={z E C: Izl < R}, where 0 < R.::;; 00. 

Then for every Wo E en there exists precisely one holomorphic function 
w: D -> en such that 

(1) w'(z) = A(z)w(z) for every ZED, 
(2) w(O) = wo. 

(Here we are identifying en with the space M(n x 1, e) of column vectors.) 

PROOF 

(a) The matrix A can be expanded in a Taylor series 

\.'=0 

in D. (This is to be understood as a system of n2 equations for the entries of 
A(z).) Now suppose that the solution w has the form 

00 

w(z) = L c,"z'", 
\,=0 

If this series converges in D, then (1) is equivalent to 

I.e., 

(3) (k + I)Ck+l = Ak-vcv for every kEN. 

The initial condition (2) is equivalent to Co = Wo. Hence by (3) one can 
recursively compute all the coefficients Ck. This shows the uniqueness of the 
solution. 

(b) In order to prove the existence of a solution we have to show that the 
series for w, having the coefficients computed in (3), does in fact converge in 
D. To do this we will use the majorant method of Cauchy. 

For an arbitrary r with 0 < r < R the series 
00 

L 1 ajivl rV 
v=o 

converges. Hence there exists N E N such that 

(4) lajivl.::;;Nr-v-l foreveryvEN and l.::;;i,j.::;;n. 
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Define an n x n matrix B = (b ij ) which is holomorphic in 1 z 1 < r by letting 

N ( Z) -1 N OCJ z\' 
(5) bij(z):=- .1-- =- L -;: for all i,j. 

r r r \.=0 r 

Let Wo = (w lO , ... , wnO) and K:= max( 1 WlO I,···, 1 WnO I). Now we can find a 
solution of the differential equation 

u'(z) = B(z )u(z) 

in the disk 1 z 1 < r which satisfies the initial condition v(O) = (K, ... , K). By 
(a) the solution is unique and is given by 

v(z) = (tjJ(z), ... , tjJ(z)), 

where 

( ) - nN 
tjJ(z)=K 1-; 

The function tjJ is a solution because 

KnN( z)-nN-1 N( Z)· -1 tjJ'(z)=-r- =n--;. tjJ(Z). 

On the other hand, the differential equation u' = Bu can be solved using 
power series. If 

00 

B(z) = L B,z', 
v=o 

and 
if) 

u(z) = L Y,.z', 
,=0 

are the appropriate power series, then analogous to (a) one has 

(6) (k + 1)Yk+l = Bk -, y,. 

Then from (4) and (5), it follows that 

1 aij " 1 bij" for every i, j, v. 

Since 1 Cio 1 = 1 Wio 1 K = Yio for i = 1, ... , n, comparison of (3) and (6) and 
induction on k implies 

1 cij 1 Yik for every k E rJ and i = 1, ... , n. 

Since the series Lk Yik Zk = tjJ(z) converges for Iz 1 < r, one has that 
Lk Ck Zk = w(z) converges as well. 

Since r < R is arbitrary, the series converges on all of D = {I z 1 < R}. 
o 
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11.3. On a Riemann surface X a linear differential equation for an unknown 
holomorphic function w: X -> en may be written in the form 

dw = Aw, 

where A = (aij) E M(n x n, Q(X)) is a given n x n matrix of holomorphic 
I-forms aij E Q(X). For any local chart (V, z) on X one has A = F dz, where 
FE M(n x n, 0(V)) and the differential equation becomes 

dw 
dz = F· w. 

But this is just the form of equation studied in (11.2). 

11.4. Theorem. Suppose X is a simply connected Riemann surface, 
A E M(n x n, Q(X)) and Xo E X. Then for every c E en there exists a unique 
solution w E 0(Xt of the differential equation 

dw= Aw 

satisfying w(xo) = c. 

PROOF 

(a) By Theorem (11.2) there exists a connected open neighborhood V 0 of 
Xo and a solution fE £D(Vot of the differential equation df= Af with 
f(xo) = c. Now we will show thatfmay be analytically continued along any 
curve oe: [0, 1] -> X having initial point Xo. Then by Corollary (7.4) these 
continuations will piece together to form a global function w E (IJ(x)n which, 
because of the Identity Theorem, satisfies the differential equation dw = Aw 
on all of X. 

(b) By Theorem (11.2) there exists a partition 

° = to < t I < ... < tk = 1 

of the interval [0, 1] and domains V j ' j = 1, ... , k - 1, with the following 
properties: 

(i) oe([tj' tj+ I]) c Vj for j = 0, ... , k - 1, where Vo is the neighborhood 
of Xo mentioned above. 

(ii) For any initial value Cj E en there existsfi E £D(Vj)" with dfi = Afiand 
fi(oe(tJ) = cj,j = 1, ... , k - 1. 

Now, starting with the solution fo := f on V 0 found in (a) and using 
induction on j one can construct solutions./.i on Vj satisfying 

fi(oe(t j)) = fi-I(oe(tj))' 

From the uniqueness proved in Theorem (11.2) and the Identity Theorem it 
follows that fi-I and fi agree on the connected component of V j - I n Vj 
containing oe(tj). This proves thatf can be analytically continued along oe. 

D 
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11.5. Corollary. Suppose X is a Riemann surface, p: X --+ X is its universal 
covering, Xo E X is a point and Yo E X is a point such that p(Yo) = Xo' Suppose 
A E M(n x n, Q(X)) and c E C. Then there exists a unique solution 
W E (I}(x)n on the universal covering X of X of the differential equation 

dw = (p*A)w 

satisfying w(Yo) = c. 

11.6. Factors of Automorphy. Suppose X is a Riemann surface and 
A E M(n x n, Q(X)). On the universal covering p: X --+ X let LA be the set of 
all solutions w E (I}(x)n of the differential equation 

dw = (p*A)w. 

Just as in the theory of real linear differential equations one can show that 
LA is an n-dimensional vector space over e and that w1, ••• , Wn E LA are 
linearly independent precisely if for an arbitrary point a E X the vectors 
w1(a), ... , wn(a) E en are linearly independent. Therefore a basis w1, ... , Wn 

of LA defines an invertible matrix 

<1>:= (W1' "" wn ) E GL(n, (I}(X)) 

such that d<l> = (p* A)<I>. Such a matrix is called a fundamental system of 
solutions of the differential equation dw = Aw. Let G:= Oeck(X/X) 1t'1(X) 
be the group of covering transformations of p: X --+ X. Analogous to (10.12), 
for a E G we can set a<l>:= <I> 0 a- 1, Then a<l> as well as <I> satisfies the 
differential equation d(a<l» = (p*A)(a<I» and thus is another fundamental 
system of solutions. Hence there exists a constant matrix T" E GL(n, e) such 
that 

a<l> = <I> T". , 

If r is another covering transformation, then 

= ra<l> = r(<I>T".) = (r<l»T". = <1>'[. T", 

i.e., 4" = '[. T", Hence the correspondence a f--,-> T". defines a group 
homomorphism 

1t'l(X) Oeck(X/X) --+ GL(n, e), 

The matrices T" are called the factors of automorphy of <1>, Now conversely 
suppose a homomorphism 

T: Oeck(X/X) --+ GL(n, e), 

and a holomorphic mapping 

<1>: X --+ GL(n, C) 

are given such that 

a<l> = eDT". for every a E Oeck(X/X), 
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The matrix (d<l»<1>-l E M(n x n, Q(X)) is then invariant under covenng 
transformations, for 

u(d<l>' <1>-1) = (d<l>' T,,)(<I>T17r 1 = d<l>· <1>-1. 

Hence there is a matrix A E M(n x n, Q(X)) such that p* A = d<l> . <1>- 1 and 
<I> is a fundamental system of solutions of the differential equation dw = Aw. 

11.7. Now consider the special case 

X:= {z E C: 0 < I z I < R}, where 0 < R s 00. 

Then by (5.7.b) the group of covering transformations of the universal cover-
ing p: X ---> X is :E. Let u be one of the generators of Deck(X / X). On X the 
logarithm of the coordinate function on X exists, i.e., there exists a holo-
morphic function 

log: X--->I[; 

such that exp " log = p. Now we may assume that u is chosen so that 

u log = log + 2ni. 

Suppose A E M(n x n, Q(X)) and <I> E GL(n, 0(X)) is a fundamental system of 
solutions of the differential equation dw = Aw. Since Deck(X/X) = 
{(J": n E :E}, the behavior of <I> as an automorphic function is determined by the 
matrix T E GL(n, 1[;) which satisfies 

u<l> = <I> T. 

If 'P E GL(n, (C'{X)) is another fundamental system of solutions of dw = Aw, 
then there exists a matrix S E GL(n, C) with 'P = <l>S. Thus 

u'P = 'PS- 1 TS = 'Pr, 

where r:= S- 1 TS. Hence by a suitable choice of the fundamental system 'P 
one can in fact arrange it so that the factor of automorphy T has Jordan 
normal form. 

11.S. The Exponential of Matrices. For a matrix A E M(n x n, 1[;) define the 
exponential of A by 

00 1 
exp A = k! Ak. 

Then each entry of the matrix converges absolutely. If A, B E M(n x n, IC) 
are matrices which commute with each other, i.e., AB = BA, then 

exp(A + B) = exp(A)exp(B). 

One proves this in the same way that one proves the comparable result for 
the exponential of complex numbers, namely by multiplying together the 
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series for exp(A) and exp(B) to get the series for exp(A + B). In particular if 
B = -A, then exp(A)exp( -A) = I, i.e., exp(A) E GL(n, C). 

If S E GL(n, C) and A E M(n x n, C), then 

exp(S-lAS) = S-l(exp A)S. (*) 

Now for every matrix BE GL(n, C) there exists a matrix A E M(n x n, C) 
such that 

exp A = B. 

Because of (*), it suffices to prove this in the case that B has Jordan normal 
form. If B is a diagonal matrix with entries AI, ... , An E C*, then one can 
simply choose A to be the diagonal matrix with entries PI, ... , Pn' where 
exp(,uj) = Aj . A general matrix in Jordan normal form is made up of Jordan 
blocks of the form 

i· 
/I. 1 0 

), 

Bl := = A(E + (l/A)N), 

;, 1 
0 A 

0 1 o 
0 

where N = 

o 
o o 

A matrix Al such that exp(AI) = B1 is given by 

Al =f1E+M, 

where exp(p) = A and 

( 1) 00 1 
M=log kAkNk. 

The series contains only finitely many non-zero terms since N is nilpotent. 

11.9. Suppose A is an n x n matrix whose coefficients are holomorphic 
functions on a Riemann surface X. Then the coefficients of the matrix exp A 
are also holomorphic on X, since the series converges uniformly on compact 
subsets of X. 
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If A E M(n X n, C:(X)) is a matrix such that 

A· dA = dA· A, 

then 
d(exp A) = dA . exp A = exp A . dA. 

1 Covering Spaces 

This follows immediately when one differentiates the exponential series term 
by term. 

11.10. Theorem. Suppose T E GL(n, C) is a given matrix and BE M(n x n, C) 
is a matrix such that 

exp(2niB) = T. 

Now consider the differential equation 

1 
Wi = -Bw' 

z 

on X ,= {z E C: 0 < I z I < R}. Then 

<1>0 ,= exp(B log) 

is a fundamental system of solutions of Wi = Bw on the universal covering 
p: X -> X which has T as its factors of automorphy, i.e., 

a<l>o = <1>0 T. 

Here rr is defined the same as in (11.7). 

PROOF. From the remark in (11.9) it follows that <1>0 = (l/z)B<I>o. Moreover, 

a<l>o = a exp(B log) = exp(Brr log) 

= exp(B(Iog + 2ni)) = exp(B log)exp(2niB) = <1>0 T. 0 

Remark. The theorem shows that given any punctured disk X and 
prescribed factor of automorphy one can always find a differential equation 
whose solution has this as its factor of automorphy. We will look at the same 
problem on an arbitrary non-compact Riemann surface X in §31. 

11.11. Theorem. Suppose the notation is the same as in Theorem (11.10) and 
A E M(n x n, £D(X». Then the differential equation 

Wi =Aw 

has a fundamental system of solutions <I> E GL(n, @(X» of the form 

cD = '¥cDo , 

where <1>0 = exp(B log)for a constant matrix B E M(n x n, C) and '¥ is invar-
iant under covering transformations, i.e., '¥ defines an element in GL(n, £D(X)). 
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PROOF. Suppose .p E GL(n, 0(.\")) is a fundamental system of solutions of 
w' = Aw and 

(T.p = .pT, where T E GL(n, C). 

By (11.10) one can find .po = exp(B log) E GL(n, 0(.\")) such that 

(T.po = .po T. 

Then for 'I' := .p.po lone has (T\f = '1'. o 
11.12. By Theorem (11.11) any fundamental system of solutions of a differen-
tial equation w' = Aw on the punctured disk X = {O < 1 Z 1 < R} may be 
represented as the product of a very special kind of multi-valued function 
.po = exp(B log) and a single-valued (matrix-valued) function '1'. Now this 
function 'I' can be expanded in a Laurent series on X. The origin is called a 
regular singular point or a singularity of Fuchsian type of the differential 
equation w' = Aw if \f has at most a pole at the origin, i.e., if only finitely 
many terms with negative exponent occur in the Laurent series. 

11.13. Theorem. Let X:={ZEC: 0< Izi <R}. If the matrix AE 
M(n x n, 0(X)) has at most a pole of first order at the origin, then the origin 
is a regular singular point of the differential equation w' = Aw. 

PROOF. The proof requires two lemmas. 

(1) Suppose K;?: a is a constant and F: ]0, r 0] -> IRt is a continuously 
d(fferentiable positive-valued function, whose derivative satisfies the inequality 

1F'(r)1 ::;; for every r E ]0, ro]. 
r 

Then 

F(r)::;; -K for every r E ]0, ro]. 

Proof of (1). From the assumption one gets 

!!.-Iog F(r) = F'(r) > _ K. 
dr F(r) - r 

By integrating over the interval [r, ro], one obtains 

F(ro) ro 
log --;?: - K log -. 

F(r) r 

Thus 
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(2) Suppose f is a holomorphic function on X. Then 

I :r If Izi s 21 f II r I· 
Here (DjDr) denotes the radial derivative with respect to polar coordinates 

z = re iO . 

Proof of (2). Since f is complex differentiable, 

r = df = cj and thus I I = I r I· dz e,e ar cr 
Moreover 

al = (Df) 
ar ar laII and thus ar = 1f'1· 

This implies 

Iflzl = Il af + fall s 2Ifllf'l· ar ar or 
Now the actual proof of Theorem 11.13! By (11.11) there exists a fundamen-
tal system of solutions of w' = Aw which may be written <I> = 'P<I>o, where 
'P E GL{n, 6{X)) and <1>0 = exp{B log) with BE M(n x n, C). Then 

1 
<1>' = A<I> = 'P'<I>o + = 'P'<I>o + 'P . - B!l>o . 

z 

Multiplication by <Do 1 on the right yields A'P = 'P' + (l/z)'PB, i.e., 

, 1 
'P =A'P--'PB. (*) 

Since the matrix A has at most a pole of first order at 0, there exists a matrix 
A 1 which is holomorphic on the whole disk I z I < R such that A = (l/z)A l' 
Define the norm of a matrix C = (c jk ) by 

IICII:= L Ic jk l2 '. 
( )

1 'z 

]. k 

Then from (*) it follows that given any ro E ]0, R[ there exists a constant 
M ° such that 

M 
1I'P'(z)1I s - II 'P(z) II for ° < I z I = r S ro· 

r 

Suppose I/!jk are the components of the matrix 'P. For fixed (} E IR let 

F(r):= 1I'P(reiO)IIZ = L Il/!jk(reioW· 
j. k 
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By means of (2) one gets 

I F'(r) I s 2L I t/JjdreiO) 1'1 t/Jjke iO ) I 
j, k 

I.e., 1F'(r)1 s (2M/r)F(r). Now from (1) it follows that 

( r)' - 2M 
F(r) S F(ro) ro ' 

I.e., 

Hence 'P can have a pole of order at most M at the origin. o 
We are now going to use Theorem (11.13) to determine the form of the 

solutions of certain linear second order differential equations which arise 
quite often in practice. 

11.14. Theorem. Suppose D = {z E c: I z I < R} and X ,= D\{O}. Suppose a, 
b E (i)(D). Then the differential equation 

w,,+a(z)w,+b(z)w=O (1) 
z Z2 

has, on the universal covering p: X ---> X, a fundamental system (IPI> IPz) of 
solutions which has one of the following forms: Either 

or 

{Cf>l(Z) = ZPlt/Jl(Z), 
IP2{Z) = ZP2t/JZ(Z), 

{IP1(Z) = Z"I/11(Z), 
Cf>z(z) = zP(t/J I (z)log z + t/Jz(z)). 

Here p, p], pz denote complex numbers and t/Jl, t/J2 E (9(D). 

Remark. log z and zP = eP log Z are single-valued holomorphic functions on 
X. Holomorphic functions on D will be interpreted as functions on X which 
are invariant under covering transformations. 

PROOF. We reduce the differential equation to a system of two differential 
equations of first order by setting 
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Since = Zw" + w', equation (1) is equivalent to the system 

(2) <: 

I r 1 a(z) 
IW2 -WI 
\ '" 

Theorem (11.13) may be applied to the system (2). Thus it has a fundamental 
system of solutions of the form 

<I>(z) = z"'I'(z )exp( B log z), 

where n E 71., 'I' E GL(2, (i!(D)), BE M(2 x 2, C). By a change of basis one may 
even assume that B has Jordan normal form. 

Case 1: B is a diagonal matrix, i.e., 

Then 

( ,,'1 0) 
cxp(B log z) = Z22 

<I>(z) = IP;(z)) = Z"(ljJl(Z) ljJ2(Z)) (za 1 0). 
zIPdz) ZIP2(Z) ljJ3(Z) ljJ4(Z) 0 zX 2 

Thus IPl(Z) = Z"+>tljJI(Z), IP2(Z) = Z"+nljJ2(Z). 

Case 2: B is a Jordan block, i.e., 

B= 

Then 

( 1 log Z) exp(B log z) = z' 0 1 

and this yields 

o 

11.15. Bessel's Equation. As an example consider the differential equation, 
which is known as Bessel's equation, on C* 

(1) 
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Here p is an arbitrary complex number. By Theorem (11.14) the equation 
has at least one solution of the form 

00 

<p(z) = zP L cnzn, P E C, Co =1= o. (2) 
n=O 

Differentiation of the series gives 
.,," 

4>' (z) = zP L (p + n)c n zn - 1, 
11=0 

00 

<p"(z) = z" L (p + n)(p + n - l)cn zn- 2. 
n=O 

Substituting this into the differential equation and collecting together the 
resulting coefficient of zp+n-2, one sees that the differential equation is 
satisfied precisely if 

(i) (p2 - p2)CO = 0, 
(ii) ((p + 1)2 - pZ)c1 = 0, 

(iii) ((p + n)2 - p2)Cn + Cn -2 = 0 for every n.2 2. 

Since Co =1= 0, (i) implies p = ±p. For n = 2k even, (iii) becomes 

(iii)' 22k(p + k)c Zk + C2k- 2 = o. 
We now distinguish two cases. 

Case 1. p EO qZ. A solution to the system of equations (i)-(iii) is given by 

c2k + 1 =0 

c - ( 1 )k(.l)Zk Co 
2k - - 2 k ! (p + 1) ... (f;-+ k) 

for every kEN and arbitrary co. Since 

r(p + k + 1) = (p + k )(p + k - 1) ... (p + 1 )r(p + 1), 

for the special choice Co = l/r(p + 1) this gives 

c - ( 1 )k(.l)2k 1 
2 k - - 2 r( k +-I-C-)r=-(c-p-+-k -+---C-1 )" 

The Bessel function of order p is defined to be 

(Z)POO (-It (Z)2k 
Jp(z):= :2 r(k + l)r(p + k + 1):2 . 

What we have done shows that J p and J _ p are two linearly independent 
solutions of the differential equation (1). 
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Case 2: P E £.. We may assume p 2: O. In this case equation (2) with p = P 
necessarily leads to the solution (p(z) = const . J Az). If p f 0 and p = - p, 
then using (iii)' and the fact that Co f 0 first gives Clk f 0 for all k < p and 
then for k = p the contradiction 0 . c2p + C 2p - 2 = O. Thus equation (2) for p 
an integer can only give us one linearly independent solution. By Theorem 
(11.14) equation (1) has a second solution which is linearly independent of J p 

and has the form 

where g is a function holomorphic on C * having at most a pole at O. Differ-
entiation gives 

1 
I/I'(z) = z + -:Jp(z) + g'(z), 

I/I"(z) = J;(z )log z + - _12 J p{Z) + g"(z). 
"-

Substituting this into the differential equation and using the fact that 
w = Jp(z) is already a solution of (1), one gets that 1/1 is a solution of (1) 
precisely if 

1 (2) ") g"(z) +;- g'(z) + 1 - g(z) = -

This equation can be solved by a power series of the form 

CfJ 

g(z) = z-P L anzn. 
n= 0 

This solution is then uniquely determined up to the addition of a constant 
multiple of J p' This solution, when properly normalized, is the so-called 
Neumann Function N p (or Besselfunction of the second kind) and together with 
J p forms a fundamental system of solutions of Bessel's equation (1), cf. [52], 
[58]. 

EXERCISES (§11) 

11.1. Show that for every A E M(n x n, C) 

det(exp A) = exp(trace A). 

11.2. Calculate exp(Aj) for 
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11.3. Let X = {Z E C: 0 < Izi < R}, p: X --+ X be its universal covering and a be a 
generator of Deck(X/X). Find a holomorphic map 

such that 

11>: X --+ GL(3, C) 

( 
i 1 

all> = 11>. 0 i 

o 0 



CHAPTER 2 

Compact Riemann Surfaces 

Amongst all Riemann surfaces the compact ones are especially important. 
They arise, for example, as those covering surfaces of the Riemann sphere 
defined by algebraic functions. As well their function theory is subject to 
interesting restrictions, like the Riemann-Roch Theorem and Abel's 
Theorem. More recently the theory of Riemann surfaces has been gener-
alized to an extensive theory for complex manifolds of higher dimension. 
And the methods developed for this are very well suited to proving the 
classical theorems. One such method is sheaf cohomology and we give a 
short introduction to this in the present chapter. 

To a large extent Chapter 2 is independent of Chapter 1. Essentially only 
§1 (the definition of Riemann surfaces), the first half of §6 (the definition of 
sheaves) and §§9 and 10 (differential forms) will be needed. 

Cohomology Groups 

The goal of this section is to define the cohomology groups Hl(X, where 
is a sheaf of abelian groups on a topological space X. In our further study 

of Riemann surfaces, these cohomology groups playa very decided role. 

12.1. Cochains, Cocycles, Coboundaries. Suppose X is a topological space 
and .? is a sheaf of abelian groups on X. Also suppose that an open covering 
of X is given, i.e., a family U = (Vi)i El of open subsets of X such that 
UiE[ Vi = X. For q = 0, 1,2, ... define the qth cochain group of Ji', with 
respect to U, as 

Cq(U, ,= TI ,?(Vio 11 ... 11 ViJ 
(io • ...• iq) E /q+ 1 

96 
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The elements of Cq(U, ff) are called q-cochains. Thus a q-cochain is a family 

(/;O.iq)iU ... "iqElq.J such that /;o .. iq E .'JF( Vio " ... " V iq ) 

for all (io, ... , iq) E Iq + I. The addition of two cochains is defined 
component-wise. Now define coboundary operators 

0: CO(U, ff) --> C1(U, ff) 

0: C1(U, .?")--> C 2 (U, .?") 

as follows: 

(i) For (/;)iEl E CO(U, let O((/;)iEl) = (giJi,jEl where 

gij:= jj - /; E ,?"(Vi n UJ 
Here it is understood that one restricts/; andjj to the intersection U i " Uj 

and then takes their difference. 
(ii) For (/;j)i.jEl E C1(U, ff) let o((/;J) = (gijd where 

gij;. :=jjk - /;k + /;j E .y(Vi " Uj " Uk)' 

Again the terms on the right are restricted to their common domain of 
definition Ui " Uj " Uk' 

These coboundary operators are group homomorphisms. Let 

ZI(U, ff):= Ker(C1(U, ff) C 2(U, ff)), 

BI(U, ff):= Im(CO(U, .?") C1(U, .?")). 

The elements of ZI(U,.?") are called l-cocycles. Thus by definition a l-cochain 
(/;J E C1(U, ff) is a cocycle precisely if 

/;k = /;j + jjk on Vi " Uj " Uk (*) 
for all i, j, k E I. One calls (*) the co cycle relation and it implies 

/;i = 0, /;j = - jji . 

One obtains these from (*) by letting i = j = k for the first and i = k for the 
second. 

The elements of BI (U, ff) are called l-coboundaries. In particular every 
coboundary is a cocycle. A coboundary is also called a splitting cocycle. 
Thus a l-cocycle (k) E ZI(U, ff) splits if and only if there is a O-cochain 
(gJ E CO(U, ff) such that 

k = gi - gj on Ui "U j for every i, j E I. 

12.2. Definition. The quotient group 

HI(U, .?"):= ZI(U, ff)/BI(U, ff) 
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is called the 1 st cohomology group with coefficients in :¥ with respect to the 
covering U. Its elements are called cohomology classes and two cocycles 
which belong to the same cohomology class are called cohomologous. Thus 
two cocycles are cohomologous precisely if their difference is a coboundary. 

The groups Hl(U, '?J') depend on the covering U. In order to have coho-
mology groups which depend only on X and :¥, one has to use finer and 
finer coverings and then take a limit. We shall now make this idea precise. 

An open covering 'iJ = K is called finer than the covering 
U = (VJi E I, denoted \D < U, if every is contained in at least one Vi' Thus 
there is a mapping r: K -> I such that 

v;. C U,k for every k E K. 

By means of the mapping r we can define a mapping 

Zl(U, .?") -> Zl(\D, :¥) 

in the following way. For Chj) E Zl(U, :¥) let = (gkl) where 

gkl := hk. "I n v-; for every k, I E K. 

This mapping takes coboundaries into coboundaries and thus induces a 
homomorphism of the cohomology groups Hl(U, :¥) -> Hl(\D, :¥), which 
we also denote by 

12.3. Lemma. The mapping 

Hl(U, 9') -> Hl(\D, :¥) 

is independent of the choice of the refining mapping r: K -> I. 

PROOF. Suppose i: K -> I is another mapping such that c U lk for every 
k E K. Suppose (k) E Zl(U, .?") and let 

We have to show that the cocycles (gkl) and (ilk!) are cohomologous. Since 
c U,k n U1b one can define 

On Vk n v-; one has 

gkl - fAI = hk. d - flk. 1I 

= ik,,, + /',. lk - hi. lk - frk. 1I 

= /'k. lk - hi. 1I = hk - hi' 

Thus the cocycle (gkl) - (iJkl) is a coboundary. o 
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12.4. Lemma. The mapping 

Hl(U, ff) -+ HI('!J, ff) 

is injecti ve. 

PROOF. Suppose (hj) E ZI(U, ff) is a cocycle whose image in ZI('!J, ff) 
splits. One has to show that (hj) itself splits. 

Now suppose Irk, rl = gk - gl on Ytc n V;, where gk E ff(Vk). Then on 
Vi n Vk n V; one has 

gk - gl = .irk, rl = .irk, i + h. tl = h, rl - h, rk' 

and thus J:, rk + gk =.h. rl + gl . Applying sheaf axiom II (see Definition (6.3)) 
to the family of open sets (Vi n Vk)k E K, one obtains hi E ff( V;) such that 

hi = J;, rk + gk on Vi n Ytc. 

With the elements hi found in this way, on Vi n Vj n Vk one has 

hj = h. rk + irk. j = h, rk + gk - fj. rk - gk = hi - hj . 

Since k is arbitrary, it follows from sheaf axiom I that this equation is valid 
over Vi n V j , i.e., the cocycle (hj) splits with respect to the covering U. 

o 

12.5. The definition of Hl(X, 31'). If one has three open coverings such that 
!ill < '!J < U, then 

'll U u tw 0 t'8 = tw . 

Thus one can define the following equivalence relation '" on the disjoint 
union of the Hl(U, 31'), where U runs through all open coverings of X. Two 
cohomology classes E HI(U, 31') and 1'/ E Hl(U', 31') are defined to be 
equivalent, denoted 1'/, if there exists an open covering '!J with '!J < U 
and '!J < U' such that = tg'(1'/). The set of equivalence classes is the 
so-called inductive limit of the cohomology groups Hl(U, 31') and is called 
the 1 st cohomology group of X with coefficients in the sheaf 'je. In symbols 

Hl(X, 31') = HI(U, 31') = (y HI(U, 31')) / - . 

Addition in HI(X, 31') is defined by means of representatives as follows. 
Suppose the elements x, y E Hl(X, are represented by E Hl(U, 31') 
resp. 1'/ E Hl(U', 3f'). Let '!J be a common refinement of U and U'. Then 
x + Y E HI(X, 3f') is defined to be the equivalence class of + 
tg'(1'/) E HI('!J, 3f'). One can easily check that this definition is independent 
of the various choices made and makes HI(X, 3f') into an abelian group. If 
3f' is a sheaf of vector spaces, then in a natural way HI(U, 3f') and HI(X, ,'F) 
are also vector spaces. 
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From Lemma (12.4) it follows that for any open covering of X the canoni-
cal mapping 

Hl(U, ff) ---> Hl(X, 

is lllJective, In particular this implies that HI (X, ff) = ° precisely if 
Hl(U, ff) = 0 for every open covering U of K 

12.6. Theorem. Suppose X is a Riemann surface and g is the sheaf of difJeren-
tiablefunctions on X. Then Hl(X, g) = 0. 

PROOF. _We give the proof under the assumption that X has a countable 
topology. However this assumption is always valid, see §23. 

Suppose U = (V;)i El is an arbitrary open covering of X. Then there is a 
partition of unity subordinate to 11, i.e. a family (!fJ;)i E f of functions 
ljIi E g(X) with the following properties (cf. the Appendix): 

(i) Supp(ljI;) C Vi' 
(ii) Every point of X has a neighborhood meeting only finitely many of 

the sets Supp(ljI;). 
(iii) Li El ljIi = l. 

We will show that Hl(U, g) = 0, i.e., every cocyc1e U;J E ZI(U, g) splits. 
The function IjIj fij, which is defined on Vi n Vj , may be differentiably 

extended to all of Vi by assigning it the value zero outside its support. Thus 
it may be considered as an element of g(V;). Set 

gj:= L IjIdij' 
jEl 

Because of (ii), in a neighborhood of any point in Vi' this sum has only 
finitely many terms which are not zero and thus defines an element 
gi E g(V;). For i,J E I 

gj - gj = L I/Ik .hk - L I/Idjk = L I/IkU;k - jjk) 
kEf kEf k 

on Vi n Vj and thus (/;J is a coboundary. o 
Remark. In exactly the same way one can show that on a Riemann surface 

X the 1st cohomology groups with coefficients in the sheaves g(I), gl. 0, go. 1 

and g(2) also vanish. 

12.7. Theorem. Suppose X is a simply connected Riemann surface. Then 

(a) Hl(X, C) = 0, 
(b) Hl(X, Z) = 0. 
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Here C (resp. Z) denotes the sheaf of locally constant functions with values 
in the complex numbers (resp. integers), cf. (6.4.e). 

PROOF 
(a) Suppose U is an open covering of X and (cij) E Zl(U, C). Since 

Zl(U, C) C Zl(U, 8) and Hl(U, 8) = 0, there exists a cochain 
(/;) E CO(U, 6") such that 

Cij = /; - lj on Vi n V j . 

But dCij = 0 implies d/; = dlj on Vi n V j , and thus there exists a global 
differential form OJ E 8(1)(X) such that OJ I Vi = d/;. Since dd/; = 0, it follows 
that OJ is closed. Because X is simply connected, by (10.7) there exists 
f E 8(X) such that df = OJ. Set 

Ci ,= /; - f I Vi' 

Since dCi = d/; - df = OJ - OJ = 0 on Vj, Ci IS locally constant, l.e., 
(cJ E CO(U, C). On Vi n Vj one has 

cij = j; - jj = (/; - f) - (lj -f) = C i - cj ' 

and thus the cocycle (CiJ splits. 
(b) Suppose (ajk) E Zl(U, Z). By (a) there exists a cochain (c j) E CO(U, C) 

such that 
ajk=Cj-Ck onVjnUk· 

Since exp(2niajk) = 1, one has exp(2nicj) = exp(2nick) on the intersection 
Vj n Vk' Since X is connected, there exists a constant b E C* such that 

b = exp(2nicj) for every j E I. 

Choose C E C such that exp(2nic) = b and let 

Since exp(2niaJ = exp(2nicJexp( -2nic) = 1, it follows that aj is an integer, 
i.e., (a j ) E CO(U, Z). Moreover 

ajk = cj - Ck = (Cj - c) - (c k - c) = aj - ab 

i.e., the cocycle (ajk) lies in Bl(U, Z). o 
The next theorem shows that in certain cases one can calculate Hl(X, ff) 

using only a single covering of X. 

12.8 Theorem (Leray). Suppose ';if is a sheaf of abelian groups on the topologi-
cal space X and U = (V,)jEl is an open covering of X such that 
Hl(U j, = o for every i E I. Then 

Hl(X, Hl(U, ff). 

Such a U is called a Leray covering (of 1st order) for the sheaf ff. 
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PROOF. It suffices to show that, for every open covering m = EA, with 
m < U, the mapping Hl(U, ff) -+ Hl(m, ff) is an isomorphism. From 
(12.4) this mapping is injective. 

Suppose r: A -+ I is a refining mapping with v:. c for every IX E A. To 
prove the surjectivity of tM, we must show that given any cocycle 

E ZI(m, ff), there exists a cocycle (Fij) E ZI(U, ff) such that the 
cocycle 

is cohomologous to zero relative to the covering m. Now the family 
(Vi n. is an open covering of Vi which we denote by Vi n m. By 
assumption Hl(Vi n m, ff) = 0, i.e., there exist E ff(Vi n v,,) such that 

hp = - giP on Vi n v" n Vp. 

Now on the intersection Vi n Vj n Vx n Vp one has 

gj. - gi. = gjp - giP 

and thus by sheaf axiom II there exist elements Fij E ff(Vi n V j) such that 

Fij = gj. - gi. on Vi n Vj n Vx. 
Clearly, (Fij) satisfies the cocycle relation and thus lies in Zl(U, ff). Let 
h. := guo a I v" E ff(Vx)· Then on Vx n Vp one has 

t{J - fa(J = - - (gt{J,. - gTP,p) 

= gtP,p - = hp - h., 

and thus (Fla, tp) - (f.p) splits. 

12.9. Example. As an application of Leray's Theorem, we will show 

o 

Let VI :=C*\IlL and V 2 :=C*\IR+, where IR+ and IR_ denote the positive 
and negative real axes respectively. Then U = (V 1> V 2) is an open covering 
of C*. By (12.7) Hl(V;, Z) = 0 since V; is star-shaped and thus simply 
connected. Thus H 1(C*, Z) = Hl(U, Z). 

Since any cocycle (aij) E ZI(U, Z) is alternating, i.e., a;; = 0 and 
aij = -aji' it is completely determined by a12 and thus Zl(U, Z) 
Z( VI n V 2)' But the intersection VI n V 2 has two connected components, 
namely the upper and lower half planes, and thus Z(V 1 n V 2) Z x Z. 
Since Vi is connected, Z(V;) Z and hence CO(U, Z) Z x Z. The coboun-
dary operator J: CO(U, Z) -+ Zl(U, Z) is given with respect to these isomor-
phisms by 
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Thus the coboundaries are exactly the subgroup B c 7L x 7L of those ele-
ments (aI' a2) with al = a2 . Hence HI(U, 7L) 7L x 7LIB 7L. 

Similarly one can show HI(C*, C) C. 

12.10. The Zeroth Cohomology Group. Suppose.'? is a sheaf of abelian 
groups on the topological space X and U = (U;); EI is an open covering of X. 
Set 

ZO(U, .'?):= Ker(CO(U, .'?) CI(U, .'?)), 

BO(U, .'?) := 0, 

HO(U, .'?) := ZO(U, .'?)/BO(U, .'?) = ZO(U, 

From the definition of {J it follows that a O-cochain (};) E CO(U, .'?) belongs 
to ZO(U, .'?) precisely if}; I U i n U j = jj I U i n U j for every i, j E I. By sheaf 
axiom II the elements}; piece together to give a global element! E .'?(X) and 
there is a natural isomorphism 

HO(U, .'?) = ZO(U, .'?) .'?(X). 

Thus the groups HO(U, .'?) are entirely independent of the covering U and 
one can define 

EXERCISES (§12) 

12.1. Suppose PI, ... , Pn are distinct points of C and let 

Prove 

[Hint: Construct a covering U = (V b V 2) of X such that V 1 and V 2 are 
connected and simply connected and V I n V 2 has n + 1 connected 
components.] 

12.2. (a) Let X be a manifold, V c X open and V V. Show that V meets only a 
finite number of connected components of V. 

(b) Let X be a compact manifold and U = (Vi)ief, m = (Vi)ief be two finite 
open coverings of X such that Vi Vi for every i E I. Prove that 

is a finite-dimensional vector space. 
(c) Let X be a compact Riemann surface. Prove that Hl(X, C) is a finite-

dimensional vector space. 
[Hint: Use finite coverings U = (Vi), m = (Vi) of X with Vi Vi, such that all 
the Vi and Vi are isomorphic to disks.] 
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12.3. (a) Let X be a compact Riemann surface. Prove that the map 

Hl(X, Z) -> Hl(X, C), 

induced by the inclusion Z c C, is injective. 
(b) Let X be a compact Riemann surface. Show that Hl(X, .I) is a finitely 

generated free .I-module. 
[Hint: Show first, as in Ex. 12.2.c), that Hl(X, Z) is finitely generated and then 
use 12.3.a) to prove that Hl(X, .I) is free.] 

§13. Dolbeault's Lemma 

In this section we solve the inhomogeneous Cauchy-Riemann differential 
equation (oj/a?) = g, where g is a given differentiable function on the disk X. 
This is then used to show that the cohomology group Hl(X, (9) vanishes. 

13.1. Lemma. Suppose g E S(C) has compact support. Then there exists a 
Junction J E S(C) such that 

oj 
o'Z = g. 

PROOF. Define the function J: C --> IC by 

II g(z) dz/\d'Z. 
2m z - C 

c 
Since the integrand has a singularity when z = C, one has to show that the 
integral exists and depends differentiably on C. The simplest way to do this is 
to change variables by translation and then introduce polar coordinates r, e, 
namely let 

z = C + re iO• 

With regard to the integration C is a constant and one has 

dz /\ d'Z = - 2i dx /\ dy = - 2ir dr /\ de. 
Thus 

Since g has compact support, one has only to' integrate over a rectangle 
o r R, 0 e 2n, provided R is chosen sufficiently large. One may 
differentiate under the integral sign, i.e., J E S(IC) and 

:f (C) = - If og(C re iO
) e- iO dr de. 
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Changing back to the original coordinates, one has 

of(y)=_1 I' II Og((+Z)1 d d-2' 1m Z 1\ Z, v., 7r1 ,-+0 v., Z 
B, 

where B, :={z E IC: c;::5: I Z I ::5: R}. Since 

og(( + z)1 = og(( + z) = (g(( + z)) 
o( Z oz Z oz Z 

for Z =1= 0, one has 

of 1. II 0 (g(( + Z)) . II (() = -2 . hm dz 1\ dz = - hm dw, 
v., 7r1 ,-+0 vZ Z .-0 • • 

where the differential form w is given by 

w(z) = g(( + z) dz 
2m Z 

(here one considers Z as a variable and ( as a constant). By Stokes' Theorem 

= -lim If dw = -lim f W'= lim f w. 
I:, £-+0 BE f-O of-O Izi =£ 

Parametrizing the circle I z I = c; by z = c;eill, 0 ::5: e ::5: 27r, one gets 

of 1 2" 
(() = lim -2 J g(( + c;e ill ) de. v., ,-0 7r 0 

Now the integral gives the average value of the function g over the circle 
( + c;e ill for 0 ::5: e ::5: 2n. Since g is continuous, this converges to g(() as c; --+ 0, 
i.e., 

of or (() = g((). o 

The next theorem shows that one may drop the assumption that g has 
compact support. 

13.2. Theorem. Suppose X:= {z E C: I z I < R}, 0 < R ::5: 00, and g E C(X). 
Then there exists f E C(X) such that 

of 
OZ = g. 

This theorem is a special case of the so-called Dolbeault Lemma in 
several complex variables, see [32]. 
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PROOF. In this case a solution cannot simply be given as an integral as in 
(13.1), for the integral will not converge in general. For this reason we use an 
exhaustion process which allows (13.1) to be applied in the present setting. 

Suppose 0 < Ro < RI < ... < Rn is a sequence of radii such that 
Rn = R and set 

Xn'={ZEC: Izi < Rn}· 

There exist functions I/In E 6"(X) with compact supports SUPP(t/ln) c Xn+ I 

and t/lnlXn = 1. The functions t/lng vanish outside X n+1 and thus if one 
extends them by zero, they become functions on C. By (13.1) there exist 
functions[" E 6"(X) such that 

oj" = t/lng on X. 

Here and in the following we use the abbreviation 0 ,= (%z). 
By induction we alter the sequence C[,,) to another sequence C1..), which 

for all n 1 satisfies 

(i) O/" = g on X n , 

(ii) II/,,+ I - .1..IIx.-l :s; rn. 
(As usual let IlfilK '=SUPHK If(x)1 denote the supremum norm.) Set 
II ,= fl· Suppose II, ... ,.1.. are already constructed. Then 

O(j,,+l-/")=O onXn , 

and thusfn+ I -/" is holomorphic on X n . Hence there exists a polynomial P 
(e.g., a finite number of terms of the Taylor series of[,,+ I - .1..) such that 

11.[,,+1 -.1.. - pllxn_,:S; 2- n. 
If we set /" + 1 ,= j" + 1 - P, then (ii) is satisfied. Moreover, on X n+ lone has 

0/"+1 = OJ,, + I - oP = Ofn+l = t/ln+lg = g, 

i.e., (i) also holds. Since every point Z E X is contained in almost all X n' the 
limit 

fez) : = lim /nCz) 
n-> 00 

exists. On Xn one may write 
00 

f=/" + L Ch+1 -];J 
k=n 

For k n, the functions h+ 1 - hare holomorphic on X n , since 
O(h+l - h) = O. 

Because of (ii), the series 
GO 

Fn ,= I (h+ 1 - h) 
k;n 
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converges uniformly on X n and is thus holomorphic there. Hence f = J:. + F n 

is infinitely difTerentiably on X n for every n and thus f E 8(X). As well 

of = oJn = g on X n 
for every n and thus of = g on all of X. 0 

Remark. Naturally the solution of the equation of = g is not uniquely 
determined, only up to the addition of an arbitrary holomorphic function. 

13.3. Corollary. Suppose X := {z E c: I z I < R}, 0 < R 00. Then given any 
g E 8(X), there exists f E 8(X) such that fl.f = g. 

Here 

is the Laplace operator. 

PROOF. Choosefl E 8(X) such that Ofl = g andf2 E 8(X) such that Of2 = fl' 
Then f:=!]2 satisfies fl.f = g, for 

N = 02f2 = (of2) = (Of2) = Ofl = g. 
oz o-Z o-Z oz o-Z o-Z o-Z o 

13.4. Theorem. Suppose X := {z E c: I Z I < R}, 0 < R 00. Then 
Hl(X, (!J) = O. 

PROOF. Suppose U = (U;) is an open covering of X and (Iij) E Zl(U, (!J) is a 
cocyc1e. Since Zl(U, (!J) c Zl(U, 8) and Hl(X, 8) = 0, there exists a cochain 
(g;) E CO(U, 8) such that 

fij = gj - gj on Uj n U j . 

Since ofij = 0, one has ogj = ogj on U j n U j and thus there exists a global 
function h E t&'(X) with hi Uj = ogj. By (13.2) we can find a function 
g E t&'(X) such that og = h. Define 

/; :=gj - g. 

Now /; is holomorphic, since o/; = ogj - og = 0, and thus (/;) E CO(U, (!J). As 
well on U j n U j one has 

/; - fj = gj - gj = /;j' 
i.e., the cocyc1e (k) splits. 

13.5. Theorem. For the Riemann sphere Hl(Pl, (!J) = O. 

o 
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PROOF. Set VI := /pl\OO and V 2 := /pI \0. Since VI = C and V 2 is biholomor-
phic to C, it follows from (13.4) that HI(Uj, l!J) = O. Thus U = (U b U 2) is a 
Leray covering of /pI and HI(/pI, l!J) = Hl(U, l!J) by (12.8). Thus the proof is 
complete once one shows that every cocycle (/;J E ZI(U, l!J) splits. In order 
to do this, it is clearly enough to find functions/; E l!J(U i ) such that 

112 = II - 12 on U I n U 2 = C *. 

Let 
00 

Idz) = L c.z· 
n= - 00 

be the Laurent expansion of 112 on C *. Set 
00 -I 

II(z):= Lc.z· and 12{z):=- L c.z·. 
n=O 11=-00 

Then /; E l!J( U;) and II - 12 = 112 . 0 

EXERCISES (§13) 

13.1. Let X = {z E C: I z I < R}, where 0 < R :::; 00. Denote by .J't' the sheaf of har-
monic functions on X, i.e . 

.J't'( U) = {f: U -+ C : f is harmonic} 

for U c X open. Prove 

HI(X, .J't') = o. 
13.2. (a) Show that U = ([p>1\00, [p>l\O) is a Leray covering for the sheaf Q of holo-

morphic 1-forms on [p>1. 
(b) Prove that 

and that the cohomology class of 

dz 
-EQ(U1 n z 

is a basis of HI ([P> I, Q). 

13.3. Suppose 9 E G"(C) is a function with compact support. Prove that there is a 
solution f E C(C) of the equation 

of 
j)Z = 9 

having compact support if and only if 

If z·g(z) dz A dz = 0 for every n E /'\J. 
IC 
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§14. A Finiteness Theorem 

In this section we prove that for any compact Riemann surface X the coho-
mology group Hl(X, lD) is a finite dimensional complex vector space. Its 
dimension is called the genus of X. One of the consequences of the finiteness 
theorem is the existence of non-constant meromorphic functions on every 
compact Riemann surface. With regard to further applications in Chapter 3 
we will do everything not only for compact Riemann surfaces but also for 
relatively compact subsets of arbitrary Riemann surfaces. 

14.1. The L2-Norm for Holomorphic Functions. Suppose Dee is an open 
set. Given a holomorphic function f E 0(D) define its L2-norm by 

( )
1'2 

IlfIIO(D):= JJ I f(x + iy) 12 dx dy , 
D 

Then II f Ib(D) E IR + U {oo}. If II f II O(D) < 00, then f is called square in te-
grable. We denote by L2(D, 0) the vector space of all square integrable 
holomorphic functions on D. If 

Vol(D):= Jf dx dy < 00, 

D 

then for every bounded function f E lD(D) one has 

Ilflb(D) 5 JVol(D)llfIID' 

where Ilflln :=sup{lf(z)l: zED} denotes the supremum norm. 
For J, g E L2(D, lD) one can define an inner product <J, g) E C by 

<J, g):= fJ fli dx dy. 
v 

The integral exists because for every ZED 

I f(z)g(z) I 51(lf(z)12 + Ig(z)l2). 

With this inner product L2(D, 0) is a unitary vector space and in particular 
has a well-defined notion of orthogonality. Now suppose B = B(a, r) := 
{z E c: I z - a I < r} is the disk with center a and radius r > O. Then the 
monomials (1/1.). E " given by 

I/I.(z):= (z - a)· 

form an orthogonal system in L2(B, 0) and one can easily check using polar 
coordinates that 

Jnr"+l 
111/1.11[.2(8) = jn+l for every n E N. 
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00 

f(z) = I Cn(Z - a)n 
n=O 

is the Taylor series of I about a, it follows from Pythagoras that 

14.2. Theorem. Suppose DeC is open, r > 0 and 

Dr ;={z E C: B(z, r) c D} 

(* ) 

is the set of points in D whose distance from the boundary is greater than or 
equal to r. Then for every I E L2(D, 0) one has 

IIIlln, s: Ilfllo(D)' ylnr 

PROOF. Suppose a E Dr and[(z) = I cn(z - a)" is the Taylor series offabout 
a. Using (*) one gets 

1 1 
If(a)1 = Icol s: t= IlfllL2(B(a.r)):S: t= IIIllo(D)' 

yI nr yI nr 

Since IlflID, = sup{lf(a)l: a E Dr}, the result follows. o 
In particular, it follows from Theorem (14.2) that if " is a Cauchy 

sequence in L2(D, (I)), then the sequence converges uniformly on every com-
pact subset of D. Thus the limit function is holomorphic. Hence L2(D, (9) is 
complete and thus is a Hilbert space. 

The following lemma may be viewed as a certain generalization of 
Schwarz' Lemma. 

14.3. Lemma. Suppose D' D are open subsets of C. Then given any F. > 0, 
there exists a closed vector subspace A c L2(D, (I)) of finite codimension such 
that 

IlfllL2(D') s: r.IIIllu(D) for every f EA. 

PROOF. Since D' is compact and lies in D, there exist r > 0 and finitely many 
points ai' ... , ak E D with the following properties: 

(i) B(a j , r) c D for j = 1, ... , k, 
(ii) D' c UJ=l B(aj, r/2). 

Choose n so large that 2- n - 1 k s: B. Let A be the set of all functions 
f E L2(D, 0) which vanish at every point aj at least to order n. Then A is a 
closed vector subspace of L2(D, (9) of codimension s: kn. 
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LetfE A. Thenfhas a Taylor series about aj 

ro 

f(z) = L cv(z - ajt 
v=n 

For every p :$ r one has 

2 00 np2n+2 2 

IlfIIU(B(aj'p)) = L Icvl , 
v=n 

from which it follows that 

IlfIIV(B(ap/2)) :$ r n- 11IfIIV(B(ap))' 

Using (i) and (ii) one has 

II f II L2(B(aj. r)) :$ II f II L2(D) 

and 
k 

Ilfllv(D·):$ L IlfIIV(B(aj,r/2))' 
j= 1 

Thus 

111 

o 

14.4. Square Integrable Cochains. Suppose X is a Riemann surface. Choose a 
finite family (Vr, Zi), i = 1, ... , n, of charts on X such that every Zi(Vr) c IC 
is a disk. Note however that we are not assuming that U* = is a 
covering of X. Suppose Vi c Vr are open subsets and set U :=(Vih:Si:sn' 
We introduce L2-norms on the cochain groups CO(U, lD) and C1(U, lD), 
defined on the space 

in the following way: 

(i) For 1/ = (/;) E CO(U, lD) let 

111/ II £2(U) := L II/; II £2(Ui) • 
i 

(ii) For = (/;i) E C1(U, lD) let 

:= L II /;i 11£2(ui (") Uj)' 
i, j 

Here the norms of /;, resp. /;i' are calculated with respect to the chart 
(Vr, z;), i.e., 

II/; IILl(uII:= II/; 0 zi- 1 1Iv(zi(ui))' 

II/;i II V(Ui (") Uj) := II/;j a Zi- 111 V(Zi(Ui (") Uj))' 
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The set of cochains having finite norm is a vector subspace ei2 (U, (9) c 

eq(U, (9), q = 0, 1, and these subspaces are Hilbert spaces. The cocycles in 
el2 (U, (9) form a closed vector subspace which we denote by Zl2 (U, (9). 

14.5. If l'; (f Uj , i = 1, ... , n, are relatively compact open subsets and 
m = (l';k';j$.' then to simplify the notation we will write m U. For any 
cochain E eq(U, (9) one has < 00. It then follows directly from 
Lemma (14.3) that given any e > 0, there exists a closed vector subspace 
A c Z12(U, CO) of finite codimension such that 

II II L2(!l) :::; e II II U(U) for every E A. 

14.6. Lemma. Suppose X is a Riemann surface and U* is a finite family of 
charts on X as in (14.4). Further suppose that one has W m U U*, i.e., 
fixed shrinkings ofU '" are given. Then there exists a constant e > ° such that 
for every E Z12(m, (9) there exist elements, E Z12(U' (9) and 11 E C22(W, (9) 
with 

, = + c511 on W 

and 

max( 11'11 L2(U) , 111111 U(W») :::; e II II £2(!l) • 

PROOF 
(a) Suppose = (fu) E zUm, (9) is given. Forgetting for the moment 

the restriction on the norms, we first construct 'E Z12(U, (9) and 
11 E C2z(W, (9) such that' = {' + c5'1 on W. By Theorem (12.6) there exists a 
cochain (g;) E eU(m, C) such that 

fu=gj-gj on l';n J.j. 

Since d"fij = 0, one has d"gj = d"gj on l'; n J.j, and thus there exists a differ-
ential form WECO. 1( I m I) with W Il'; = d"g;. Since I W I I m I, there exists 
a function IjJ E 6"(X) with 

Supp(ljJ) elm I and IjJIIW/ = 1. 

Hence IjJw can be considered as an element of C( / u'" / ). By Theorem (13.2) 
there exist functions h; E C( Un such that 

d"hi = IjJw on Ur 

Because d"h; = d"hj on ut n U;, it follows that 

Fij:= hj - hi E (9(Ur n Un 

Set':= (Fij) / U. Since U U*, one has' E Z12(U, CD). On Wi one has 
d"h; = IjJw = w = d"gj. thus h; - g; is holomorphic on W;. Since h; - g; is 
also bounded on W;. one has 

'1 := (h; - g;) I WE e22(W, CD). 
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Now Fij - fij = (h j - gJ - (hi - g;) on W; !l Wi and thus 

( - e = 811 on 213. 

113 

(b) In order to get the desired estimate on the norms, we consider the 
Hilbert space 

with the norm 

11((, e, 11)IIH:= (Wli2(u) + Ilelli2('ll) + 1111lli2(w»)1/2. 
Let L c H be the subspace 

L :={((, e, 11) E H: (= e + 811 on 213}. 
Since L is closed in H, it is also a Hilbert space. From part (a) the continuous 
linear mapping 

is surjective. By the Theorem of Banach (cf. Appendix B. 6, 7) the mapping n 
is open. Thus there exists a constant C > 0 such that for every e E zlz(m, lD) 
there exists x = ((, e, 11) E L with n(x) = e and IlxliH s C/lello('ll)' This con-
stant then satisfies the desired conditions. 0 

14.7. Lemma. Under the same assumptions as in Lemma (14.6), there exists a 
finite dimensional vector subspace S c Zl(U, lD) with the following property. 
For every e E Zl(U, lD) there exist elements (J E Sand 11 E CO(213, lD) such that 

(J = e + 811 on 213. 

Remark. The lemma says that the natural restriction mapping 

Hl(U, 6) -+ Hl(213, lD) 

has a finite dimensional image. 

PROOF. Suppose C is the constant in Lemma (14.6) and set s:= (1/2C). By 
(14.5) there exists a finite codimensional closed vector subspace 
A c zUU, lD) such that 

IleIIL2('ll) s sllello(u) for every e E A. 

Let S be the orthogonal complement of A in Zlz(U, lD), i.e., 
A $ S = ZUU, lD). 

Now suppose e E Zl(U, lD) is arbitrary. Because m u, 
II eII Ll(!!!) =:M < 00. 

By (14.6) there exist (0 E ZUU, lD) and 110 E C22(213, lD) such that 

(0 = e + 8110 on 213 
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and "'0 Ib(u) ::; CM, 11110 Ilu(w) ::; CM. Suppose 

E A, 

is the orthogonal decomposition. 
We now construct, by induction, elements 

C E Zi2(U, ((I), 

with the following properties: 

(i) 'v = + bl1,. on W 
(ii) ". = + 0'1' 

0"0 E S, 

E A, 

(iii) IICIIL2(U)::; 2-I'CM, Ill1vIIL2(W) ::; rVCM. 

O'v E S 

Consider the induction step from v to v + 1. Since 'v = + O"v is an ortho-
gonal decomposition, one has 

Ilu(u) ::; "'1' IIL2(U) ::; 2- vCM. 

Thus 

rVeCM::; 2-,'-lM. 

By Lemma (14.6) there exist elements '1'+ 1 E Zi2(U, 0) and 
111'+ 1 E C22(W, 0) such that 

'v+ 1 = + c5l1v+ 1 on W 

and 

Now one has an orthogonal decomposition 'v+ 1 = 1 + O"v+ 1, where 
1 E A and O'v+ 1 E S, and thus the induction step is complete. 

From the equation '0 = + 0"110, together with equations (i) and (ii) up 
to v = k, one gets 

+ ..to 0'1' = + c5eto'1,.) on W. 

From (ii) and (iii) it follows that 

Ilu(u), 110"1' Ib(u), Ill1v 11f.2(w»)::; rVCM. 

Hence 00 = 0 and the series 
00 

0":= "0" E S Lv 
1'=0 

00 

'1:= L '1v E q2(W, 0) 
1'=0 

converge. Finally from (*) one gets 0" = + 15'1 on W. 

(*) 

o 
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Remark. By using more powerful tools from functional analysis one could 
make the proof shorter, cf. the proof of Theorem (29.13). 

14.8. Suppose X is a topological space, Y c X is open and .ff is a sheaf of 
abelian groups on X. For every open covering U = (Uj)jEl of X, Un Y:= 
(U j n Y)j E I is an open covering of Y and the natural restriction mapping 
ZI(U, .:F) --> ZI(U n Y, . .:F) induces a homomorphism Hl(U, .'f'")--> 
Hl(U n Y, .:F). These homomorphisms for all U give rise to a restriction 
homomorphism 

Clearly, if one has open sets Y c Y' eX, then the homomorphism 
Hl(X, .'f'") --> Hl(y, .:F) is the composition of the homomorphisms 
Hl(X,:F) --> Hl(y', .ff) and Hl(y', .?") --> Hl(y, .'f'"). 

14.9. Theorem. Suppose X is a Riemann surface and Y1 If' Yz c X are open 
subsets. Then the restriction homomorphism 

HI ( Y2 , (n --> HI (Y1, (I)) 

has a finite dimensional image. 

PROOF. There exists a finite family of charts (ut, ZJ1 on X and relatively 
compact open subsets J.t; If' Vi If' U j If' Ui with the following properties: 

(i) Y1 c Ui=l J.t; =: Y' if Y":= Ui=l U j c: Y2 , 

(ii) all Zj(Un, Zj(U;) and Zj(J.t;) are disks in C. 

Let U :=(U;)lsjsn, W:=(J.t;)lsjsn' By Lemma (14.7) the restriction map-
ping Hl(U, 0) -+ Hl(W, (0) has a finite dimensional image. By Theorem 
(13.4), Hl(Uj , (7) = Hl(J.t;, 0) = O. Thus by Leray's Theorem (12.8), 
Hl(U, (S') = Hl(y", 0) and Hl(W, (I)) = HI(y', (0). Since the restriction 
mapping HI(Y2' 0) -+ Hl(Yl' (D) can be factored as follows 

Hl(Y2' 0) -+ Hl(y", (I;) -+ HI(Y', (7) --> Hl(Yl' (''J), 

the proof of the theorem is complete. 

14.10. Corollary. Suppose X is a compact Riemann surface. Then 

dim Hl(X, 0) < 00. 

o 

PROOF. Since X is compact, one can choose Y1 = Y2 = X in the previous 
theorem. 0 

14.11. Definition. Suppose X is a compact Riemann surface. Then 

g := dim Hl(X, 0) 
is called the genus of X. 

By Theorem (13.5) the Riemann sphere [pI has genus zero. 
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14.12. Theorem. Suppose X is a Riemann surface and Y if X is a relatively 
compact open subset. Then for every point a E Y there exists a meromorphic 
fimction f E ,/It'( Y) which has a pole at a and is holomorphic on Y\{ a}. 

PROOF. By Theorem (14.9) 

k:= dim Im(HI(X, 0) -> HI(y, C:)) < 00. 

Suppose (U I, z) is a coordinate neighborhood of a with z(a) = O. Set 
U 2 := X\{a}. Then U = (U I, U 2) is an open covering of X. The functions z-) 
are holomorphic on U I n U 2 = U I \{a} and represent cocycles 

(j E ZI(U, (I), j = 1, ... , k + 1. 

Since dim Im(HI(U, (I» ---> HI (U n Y, <T')) < k + 1, the cocycles 

ely E ZI(U n Y, (I), 

1 ::::; j ::::; k + 1, are linearly dependent modulo the coboundaries. Thus there 
exist complex numbers C 10 ... , Ck+l, not all zero, and a cochain 
'1 = (fIJ2) E CO(U n Y, 0) such that 

I.e., 
k+ 1 

L c)z j =f2 -fl on U 1 n U 2 n Y. 
i= 1 

Hence there is a function f E .#( Y), which coincides with 
k + I 

+ L c)z- j 
)=1 

on U 1 n Y and which is equal to f2 on U 2 n Y = y\{a}. This is the desired 
function. 0 

14.13. Corollary. Suppose X is a compact Riemann surface and ai' ... , an are 
distinct points on X. Then for any given complex numbers C Io ... , Cn E C, there 
exists a meromorphic function f E such that f(a;) = cJor i = 1, ... , n. 

PROOF. For every pair i =F j, by applying Theorem (14.12) in the case Y = X, 
one gets a function fij E j{(X) which has a pole at ai but is holomorphic at 
aj . Choose a constant Aij E C * such that fij(a k ) =F .t;AaJ - Aij for every 
k = 1, ... , n. Then the function 

._ fij - fij(a j ) 

gij '-r= ;; () , E A't(X) 
.Jij ij aj + Aij 

is holomorphic at the points ak, 1 ::::; k ::::; n, and satisfies 9i)(a;) = 1 and 
gij(aj) = O. Now the functions 

hi := Ilgij' 
j*i 

i = 1, ... , n, 
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n 

f := "c.h. 
o L. 1 l 

i= 1 

solves the problem. o 
We now note a few consequences of the finiteness theorem for non-

compact Riemann surfaces. The reader who is only interested in compact 
Riemann surfaces may skip over these if he wants. 

14.14. Corollary. Suppose Y is a relatively compact open subset of a non-
compact Riemann surface X. Then there exists a holomorphic function 
f: Y -> C which is not constant on any connected component of Y. 

PROOF. Choose a domain Y1 such that Y 11;: Y1 11;: X and a point a E Y1 \ Y. 
(Since X is non-compact and connected, Y1 \ Y is not empty.) Now apply 
Theorem (14.l2) to Y1 and the point a. 0 

14.15. Theorem. Suppose X is a non-compact Riemann surface and 
Y 11;: Y' c X are open subsets. Then 

Im(Hl(y', (1;1) --+ Hl(y, (I))) = O. 

PROOF. By Theorem (14.9) we already know that 

L:= Im(Hl(y', (I)) --+ Hl(y, (7))) 

is a finite dimensional vector space. Choose cohomology classes 
... , E Hl(y', 0) such that their restrictions to Y span the vector space 

L. According to (14.14) we may choose a functionfE 0(Y') which is not 
constant on any connected component of Y'. Since Hl(y', (7)) is in a natural 
way a module over 0(Y'), the productsRv E H1(y', 0) are defined. By the 
choice of the there exist constants CVI' E C such that 

on Y forv=l, ... ,n. (1) 
11=1 

Set 

F :=det(fbvll - cvllhs:v.ll:sn' 

Then F is a holomorphic function on Y' which is not identically zero on any 
connected component of Y'. From (1) it follows that 

forv=I, ... ,n. (2) 

An arbitrary cohomology class (E Hl(y', 0) can be represented by a 
cocycle (fij) E Zl(U, 0), where U = (U;)iE/ is an open covering of Y' such 
that each zero of F is contained in at most one U i • Thus for i f j one has 
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F 1 Vi II Vj E (1:)*( Vi II VJ Hence there exists a cocycle (gij) E Zl(U, (1:) 
such thatj;j = Fgij . Let E Hl(Y', (D) be the cohomology class of (gij). Then 
(= Hence from (2) one gets (I y= y = O. 0 

14.16. Corollary. Suppose X is a non-compact Riemann surface and 
y if Y' c X are open subsets. Then for every differential form W EgO. 1(Y') 
there exists a function f E g( Y) such that d"f = wi Y. 

PROOF. By Theorem (13.2) the problem has a solution locally. Thus there 
exist an open covering U = (Vi)i El of Y' and functions}; E g(V;) such that 
d"j; == w I Vi' The differences}; -./j are holomorphic on Vi II Vj and thus 
define a cocycle in Zl(U, (I)). By (14.15) this co cycle is cohomologous to zero 
on Yand thus there exist holomorphic functions gi E (()(Vj II Y) such that 

.r; -jj = gi - gj on Vi II Vj II Y. 

Hence there exists a function f E g(y) such that 

f='/; - gj on Vi n Y, for every i E I. 

But then the function f satisfies the equation d"f = wi Y. o 
Remark. Theorems (25.6) and (26.1) will extend the results of (14.15) and 

(14.16). 

EXERCISES (914) 

14.1. Let X = {z E c: r < I z I < R}, where 0 < r < R < 00. Determine an orthonor-
mal basis of L2(X, (1') consisting of functions of the form 

<Pn(z) = cnzn, n E Z. 

14.2. Let X c C be a bounded open subset, Ph ... , Pk E X and X' ,= X\{PIo ... , pd. 
Show that the restriction map 

is an isomorphism. 

§15. The Exact Cohomology Sequence 

In this section we consider sheaf homomorphisms, exact sequences of 
sheaves and the long exact cohomology sequence. These tools prove useful 
in calculating various cohomology groups. 

15.1. Definition. Suppose :F and (fj are sheaves of abelian groups on the 
topological space X. A sheaf homomorphism a: .F ---> '1J is a family of group 
homomorphisms 

au: .F(V) ---> '§(V), V open in X, 
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which are compatible with the restriction homomorphisms, i.e., for every 
pair of open sets U, V c X with V c U the diagram 

g;(U) 

,.." I I .," 
g;(V) 'v t 

is commutative. If all the au are isomorphisms, then a is called an 
isomorphism. 

Similarly, one can define homomorphisms of sheaves of vector spaces. 
Often one just writes a: g;(U) instead of lXu: g;(U) 

15.2. Examples 
(a) Suppose I&"(resp. 1&"(0, 1&"(2») are the sheaves of differentiable functions 

(resp. I-forms and 2-forms) on a Riemann surface X. The exterior derivative 
d on functions (resp. differential forms) induces sheaf homomorphisms 

Similarly the mappings d' and d" also induce sheaf homomorphisms. 
(b) On a Riemann surface X the natural inclusions (9 1&", C 1&", "E 0, 

n 1&"1. 0 etc., are sheaf homomorphisms. 
(c) On a Riemann surface X one can define a sheaf homomorphism 

ex: (!) (9* from the sheaf of holomorphic functions into the multiplicative 
sheaf of holomorphic functions with values in C *. For U an open subset of X 
and.f E (o( U) let exu(.f) := exp(2n(f). 

15.3. The Kernel of a Sheaf Homomorphism. Suppose g; and are sheaves 
on the topological space X and a: g; is a sheaf homomorphism. For U 
open in X let 

,X"(U) :=Ker(g;(U) 

One can easily show that the family of groups ,ff(U), together with the 
restriction homomorphisms induced from the sheaf g;, is again a sheaf. It is 
called the kernel of a and is denoted by X = Ker a. 

Examples. On any Riemann surface one has 

(a) (!) = Ker(1&" 1&"0.1), (see 9.1), 

(b) n = Ker(6'l. 0 g(2») (see 9.16), 

(c) "E = Ker((9 (0*) (see 15.2.c). 
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15.4. Remark. Given a homomorphism a: :F ---> '!J of sheaves on the topo-
logical space X one can define 

ya(U) :=lm(:F(U) '!J(U)) for every open U in X. 

This defines a pre sheaf .JI which in general does not satisfy sheaf axiom II. As 
a counterexample consider the sheaf homomorphism 

ex: ((' ---> (1;1*, f f---* exp( 2nif), 

on the space C*. Let U I = C*\iKL and U 2 = C*\IR+. Define};, E 0*(Uk ) by 
= z for every Z E Uk, k = 1,2. Since Uk is simply connected, 

fk E 1m ((9( Uk) (I*(Uk)). 

Moreover, fl lUI n U 2 I U I n U 2' But there is no element 

fE 1m (0(C*) (1;1*(C*)) 

with flU k = fb since the function Z f---* Z has no single-valued logarithm on 
all of C*. 

15.5. Exact Sequences. Suppose a: :F ---> is a sheaf homomorphism on the 
topological space X. Then for each x E X there is an induced homo-
morphism of the stalks 

A sequence of sheaf homomorphisms :F -=. '!J !!.. ytJ is called exact, iffor each 
x E X the sequence 

is exact, i.e:, Ker f3x = 1m ax. A sequence 

:):11-1 _ 

----+ !fI' n , (n > 3), 

of sheaf homomorphisms is called exact if the sequence 

is exact for every 1 S k S n - 2. A sheaf homomorphism a: .0;; ---> '!J is called 
a monomorphism if 0 ---> .0;; ..:. '!J is exact and an epimorphism if .'F '!J ---> 0 is 
exact. An exact sequence of the form 0 ---> .'F ---> '!J ---> :/f' ---> 0 is called a short 
exact sequence. 

15.6. Lemma. Suppose a: .0;; ---> '!J is a sheaf monomorphism on the topological 
space X. Thenfor every open subset U c X the mapping au: .o;;( U) ---> '!J( U) is 
injective. 
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PROOF. Suppose f E ,?( U) and exu(f) = O. Since ex,,: JF x -+ C§" is injective for 
every x E X, every x E U has an open neighborhood Vx c U such that 
f 1 V" = O. From sheaf axiom I it follows thatf = O. 0 

15.7. Remark. If ex: JF -+ C§ is a sheaf epimorphism, it is not necessarily true 
that for every open set U the mapping exu: ,?( U) ---+ q}( U) is surjective. This 
is illustrated by the example ex: 0 ---+ in (15.4). For every x the map 
ex: (I)" -+ (I): is surjective, since every non-vanishing function locally has a 
logarithm, But ex: 0(1[:*) -+ 0*(1[:*) is not surjective. 

15.8. Lemma. Suppose 0 -+ JF q} .!!... :It' is an exact sequence of sheaves on 
the topological space X. Thenfor every open set U c X the sequence 

0-+ JF( U) -.:. q}( U) :It'( U) 

is exact, 

PROOF 
(a) The exactness of 0 -+ JF(U) -.:. q}(U) was proved in (15.6), 
(b) 1m ex c Ker f3. Suppose f E JF( U) and g := ex(f). Since the sequence of 

stalks JF x -+ -+ :It' x is exact for every x E U, it follows that each point 
x E U has a neighborhood Vx c U such that f3(g) 1 V" = O. Hence by sheaf 
axiom lone has f3(g) = 0, 

(c) To prove the inclusion Ker f3 c 1m ex suppose g E C§(U) with f3(g) = 0, 
Since for every x E U one has Ker f3x = 1m exx , there is an open covering 
(...-;L I of U and elements/; E JF("'-;) such that ex(/;) = g 1...-; for every i E /, On 
the intersection ...-; n lj one then has ex(/; - jj) = O. Hence by (15,6) it fol-
lows that /; = jj on ...-; n lj. Now by sheaf axiom II there exists anf E JF( U) 
with f 1...-; = jj for every i E /, Since ex(f) 1...-; = ex(f 1...-;) = g 1 V;, it follows 
from sheaf axiom I, applied to the sheaf C§, that ex(f) = g. 0 

15.9. Examples. We now give several examples of short exact sequences of 
sheaves 

o -+ ,? -+ C§ -+ :It' -+ 0 

on a Riemann surface X, 

d" (a) 0 -+ (I) -+ g -+ go. 1 -+ 0, 
Here 0 -+ g is the natural inclusion. The exactness follows from the 001-
beault Lemma (13.2), 

(b) Let 
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be the sheaf of closed differential forms. The sequence 

is exact. That d: g --> :!Z is an epimorphism follows from the fact that locally 
every closed differential form is exact, see (10.4). 

(c) 
This exact sequence is the holomorphic analogue of (b). 

(d) Since 

Q = Ker ( g!' ° 6"(2} 

in order to prove the exactness of 

one has only to show that d: gl, ° --> 6"(2) is onto. With respect to a local 
chart (U, z), one has 

d(f dz) = dz 1\ dz, 

Thus for every open set V c U such that z( V) c C is a disk one sees by using 
the Dolbeault Lemma that d: 10,,1, 0(V) --> g(2)(V) is surjective, Hence 
d: ° --> is surjective for every point a E X. 

(e) The exactness of the sequence 

follows from (15,3,c) and the remark (15,7). 

15.10. Any homomorphism a: g; --> of sheaves on the topological space X 
induces homomorphisms 

aO: HO(X, g;) --> HO(X, 

a1 : Hl(X, g;)-->Hl(X, 

The homomorphism aO is nothing but the mapping ax: g;(X) --> The 
homomorphism a 1 is constructed as follows, Let U = (Ui)i E I be an open 
covering of X. Consider the mapping 

au: C1 (U, .?') --> C1 (U, 

which assigns to each cochain ¢ = (hj) E C1(U, ,?') the cochain 
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This mapping takes cocycles to cocycles and coboundaries to co boundaries 
and thus induces a homomorphism 

lXu: Hl(U, g;-) ---+ Hl(U, <§). 

The collection of au, where U runs over all open coverings of X, then induces 
the homomorphism a 1. 

15.11. The Connecting Homomorphism. Suppose 

is an exact sequence of sheaves on the topological space X. A "connecting 
homomorphism" 

15*: HO(X, X) ---+ Hl(X, g;-) 

is defined as follows. Suppose 

h E HO(X, X) = X(X). 

Since all the homomorphisms Px: <§x ---+ Xx are surjective, there exists an 
open covering U = (V;}i EI of X and a cochain (g;) E CO(U, <§) such that 

P(g;) = h I Vi for every i E I. (1) 

Hence P(gj - g;} = 0 on Vi n V j . By Lemma (15.8) there exists 
fij E g;-(Vi n V j ) such that 

(2) 

On Vi n Vj n V k one has a(fij + Jjk - fit) = 0 and thus by (15.6) 
fij + Jjk = fit, i.e., 

(k) E ZI(U, g;-). 

Now let !5*h E Hl(X, g;-) be the cohomology class represented by (fij). One 
can easily check that this definition is independent of the various choices 
made. 

15.12. Theorem. Suppose X is a topological space and 

is a short exact sequence of sheaves on X. Then the induced sequence of 
cohomology groups 

is exact. 

o -- HO(X, g;-) HO(X, <§) HO(X, X) 

Hl(X, g;-) Hl(X, <§) Hl(X, X) 
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PROOF 

(a) The exactness at HO(X, J) and HO(X, '§) follow from Lemma (15.8). 
(b) 1m [30 c Ker J*. Suppose 9 E HO(X, and h:= [30(g). In the con-

struction of J*h described in (15.11) one can choose gi = gl Vi' But then 
fij = 0 and thus J*h = O. 

(c) Ker J* elm [30. Suppose h E Ker J*. Using the notation of (15.11) 
one can represent J*h by the cocycle U;J E Zl(U, .:F). Since J*h = 0 there 
exists a cochain (/;) E CO(U, J) such that k = jj - J; on Vi n V j . Set 
9i := gi - exU;). Then 9i = 9j on Vi n Vj because ext!;j) = Yj - Yi' Thus the?'li 
are restrictions of some global element 9 E HO(X, On Vi one has [3(g) = 
[3(gJ = [3(gi - exC!;)) = [3(g;) = h, i.e., hElm [30. 

(d) 1m J* c Ker ex 1 . This follows from condition (2) in (15.11). 
(e) Ker ex 1 c 1m b*. Suppose E Ker ex 1 is represented by the cocycle 

U;J E Zl(U, Since ex 1 (() = 0, there exists a cochain (g;) E CO(U, such 
thatex( r..) = y. - g. on V· n V" This implies j iJ J' l l ] 

Hence there exists h E .Yf(X) = HO(X, £) such that hi Vi = [3(gJ The con-
struction given in (15.11) now shows that J*h = 

(f) 1m ex 1 c Ker [31. This follows from the fact that 

is exact by (15.8). 
(g) Ker pi c 1m ex 1. Suppose I] E Ker [31 is represented by the co cycle 

(YiJ E Zl (U, '§), where U = (VJi E [. Then there is a cochain (h;) E CO(U, £) 
such that [3(gij) = hj - hi' For every x E X choose rx E I such that x E V n . 

Since [3x: '§ x -> .Yf x is surjective, there is an open neighborhood Vx c V rx of x 
and an element gx E '§(Vx) such that [3(g,.) = hrx 1 Vx' Let 'B = (V,.),.. x and 
gxy = grx. ry 1 Vx n Vy. Then (9XY) E Zl(l.B, '§) is a cocycle which also repre-
sents the cohomology class 1]. Let t/lXY:= 9xy - gy + gx· The cocycle (t/lXY) is 
cohomologous to (9XY) and [3(t/lXY) = O. Thus there exists E ff(Vx n 
such that = t/I xy' Since 

is Injective by (15.6), E ZI(I.B, ff). Thus the cohomology class 
E H1(X, .?') of (fXY) satisfies ex l (';) = 1]. This completes the proof. D 

15.13. Theorem. Suppose 0 -> .? !!... .Yf -> 0 is an exact sequence of 
sheaves on the topological space X such that H1(X, '§) = O. Then 
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PROOF. Since = 0, by Theorem (15.12) one has the exact sequence 

The result is now obvious. o 
For many applications it IS important to be able to describe the 

isomorphism. 

explicitly. By Lemma (15.8) we can always assume that % = Ker {3 and 
rx.: % ----> is the inclusion map. 

Suppose E Hl(X, %) is a cohomology class which is represented by the 
cocycle (fij) E Zl(U, %) C Zl(U, Since = 0, there exists a co-
chain (g;) E CO(U, such thatfij = gj - gj on V j n V j. Since {3(fij) = 0, {3(gj) 
and {3(g;} agree on V j n V j • Thus there exists a global element h E £(X) 
with hi V j = {3(gj)' Then is the coset of h modulo The fact that 
the mapping ct> described above is the inverse of the isomorphism 

Hl(X, %) induced by the exact cohomology sequence fol-
lows from part (e) in the proof of (15.12). 

15.14. Dolbeault's Theorem. Let X be a Riemann surface. Then there are 
isomorphisms 

(a) Hl(X, (0) go. 1 (X)/d"g(x), 
(b) Hl(X, Q) g(2)(X)/dg l. O(X). 

Since Hl(X, = Hl(X, = 0, one may apply Theorem (15.13) to 
the exact sequences given in (15.9.a) and (15.9.d) respectively. 

Remark. Theorem (13.4) is a special case of Dolbeault's Theorem. 

15.15. The deRham Groups. On every Riemann surface X every exact I-form 
is closed but every closed form is not necessarily exact. Consequently one is 
interested in the quotient group 

Ker(g(l)(X) g(2)(X» 
Rh 1 (X) := ---'------'---"-------'---'-'-

Im(g(X) g(1)(X» 

of closed I-forms modulo exact I-forms. Two closed differential forms which 
determine the same element in Rhl(X), i.e., whose difference is exact, are said 
to be cohomologous. Rhl(X} is called the 1st deRham group of X. Note that 
Rhl(X) = 0 precisely if every closed I-form OJ E:: has a primitive. 
If X is simply connected, then Rhl(X} = 0 by (10.7). 
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deRham's Theorem. Let X be a Riemann surface. Then 

This follows from (15.13) applied to the exact sequence in (15.9.b). 
Theorem (12.7.a) is a special case of deRham's Theorem. 

Remark. The theorems of deRham and Dolbeault are proved here only 
for Riemann surfaces. But they are also valid in a more general form on 
differentiable (resp. complex) manifolds of arbitrary dimension. More details 
can be found in any book on several complex variables, e.g., [30], [31], [32], 
[33], [34], [35]. In §§6, 12 and 15 we have considered only the most basic 
ideas about sheaves and sheaf cohomology. A systematic introduction can 
be found in [41]. 

EXERCISES (§15) 

15.1. Let X be a Riemann surface and .tt' be the sheaf of harmonic functions on X. 
Verify that the sequence 

is exact 

15.2. Show that on any Riemann surface the sequence 

o -----> C * -----> (( * n -----> 0 

is exact, where (d log)f'=j-1 df 

15.3. On a Riemann surface X let i2 c .It(l) be the sheaf of meromorphic I-forms 
which have residue 0 at every point. Show that the sequence 

is exact. 

15.4. Let X = c/r be a torus. Prove that 

H1(X, C) Rh1(X) C 2 

and that the classes of dz and dz form a basis of Rh l(X). 
[Hint: Let OJ E (,'(l)(X) be a closed I-form. Show that for suitable C10 C2 E C all 
the periods of OJ - C1 dz - C2 dz vanish.] 

§16. The Riemann-Roch Theorem 

The Riemann-Roch Theorem is central in the theory of compact Riemann 
surfaces. Roughly speaking it tells us how many linearly independent mero-
morphic functions there are having certain restrictions on their poles. 
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16.1. Divisors. Let X be a Riemann surface. A divisor on X is a mapping 

D:X-->Z 

such that for any compact subset K c X there are only finitely many points 
x E K such that D(x) f O. With respect to addition the set of all divisors on 
X is an abelian group which we denote by Div(X). As well there is a partial 
ordering on Div(X). For D, D' E Div(X), set D ::; D' if D(x) ::; D'(x) for every 
XE X. 

16.2. Divisors of Meromorphic Functions and I-forms. Suppose X is a 
Riemann surface and Y is an open subset of X. For a meromorphic function 
IE At(Y) and a E Y define 

0, if I is holomorphic and non-zero at a, 
k, if fhas a zero of order k at a. 

orda(f):= - k, iff has a pole of order k at a, 
00, iff is identically zero in a 

neighborhood of a. 

Thus for any meromorphic functionf E 04t(X)\{O}, the mapping x f--> ordx(f) 
is a divisor on X. It is called the divisor off and will be denoted by (f). 

The functionfis said to be a multiple of the divisor D if (f) 2: D. Thenfis 
holomorphic precisely if (f) 2: O. 

For a meromorphic 1-form W E •. H(I)(y) one can define its order at a point 
a E Y as follows. Choose a coordinate neighborhood (U, z) of a. Then on 
U n Y one may write w = f dz, where f is a meromorphic function. Set 
orda( w) = orda(f). It is easy to check that this is independen t of the choice of 
chart. For 1-forms WE At(l)(X)\{O} the mapping xf-->ordx(w) is again a 
divisor on X, denoted by (w). 

For j; g E At(X)\{O} and w E jt(l)(X)\{O} one has the following relations: 

(fg) = (f) + (g), (l/f) = -(f), (fw) = (f) + (w). 

A divisor D E Div(X) is called a principal divisor if there exists a function 
f E . .$t(X)\{O} such that D = (f). Two divisors D, D' E Div(X) are said to be 
equivalent if their difference D - D' is a principal divisor. 

By a canonical divisor one means the divisor (w) of a meromorphic 1-form 
w E vtt(I)(X)\{O}. Any two canonical divisors are equivalent. For, if WI, 

W 2 E At(l)(X)\{O} then there exists a function f E 04t(X)\{O} such that 
WI = fW 2 and thus (wd - (W2) = (f). 

16.3. The Degree of a Divisor. Suppose now that X is a compact Riemann 
surface. Then for every D E Div(X) there are only finitely many x E X such 
that D(x) f O. Hence one can define a mapping 

deg: Div(X) --> Z 
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called the degree, by letting 

deg D:= L D(x). 
xeX 

The mapping deg is a group homomorphism. Note that deg(f) = 0 for any 
principal divisor (f) on a compact Riemann surface since a meromorphic 
function has as many zeros as poles. Hence equivalent divisors have the 
same degree. 

16.4. The Sheaves (!;ID • Suppose D is a divisor on the Riemann surface X. For 
any open set U c: X define (!) D( U) to be the set of all those meromorphic 
functions on U which are multiples of the divisor - D, i.e., 

(!)D(U):= {f E V#(U): ordAf);::: -D(x) for every x E U}. 

Together with the natural restriction mappings (!)D is a sheaf. In the special 
case of the zero divisor D = 0 one has (!)o = (!). If D, D' E Div(X) are equiva-
lent divisors, then (!)D and (!)D' are isomorphic. An isomorphism can be 
defined as follows. Pick t/J E V#(X)\{O} such that D - D' = (t/J). Then the 
sheaf homomorphism induced by multiplication by t/J, i.e., 

is an isomorphism. 

16.5. Theorem. Suppose X is a compact Riemann surface and D E Div(X) is a 
divisor with deg D < O. Then HO(X, llJD ) = O. 

PROOF. Suppose, to the contrary, that there exists an f E HO(X, llJD ) with 
f 1= O. Then (f);::: - D and thus 

deg(f);::: -deg D > O. 

However this contradicts the fact that deg(f) = O. o 
16.6. The Skyscraper Sheaf Cp • Suppose P is a point of a Riemann surface 
X. Define a sheaf Cp on X by 

{c if P E U, 
Cp(U):= 0 if P ¢ U, 

where the restriction maps are the obvious homomorphisms. Then 

(i) HO(X, Cp ) C, 
(ii) Hl(X, Cp ) = O. 

Now assertion (i) is trivial. In order to prove (ii), consider a cohomology 
class E Hl(X, Cp ) which is represented by a cocycle in Zl(U, Cp ). The 
covering U has a refinement m = (y")oeA such that the point P is contained 
in only one Y". But then Zl(m, Cp ) = 0 and hence = O. 
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16.7. Now suppose D is an arbitrary divisor on X. For P E X denote by the 
same letter P the divisor which takes the value 1 at P and is zero otherwise. 
Then D :::; D + P and there is a natural inclusion map (0 D --+ (0 D + P • Let (V, z) 
be a local coordinate on X about P such that z(P) = O. Define a sheaf 
homomorphism 

13: 0 D + P --+C p 

as follows. Suppose U c X is an open set. If P ¢ U, then f3u is the zero 
homomorphism. If P E U and f E 0 D + p( U), then the function f admits a 
Laurent series expansion about P, with respect to the local coordinate z, 

f= L cnz", 
n=-k-J 

where k = D(P). Set 

f3U(f):=Ck-l EC =Cp(U). 

Obviously 13 is a sheaf epimorphism and 

is a short exact sequence. By Theorem (15.12) this induces an exact sequence 

0--+ HO(X, 0 D ) --+ HO(X, 0 D + P ) --+ C 
(*) 

16.8. Corollary. Let D :::; D' be divisors on a compact Riemann surface X. 
Then the inclusion map (YD --+ (YD' induces an epimorphism 

HI(X, (YD) --+ HI(X, (YD') --+ O. 

PROOF. If D' = D + P, where P is the divisor given by a single point, then the 
assertion follows from (16.7). In general D' = D + PI + ... + Pm with 
P j E X and the assertion follows by induction. 0 

16.9. The Riemann-Roch Theorem. Suppose D is a divisor on a compact 
Riemann X of genus g. Then HO(X, 0 D) and HI(X, (YD) are finite 
dimensional vector spaces and 

dim HO(X, (YD) - dim Hl(X, (YD) = 1 - g + deg D. 

PROOF 

(a) First the result holds for the divisor D = O. For, HO(X, 0) = 0(X) 
consists of only constant functions and thus dim HO(X, (Y) = 1. As well dim 
HI(X, (0) = 9 by definition. 

(b) Keeping the same notation as in 16.7, suppose D is a divisor, P E X 
and D' = D + P. Suppose that the result holds for one of the divisors D, D'. 
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The exact cohomology sequence (*) in (16.7) can be split into two short 
exact sequences. For, let 

V:= Im(HO(X, (f)n') --> C) 

W:=C;V. 

Then dim V + dim W = 1 = deg D' - deg D and the sequences 

0--> HO(X, &n) --> HO(X, (Un') --> V --> 0, 

0--> W-->HI(X, (f)n)--> HI(X, (f)n')--> 0 

are exact. Thus all the vector spaces occurring are finite dimensional and one 
has the following equations relating the various dimensions 

dim HO(X, (f)n') = dim HO(X, (9n) + dim V 

dim HI(X, (9n) = dim HI(X, (C'n') + dim W. 

Adding one gets 

dim HO(X, (9n') - dim HI(X, (On') - deg D' 

= dim HO(X, (Dn) - dim HI(X, (Dn) - deg D. 

This implies that if the Riemann-Roch formula holds for one of the two 
divisors, then it also holds for the other. Thus by (a) the Theorem holds for 
every divisor D' O. 

(c) An arbitrary divisor D on X may be written 

D = PI + ... + Pm - Pm+ 1 - ... - Pn, 

where the Pj E X are points. Starting with the zero divisor and using (b) one 
now proves by induction that the Riemann-Roch Theorem holds for the 
divisor D. D 

16.10. The Index of Speciality. One calls 

i(D):= dim HI(X, (Dn) 

the index of speciality of the divisor D. Thus the Riemann-Roch Theorem 
may be written in the form 

dim HO(X, (9n) = 1 - 9 + deg D + i(D). 

In (17.16) we will show that i(D) = 0 whenever deg D > 2g - 2. In any case 
i(D) 0 and thus dim HO(X, (f)n) is bounded from below. From Theorem 
(16.5) it follows that 

i(D) = 9 - 1 - deg D if deg D < O. 

16.11. Theorem. Suppose X is a compact Riemann surface of genus 9 and a is a 
point of X. Then there is a non-constant meromorphic jitnction f on X which 
has a pole of order ::; 9 + 1 at a and is otherwise holomorphic. 
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PROOF. Let D: X -+ 7l. be the divisor with D(a) = g + 1 and D(x) = 0 for 
x =1= a. By the Riemann-Roch Theorem 

Thus there exists a non-constant function f E HO(X, (!)D) and clearly this 
function fulfills the requirements of the theorem. 0 

16.12. Corollary. Suppose X is a Riemann surface of genus g. Then there exists 
a holomorphic covering mapping f: X -+ [pI with at most g + 1 sheets. 

PROOF. The functionffound in Theorem (16.11) is by Theorem (4.24) such a 
covering mapping since the value 00 is assumed with multiplicity S g + 1. 

o 

16.13. Corollary. Every Riemann surface of genus zero is isomorphic to the 
Riemann sphere. 

This follows from the fact that a one-sheeted covermg map is a 
biholomorphism. 

EXERCISES (§16) 

16.1. Let D be a divisor on the Riemann sphere [pl. Prove 

(a) dim HO([P\ (VD) = max(O, 1 + deg D) 
(b) dim HI([pI, tiD) = max(O, -1 - deg D). 

16.2. Let X = c/r be a torus, Xo E X a point and P the divisor 

Show 

p(X)={1 ifx=xo, 
o if x f Xo. 

,0 for n < 0, 
dim HO(X, (l)np) = 'I' 1 for n = 0, 

n for n ::::: 1. 

[Hint: Use the Weierstrass S;Lfunction (Ex. 2.1).] 

16.3. Let X be a compact Riemann surface, D a divisor on X and U = (Vi) an open 
covering of X such that every Vi is isomorphic to a disk. Show that U is a Leray 
covering for the sheaf (!) D, cf. (12.8). 

16.4. (a) On a Riemann surface X let n be the sheaf of divisors, i.e., for V c: X open 
n(V) consists of all maps 

D: V--+7L 
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such that for every compact set K c U there are only finitely many x E K 
with D(x) of O. Show that 1) together with the natural restriction mor-
phisms is actually a sheaf and that 

H'(X, 1)) = O. 

[Hint: Imitate the proof of Theorem (12.6), using a (discontinuous) integer-
valued partition of unity.] 

(b) Let f3: .It* 1) be the map which assigns to every meromorphic function 
fE .It*(U) its divisor (f) E 1)(U) and let cc IV* Jt* be the natural inclu-
sion map. Show that 

o (9* .=.. Jt* 1. 1) 0 

is an exact sequence of sheaves and thus that there is an exact sequence of 
groups 

o HO(X, (9*) HO(X, . .4{*) --. Div(X) 
H'(X, (9*) H'(X, .It*) --> O. 

§17. The Serre Duality Theorem 

The Serre Duality Theorem allows a simpler interpretation of the cohomo-
logy groups Hl(X, (DD) in terms of differential forms. In fact, dim Hl(X, (DD) 

is equal to the maximum number of linearly independent meromorphic 
1-forms which are multiples of the divisor D. One consequence is the 
Riemann-Hurwitz formula, which allows one to calculate the genus of a 
covering from the number of sheets it has and its branching order. Another 
consequence is a vanishing theorem which asserts that Hl(X, (DD) = 0, if 
deg D > 2g - 2. This vanishing theorem itself has interesting applications 
and we will use it to prove an embedding theorem for compact Riemann 
surfaces into [piN. 

17.1. Definition ofa Linear Form Res: Hl(X, Q) --+ Co Suppose X is a com-
pact Riemann surface. By (15.14) the exact sequence 

induces an isomorphism Hl(X, Q) cff(2)(X)/dcff" O(X). Suppose 
E Hl(X, Q) and W E @"(2)(X) is a representative of via this isomorphism. 

Set 

II w. 2m 
x 

Because of Theorem (10.20) this definition is independent of the choice of the 
representative w. 
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17.2. Mittag-Leffler Distributions of Differential Forms. Suppose X is a 
Riemann surface, .H(1) is the sheaf of meromorphic I-forms on X and 
U = (VJiE[ is an open covering of X. A cochain Ji. = (wJ E CO(U, .H(1)) is 
called a Mittag-Leffler distribution if the differences Wj - Wi are holo-
morphic on Vi n Vj, i.e., JJi. E Zl(U, Q). Denote by [JJi.] E Hl(X, Q) the 
cohomology class of JJi.. 

Let a be a point of X. The residue of the Mittag-Leffler distribution 
Ji. = (w j ) at the point a is defined as follows. Choose i E [ such that a E Vi 
and set 

Resa(j.l):= Resa(wJ 

If a E V j n Vj , the difference Wi - Wj is holomorphic and Wj and Wj have the 
same residue at a. Thus the definition is independent of the choice of i E [. 

Now assume that the Riemann surface X is compact. Then Resa(j.l) =1= 0 for 
only finitely many points a. Thus one can define 

Res(Ji.):= L Resa(Ji.)· 
aE X 

We will now show that this residue is related to the mapping Res defined in 
(17.1). 

17.3. Theorem. Assume the notation is the same as above. Then 

Res(j.l) = Res([Jj.l]). 

PROOF. In order to compute Res([bJi.]) we have to construct the isomorphism 
Hl(X, Q) g(2)(X)/dg l • O(X) explicitly, cf. (15.13). 

Since Jj.l = (w j - wJ E Zl(U, Q) C Zl(U, gl.O) and Hl(X, tC'l. 0) = 0, 
there exists a cochain (O'J E CO(U, tC'l. 0) such that 

Wj - Wi = O'j - O'j on V j n Vj. 

Then d(wj - w;) = d"(wj - w;) = 0 implies d(Ji = d(Jj on V j n Vj. Thus 
there exists a global 2-form T E g(2)(X) such that T I V j = d(Jj. This differen-
tial form represents the cohomology class [Jj.l] and thus 

Res([Jj.l]) = Jf T. 

x 

Suppose at> ... , an E X are the finitely many poles of Ji. and let 
X' = X\{a 1, ... , an}. On X' n Vi n Vj one has (Ji - Wi = (Jj - Wj' Thus 
there exists a differential form (J E gl. O(X') such that (J = (Ji - Wi on 
X' n Vi' Hence T = d(J on X'. 

For every ak there is an i(k) E [ such that ak E Vi(k)' Choose a coordinate 
neighborhood (Vk,Zk) such that Vk c Vi(k) and zk(ak) = O. We may assume 
that the Vr. are pairwise disjoint and that each Zk(y") c C is a disk. For every k 
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choose a functionfk E 6"(X) such that Supp(f,.) c Vk and such that there is an 
open neighborhood c Vk of ak with fk I = 1. Set 

9 := 1 - U1 + ... + j,,). 

Since 9 I = 0, gu may be continued across the points ak by defining it to be 
zero there and thus may be considered as an element of 6"1, O(X). By (10.20) 
one has 

Jf d(gu) = O. 
x 

On V;'\{ak} one has dUkU) = du = d(Ui(k) - Wi(k») = dUi(k)' Thus d(f,.u) may 
be continued differentiably across ak' Since f,. U vanishes on X'\Supp(f,.), 
dUk u) may be considered as an element of 6"(2)(X). Then T = d(gu) + 
L d(J;. u) implies 

JJ T = ± Jf dUk U) = ± JJ dUkUi(k) -fkWi(k»)' 
x k= 1 X k = 1 V. 

Using (10.20) again, one has 

Jf dUkUi(k») = 0 
v. 

and as in (10.21) one can show 

Jf d(J;.Wi(k») = - 2ni Resa.(wi(k»)' 
v. 

Combining everything, one gets 

1 n JJ T = L Resa.(wi(k») = Res(Ji). 
1tI x k=1 

o 

17.4. The Sheaves nD • Let X be a compact Riemann surface. For any divisor 
DE Div(X) we denote by nD the sheaf of meromorphic I-forms which are 
mUltiples of - D. Thus for any open set U c X the set nD ( U) consists of all 
differential forms W E J(1)(U) such that ordAw) -D(x) for every x E U. 
In particular no = n is the sheaf of all holomorphic I-forms. 

Suppose W E J((1)(X) is a non-trivial meromorphic I-form on X, e.g., 
W = df, where f E J((X) is a non-constant meromorphic function. Let K be 
the divisor of w. Then for an arbitrary divisor D E Div(X) multiplication by 
W induces a sheaf isomorphism 
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Lemma. There is a constant ko E 7L such that 

for every D E Div(X). 

PROOF. Suppose wand K are as above and g is the genus of X. Set ko := 1 -
g + deg K. Then by Riemann-Roch 

dim HO(X, QD) = dim HO(X, (!;D+K) 

= dim Hl(X, ((]D+K) + 1 - g + deg(D + K) 

deg D + ko . o 

17.5. Definition of a Dual Pairing. Suppose X is a compact Riemann surface 
and D E Div(X) is a divisor. The product 

(w,j) I--> wf, 

induces a mapping 

HO(X, Q-D) x Hl(X, (l}D) -+ Hl(X, Q). 

The composition of this mapping with Res: Hl(X, Q) -+ C produces a bilin-
ear mappmg 

< , ): HO(X, Q-D) x Hl(X, ((]D) -+ C, 

<w, 0:= Res(wO· 

Hence this mapping induces a linear mapping 

ID: HO(X, Q-D) -+ Hl(X, (fJD )* 

of HO(X, Q-D) into the dual of Hl(X, (0 D ). The Serre Duality Theorem 
asserts that < , ) is a dual pairing, i.e., lD is an isomorphism. This will be 
proved in (17.6) and (17.9). 

17.6. Theorem. The mapping lD is injective. 

PROOF. We have to show that for any non-zero w E HO(X, Q-D) there exists 
E Hl(X, (l}D) such that <w, 0 -=1= O. Let a E X be a point such that D(a) = 0 

and (Vo, z) be a coordinate neighborhood of a with z(a) = 0 and D I Vo = o. 
On V o one can write was w =fdz wherefE (I}(Vo). We may assume Va is 
so small thatfhas no zeros in Vo \{a}. Set u 1 = X\{a} and U = (u 0, U d. Let 
rJ = (fO,fI) E CO(U, "'t), wherefo = (zft I = O. Then 

WrJ = (d: ,0) E CO(U, ,4{(1)) 
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is a Mittag-Leffler distribution with Res(wl]) = 1. One has 61] E Zl(U, (l:D)' 

Let = [61]] E Hl(X, (liD) be the cohomology class of 61]. Since 
= W' [61]] = [6(wl])], it follows from Theorem (17.3) that 

(w, 0 = = Res([6(wl])]) = Res(wl]) = 1. 0 

17.7. Suppose D, D' E Div(X) are two divisors on the compact Riemann 
surface X with D' :s:; D. Then by (16.8) the inclusion 0 -> (l:D' -> (!)D induces an 
epimorphism 

Hl(X, ("v')-> Hl(X, (lD)-->O. 

This then induces a monomorphism of the duals 

0--> Hl(X, C"D)* Hl(X, (10)*' 

One can easily check that the diagram 

0-> Hl(X, ("0)* Hl(X, (lD')* 

1", 1", 
0--> HO(X, 0) ----t HO(X, D') 

commutes, where the vertical arrows are the maps defined in (17.5). 

Lemma. Vsing the same notation as above suppose A E HI{X, (lD)* and 
(j) E HO(X, Q-D') satisfy 

ig,(I,) = ID'(W), 

Then (j) is also contained in HO(X, Q-D) and A = ID{W), 

PROOF. Suppose, to the contrary, that W is not an element of HO(X, Q- D)' 
Then there is a point a E X such that orda(W) < D(a). Let (V 0, z) be a 
coordinate neighborhood of a with z(a) = O. On Vo one may write W as 
w = f dz, where f E ./I({( V 0)' We may suppose Vo is sufficiently small so that 

(i) DI Vo\{a} =0, D'IVo\{a}=O. 
(ii) fhas no zeros or poles in Vo\{aJ. 

Set VI = X\{a} and U = (Vo, UI)' Let I] = (fo, fd E CO(U, ,/tI), where 
fo = (zft I = O. Because orda(w) < D(a), one even has I] E CO(U, (l)D)' 

Thus 

61] E Zl(U, (I;) = Zl(U, (liO) = Zl(U, (liD')' 

Denote the cohomology class of 61] in Hl(X, (Iv') by and in HI(X, (I: D) by 
Note that = O. By assumption 

(w, c;') = = Jc(C;) = O. 
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On the other hand, since WI] = «dz/z), 0), one has 

<w, = Res(wl]) = 1, a contradiction! 

Thus the assumption is false and WE HO(x, fL D)' 
Since ig.(A) = ID'(W) = ig,(ID(W)), the equality A = ID(W) follows from the 

fact that ig. is one-to-one. 0 

17.8. Suppose D and B are two divisors on the compact Riemann surface X. 
Given a meromorphic function 1/1 E HO(x, (lIB) the sheaf morphism 

induces a linear mapping Hl(X, (I'D-B) -> Hl(X, (I'D) and thus a linear 
mappmg 

Hl(X, (lID)* -> Hl(X, (l:D-8)*' 

which we also denote by 1/1. By definition 

= ..1.(1/10 for A E Hl(X, (!)D)*' 

The diagram 

commutes, where the arrow in the second row is also defined as multi-
plication by 1/1. This follows since <l/1w, 0 = <w, 1/10. 

Lemma. If 1/1 E HO(X, (I) B) is not the zero element, then the mapping 

1/1: H 1(X, @D)*->H1(X, (!)D-B)* 
is injective. 

PROOF. Let -B be the divisor of 1/1. The mapping (!)D-B 
factors through (!) D + A' i.e., one has 

where (!)D+A (!)D is an isomorphism. Since the mapping Hl(X, (OD-B)-> 
Hl(X, (lJV+A) induced by the inclusion @D-B-> (!)D+A is an epimorphism 
(16.8), it follows that 

is also an epimorphism. The result follows from this. o 
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17.9. The Duality Theorem of Serre. For any divisor D on a compact Riemann 
surface X the mapping 

In: HO(X, !Ln) -> H1(X, @n)* 

defined in (17.5) is an isomorphism. 

PROOF. Because of (17.6) only the surjectivity of In remains to be proved. 
Suppose A. E H1(X, @n)* with A. =1= o. We want to show that ). lies in the 
image of Iv. 

Suppose P is a divisor with deg P = 1. For any natural number n let 

Dn '=D - nP. 

Denote by A c Hl(X, 0 vJ* the vector subspace of all linear forms of the 
form t/JA., where t/J E HO(X, By Lemma (17.8) A is isomorphic to 
HO(X, (1)nP). It thus follows from the Riemann-Roch Theorem that 

dim A 2 1 - 9 + n, 

where 9 denotes the genus of X. By Lemma (17.4) the vector subspace 
Im(lvJ c Hl(X, 0 nJ* satisfies 

dim Im(lnJ = dim HO(X, !LvJ 2 n + ko - deg D. 

For n > deg D one has deg Dn < 0 and thus HO(X, @v.) = O. The Riemann-
Roch Theorem implies 

dim Hl(X, 0 vJ* = 9 - 1 - deg Dn = n + (g - 1 - deg D). 

If one chooses n sufficiently large, then 

dim A + dim Im(lvJ > dim Hl(X, 6 vJ*. 
This implies A n Im(lnJ =1= O. Thus there exists t/J E HO(X, 0 np ), t/J =1= 0, and 
WE HO(X, !LvJ with t/JA. = Iv.(W). Let A ,= (t/J) be the divisor of t/J, i.e., 
IN E HO(X, (1) A), and let D' ,= Dn - A. Then 

IE/v-) = (t/JA) = = lD' 

From Lemma (17.7) one gets Wo '=(I/t/J)W E HO(X, fLv) and A = Iv(WO). 

D 

17.10. Remark. Frequently one only uses the Serre Duality Theorem to 
obtain equality of the dimensions 

dim Hl(X, ((In) = dim HO(X, !Lv). 

In particular for D = 0 one has 

9 = dim Hl(X, 0i ) = dim HO(X, n). 
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Thus the genus of a compact Riemann surface X is equal to the maximum 
number of linearly independent holomorphic I-forms on X. 

One can now formulate the Riemann-Roch Theorem as follows: 

or in words: On a compact Riemann surface of genus g the maximum 
number of linearly independent meromorphic functions which are multiples 
of a divisor D minus the maximum number of linearly independent mero-
morphic I-forms which are multiples of - D is equal to 1 - g - deg D. 

17.11. Theorem. Suppose D is a divisor on the compact Riemann surface X. 
Then 

PROOF. Let wo i= 0 be a meromorphic I-form on X and let K be its divisor. 
By (17.4) one has Q D (!JD+K and (!J-D Q-D-K' Hence the result follows 
from the Serre Duality Theorem. 0 

Consequence. In particular, for D = 0 one has dim HI(X, 0) = 
dim HO(X, CD) = 1. This implies that the mapping 

Res: Hl(X, Q) --> C 

is an isomorphism, for it is clear that it is not identically zero. 

17.12. Theorem. The divisor of a non-vanishing meromorphic I:form w on a 
compact Riemann surface of genus g satisfies 

deg(w) = 2g - 2. 

PROOF. Let K = (w). By Riemann-Roch 

dim HO(X, CD K) - dim HI(X, (!JK) = 1 - g + deg K. 

By (17.4) one has Q (!jK' Thus 

1 - g + deg K = dim HO(X, Q) - dim Hl(X, Q) = g - 1 

and so deg K = 2(g - 1). 

17.13. Corollary. For any lattice r c C the torus IC/r has genus one. 

o 

PROOF. The I-form dz on C induces a I-form won c/r having no zeros or 
poles (see 10.14). Thus deg(w) = 2g - 2 = 0 and hence g = 1. 0 

17.14. The Riemann-Hurwitz Formula. Suppose X and Yare compact 
Riemann surfaces and f: X --> Y is a non-constant holomorphic mapping. 
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For x E X let v(x,f) be the multiplicity with whichftakes the valuef(x) at 
the point x, cf. (2.2) and (4.23). The number 

b(f, x):= v(f, x) - 1 

is called the branching order of f at the point x. Note that b(f, x) = 0 
precisely iff is unbranched at x. Since X is compact, there are only finitely 
many points x E X such that b(f, x) =1= O. Thus 

b(f):= L b(j; x), 
XEX 

the total branching order off, is well-defined. 

Theorem. Suppose f: X --+ Y is an n-sheeted holomorphic covering mapping 
between compact Riemann surfaces X and Y with total branching order 
b = b(f). Let g be the genus of X and g' be the genus of Y. Then 

b 
g = 2. + n(g' - 1) + 1. 

This is known as the" Riemann-Hurwitz formula." 

PROOF. Suppose w is a non-vanishing meromorphic I-form on Y. Then 
deg(w) = 2g' - 2 and deg(f*w) = 2g - 2. 

Suppose x E X and f(x) = y. By Theorem (2.1) there is a coordinate 
neighborhood (U, z) of x (resp. (U', w) of y) with z(x) = 0 (resp. w(y) = 0) 
such that with respect to these coordinates one can writefas w = z\ where 
k = v(f, x). On U' let w = t/J(w) dw. Then on U one has 

f*w = t/J(Zk) dzk = kZk- It/J(Zk) dz. 

This implies 

ordAf*w) = b(f, x) + v(f, x)ordy(w). 

Since 

L v(f, x) = n, 
XEf- 1(y) 

for any y E Y one has 

L ordAf*w) = I bU, x) + n ordy(w). 
XEf- 1(y) XEf- 1(y) 

Thus 

deg(f*w) = L ordxU*w) = L L ordAf*w) 
XEX YE Y XEf-l(y) 

= L b(f, x) + n L ordy{w) = b(f) + n deg(w). 
XEX YE Y 

This implies 2g - 2 = b + n(2g' - 2) and the result follows. D 
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17.15. Coverings of the Riemann Sphere. For the special case of an n-sheeted 
covering n: X ---+ [pI of the Riemann sphere with total branching order bone 
gets the genus g of X from the Riemann-Hurwitz formula, i.e., 

b 
g=2:- n +1. 

If one has a double covering of [pI, then b is equal the number of branch 
points and g = (b/2) - 1. A compact Riemann surface of genus> 1 which 
admits a double covering of [pI is called hyperelliptic. 

For example, let n: X ---+ [pI be the Riemann surface of Jp(z), where 

P(z) = (z - a l )' .... (z - ak) 

is a polynomial of degree k which has distinct roots aj (cf. 8.10). Since b must 
be even, we see that X is branched over 00 precisely if k is odd. This was 
proved earlier. The genus of X is g = [(k - 1 )/2], where [x] denotes the 
largest integer S:x. One can give an explicit basis Wb •.. , Wg for the vector 
space of holomorphic I-forms on X as follows 

zj- I dz 
Wj:= JP(z) , 1 s:j s: g = [(k - 1)/2], 

where z is simply another notation for the meromorphic function 
n: X ---+ [pl. Using local coordinates at the critical points one can easily show 
that the Wj are holomorphic on all of X. Clearly WI' ... , Wg are linearly 
independent. 

17.16. Theorem. Suppose X is a compact Riemann surface of genus g and Dis 
a divisor on X. Then 

HI(X, (1)D) = 0 whenever deg D > 2g - 2. 

PROOF. Suppose W is a non-vanishing meromorphic I-form on X and K is its 
divisor. Then by (17.4) there is an isomorphism !LD (1)K-D' thus 
Hl(X, (!;D)* HO(X, !L D ) HO(X, (1)K-V)' If deg D> 2g - 2, then 
deg(K - D) < O. Thus HO(X, (I)K_D) = 0 by Theorem (16.5). 

17.17. Corollary. Suppose X is a compact Riemann surface and A is the sheaf 
of meromorphic junctions on X. Then 

PROOF. Let E Hl(X, j!) be a cohomology class which is represented by a 
cocycle (hj) E Zl(U, . .It). Passing to a refinement ofU, if necessary, one may 
assume without loss of generality that the total number of poles of all thej;j 
is finite. Hence there is a divisor D with deg D > 2g - 2 such that 
(/;J E ZI(U, (1)D)' By (17.16) the cocycle (k) is cohomologous to zero rela-
tive to the sheaf (1)v and thus also relative to the sheaf A. 0 
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Remark. The sheaf JI(l) of meromorphic I-forms on X is isomorphic to 
JI. An isomorphism JI is given by fl--+fw, where w f 0 is a fixed 
element of JI(l). Thus Hl(X, JI(l») = 0 as well. 

This can be used to give a definition, without the use of integrals, of the 
residue mapping Res: Hl(X, il) -+ C introduced in (17.1). For, suppose 

E HI(X, il) is represented by the cocycle (wij) E ZI(U, il). Since 
HI(X, JI(1») = 0, this cocycle splits relative to the sheaf JI(I). Thus there is a 
Mittag-Leffler distribution /1 E CO(U, JI(1») with [0/1] = Then 

Res( 0 = Res(/1) 

by Theorem (17.3). 

17.18. We are now going to give some other applications of Theorem (17.16), 
but we first consider the following notion. Let D be a divisor on a Riemann 
surface X. We say that the sheaf (9D is globally generated, if for every x E X 
there exists an f E HO(X, (9 D) such that 

(9D.x = (9xf, 

i.e., every germ cp E (9 D. x may be written cp = t/lf with t/I E (9 x' The condition 
(9 D. x = (9 x f is equivalent to 

ordx(f) = -D(x). 

17.19. Theorem. Let X be a compact Riemann surface of genus g and D be a 
divisor on X with deg D 2 2g. Then (9D is globally generated. 

PROOF. Suppose x E X is a fixed point and let D' be the divisor defined by 

D'(y) = {D(Y) for y f x, 
D(y) - 1 for y = x. 

Since deg D > deg D' > 2g - 2, by Theorem (17.16) we have 

HI(X, (9D) = HI(X, (9D') = O. 

The Riemann-Roch Theorem now implies 

dim HD(X, (9D) > dim HO(X, (9D')' 

and hence there exists an elementfE HD(X, (9D)\HO(X, (9D')' This element 
satisfies the condition ordAf) = - D(x). 0 

17.20. Embedding into Projective Space. Denote by jpN the N-dimensional 
projective space which is defined as jpN = (CN + 1\0)1 where is the fol-
lowing equivalence relation: 

(zo, ... , ZN) (zo, ... , E C*: ZV = for v = 0, .. " N. 
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Denote by (zo: ... : ZN) E [pN the equivalence class of (zo, ... , ZN) E eN + 1 \0. 
Equipped with the quotient topology, []J>N is a compact Hausdorff space. For 
j = 0, ... , N let 

U .- {(z ..... ) E fTllN. Z .../.. Ot r- o· . "N u-. j T J' 

The family (U 0, ... , Un) forms an open covering of [pN. Let 

be defined by 

It is easy to see that rpj is well-defined and maps U j homeomorphically onto 
eN. 

Now suppose X is a compact Riemann surface and 

F: X --> [pN 

is a continuous map. Then W;:= F- 1(UJ is an open subset of X for 
j = 0, ... , N, and we can consider the maps 

Fj:=rpj ,- F: W;-->iC"'. 

Then every F j is an N-dimensional vector F j = (Fj1' ... , FjN) of functions 
F jv: W; --> C. The map F: X --> [pN is said to be holomorphic if all of the 
functions F jv are holomorphic. F is called an immersion if it is holomorphic 
and for every point x E X there exists at least one F jv such that x E W; and 
dFjv(x) -+ 0. A holomorphic map F: X --> []J>N is called an embedding ifit is an 
injective immersion. 

17.21. Examples of holomorphic mappings F: X --> [pN can be obtained in 
the following way. Let 10, ... , IN E j{{X) be meromorphic functions on X 
which do not vanish identically. Define 

F = (fO:f1: ... : IN): X --> [pN 

as follows. For x E X let (V, z) be a coordinate neighborhood with z{x) = ° 
and let 

k := min ordAjj). 
j 

On V we can writejj = Zkgj , where gj is holomorphic in a neighborhood of x 
and for at least one j we have gAx) -+ 0. Set 

F(x):= (go(x): ... : gN(X)). 
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Of course this definition is independent of the local coordinate chosen. If 
9Ax) =1= 0, then F(x) E Uj and hence x E »j and the map F{ H-j --+ eN, as 
defined in (17.20), has the following form in a neighborhood of x: 

Fj = (gO, ... , gj-l, gj+l, ... , 9N). 
gj gj gj gj 

This shows that F is holomorphic. 

17.22. Theorem. On a compact Riemann surface X of genus 9 let D be a divisor 
of degree? 2g + 1. Let fo, ... ,fN be a basis of HO(X, (DD)' Then 

F = ... :fN): X --+ pN 
is an embedding. 

PROOF 

(a) First let us show F is injective. Suppose Xl =1= X2 are two points of X. 
Let D' be the divisor defined by 

D'(X):={D(X) for x =1= X2, 
D(x) - 1 for x = X2' 

Since deg D' = deg D - 1 ? 2g, the sheaf (D D' is globally generated by 
Theorem (17.19), hence there exists anfE HO(X, (DD') such that 

ordx,(f) = -D(Xl)' 

By the definition of D' we have 

ordx2(f)? - D(X2) + 1. 

(*) 

(**) 

Of course f also belongs to HO(X, (D D)' so f = L Aj jj for certain coefficients 
Aj E Co Let (Vb zd and (V2 , Z2) be coordinate neighborhoods of Xl and X2 

resp. such that zl'(xl') = 0, f.1 = 1, 2. Since (DD is globally generated, we have 

kl' := min ordx"(jj) = - D(xl')' 
j 

Writejj = z';:gl'j andf= z';:gl' in a neighborhood of xI" Then 

F(xl') = (9I'o(XI'): ... : 9I'N(XI')) 
and 

N 

L Ajgl'Axl') = g!'(x!'). 
j=O 

But from (*) and (**) it follows that 9l(Xtl =1= 0 and g2(X2) = O. This shows 
F(xd =1= F(X2)' 

(b) We now prove that F is an immersion. Let X o E X be a given point 
and consider the divisor D' defined by 

D'(x) := {D(X) for x =1= xo, 
D(x) - 1 for x = Xo . 
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Then D' is globally generated and hence there exists an! E HO(X, (lJD') such 
that 

ordxoCf)= -D(xo) + l. 
As above! = L Aj fj for certain Aj E IC. Let (V, z) be a coordinate neighbor-
hood of xo such that z(xo) = 0 and set 

where k = min ordxo(fj) = -D(xo). Let v be an index such that gv(xo) =1= O. 
We may assume v = O. The map F 0 = CPo 0 F: Wo --> eN considered in 
(17.20), is now given in a neighborhood of Xo by 

Fo = (FOb ... , FON ) = ... , gN) 
go go 

and we get 

Hence 

L Aj dFoj = d(:J. 

Since go(xo) "" 0 and 9 has a zero of first order at Xo, we have d(g/go)(xo) 
"" O. Hence dF oAxo) "" 0 for at least one index j. This shows that F is an 
immersion. 0 

Remark. It can be shown that if deg D ?: 2g + 1, then there exist elements 
CPo, ... , CP3 E HO(X, (lJD) such that (CPo: ... : CP3): X --> 1P3 is an embedding. 
Thus every compact Riemann surface admits an embedding into 1P3. 

EXERCISES (§17) 

17.1. Let X ..... lP'1 be the Riemann surface of the algebraic function :jT=?', i.e., the 
algebraic function defined by the polynomial 

P(T) = T" + zn - 1 E,It(1P1)[T], 

where Z E .. 1t(1P1) is the canonical coordinate function. Show that the genus of 
X is 

(n - l)(n - 2) 
9 = 2 . 

17.2. Let X be a compact Riemann surface. Let 2l(X) c A(1)(X) be the space of all 
meromorphic I-forms on X whose residues vanish at every point. Using Ex. 
15.3 show 

H'(X, C)::::::: 2l(X)jd.,It(X). 
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17.3. Let X = c/r be a torus. Show that the classes of dz and far dz form a basis of 
Jl(X)mod d.#(X). 

17.4. Let D be a divisor on the compact Riemann surface X of genus g. Show 

dim HO(X, &D) = 0 for deg D :s; -1 

o :s; dim HO(X, 0 D ) :s; 1 + deg D for - 1 :s; deg D :s; 9 - 1 

1 - 9 + deg D :s; dim HO(X, (lJD) :s; 9 for 9 - 1 :s; deg D :s; 2g - 1 

dim HO(X, (liD) = 1 - 9 + deg D for deg D 2g - 1. 

17.5. Let K be a canonical divisor on a compact Riemann surface X of genus> 0, 
and let D K be a divisor with deg D = deg K + 1. Show that the sheaf (!}K is 
globally generated, but (S'D is not. 

17.6. Let r c C be a lattice and let g;) be the Weierstrass !'I-function with respect to 
r. Interpret f;) and its derivative g;)' as meromorphic functions on c/r. Show 
that 

is an embedding. 

17.7. Let X be a compact Riemann surface of genus two. Suppose W1 and W2 form a 
basis of HO(X, Q) and defineJ E '#(X) by W1 = JW2' Show thatj: X --> [p1 is a 
2-sheeted (branched) covering map. 

§18. Functions and Differential Forms with 
Prescribed Principal Parts 

As is well known, the classical theorem of Mittag-Leffler asserts that in the 
complex plane there always exists a meromorphic function having suitably 
prescribed principal parts. Our present goal is to look at the analogous 
problem on compact Riemann surfaces. Here the problem does not always 
have a solution. But from the Serre Duality Theorem one can derive neces-
sary and sufficient conditions for a solution to exist. 

IS.I. Mittag-Leffler Distributions of Meromorphic Functions. Suppose X is 
a Riemann surface and U = (Vi)iEI is an open covering of X. A co chain 
11 = (/;) E CO(U, ...It) is called a Mittag-Leffler distribution if the differences 
jj - /; are holomorphic on Vi n V j , i.e., bl1 E Z1(U, @). Thus the functions/; 
and jj have the same principal parts on their common domain of definition. 
By a solution of 11 is meant a global meromorphic function! E ...It(X) which 
has the same principal parts as J.l, i.e.! I Vi -/; E @(V;) for every i E I. 
Denote by [bill E Hl(X, @) the cohomology class represented by the cocycle 
bl1. 
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Theorem. A Mittag-Leffler distribution J1 has a solution if and only if[oJ1] = o. 

PROOF 

(a) Suppose f E ..II(X) is a solution of J1 = (1;). Set gj:= /; - f E (9(UJ 
Then on U j n Uj one has 

fj - /; = gj - gj. 

This means that the cocycle bJ1 = (fj - /;) is contained in B1(U, (9), i.e., 
[DJ1] =0. 

(b) Suppose [bJ1] = 0 and thus 0J1 E B1(U, (9). Then there exists a co chain 
(gj) E CO(U, (9) such that 

fj - /; = gj - gj on U j n U j . 

This implies/; - gj = fj - gj on U j n Uj . Thus the/; - gj piece together to 
form a global meromorphic function f E ..II(X). Since f I U j - /; 

= -9j E (9(U j ),fis a solution of J1. 0 

Remark. By (17.17) on every compact Riemann surface H1(X, ..II) = O. 
This implies that given any cohomology class E H1(X, (9) there exists a 
Mittag-Leffler distribution J1 E CO(U, ..II) such that = [0J1], for a suitably 
chosen covering U. Thus on every compact Riemann surface of genus;:::: 1 
there are Mittag-Leffler problems which have no solution. But on the 
Riemann sphere H1(!P'1, (9) = 0 and every Mittag-Leftler distribution has a 
solution. This is also easy to see directly. 

18.2. Now suppose X is a compact Riemann surface and J1 E CO(U, ..II) is a 
Mittag-Leftler distribution of meromorphic functions on X. Then for every 
holomorphic I-form ro E Q(X) the product roJ1 E CO(U, ..11(1») is a Mittag-
Leftler distribution of I-forms and thus by (17.2) the residue Res(roJ1) is 
defined. This allows us to formulate the criterion alluded to above which 
tells us when J1 has a solution. 

Theorem. Suppose J1 E CO(U, ..II) is a Mittag-Leffler distribution of merom or-
phic functions on the compact Riemann surface X. Then J1 has a solution if and 
only if 

Res(roJ1) = 0 for every ro E Q(X). 

PROOF. Now [0J1] E H1(X, (9) vanishes if and only if A([OJ1]) = 0 for every 
A. E Hl(X, (9)*. By the Serre Duality Theorem this is the case exactly if 

(ro, [0J1]) = 0 for every ro E Q(X). 

By Theorem (17.3) one has (ro, [Oil]) = Res(ro[b/l]) = Res(ro/l). Thus the 
result follows from Theorem (18.1). 0 
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Remarks 
(a) If Wb ... , Wg is a basis of Q(X), then Res(w/1) = 0 for every W E Q(X) 

if and only if 

Res(wk/1) = 0 for k = 1, ... , g. 

Thus /1 has a solution if and only if 9 linear equations hold, where 9 is the 
genus of X. 

(b) If /1 has a solution E /It(X) are two solutions, theni1 - iz is 
holomorphic on X and thus constant. Hence the solution is unique up to an 
additive constant. 

18.3. Application to Doubly Periodic Functions. Suppose It, ,'z E C arc 
linearly independent over IR: and let 

P:={t11t + tzyz: O:s;; t1 < 1,0:s;; t2 < I}. 

Suppose that at the points ai' ... , an E P principal parts 
-1 

"(j)(- )\' f . - I L., C,. "- - il j , or J - , ... , n, 
v= -rj 

are prescribed. Then there exists a meromorphic functioni E -tt(C) doubly 
periodic with respect to r = E}'l + E}'2 and having poles with the prescribed 
principal parts at the points ai' ... , an if and only if 

n 

I = o. 
j= 1 

PROOF. Any function doubly periodic with respect to r may be considered as 
a function on the torus X = c/r. The prescribed principal parts then give 
rise to a Mittag-Leffler distribution /1 on X. The differential form W on X 
induced by the I-form dz on C (cf. 10.14) is a basis of Q(X), since 
dim Q(X) = 1. Now 

n 

Res(wII) = I 
j= 1 

and the result follows from the above theorem. o 
In particular, this implies that there are no doubly periodic meromorphic 

functions having precisely one pole of order one in any period paral-
lelogram. For, such a function would have a non-zero residue (cf. 5.7.c). 

We now consider whether on a Riemann surface of genus 9 > 1 there 
exist merom orphic functions which have one pole of order s 9 but are 
otherwise holomorphic. To do this we need some preliminaries. 

18.4. The Wronskian Determinant. Suppose ii, ... ,fg are holomorphic func-
tions on a domain U c C. By the Wronskian determinant of ib ... ,fg one 
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means the determinant of the matrix of derivatives where 0 S m S 
g - 1, 1 s k s g, i.e., 

... fg ) ... 

1) • pr l ) 

If the functions fl' ... , are linearly independent over C, then the Wron-
skian determinant is not identically zero. This can be proved by induction 
on g. For, suppose that we have already shown that W(fb ... , f9- 1) 1- O. 
Consider the differential equation 

(;: W(fl, .. . ,jg- b w) = det : 

Pr l ) f (9-1) 
. 2 f (g- 1) g-l 

w ) w' 

for some unknown function w. If one expands by cofactors about the last 
column, then one gets 

(*) 

where ao = W(fl, ... ,fq- d· Clearly fl' ... are solutions of this differen-
tial equation. If W(fb .,. ,fg) vanishes identically, thenfg is another solution 
of (*). Hence fg is a linear combination of fl' ... , f g-l over 
U' := {z E U: ao(z) =1= O} and by the Identity Theorem over U as well. But 
this is a contradiction. 

Now suppose X is a compact Riemann surface of genus 9 2:': 1 and WI' ... , 

W9 is a basis of O(X). For any coordinate neighborhood (U, z) we can 
define a holomorphic function Jt;,(w l , ... , w g ) on U as follows. The I-forms 
W k may be written W k = fk dz on U. Set 

where the derivatives of the functionsfk on the right-hand side are taken with 
respect to z. How the Wronskian determinant of WI> ... , Wg behaves under a 
change of coordinates is answered by the next theorem. 

IS.5. Theorem. Suppose (U, z) and (0, z) are two coordinate neighborhoods 
on X. Then on. UnO one has 
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PROOF. Set l/I:= (dz/dz) E (!;'*(U nO). Define the functions fk and h on 
UnO by 

Wk = fk dz = h dz. 

Then A = l/IJ;.. By induction on m one can now show that 
dml" dm"1' m - 1 d/1"1' 

Jk ./,m+ 1 Jk '" Jk 
d m = 'I' d- m + L... CfJm/1 d-/1 

Z Z /1=0 z 

where the <fJm/1 are holomorphic functions on UnO which are independent 
of k. From this one gets 

det( L=o ..... 9- 1• k= 1 •...• 9 = det( l/Im
+ 1 L=o ..... 9-1. k= 1 ..... 9 

Since 1 + 2 + ... + g = g(g + 1 )/2, the result follows. 0 

If WI' ... , Wg is another basis of n(X), then there exist constants cjk E C 
with det(cjd =: c =1= 0 such that Wj = Lk CjkWk' Then 

W.(w l , ... , wg ) = cw.(iv1, ... , wg). 

Hence the following definition is meaningful, i.e., it does not depend on the 
choice of basis of Q(X) nor on the choice of local coordinate. 

18.6. Definition. Suppose X is a compact Riemann surface of genus g :2: 1. A 
point p E X is called a Weierstrass point, iffor a basis WI> ... , Wg of Q(X) and 
a coordinate neighborhood (U, z) of p, the Wronskian determinant 
W.(W1"" ,wg)hasazero at p. The order of this zero is called the weight of the 
Weierstrass point. By definition a Riemann surface of genus 0, i.e., !p 1, does 
not have any Weierstrass points. 

18.7. Theorem. Suppose X is a compact Riemann surface of genus g and p is a 
point of X. Then there exists a non-constant meromorphicfunctionfE .A(X) 
which has a pole of order :s:: g at p and is holomorphic on X \{p} if and only if p is 
a Weierstrass point. 

PROOF. We will use the criterion of Theorem (18.2). Suppose WI' ... , Wg is a 
basis of Q(X) and (U, z) is a coordinate neighborhood of p with z(p) = O. 
The W k may be expanded in series 

"" Wk = L ahzv dz, k=l, ... ,g, 
,=0 

about p. The functionfwhich we are looking for has a principal part at p of 
the form 

g-1 

h- '" - L..J 1+\,' v=o Z 
(co, ... , cg-d =1= (0, ... ,0) 
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and thus is a solution of the Mittag-Leffler distribution 

ji = (h, 0) E CO(U, <.It), U = (U, X\{p}). 
Now 

g-1 

Res(wkjl) = ResAwk h) = L akvcv· 
\,:: 0 

Thus the equations Resp(wk h) = 0 have a non-trivial solution (co, ... , Cg_ 1) 
if and only if det(ak.} = O. But this is equivalent to 

o 
18.8. Theorem. On a compact Riemann surface X of genus g the number of 
Weierstrass points, counted according to their weights, is (g - 1 )g(g + 1). 

PROOF. Suppose (Ui , z;), i E I, is a covering of X by coordinate neighbor-
hoods. On Ui n Uj the function !/Iij:= (dz)dz;) is holomorphic and has no 
zeros. With respect to a fixed basis Wb ... , Wg of Q(X) let 

W;:= ... , w g ) E 0(UJ 

By Theorem (18.5) one has 

onUin Uj' whereN=g(g+I)/2. (1) 

Setting D(x) := ordx ( W;) for x E U i , defines the divisor D on X correspond-
ing to the Weierstrass points together with their respective weights. Thus 
deg D is the total of the weights of the Weierstrass points and the proof is 
complete once we show deg D = (g - 1 )g(g + 1). 

Let DI be the divisor of WI. Then deg DI = 2g - 2 by Theorem (17.l2). If 
we set WI = fli dZi on Ui , then D 1 (x) = ordx(fli) for every x E Ui . Moreover 

fIi = !/IiJlj on Ui n Uj . (2) 

From (1) and (2) it follows that 

W;flt = Jtjflt on Ui n Uj . 

Thus there exists a global meromorphic function f E ./I((X) with 
fl Ui = W;fliN. For the divisor offone has 

(f)=D-ND I · 

Since deg(f) = 0, it follows that 

g(g + I) 
degD=NdegDl= 2 (2g-2)=(g-I)g(g+I). 0 

18.9. Corollary. Every compact Riemann surface X of genus g 2 admits a 
holomorphic covering mapping/: X --+ /pI having at most g sheets. In particular 
every compact Riemann surface of genus 2 is hyperelliptic. 
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Remark. In fact, every compact Riemann surface of genus y 2 admits a 
covering of [pI with [(g + 3)/2] or fewer sheets, see [56]. 

18.10. Differential Forms with Prescribed Principal Parts. Suppose X is a 
Riemann surface, U = (UJiEl is an open covering of X and 
11 = (wJ E CO(U, ,/f{(1») is a Mittag-Leffler distribution of meromorphic 
1-forms on X, cf. (17.2). By a solution of p we mean a global meromorphic 
I-form w E which has the same principal parts as f.1, i.e., wi Ui -

Wi E Q(U;) for every i E I. As in (18.1) one can prove that p has a solution if 
and only if the cohomology class [bp] E Hl(X. Q) vanishes. 

18.11. Theorem. On a compact Riemann surface X a Mittag-Leffler distribu-
tion p E CO(U, ,/f{(1») of meromorphic 1.jorms has a solution if and only if 
Res(l1) = o. 

PROOF. By Theorem (17.3) one has Res(l1) = Res([bp]). By the consequence 
in (17.11) the mapping Res: HI(X. Q) ---> C is an isomorphism. Thus 
[b 11] = 0 is equivalen t to Res(p) = 0 and the result follows. 0 

18.12. Corollary. Suppose X is a compact Riemann surface. 
(a) For any point p E X and any natural number n 2 there exists a 

meromorphic Ijorm on X which has a pole of order n at p and is otherwise 
holomorphic (" an elementary differential of the second kind."). 

(b) For any two distinct points PI> P2 E X there exists a meromorphic 
1-form on X which has poles of first order at PI and P2 with residues + 1 and 
-1, respectively, and is otherwise holomorphic (" an elementary differential of 
the third kind "). 

EXERCISES (§18) 

18.1. Let U:= {z E C: I Z I < rl, r > 0, and letf: U -+ C be a holomorphic function 
with f(O) =1= O. 

(a) Definefj(z):= zj-If(z) for j = 1, ... , g. Prove that the Wronskian determin-
ant W(fl, .... does not vanish at the origin. 

(b) Define <piz):= z2j- 2f(z) for j = 1, ... , g. Prove that the Wronskian deter-
minant W(cp 1: .... cpg) has a zero of order (g(g - 1 )/2) at the origin. 

18.2. Let 7t: X -+ pi be a hyperelliptic Riemann surface of genus g :2: 2. 

(a) Show that all the ramification points Pl:"" P2g+ 2 E X of 7t are Weierstrass 
points of X. 

(b) Prove that there are no other Weierstrass points and that every Weierstrass 
point Pj has weight (g(g - 1)/2). 
[Hint: Use Ex. 18.1.] 

18.3. Let X be a compact Riemann surface of genus g :2: 1 and suppose Wb ... , Wg is a 
basis of Q(X). Let D :2: 0 be a non-negative divisor on X. Denote by M D the set 
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of all Mittag-Lerner distributions ft -D on X, i.e. the set of all Mittag-
Lerner distributions lying in CO(U, (!J D) for some open covering U of X. Define a 
linear map 

by 

Prove 

§19. Harmonic Differential Forms 

With the help of the results obtained so far it is now easy to derive the most 
important results about harmonic differential forms on compact Riemann 
surfaces X. In particular every closed differential form on X may be uniquely 
written as the sum of a harmonic and an exact differential form. This implies 
that the 1st deRham group of X is isomorphic to the vector space of har-
monic differential forms on X. Using this one can show that the genus is a 
topological invariant. 

19.1. Complex Conjugation. For any I-form w E g(l)(X) on a Riemann sur-
face X, the complex conjugation of functions induces a conjugate complex 
differential I-form ill E g(1)(X). For, locally w = L jj dg j , where the func-
tions jj and gj are differentiable. Thus ill = L]j dg j • A I-form W E g(1)(X) is 
said to be real if W = W. In general the real part of a differential form w is 
defined by 

Re(w) = !(w + ill). 

Clearly w is real if and only if w = Re(w). If c is a curve on X, then 

J w = J ro, and thus Re(J w) = J Re(w). 
C C c c 

(If w is not closed, then we assume that c is piecewise continuously differen-
tiable.) If w E Q(X) is a holomorphic I-form, then ill is called anti-
holomorphic. We denote the vector space of all anti-holomorphic I-forms on 
X by O(X). 

19.2. The *-operator. Any I-form WE g(l)(X) may be uniquely decomposed 
as 
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Set 

*W := i(wl - (1)2)' 

The mapping *: g(1)(X) ---> g(1)(X) is an IR-linear isomorphism which maps 
gl. O(X) onto go. I(X) and vice versa. 

For W E a,,(1)(X), WI E gl.O(X), w 2 Ego. I(X) andiE 6'(X) one has the 
following: 

(a) **w = -w, *w = *W, 
(b) d*(w 1 + Uh) = id'{iJ I - id"(v 2 , 

(c) *d'f = id"J, *d''f = - idT, 
(d) d*dI= 2id'd'T 

19.3. Harmonic Differential Forms. A I-form W E t(1)(X) on a Riemann 
surface X is called harmonic if 

Theorem. Suppose WE g(1)(X). Then the Iollowing conditions are equivalent: 

(i) W is harmonic, 
(ii) d'w = d"w = 0, 

(iii) w = WI + W2 where WI E Q(X) and Wz E Q(X), 
(iv) given any point a E X there exists all open neighborhood U ol a and a 

harmonic Iunction I on U such that w = df. 

PROOF. The equivalence of (i), (ii) and (iii) follows from (19.2). 
(i) = (iv). Since in particular a harmonic differential form is closed, locally 

w = df, where I is a differentiable function. Since 0 = d*w = d*df = 2id'd''f, 
it follows that I is harmonic. 

(iv) = (i). If w = d{ and I is harmonic, then dw = ddl = 0 and d*w = 
d*dI= O. D 

Notation. The vector space of all harmonic I-forms on the Riemann 
surface X will be denoted by Harml(X). Thus 

Harml(X) = Q(X)E8 Q(X). 

Thus if X is a compact Riemann surface of genus g, then 

dim Harml(X) = 2g. 

19.4. Theorem. Every real harmonic I-form (J E Harml(X) is the real part ol 
precisely olle holomorphic I-form W E Q(X). 

PROOF. Suppose (J = 0)1 + (V2 with W10 (1)2 E Q(X). Because (J = 0)1 + 
Wz = (j = WI + wz, it follows that WI = 0)2' Thus (J = Re(2wd. 
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To prove the uniqueness, suppose W EO Q(X) and Re(w) = O. Since locally 
w = dj, wherefis a holomorphic function, it follows thatfhas constant real 
part. Then f itself is constant and thus (jJ = O. 0 

19.5. Scalar Products in 0"(l)(X). We now assume that X is a compact 
Riemann surface. For WI' W2 EO g(1)(X) let 

<WI' w 2 ):= Jf WI 1\ *w 2 · 

X 

Clearly the mapping (WI' <Wb W2) is linear in the first and semi-
linear in the second argument and 

<w 2 , WI) = «VI' w 2 )· 

We now claim that < , ) is positive definite. For, suppose W EO 0"(1)(X). With 
respect to a local chart (U, z), where z = x + iy, suppose 

W =fdz + g dz. 
Then 

*W = i(] dE - g dz) 
and 

W 1\ *w = i( 1 f 12 + 1 g 12) dz 1\ dz = 2( 1 f 12 + 1 g 12) dx 1\ dy. 

This shows that < w, w) 2 0 and < w, w) = 0 only if w = O. Hence with this 
scalar product 0"(1)(X) becomes a unitary vector space. However it is not a 
Hilbert space, since it is not complete. 

19.6. Lemma. Suppose X is a compact Riemann surface. 

(a) d' 0"(X), d"0"(X), Q(X) and Q(X) are pairwise orthogonal vector sub-
spaces of (g'(l)(X). 

(b) dtff(X) and *dS(X) are orthogonal vector subspaces of s(1)(X) and 

dS(X) G;) *dg(X) = d'S(X) G;) d"0"(X). 

PROOF 
(a) Since 1,"1. O(X) and 0"0. 1 (X) are trivially orthogonal, it suffices to show 

that d'S(X) -L Q(X) and d"0"(X) -L Q(X). 
Suppose f EO 0"(X) and w EO Q(X). Then 

W 1\ *d'f = iw 1\ d'T = iw 1\ dJ = - i dUw). 
Thus 

< w, d'f) = - i If d(]w) = 0 
x 

by Theorem (10.20). Similarly one can show <w, d''f) = O. 
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(b) Suppose f, g E c,v(X). Then 

dfA*(*dg) = -dfAdg= -dUdg). 

Thus 

<df; *dg) = - JJ d(f dg) = O. 
x 

The equality d6(X) ffi *d6(X) = d'g(X) EB d"g(X) follows from (19.2.c). 0 

19.7. Corollary. On a compact Riemann surface X every exact differential 
form (J E Harml(X) vanishes and every harmonic function fE c,v(X) is 
constant. 

This follows since dg(X) is orthogonal to Harml(X) = n(X)EB Q(X). 

19.8. Corollary. Suppose X is a compact Riemann surface and (J EO Harm 1 (X), 
W E n(X). rffor every closed curve i' on X one has 

r (J = 0, 
• f 

then (J = 0, resp. w = o. 

PROOF. Since (J (resp. Re(w)) is exact by Theorem (10.15), the result follows 
from (19.7) and (19.4). D 

19.9. Theorem. On any compact Riemann surface X there is an orthogonal 
decomposition 

go. l(X) = d"6(X) EB Q(X). 

PROOF. Let g be the genus of X. Since Hl(X, (1:') 6 0 • 1 (X)jd"c,v(x) by 
Dolbeault's Theorem (15.14), one has 

dim go. 1 (X)jd"g(x) = g. 

On the other hand, dim Q(X) = g by (17.10). The result now follows from 
Lemma (19.6.a). 0 

19.10. Corollary. Suppose X is a compact Riemann surface and (J Ega. l(X). 
The equation d'J = (J has a solution f E 0"( X) if and only if 

JJ (J A W = 0 for every w EO n(X). 
x 

The given condition is equivalent to (J ..1 Q(X). 
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19.11. Theorem. On any compact Riemann surface X there is an orthogonal 
decomposition 

PROOF. Taking complex conjugates in (19.9) one gets 6"l.O(X) = d' 6"(X) EEl 
Q(X). Thus 

6"(l)(X) = d' 6"(X) EEl d" 6"(X) EEl Q(X) EEl Q(X). 

Hence the result follows from (19.6). o 
19.12. Theorem. Suppose X is a compact Riemann surface. Then 

d 

Ker(6"(1)(X) 6"(2)(X)) = d6"(X) EEl Harm1(X). 

d 

PROOF. Since .2'(X):= Ker(6"(1)(X) ..... 6"(2)(X)) ::::J d6"(X) EEl Harml(X), it 
suffices by Theorem (19.11) to show that 

.2'(X) .1 *d6"(X). 

Suppose w E .2'(X) and f E 6"(X). Then 

w /\ *(*df) = -w /\ df = d(fw). 
Hence 

(w, *df) = If d(fw) = o. o 
x 

19.13. Corollary. Suppose X is a compact Riemann surface. Then a differential 
form (F E 6"(l)(X) is exact if and only iffor every closed 110rm w E 6"(l)(X) one 
has 

II (F /\ W = o. 
x 

PROOF. The given condition is equivalent to (w, *(F) = 0 for every closed 
I-form w. But by (19.11) this means *(F E *d6"(X), i.e., (F E d6"(X). 0 

19.14. Theorem (deRham-Hodge). Suppose X is a compact Riemann surface. 
Then 

Because of (19.12) this follows directly from deRham's Theorem (15.15). 

Remark. Since the sheaf C of locally constant complex-valued functions 
on X depends only on the topological structure of X, it follows that 

b1(X):= dim Hl(X, C), 
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the first Betti number of X, is a topological invariant. From (19.14) one has 

where 9 is the genus of X. Thus the genus is a topological invariant. 
There is a topological classification of connected orientable compact two-

dimensional manifolds (Riemann surfaces are orientable), which depends 
only on the first Betti number. Every such surface X with b 1 (X) = 2g is 
homeomorphic to a sphere with 9 handles (cf. Seifert-Threlfall [46] or [42]). 

It should also be noted that for every genus 2: 1, there are Riemann 
surfaces which are homeomorphic but which are not holomorphically equi-
valent. The holomorphic equivalence classes of Riemann surfaces of genus 9 
depend on one complex parameter when 9 = 1 and on 3g 3 complex 
parameters when 9 2 2. 

This Teichmiiller theory will not be dealt with here; for this see [50]. 

EXERCISES (§19) 

19.1. Let X be a compact Riemann surface. Prove 

(a) MO. 1(X) = d'd"!,'(X) c g(2)(X). 
(b) Let yt' be the sheaf of harmonic functions on X. Then 

(c) Let W E od2)(X). Prove that there exists a functionj'E 6'(X) such that 

d'd"j' = w 

if and only if 

r r w = O. 
X" 

19.2. Let X = c/r be a torus. For a functionj' E ,ff(X) define its mean value M(f) by 

M(f) ,= (IJ f dz A dZ) (JJ dz A dz )-1 
X X 

For w = j' dz + 9 dz E ,ff(1I(X) let M(w) ,= M(f) dz + M(g) dz. Show 

(a) If w E ,;Z'(X) ,= Ker(,ff(1)(X) ..'!., o,,(2)(X)), then wand M(w) are 
cohomologous. 

(b) The mapping 

M: .:2"(X)---> Harm1(X) 

induces an isomorphism 
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§20. Abel's Theorem 

In this section we investigate when there exist meromorphic functions with 
prescribed zeros and poles on a compact Riemann surface X. Clearly it is 
necessary that the total order of the zeros equal the total order of the poles. 
However on Riemann surfaces of genus g 1 this condition is not sufficient. 
Abel's Theorem gives a necessary and sufficient condition for the existence of 
such functions. 

20.1 Functions with Prescribed Divisors. Suppose X is a Riemann sur-
face and D is a divisor on X. A meromorphic function! E M,(X) is said to 
be a solution of D if (f) = D. Thus the function! has precisely the zeros 
and poles prescribed by the divisor D. If X is compact, then it is possible 
for D to have a solution only if deg D = o. 

We also need the notion of a weak solution of D. Let 

X D :={x E X: D(x) o}. 

By a weak solution of D we mean a function f E C(X D) with the following 
property. For every point a E X there exists a coordinate neighborhood 
(U, z) with z(a) = 0 and a function t/J E C(U) with I/t(a) =1= 0, such that 

!= t/JZk on U (] X D , where k = D(a). (*) 

Clearly a weak solutionfis a proper, i.e., meromorphic, solution precisely iff 
is holomorphic on X D. Two weak solutions f and g of D differ by a factor 
cP E C(X) which never vanishes. 

Iffl (resp·f2) is a weak solution of DI (resp. thenf:=fd2 is a weak 
solution of the divisor D :=DI + D2. At those points a E X where 

D(a) 0, but DI(a) < 0 or D2(a) < 0, 

the product !d2 is not but using continuity it may be extended to 
such points. Similarly fllf2 is a weak solution of the divisor DI - D2. 

20.2. Logarithmic Differentiation. Supposefis a weak solution of the divisor 
D. Then the logarithmic derivative dflfis a smooth I-form on the comple-
ment of 

Supp(D) = {x E X: D(x) =1= o}. 

If a E Supp(D) and k = D(a), then using (*) one has the representation 

df = k dz dt/J 
f z +--;r. 
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Now dt/l It/I is differentiable in a neighborhood of a and thus has no singulari-
ties. As in (13.1) this implies that for any I-form 0" E S(1)(X) with compact 
support the integral 

Il'df 
-/\0" 

. f x 

exists. For later use we also note that the I-form d''flfis differentiable on all 
of X, for the local representationf= t/lzk implies d''fIf= d"t/lit/l. 

20.3. Lemma. Suppose aI' ... , an are distinct points on the Riemann surface X 
and kl' ... , kn E 71.. Suppose D E Div(X) is the divisor with D(aj ) = kjfor j = 1, 
... , nand D(x) = 0 otherwise. Let f be a weak solution of D. Then for any 
g E S(X) with compact support 

1 . df n fJ -f /\ dg = .L kjg(aJ 
m x J=1 

PROOF. Choose disjoint coordinate neighborhoods (Vj , zJ of the aj with 
z(aj) = 0 such that on Vj one may write f as 

We may assume that Zj(Vj ) C C is the unit disk for j = 1, ... , n. 
Suppose 0 < r1 < r2 < 1. There exist functions qJj E S(X) with 

Supp(qJj)C{IZjl <r2 } andqJjl{lzjl ::;r I }=l. 

Let gj :=qJjg for j = 1, ... , n and go :=g - (gi + ... + gn). Since Supp(go) is 
compact in X' := X\{aI' ... , an}, it follows from (1O.20) that 

Thus 

Now Stokes' Theorem implies 

'J dzo 'J (dZ o) J -; /\ dg j = -lim J d g j ---; 
Uj J ,-0,,; IZjl ,;r2 J 



20 Abel's Theorem 161 

20.4. Chains, Cycles and Homology. By a I-chain on a Riemann surface X 
we mean a formal finite linear combination with integer coefficients, 

k 

C = L njcj , 
j=l 

where the cj : [0,1] --> X are curves. The integral over C of a closed differential 
form W E g(1)(X) is defined by 

• k • 

I w:= L nj I w. 
··c )=1 "Cj 

The set of all I-chains on X, which in a natural way is an abelian group, will 
be denoted by C1(X). A boundary operator 

0: C 1 (X) --> Div(X) 

is defined as follows. Suppose c: [0, 1] --> X is a curve. Set OC = ° if c(O) = 
c(I). Otherwise let oc be the divisor with value + 1 at c(l) and -1 at c(O) and 
zero at all other points. For an arbitrary I-chain C = L njcj let 
OC := L nj oCj . Clearly 

deg(oc) = ° for every C E C1(X). 

Conversely on a compact Riemann surface given any divisor D with 
deg D = ° there exists a I-chain C such that GC = D. For, a divisor D of 
degree zero may be written as a sum D = Dl + ... + Dk , where each Dj takes 
the value + 1 at some point hj' -1 at some other point aj and is zero 
otherwise. Let cj be a curve from aj to hj and C := C 1 + ... + Ck. Then OC = D. 

The kernel of the mapping G, 

Zl(X):= Ker( C1(X) DiV(X)), 

is called the group of I-cycles on X. In particular every closed curve is a 
1-cycle. 

Two cycles c, c' E Z 1 (X) are said to be homologous if for every closed 
differential form W E g(l)(X) one has 

f W = r w. 
c oJ,' 

The set of all homology classes of 1-cycles forms an additive group H1(X), 
the 1st homology group of X. For}, E H1(X) and a closed differential form 
W E g(l)(X), the integral L W is well-defined. 

Two closed curves which are homotopic are also homologous. Hence 
there is a group homomorphism 7rl(X) --> H l(X). One can easily check that 
this mapping is surjective. However it is not in general injective, since the 
fundamental group is not always abelian. 
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20.5. Lemma. Suppose X is a Riemann surface, c: [0, 1] --> X is a curve and V 
is a relatively compact open neighborhood ofc([O, 1]). Then there exists a weak 
solutionf of the divisor 8c withr I X \ V = 1, such thatfor every closed differen-
tialform WE 0u(l)(X) one has 

. 1" df I W = 2' II -f' /\ W . 
• c m 'i 

Remark. Since d!lf = 0 on X\V, the integral over X exists. 

PROOF 

(a) We first consider the case where (V, z) is a coordinate neighborhood 
on X such that z(V) c C is the unit disk and the curve c lies entirely in V. 
For simplicity identify V with the unit disk. 

Let a:= c(O) and b:= c( 1). There exists r < 1 such that c([O, 1]) c 
{Izl < r}. The function log((z - b)/(z - a)) has a well-defined branch in 
{r < I z I < 1}. Choose a function IjJ E 0"(V) with IjJ I {I z I ::::; r} = 1 and 
IjJ I{ I z I :;:. r'} = 0, where r < r' < 1 and define fo E 0"( V\{a}) by 

. ! exp ( IjJ log : = !) if r < I z I < 1, 
fo = < 

Iz-b I z - a if I z I ::::; r. 

Since I {r' < I z I < I} = 1, one can continuously extend to a function 
f E #(X\{a}), by defining it to be 1 on X\ V. By construction f is a weak 
solution of the divisor 8c. Now suppose W E #(1)(X) is a closed differential 
form. Since W has a primitive on V, there exists a function 9 E O"(X) with 
compact support, such that W = dg on { I z I ::::; r'}. Thus from Lemma (20.3) 

fl' dfr
f /\w=-21 rr df

r /\dg=g(b)-g(a)= rw. 
2m . . m ,. 'c X X . 

(b) In the general case there exists a partition 

0= to < tl < ... < to = 1 

of the interval [0, 1] and coordinate neighborhoods (U j' zJ, j = 1, ... , 11, on 
X with the following properties: 

(i) c([tj-t, tj]) c Vj C V, 
(ii) zAV j ) C C is the unit disk. 

Letting ci denote the curve c I [ti-t, ti] and using (a) one can construct a 
weak solution jj of the divisor 8cj such thatjj I X\V j = 1 and 

r w = r r dfj /\ W 
. . 2m " f c) X J 
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for every closed differential form W E g(1)(X). The productf:= fl ... fn then 
satisfies the conditions of the lemma. 0 

20.6. Corollary. Suppose X is a compact Riemann surface. Then given any 
closed curve IX on X there exists a unique harmonic differential form 

E Harml(X) such that 

for every closed differential form W E g(1)(X). 

PROOF. Suppose f is a weak solution of the divisor orx = 0 which satisfies the 
conditions of Lemma (20.5). Since f does not vanish, dflfis differentiable and 
closed on all of X. By Theorem (19.12) there exists a differential form 
(fa E Harml(X) and a function g E g(X) such that 

1 df 
2ni 7 = (1a + dg. 

If WE g(l)(X) is closed, then dg 1\ W = d(gw) and thus by Theorem (10.20) 

J W = f If dflf 1\ W = J J (1 a 1\ w. 
nl X X 

To prove the uniqueness, suppose (1' E Harml(X) is a second solution of 
the problem. Then for the difference T := (fa - (1' one has 

JJ T 1\ W = 0 for every closed W E g(l)(X). 
X 

In particular one can choose w = *T and thus <T, T) = 0, i.e., T = (1a -

0 

20.7. Abel's Theorem. Suppose D is a divisor on a compact Riemann surface X 
with deg D = O. Then D has a solution if and only if there exists a I-chain 
c E C 1 (X) with oc = D such that 

J W = 0 for every W E Q(X). (*) 
c 

Remark. Clearly the condition Se W = ° only has to be checked for a basis 
of Q(X). If Y Eel (X) is an arbitrary I-chain with oy = D, then the condition 
may be formulated as follows. There exists a cycle rx E Z 1 (X), namely 
IX = Y - c, such that 

j = 1, ... , g, 

where WI> ... , Wg is a basis of Q(X). 
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PRom; 
(a) First we show that the condition is sufficient. Suppose e E CI(X) is a 

1-chain with DC = D and which satisfies (*). By Lemma (20.5) there is a weak 
solution J of the divisor D such that 

. 1·· dJ I w = II -J 1\ W for every w c g(l)(X) with dw = O. 
'c m Jr.' 

For every w E Q(X) one has by (*) 

1· d{ 1 .. d'J 
0= r w = -. J { --'---- 1\ W = -. /1 -, 1\ W. . 2m, J 2m . , j 

c X X 

As noted in (20.2) one has (J:= d'JIJ Ego. I(X). By (19.10) there is a function 
g E 6"(X) with d"g = d"H}: Set 

Like f the function F is a weak solution of D and 

Thus F is even a meromorphic solution of D. 
(b) We now prove the necessity of the condition. We may assume that 

D =F O. LetJbe a meromorphic function on X with (f) = D. The functionJ 
defines an n-sheeted covering J: X --> [pll for some n 2 1. Suppose ai' ... , 
a, E X are the branch points ofJand let Y:= [pll\{f(ad, ... J(a,)}. For every 
differential form W E Q(X) we construct a holomorphic differential form 
(J = Trace(w) on pi in the following way. Every point Y E Y has an open 
neighborhood V such that J- I(V) is the disjoint union of open sets U I, ... , 
Un C X and all the mappings J I U v --> V are biholomorphic. Let cp: V --> U v 

be the in verse of J I U \ --> V. Now let 

Trace(w) I V := cptw + ... + 

If one carries out the same construction on an open neighborhood V' of 
another point of Y, then on the intersection one gets the same differential 
form. As in (8.2) one sees that one can holomorphically continue Trace(w) to 
all of [pll. Since Q([pll} = 0, Trace(w) = O. 

Now let}' be a curve on [pll from 00 to 0 which with the possible exception 
of its end points lies entirely in Y. The pre image of}' under J consists of n 
curves e 1, ... , en which join the poles off with the zeros of}: Then letting 
e := Cl + ... + en one has DC = D and for every w E Q(X) 

J w = f Trace(w) = O. 
c }' 

o 
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20.8. Application to Doubly-Periodic Functions. Suppose YI> "h E Care 
linearly independent over IR and 

P :={tl YI + t2Y2: 0 C;; tl < 1,0 C;; t2 < I}. 

Suppose zeros ai' ... , an E P and poles bl> ... , bn E P are prescribed, where 
each point appears as often as its multiplicity demands. Then there exists a 
meromorphic function which is doubly-periodic with respect to 
r = ZYI + ZY2 and has zeros ai' ... , an and poles b l , ... , bn if and only if 

PROOF. Let D be the divisor on c/r determined by the prescribed zeros and 
poles. Choose curves Ck from bk to ak in C, e.g. straight line segments. Let 
n: C -+ c/r be the canonical projection and 

c:=n-' CI + ... + n 0 Cn E C1(C/r). 

Then 8c = D. Let OJ E Q(C/r) be the differential form on the torus induced 
by the differential form dz on C. Then 

r OJ = I r dz = ± (ak - bk )· 
'c k=l'Ck k=l 

Hence the result follows from the Remark right after the statement of Abel's 
Theorem. 0 

EXERCISES (§20) 

20.1. Let X be a compact Riemann surface, C( and f3 be closed curves in X and (J. and 
(J p be the harmonic I-forms associated to C( and fJ according to Corollary (20.6). 
Show that 

is an integer. (This integer is the "intersection number" of IX and p.) 
[Hint: Show that for fE 8'(X) and IX a closed curve 

1 I' df . . ] -2' -r IS an mteger. 
7rl "'cr: , 

20.2. Let r = .zYl + .zY2 c IC be a lattice, X = ICjr and 

r:J.j: [0, 1] -> X 

be the closed curves defined by 

where n: IC -> ICjr is the canonical projection. Find the harmonic forms (J'j' 
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20.3. Let X be a compact Riemann surface of genus g. Show that there exist closed 
curves lXI, ... , 1X29 on X such that 

Harml(X) = I CO"I' 

20.4. Let r c C be a lattice. A theta function with respect to r is a holomorphic 
function 

F: 
satisfying 

F(z + y) = el,,(ZIF(z) for every z E C and }' E r, 

where L).(z) = a) z + by is an affine linear function depending on y. 

(a) The Weierstrass O'-function a: C C is defined by 

( Z)' (Z Z2) O'(z) ,= z fl 1 - -, exp - + -2 ' 
) E no Y Y 2}' 

Show that 0' is a theta function with zeros of first order precisely at the 
points of r. 

(b) Show that every doubly periodic meromorphic function with respect to r is 
the quotient of two theta functions. 

§21. The Jacobi Inversion Problem 

Abel's Theorem tells us when a divisor of degree zero on a compact Riemann 
surface has a solution which is a meromorphic function, i.e., when a divisor 
is a principal divisor. In this section we will be concerned with a more 
detailed study of the quotient group of divisors of degree zero modulo the 
subgroup of principal divisors. It turns out that this group is isomorphic to a 
complex g-dimensional torus, where g is the genus of the Riemann surface. 

21.1. Lattices. Suppose V is an N-dimensional vector space over R An 
additive subgroup reV is called a lattice if there exist N vectors Y 1> .•• , 

fN E V, which are linearly independent over [R, such that 

r = .zYl + ... + .zYN· 

Theorem. A subgroup reV is a lattice precisely if both or the following 
conditions hold: 

(i) r is discrete, i.e., there exists a neighborhood U of zero such that 
r n U = (0). 

(ii) r is contained in no proper vector subspace of V. 

Remark. Every real N-dimensional vector space V has a unique topology 
such that every isomorphism V [RN is a homeomorphism. 
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PROOF. Clearly a lattice reV satisfies conditions (i) and (ii). Now con-
versely suppose reV is a subgroup satisfying conditions (i) and (ii). By 
induction on N = V we will show that there exist linearly independent 
vectors YI> ... , YN E V such that 

r = Z}'1 + ... + ZYN' 

This is trivial for N = O. 
Now consider the induction step N - 1 ---+ N. Since r is not contained in 

any proper vector subspace of V, there exist N linearly independent vectors 
XI, ... , XN E r. Let VI be the vector subspace of V spanned by x 1> .•• , XN - I 

and let r 1 := r (I VI' The induction hypothesis may be applied to r l' Thus 
there exist linearly independent vectors YI, ... , r,v-I E r l c r such that 

r 1 = ZYI + ... + ZYN-I' 

Every vector x E r may be written uniquely in the form 

x = C1(X)YI + ... + CN-I(X)YN-I + C(X)XN' 

where cAx) and c(x) are real numbers. Since the parallelotope 

P:={J'IYI + ... + AN -J}'N-l + AXN: Aj, A E [0, I]} 

is compact, r (I P is finite. Hence there exists a vector IN E (r (I P)\ VI such 
that 

C(YN) = min{c(x): x E (r (I P)\Vd E ]0, 1]. 

Now we claim that r = r 1 + ZYN' For, suppose x E r is arbitrary. Then 
there exist nj E Z such that 

N N-l 
x' :=x - L njrj = L AjYj + AxN, 

j=1 j=1 
where 

o Aj < 1 for j = 1, ... , N - 1 

and 
o A < c(Y",,). 

Since x' E r (I P, it follows from the definition of YN that A = O. Thus 
x' E r (I VI = r l' Hence all A j are integers and thus are zero. This implies 
x' = 0, i.e., 

N 

X= " n·y· E Z" + ... + Z" L.. J J il tN' o 
j=1 

21.2. Period Lattices. Now suppose X is a compact Riemann surface of 
genus g 2': 1 and WIo ... , Wg is a basis of the vector space n(X) of holomor-
phic I-forms on X. Define a subgroup 

Per(wl' ... , w g ) C C9 
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as follows. Per(w J , ••• , Wg) consists of all vectors 

where rx. runs through the fundamental group 1t1(X) (cf. 10.11). 

Remark. It is also true (cf. 20.4) that 

Per(wl, ... , Wg) = {({WJ, ... , {Wg): r:t. E HI(X)}. 

We will show that Per(w l , ••• , Wg) is a lattice in C g, where C g is considered as 
a real 2g-dimensional vector space. This lattice is called the period lattice of 
X relative to the basis (WI' ... , wg ). 

For the proof we need a lemma. 

21.3. Lemma. Suppose X is a compact Riemann surface of genus g. Then there 
are 9 distinct points a b ... , ag E X with the following property: Every holomor-
phic 110rm W E Q(X) which vanishes at all the points ai' ... , ag is identically 
zero. 

PROOF. For a E X, let 

Ha := {w E n(X): w(a) = O}. 

Every Ha is either equal to n(X) or else has codimension one in Q(X). Since 
the intersection of all the Ha is zero and n(X) has dimension g, there exist 9 
points ai' ... , ag E X such that 

Hal n ... n H ... = O. 

These points satisfy the conditions of the Lemma. o 

21.4. Theorem. Suppose X is a compact Riemann surface of genus 9 2 1 and 
WI' ... , Wg is a basis ofn(X). Then r:=Per(w l , ... , Wg) is a lattice in C g• 

PROOF 
(a) Choose points ai' ... , ag as in the Lemma and disjoint simply con-

nected coordinate neighborhoods (Vj' Zj) of aj with zj(aJ = 0, for j = 1, ... , 
g. With respect to these coordinates let 

Wi = lfJij dZj on V j • 

By Lemma (21.3) the matrix 

A:= (lfJi)aj))1 si,jsg 

has rank g. Now define a mapping 

F: VI x .. · X Vg-+C g 
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as follows: For x = (Xl' ... , Xg) E VI X··· x Vg let 

F(X1' ... , Xg) = (F1(X), ... , Fg(x)) 

where 

i = 1, ... , g. 

Here the integral Wj is along any curve from aj to Xj which lies in V j; 
since Vj is simply connected, the integral is independent of the curve chosen. 

The map F is complex differentiable with respect to the coordinates Z 1, 

•.• , Zg and has Jacobian matrix 

(Op. ) JF(x) = oz; (x) = (cpij(Xj)). 

Thus at the point a = (aI' ... , ag) the matrix JF(a) = A and is invertible. 
Hence 

W'=F(V1 X ••• X V g) c: (;g 

is a neighborhood of F(a) = o. 
(b) Now we will show that r (] W = O. For, suppose to the contrary that 

there exists a point t E r (] (W\O). Then there exists 

X =1= a, 

with F(x) E r. Renumbering, if necessary, we may assume 

Xj =1= aj for 1 -sj -S k and Xj = aj for j > k, 

where 1 -s k -s g. By Abel's Theorem there exists a meromorphic function! 
on X which has a pole of first order at a j' 1 -s j -s k, a zero of first order at 
X j' 1 -s j -s k and is holomorphic otherwise. Let C j z; 1 be the principal part 
of! at aj • Of course cj =1= 0 for 1 -s j -s k. By the Residue Theorem (10.21) 

k 

0= Res(fw;) = L cjcpij(aj ) for i = 1, ... , g. 
j= 1 

But this is not possible since the matrix (cpij(aj)) has rank g. Thus the 
assumption is false and we have shown that r is a discrete subgroup of (;g. 

(c) Now we will show that r is not contained in any proper real vector 
subspace of (;g. Otherwise, there would exist a non-trivial real linear form on 
(;g, which vanished identically on r. Since every real linear form is the real 
part of a complex linear form, one thus gets a vector (Ch ... , cg) E (;9\0 such 
that 
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But from Corollary (19.8) it then follows that 

W :=C1 W 1 + ... + CgWg = 0, a contradiction! 

This proves that r is a lattice in ICg. o 
21.5. Remark. Theorem (21.4) tells us that there are 2g closed curves 0: I, ... , 

U2y on X such that the vectors 

v = 1, ... , 2g, 

are linearly independent over the reals and 

Per(w l, ... , w y ) = .li'l + ... + ;[Y2y· 

One can easily see from this that the homology classes of 0: 1, ... , 0: 29 in 
HI (X) are linearly independent over .l and generate HI (X). Thus 
H 1(X) ;[29. 

21.6. The Jacobi Variety and the Picard Group. Suppose X is a compact 
Riemann surface of genus 9 and WI' ... , wY is a basis of Q(X). Then 

Jac(X) :=ICYjPer(w1, ... ,0)9) 

is called the Jacobi variety of X. Here we are considering Jac(X) only as an 
abelian group. It also has the structure of a compact complex manifold (a 
complex g-dimensional torus), similar to the tori defined in (l.5.d). This 
structure will not be dealt with here. Note that the definition depends on the 
choice of basis WI' ... , wY ' but the choice of a different basis leads to an 
isomorphic Jac{X). 

Let Divo(X) c Div(X) denote the subgroup of divisors of degree zero and 
Divp(X) c Divo(X) the subgroup of principal divisors. The quotient 

Pic(X):= Div(X)/Div p(X) 

is called the Picard group of X. We will also consider the subgroup 

Pico(X) := Divo(X)/Div p(X) 

of Pic(X). Since Div(X)/Divo(X) = ;[, we have an exact sequence 

0->- Pico(X) ->- Pic(X) ->- .l ->- O. 

Define a map 

<1>: Divo(X) ->- Jac(X) 

as follows. Suppose D E Divo(X) and c Eel (X) is a chain with OC = D. The 
vector 



21 The Jacobi Inversion Problem 171 

is determined uniquely by D up to equivalence modulo Per(wb ... , w g). By 
definition <I>(D) is its equivalence class. Clearly <I> is a group homomorphism. 
Now Abel's Theorem says that the kernel of the mapping <I> is equal to 
Divp(X). Hence by passing to the quotient we get an injective mapping 

j: Pico(X) -> Jac(X). 

The Jacobi inversion problem asks if this map is surjective. Actually this is 
the case! 

21.7. Theorem. For every compact Riemann surface X the mapping 

j: Pico(X) -> Jac(X) 

is an isomorphism. 

PROOF. Let P E Jac(X) be an arbitrary point which is represented by the 
vector E eg• For N a sufficiently large natural number, the vector (1/ N)e 
lies in the image of the mapping F considered in part (a) of the proof of 
Theorem (21.4). This means that there exist points aj, Xj E X and curves}'j 
from aj to Xj' for j = 1, ... , g, such that if c :=Y1 + ... + Yg , then 

(J W1, ... , f W g ) = 
c c N 

Thus for the divisor D := DC one has 

Now if () is the point ofPico(X) represented by the divisor ND, thenj((}) = p. 
This proves that j is surjective and thus an isomorphism. 0 

21.8. Suppose X is a compact Riemann surface of genus g and at> ... , ag E X 
are arbitrarily chosen points. Define a mapping 

in the following way. For (x 1, ... , Xg) E xg let 

9 

IjJ(Xb ... , Xg):= L (DXj - Da)mod Divp(X); 
j=l 

where Dx, for x E X, is the divisor which has the value + 1 at x but is 
otherwise zero. Let 

J: X9 -> Jac(X) 
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be the composition of the mappings 1/1: xg Pico(X) and j: Pico(X) 
Jac(X). Recalling the various definitions, one sees that 

( 
9 Xj ) 

J(XI' ... , Xg) = {j Wi 1 :5 i :5gmod Per(wj, ... , w g). 

One has a sharper version of (21.7). 

21.9. Theorem. With the same notation as above, the mapping 

J: xg Jac(X) 

is surjective. 

PROOF. It suffices to show that 1/1: X g ..... Pico(X) is surjective. But this is the 
same as saying that every divisor D E Divo(X) is equivalent modulo Divp(X) 
to a divisor of the form 

9 

L (Dxj - Da), 
j=1 

One sees this as follows. Let 

D"=D+Dal +···+Dag • 

Then deg D' = 9 and by the Riemann-Roch Theorem (16.9) one has 
dim HO(X, (JD') 1. Thus there exists a meromorphic function f #- 0 on X 
with (f) - D', i.e. 

D" ,= (f) + D' O. 

Since deg D" = g, there are points Xj, ... , Xg E X such that 

Thus 

9 

L (Dxj - Da) = D + (f). o 
j=l 

Remark. It follows directly from the definition of the mapping J: xg ..... 
Jac(X) that J(x j, ... , Xg) remains invariant under any permutation of x I, ... , 

x g • Hence J induces a mapping S9X ..... Jac(X) of the g-fold symmetric pro-
duct of X into the Jacobi variety. One can define on sgx, as well as on 
Jac(X), the structure of a compact complex g-dimensional manifold. Then 
the mapping sgx ..... Jac(X) is holomorphic. Note that it is not bijective, but 
one can show that it is bimeromorphic, i.e. induces an isomorphism between 
the fields of meromorphic functions of Jac(X) and sgx. For details, see [16]. 

21.10. Theorem. For every compact Riemann surface X of genus 1 the map-
ping J: X ..... Jac(X) is an isomorphism. 
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Remark. Together with Corollary (17.13) this shows that the compact 
Riemann surfaces of genus 1 are precisely the tori Cjr. 

PROOF. The mapping J may be described in the following way. Suppose 
W E n(X)\O, r ,= Per(w) and a E X. Then for x E X, one has 

J(x) = (w mod r E c/r = Jac(X). 
<a 

Clearly J is a holomorphic mapping. By (21.9) J is surjective. By the way this 
also follows directly from Theorem (2.7). The mapping J is also injective, for 
otherwise by Abel's Theorem there would exist a meromorphic function! on 
X having a single pole of order one. This is impossible. For, in that case X 
would be isomorphic to [pl. 0 

Remark. Suppose P(z) is a polynomial of degree 3 or 4 without repeated 
roots and let X be the Riemann surface of the algebraic function J P(z ). 
Then X has genus one (cf. 17.15) and 

dz 
w = JP(z) 

is a basis of O(X). Let r c C be the period matrix of w. The mapping 
J: X -> Jac(X) = c/r is then given by the" elliptic integral of the first kind" 

J(x) = ( mod r E c/r. 
'a V P(z) 

Let F: Cjr -> X be the inverse of J and let n: C -> Cjr and p: X -> [pl be the 
canonical projections. Then 

i'= p G F 0 n: C -> [pl 

is a doubly-periodic meromorphic function. It was the great discovery of 
Abel and Jacobi that the study of elliptic integrals could be replaced by the 
study of doubly-periodic functions. The generalization of this question to 
hyperelliptic integrals then lead to the Jacobi inversion problem. An account 
of the history of this problem can be found in [63]. 

EXERCISES (§21) 

21.1. Let X be a compact Riemann surface and Y c X be an open subset such that 
X\Y has non-empty interior. Let D be a divisor on X. Show that there exists a 
function f E A*(X) such that 

ordAf) = D(x) for every x E Y. 

[Hint: Find a divisor D' with support in X\Y such that D + D' is a principal 
divisor.] 
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21.2. (a) Show that the polynomial 

F(z} :=4z3 - 92Z - 93, 

has 3 distinct roots if and only if 

92,93 EIC, 

9} - =1= o. 
(b) Let r c IC be a lattice and 

1 (1 fJ(z) = 2 + L ----2 
Z w.rlo (Z-W) 

be the associated Weierstrass fJ-function. Show that fJ satisfies the differ-
ential equation 

where 

" '\' 92 = 60 L... 4 and 93 = 140 L... 
<v.rlo W <v.rlO W 

and that the torus IC/r is isomorphic to the Riemann surface X --> pi of the 
algebraic function J 4z3 - 92 z - 93· 

(c) Given 92, 93 E IC with 9l =1= 279L show that there is a lattice r c IC such 
that 

[Hint: Use part (b) and Theorem (21.10).] 



CHAPTER 3 

Non-compact Riemann Surfaces 

In many respects, function theory on non-compact Riemann surfaces is 
similar to function theory on domains in the complex plane. Thus for non-
compact Riemann surfaces one has analogues of the Mittag-Leffler 
Theorem and the Weierstrass Theorem as well as the Riemann Mapping 
Theorem. 

In this chapter we will first consider the Dirichlet Boundary Value Prob-
lem for harmonic functions on Riemann surfaces. This will then serve as a 
tool in proving that every Riemann surface has a countable topology. Also it 
will be needed later in the proof of the Riemann Mapping Theorem. With 
the help of Weyl's Lemma we will prove Runge's Approximation Theorem. 
And then from Runge's Approximation Theorem we easily derive the 
Theorems of Mittag-Leffler and Weierstrass. Also in this chapter we com-
plete the discussion, begun in §§10 and 11, concerning the existence of holo-
morphic functions with prescribed summands of automorphy. We also look 
at the Riemann-Hilbert problem. 

§22. The Dirichlet Boundary Value Problem 

The existence theorems for holomorphic and meromorphic functions on 
Riemann surfaces which we have so far considered are all essentially depen-
dent on Dolbeault's Lemma (13.2) and the Finiteness Theorem (14.9). We 
now prove another existence theorem on Riemann surfaces which is entirely 
independent of these previous results, namely the solution of the Dirichlet 
Problem for harmonic functions using Perron's method. 

175 
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22.1. Suppose Y is an open subset of a Riemann surface X. Then a differen-
tiable function u E g(y) is called harmonic if d'd"u = 0, cf. (9.14). With re-
spect to a local coordinate z = x + iy this is equivalent to 

Every real-valued harmonic function u on a simply connected domain 
G c X is the real part of a holomorphic function f E CO(G). For, from 
Theorem (19.4) it follows that the harmonic differential form du may be 
written du = Re(dg) for some 9 E CO(G). This implies u = Re(g) + const. 

This observation allows one to derive quite easily the Maximum Prin-
ciple for harmonic functions. If a harmonic function u: Y -+ IR on the 
domain Y attains its maximum at a point Xo E Y, then u is a constant. For, 
suppose u = Re(f) where f is a function holomorphic on some neighbor-
hood of Xo. Since I ef I = eO, the holomorphic function ef attains its maxi-
mum modulus at Xo' Now the Maximum Principle for holomorphic 
functions implies u is constant on a neighborhood of Xo. Thus u is also 
constant on all of Y, since Y is connected. 

22.2. By the Dirichlet Problem on a Riemann surface X we mean the 
following: 

Suppose Y is an open subset of X andf: ay -+ IR is a continuous function. 
Find a continuous function u: Y -+ IR which is harmonic in Y and satisfies 
u lay = f Suppose Y is compact and ay + 0, i.e., Y + X. If a solution 
exists, then it is unique. For, the difference U 1 - U2 of two solution Ui has 
boundary values zero. Because of the Maximum Principle for harmonic 
functions one then has ° :::; U 1 - U2 :::; ° on Y. Thus Ul = U2' 

For the disk 

D(R) := {z E IC: I z I < R}, where R > 0, 

the Dirichlet Problem can be easily solved using the Poisson Integral. 

22.3. Theorem. Suppose f: aD(R) -+ IR is continuous and let 

1 r21r R2 - Izl2 
u(z) :=- • f(Re i6 ) de for I z I < R (*) 

2n.o IRe'B - zl2 
and u(z):= f(z) for I z I = R. Then u is continuous on D(R) and harmonic on 
D(R). 

PROOF. For z + ( let 

P(z r):= 1(1 2 - Izl2 ,., I( - zl2 ' 
(+z 

F(z, n :=-r -. ., - z 
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Then P(z, n = Re F(z, n. Thus (*) may be written as 

1 f 2" u(z) = - P(z, ReiO )f(Re i6 ) dO 
2n ° 

= ReUn (" F(z, Re(9 )f(Rei9 ) dO) 

= Re(-21 . J F(z, nf(n 
1[1 1t;I=R 

Since F(z, n is holomorphic as a function of z, it follows that u is the real 
part of a holomorphic function on D(R) and thus is harmonic. 

The remaining point is to verify the continuity at the boundary. Using the 
Residue Theorem, one has 

Re(6 ) dO = (+ z . d() = 1. 
2n ° 2m 11;1 =R ( - Z ( 

Hence for (0 E oD(R), z E D(R) and letting ( = Re ifl one has 

1 f 2" u(z) - f((o) = 2n ° P(z, n(f(() - f((o)) dO. 

Suppose e > 0 is given. Since f is continuous, there exists 15o > 0 such that 
1 f(n - f('o) 1 ::;; e/2 for I' - '01 ::;; 150, Also there is a constant M > 0 such 
that 1 f(O 1 ::;; M for every ( E oD(R). Now split the interval [0, 2n] up into 
two subsets. Namely let IX be the subset of all those 0 E [0, 2n] such that 
IRe iO - (01 ::;; 60 and let fJ be the rest. Then 

e M r jJJ ::;; -2 + - P(z, Re ) dO. 
n . p 

If Iz - (01 =:15::;; 150/2, then for 0 E P one has 

IRe i8 - zl 1 Re i8 - (01 - Iz - '01 150/2 

and 

Thus 

e 16RM 
lu(z)-f((o)1 <2 

whenever 1 z - (01 is chosen sufficiently small. o 
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22.4. Corollary. Suppose u: D(R) --+ IR is a harmonic function. Then 

1 .. 2rr r2 _ 1_1 2 

u(z) = - I u(reiB ) de 
2n • 0 I re'B - z 12 

for every r < Rand Izl < r. In particular, u satisfies the "Mean Value 
Principle" 

1 .2rr 

u(O) = 2 I u(re ifl ) dO. 
n·o 

Because of the uniqueness of the solution of the Dirichlet Boundary 
Value Problem this follows from (22.3). 

22.5. Corollary. Suppose Un: D(R) --+ IR, n E N, is a sequence ofharmonicfunc-
tions which converges uniformly on compact subsets to aji-mction u: D(R) --+ R 
Then u is also harmonic. 

PROOF. By (22.4) for every r < R and all I z I < r one has 
1 .2rr 

un(z) = -2 I P(z, reiB)un(reiB) de, 
n"O 

where P(z, () is the kernel defined in (22.3). Since the sequence Un converges 
to u uniformly on aD(r), this integral formula is also valid for the function u. 
But then u is harmonic on D(r) by Theorem (22.3). 0 

22.6. Harnack's Theorem. Suppose M E IR and 

Uo S Uj S U z S ... S M 

is a monotone increasing, bounded sequence of harmonic functions 
un: D(R) --+ IR. Then the sequence converges uniformly on every compact subset 
of D(R) to a harmonic junction u: D(R) --+ R 

PROOF. Suppose K c D(R) is compact. Then there exist constants p < r < R 
such that 

K c {z E C: I z I S p}. 

Suppose I: > 0 is given and let f,' := f,(r - p )!(r + p). Since the sequence (un(O» 
is monotone increasing and bounded, there exists an N such that 

un(O) - urn(O) S 1:' for every n :2. m :2. N. 

Now apply the Poisson Integral Formula to the positive harmonic function 
Un - Urn' Since for I z I S P one has 

_ r+lzi r+p 0< P(z retB) <-- -- <--- , -r-Izl -r-p' 
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= r + p (Un(O) - Um(O)) ::; e. 
r-p 
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Thus the sequence (un) converges uniformly on K and by (22.5) its limit 
function is also harmonic. 0 

22.7. We now return to the Dirichlet Problem on an arbitrary Riemann 
surface X. Note that the property that a function is harmonic remains 
invariant under biholomorphic mappings. Thus one can also solve the Dir-
ichlet Problem on all domains D c X which are relatively compact and are 
contained in a chart (U, z) so that z(D) c IC is a disk. 

We need some additional notation. For any open set Y c X let Reg(Y) 
denote the set of all subdomains D !1:: Y such that the Dirichlet problem can 
be solved on D for arbitrary continuous boundary valuesf: aD -+ R For any 
continuous function u: Y -+ and D E Reg( Y) let P D U denote the contin-
uous function on Y which coincides with U on y\D and solves the Dirichlet 
problem on [j for the boundary values U I aD. 

Let C(j [J;!(Y) denote the vector space of all continuous real-valued functions 
on Y. Clearly for every u, v E C(j [J;!( Y), A E the following hold: 

(i) PD(u + v) = PDu + PDV, 
(ii) PD(AU) = APDU, 
(iii) U::; v=PDu::; PDV. 

A function U E rc [J;!( Y) is harmonic precisely if P D( u) = U for every 
DE Reg(Y). 

22.8. Definition. A continuous function U: Y -+ IR is called subharmonic if 

PDu U for every D E Reg(Y). 

It follows directly from the definition that if u, v: Y -+ are subharmonic 
functions and A is a non-negative real number, then u + v, AU and sup(u, v) 
are subharmonic on Y. 

A function u: Y -+ is called locally subharmonic if u is subharmonic on a 
neighborhood of every point of Y. 

22.9. Theorem (The Maximum Principle for Locally Subharmonic Func-
tions). Suppose Y is a domain in a Riemann surface X and u: Y -+ is a locally 
sub harmonic function. If u attains its maximum at some point Xo E Y, then u is 
constant. 
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PROOF. Let u(xo) =: C and 

S:={XE Y:u(x)=c}. 

If S =1= Y, then there exists a point a E as n Y. Since u is continuous, 
u(a) = c. In every neighborhood of a there is a point x with u{x) < c. Hence 
there is some open neighborhood D E Reg(Y) of a such that u I aD is not 
constantly equal to c. Moreover we may assume that u is subharmonic on 
some neighborhood of D. Thus 

u:::; PDu =:v. 

The function v is harmonic in D. Because 

vlaD = ulaD:::; c, 

the Maximum Principle for harmonic functions implies v :::; c on D. Since 
c = u(a) :::; v(a), v attains its maximum at a and thus is constantly equal to c. 
But this contradicts the choice of D. Thus S = Y. 0 

22.10. Corollary. If u: Y -+ is locally subharmonic, then u is subharmonic. 

PROOF. Suppose D E Reg( Y) is arbitrary. Since P D u is harmonic on D, 

v:=u - PDu 

is locally subharmonic on D. Since v I aD = 0, the Maximum Principle im-
plies v:::; 0 on D. Thus PDu U. 0 

22.11. Lemma. Ifu: Y -+ is subharmonic and B E Reg(Y), then PRu is also 
subharmonic. 

PROOF. Set v:= PBu and suppose DE Reg(Y) is arbitrary. We have to show 
that P D v v. On y\D one has P D V = v and on Y\B, because v u, one has 

Thus v - PDv:::; 0 on Y\(B n D). Since v - PDv is harmonic on B n D, it 
follows that 

v - PDv:::; 0 on B n D. 

Hence PD v v on all of Y. o 
22.12. Lemma (Perron). Suppose M c ct' IR( Y) is a non-empty set of subhar-
monic jUnctions on Y with the following properties: 

(i) u, v EM=> sup{u, v) E M. 
(ii) u EM, D E Reg(Y)=>PDu E M. 

(iii) There exists a constant K E such that 

u :s:; K for every u E M. 
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Then the function u*: Y --+ IR defined by 

u*(x):=sup{u(x): U EM} 

is harmonic on Y. 
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PROOF. Suppose a E Y and D E Reg(Y) is a neighborhood of a. Choose a 
sequence Un E M, n EN, with 

lim uia) = u*(a). 

Because of (i) we may assume 

Let Vn := P DUn' Then one also has 

By Harnack's Theorem the sequence (Vn ) converges on D to a harmonic 
function v: D --+ IR and the following hold 

v(a) = u*(a) and v u* on D. 

Now we claim that v(x) = u*(x) for every XED. To see this, suppose 
wn E M, n E N, is a sequence with 

lim wn(x) = u*(x). 

Because of (i) and (ii) we may assume that 

for every n E N. Hence the sequence (wn ) converges on D to a harmonic 
function w: D --+ IR with 

v W u*. 

Since v(a) = w(a) = u*(a), the Maximum Principle applied to the harmonic 
function v - w on D implies v(y) = w(y) for every y E D. In particular, 

v(x) = w(x) = u*(x), 

and thus u* = w is a harmonic function on D. o 
22.13. To solve the Dirichlet Problem we will now use the technique devised 
by Perron. Suppose 

f: 8Y --+ IR 

is a continuous bounded function (we are not assuming that Y is compact) 
and 

K := sup{f(x): x E 8Y}. 
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Denote by f the set of all functions u E with 

(i) u I Y sub harmonic, 
(ii)ulays;f, uS;K. 

f is called the Perron class off By the lemma 

u* :=sup{u: U E 

is harmonic on Y. For this to be a solution of the boundary value problem it 
must satisfy 

lim u*(y) = f(x) 

for every point x E ay. Under certain conditions this will be the case, but not 
in general. 

22.14. Definition. A point x E a Y is called regular if there is an open 
neighborhood U of x and a function {3 E IIi(Y n U) with the following 
properties: 

(i) {31 Y n U is subharmonic 
(ii) {3(x) = 0 and {3(y) < 0 for every y E Y n U\{x}. 

The function {3 is called a barrier at x. 

Remark. Suppose x E a Y is a regular boundary point of Y and Y1 is an 
open subset of Y with x E a Y 1. Then x is a regular boundary point of Y1. 

This follows directly from tlie definition. Hence, as a consequence, if Y has a 
regular boundary (i.e., every boundary point is regular), then every con-
nected component of Y also has a regular boundary. 

22.15. Lemma. Suppose x E ay is a regular boundary point, V is a neighbor-
hood of x and m and c are real constants with m :5: c. Then there exists a 
function v E 't&' IIi(Y) with the following properties: 

(i) v I Y is subharmonic, 
(ii) v(x) = c, v I Y n V S; c, 

(iii) vi Y\V = m. 

PROOF. Without loss of generality we may assume c = O. Suppose U is an 
open neighborhood of x and {3 E 1Ii( Y n U) is a barrier at x. By shrinking 
V if necessary, we may assume V U. Then 

sup{{3(y): Y E av n Y} < o. 
Thus there exists a constant k > 0 such that 

k{3lav n Y < m. 
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Define 
v:= {smup(m, kfJ) on Y n V 

on Y\v. 
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Then v is continuous on Y, locally sub harmonic on Y, thus subharmonic, 
and also satisfies conditions (ii) and (iii). 0 

22.16. Lemma. Suppose Y is an open subset of a Riemann surface,!: a Y --+ IH is 
a continuous bounded function and 

u* = sup{u: u E I.J3f }, 

where 1.J3, is the Perron class off Then for every regular boundary point 
x EOY 

lim u*(y) = f(x). 
Y .... x 
YE Y 

PROOF. Suppose E > 0 is given. Then there exists a relatively compact open 
neighborhood V of x with 

f(x) - E ::;;f(y) ::;;f(x) + E for every y E oY n V. 

Suppose k and K are real constants such that 

k ::;;f(y) ::;; K for every Y E oY. 

(a) Using Lemma (22.15) choose a function v E which is subhar-
monic on Y and satisfies 

v(x) =f(x) - E 

vlYn V::;;f(X)-E 

vi Y\V = k - E. 

Then vloY::;;f Thus v E 1.J3, and hence v::;; u*. Then 

lim inf u*(y) v(x) = f(x) - E. 
Y .... x 

(b) Again using Lemma (22.15) there exists a function WEI/&' which is 
subharmonic on Y and satisfies 

w(x) = -f(x) 

wIYnV::;;-f(x) 

wIY\V= -K. 
For every u E I.J3f and y E ay n V one has u(y) ::;;f(x) + R. Thus 

u(y) + w(y) ::;; E for y E oY n V. 
As well 

u(z) + w(z) ::;; K - K = 0 for every Z E Y n av. 
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Applying the Maximum Principle to the function u + w, which is subhar-
monic on Y n V, one has 

u + w :s; 8 on Y n V. 
Thus 

u I Y n V:S; 8 - wi Y n V for every u E 'l3 f . 

Hence 
lim sup u*(y) :s; 8 - w(x) = f(x) + 8. 

From (a) and (b) one has the result. o 
22.17. Theorem. Suppose Y is an open subset ofa Riemann surface X such that 
all the boundary points of Yare regular. Then for every continuous bounded 
fimction f: cJ Y --> IR the Dirichlet Problem on Y can be solved. 

This follows directly from Lemma (22.16). 
We now point out a simple geometric condition which ensures that a 

boundary point is regular. Since regularity is a local condition which is 
invariant under biholomorphic mappings, it suffices to formulate this condi-
tion for Y c C. 

22.18. Theorem. Suppose Y is an open subset ofe and a E ay. Suppose there 
exists a disk 

D = {z E C: I z - m I < r}, where m E C, r > 0, 

such that a E DD and jj n Y = 0. Then a is a regular boundary point of Y. 

PROOF. Set c := (a + m)/2, see Fig. 6. Then 

r 
P(z):= log - - log I z - c I 

2 

defines a barrier at a. Thus a is a regular boundary point. 

Figure 6 

o 
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EXERCISES (§22) 

22.1. Let D := {z E C: I z I < R} and let u: D -> + be a nonnegative harmonic func-
tion. Prove Harnack's inequality 

R - izi u(O):s; u(z):s; R + izi u(O) for every ZED. 
R+ z R- z 

22.2. Using Harnack's inequality prove Liouville's Theorem for harmonic functions. 
Let u: C -> be a harmonic function which is bounded from above. Then u is 
constant. 

22.3. Suppose Y c C is open and u: Y -+ is a continuous function such that for 
every closed disk 

D(a, r) = {z E c: I z - a I :s; r} c Y 

one has 

1 f2" u(a) :s; 2n 0 u(a + reicp ) drp. 

Show that u is subharmonic. 

22.4. Suppose Y c C is open, a E ay and there exists a line segment 

S = {Aa + (1 - A)b: O:s; A:S; 1}, b #- a 

with Y n S = 0. Show that a is a regular boundary point of Y. 

§23. Countable Topology 

In this section we prove the Theorem of Rad6 which asserts that every 
Riemann surface has a countable topology. (Clearly this is trivial for com-
pact Riemann surfaces.) Also for later use we construct special exhaustions 
of non-compact Riemann surfaces. 

23.1. Lemma. Suppose X and Yare topological spaces and f: X --> Y is a 
continuous, open and surjective mapping. If X has a countable topology, then 
so does Y. 

PROOF. Let U be a countable basis for the topology on X and let 

m = {J(U): U E U}. 

Then m is a countable family of open subsets of Y which we claim is a basis 
for the topology of Y. 

Suppose D is an open subset of Y and y E D. We have to show that there 
exists V E m with y EVe D. Since f is surjective, there exists x E X with 
f(x) = y. The setf-l(D) is an open neighborhood of x. Hence there exists 
U E U with x E U cf-l(D). Thus V:=f(U) satisfies y EVe D. 0 
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23.2. Lemma (Poincare-Volterra). Suppose X is a connected manifold, Y is a 
Hausdorff space with countable topology and f: X -+ Y is a continuous, 
discrete mapping. Then X has a countable topology. 

PROOF. Suppose U is a countable basis for the topology on Y. Denote by m 
the collection of all open subsets V of X with the following properties: 

(i) V has a countable topology, 
(ii) V is the connected component of a setf-I(U) with U E U. 

(a) We claim that m is a basis for the topology on X. Suppose D is an 
open subset of X with XED. We have to show that there exists V Em with 
x EVe D. Since f is discrete, there is a relatively compact open neighbor-
hood WeD of x so that aw does not meet the fiberf-I(f(x)). Now f(aW) 
is compact and thus closed and does not contain the pointf(x). Hence there 
exists a U E U withf(x) E U and U II f(aW) = 0. Let V be the connected 
component off-I(U) which contains the point x. Since V II aw = 0, one 
has V c Wand hence V has a countable topology, i.e., V E m. This verifies 
claim (a). 

(b) Next we claim that for every Vo E m there exist at most countably 
many V E m with Vo II V 'i- 0. For every U E U the connected compon-
ents off-I(U) are disjoint. Since Vo has countable topology it can only meet 
countably many of these connected components. Since U is also countable, 
the result follows. 

(c) Now we show that m is countable. Fix V* E m and define for n EN 

the set mn c m as follows: mn consists of all V E m such that there are Vo , 
VI' ... , v" Em with 

Vo = V*, v,. = V and Vk-I II Vk +- 0 for k = 1, ... , n. 

Since X is connected, Un e I\J mn = m. Thus it suffices to show that each mn 
is countable. We do this by induction. Clearly mo = {V*} is countable. 
Suppose we already know that mn is countable. Then it follows directly from 
(b) that mn + 1 is also countable. 

This then proves that X has a countable topology. 0 

23.3. Theorem (Rad6). Every Riemann surface X has a countable topology. 

PROOF. Suppose U is a coordinate neighborhood on X. Choose two disjoint 
compact disks K o, K leU and set Y:= X\(Ko u K d. Since the boundary 
ay = aKo u aK I satisfies the regularity condition of Theorem (22.18), there 
is a continuous function u: Y which is harmonic on Y, and which 
satisfies the boundary conditions 

ulaKo = 0 and uiaK I = 1. 

Hence w:= d'u is a non-trivial holomorphic I-form on Y. Let f be any 
holomorphic primitive for p*w on the universal covering p: Y -+ Y. Since f is 
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not constant, the mapping f: f -+ I[: satisfies the assumptions of Lemma 
(23.2). Thus f has a countable topology. By Lemma (23.1) Y then has a 
countable topology. Since X = Y u V, the topology on X is also countable. 

o 
In the proof of Runge's Approximation Theorem we will need to have 

special exhaustions. These are constructed using a certain hull operator 
which we now define. 

23.4. Definition. Suppose X is a Riemann surface. For any subset Y c X let 
A(Y) denote the union of Y with all the relatively compact connected com-
ponents of X\Y. An open subset Y c X is called Runge if Y = A(Y), i.e., if 
none of the connected components of X\ Y is compact. The following 
properties can be checked quite easily: 

(i) A(A(Y)) = A(Y) for every Y eX. 
(ii) Yt c Y2 = A(Ytl c A(Y2 ). 

Remark. If we want to indicate the dependence on X, we will write Ax(Y) 
instead of A( Y). Consider the following example. Let 

Y:={z E 1[:: 1 < Izl < 2}. 

Then Y may be thought of as either a subset of I[: or of 1[:* and 

AdY) = {z E IC: Izl < 2} 

AC'(Y) = Y. 

23.5. Theorem. Suppose Y is a subset of a Riemann surface X. Then the 
following hold: 

(i) Y closed = A(Y) closed 
(ii) Y compact = A(Y) compact. 

PROOF 

(i) Suppose Cj ,j E 1, are the connected components of X\ Y. Since X\ Y is 
open and X is a manifold, all the Cj are open. Let 10 denote the subset of 
those j E 1 such that Cj is compact. Then 

X\h(Y) = U {Cj:j E l\1o}. 

Clearly this is an open set and thus A(Y) is closed. 
(ii) We may assume Y =F 0. Let U be a relatively compact open neigh-

borhood of Yand suppose the Cj are as above. 

Claim (a). Every Cj meets G. Otherwise if some Cj were contained in 
X\G, then 
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Since Cj is a connected component of X\ Y, this would imply Cj = L j . Thus 
Cj would be both open and closed. But this contradicts the fact that X is 
connected. 

Claim (b). Only finitely many Cj meet a u. This follows from the fact that 
au is compact and is covered by the disjoint, open Cj • 

The assertion (ii) is now easily proved. Let Cj,j E J o , be the relatively 
compact connected components of X\ Y and suppose C ii' ... , C jm are those 
which meet au. Then by (a) all the others are contained in U. Thus 

It( Y) c U u C. U··· U C. 
) 1 )m 

is relatively compact and hence by (i) is in fact compact. o 

23.6. Corollary. Suppose X is a non-compact Riemann surface. Then there is a 
sequence K j' j EN, of compact subsets of X with the following properties: 

(i) K j = /i(Kj) for every j, 
(ii) K j - 1 C Kj for every j 1, 
(iii) K j = X. 

PROOF. Since X has a countable topology, there exists a sequence of compact 
subsets C K'l C C ... of X which cover X. We will construct the 
sequence K j by induction. Let Ko Now suppose Kb ... , Km with 
properties (i) and (ii) have already been constructed. There exists a compact 
set M with u Km c M. Set K m+ 1 :=A(M). Then the sequence Kj,j EN 
satisfies (i), (ii) and (iii). 0 

23.7. Lemma. Suppose KI and K2 are compact subsets ofa Riemann surface 
X with Kl C](2 and A(K2) = K 2. Then there exists an open subset Y of X 
which is Runge and satisfies KI eYe K 2 . Moreover one may choose Y so 
·that its boundary is regular in the sense of solving the Dirichlet Problem. 

PROOF. Given .x E aK2 there is a coordinate neighborhood U of.x which 
does not meet K I. In U choose a compact disk D containing x in its interior. 
Then finitely many such disks, say D1 , ••. , Dk , cover aK 2 . Set 

Y:= K z \(D 1 U ... U Dk). 

Then Y is open and Kl eYe K 2 . Let Cj,j E J, be the connected compon-
ents of X\K 2 . By assumption they are not relatively compact. Every D j is 
connected and meets at least one C j. Hence no connected component of 
X\ Y is relatively compact, i.e., Y = A(Y). Finally, by Theorem (22.18) all the 
boundary points of Yare regular. 0 

23.8. Theorem. Suppose Y is a Runge open subset of a Riemann surface X. 
Then every connected component of Y is also Runge. 
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PROOF 

(a) Suppose Y;, i E I, are the connected components of Y. Since Y is open 
and X is a manifold, all the Y; are open. Let A := X\ Y be the complement of 
Y. The connected components A k , k E K, of A are by assumption closed but 
not compact. 

(b) We claim that 17 n A+-0 for every i E I. Otherwise Y; c Y. Since 

Y; n U lj = 0, 
j*i 

it would then follow that Y; = Y;. But this contradicts the connectivity of X. 
(c) Next we claim that C n A+-0 for every connected component C of 

X\ Y;. Otherwise there would be a j +- i such that C n Yj +- 0. Since C is 
closed and lj is connected, it would then follow that 1'; c C. By (b) this 
would imply C n A +- 0. 

(d) Finally suppose C is a connected component of X\Y;. Then C meets 
at least one Ak by (c) and thus in fact C Ak. Since Ak is not compact, Cis 
also not compact. Hence Y; is Runge. 0 

23.9. Theorem. Suppose X is a non-compact Riemann surface. Then there 
exists a sequence Yo 11= Y1 11= Yz 11= ••• of relatively compact Runge domains with 
u Y,. = X and so that every Y,. has a regular boundary with respect to solving 
the Dirichlet Problem. 

PROOF. The result will follow if we show that for every compact set KeY 
there exists a Runge domain Y 11= X which has a regular boundary and 
contains K. 

Given K, we can find a connected compact set K 1 K and a compact set 
K z with K 1 c K2 • By Lemma (23.7) there is a Runge open set Y1 with 
K 1 c Y1 C A(K2) and a regular boundary. Let Y be the connected compon-
ent of Y1 which contains K l' By (23.8) Y is also Runge and by the Remark in 
(22.14) it has a regular boundary. 0 

EXERCISES (§23) 

23.1. Suppose X is a Riemann surface and X -> X is its universal covering. Show that 
Deck(X/X) is countable. 

23.2. Let Y c C be open and K a compact connected component ofq Y. Let (fvL E " 

be a sequence of polynomials which converges uniformly on every compact 
subset of Y. Show that (f,.) converges uniformly on K. 

23.3. Suppose Y c C is an open subset such that every holomorphic function 
f E (i:!(Y) can be approximated uniformly on every compact subset of Y by 
polynomials. Conclude that Y = Ac(Y). 
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§24. Weyl's Lemma 

In this section we introduce the notion of distributions. These are gener-
alized functions. In the class of distributions differentiation is possible with-
out any restrictions. Hence it is possible to consider solutions of differential 
equations in the sense of distributions. Now Weyl's Lemma asserts that for 
Laplace's equation du = 0 both kinds of solutions are the same, i.e., every 
harmonic distribution is a smooth function in the usual sense which satisfies 
Laplace's equation. 

24.1. Suppose X is an open subset of the complex plane. Recall that o"(X) 
denotes the vector space of all the infinitely differentiable (with respect to the 
real coordinates) functions f: X -> C. By the support, denoted Supp(f), of 
such a function is meant the closure (in X) of the set {x E X:I(x) =1= O}. Set 

,@(X):={fE 6"(X): Supp(f) is compact in X}. 

Introduce the following notion of convergence in the vector space 9(X). A 
sequence (f,.)v E c" of functions in .<2l(X) converges to a function I E 

denoted Iv "?t 1, if: 

(i) There exists a compact subset K c X such that Supp(f) c K and 
Supp(J.) c K for every v E r\j. 

(ii) For every IX = (lXb 1Xz) E r\j2 the sequence D"fv converges uniformly on 
K to Da1, where D' denotes the differential operator 

Thus convergence in .s0(X) is a much stronger condition than either point-
wise or uniform convergence of sequences of functions. 

24.2. Definition. Suppose X c I[: is open. A distribution on X is a continuous 
linear mapping 

T: g(X) -> 1[:, If--> T[f). 

Saying that T is continuous means that if Iv ;t 1, then T[fJ -> T[f], where 
this latter convergence is that of a sequence of complex numbers. Denote by 
9'(X) the vector space of all distributions on X. 

24.3. Examples 
(a) To every continuous function h E '6'(X) is associated a distribution 

T" E .@'(X) as follows. For I E 9(X) let 

T,,[f]:= II h(z)I(z) dx dy, where z = x + iy. 
x 
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Clearly the map J"'--'T,,[J] is linear and continuous. If hl' h2 E CC(X) and 
T"JJ] = T,,2[J] for every J E .9C(X), then hl = h2. Hence the (linear) map 

CC(X) -> .9C'(X), h...--.T" 

is injective and one can identify a continuous function on X with its asso-
ciated distribution. 

(b) Suppose a E X. For J E .@(X) set 

ba[J] := J(a). 

This defines a distribution ba E .9C'(X) which is called the Dirac delta distribu-
tion at the point a. Unlike Example (a), this distribution cannot be repre-
sented by a function. 

24.4. The Differentiation of Distributions. Suppose h E 0"(X) andJ E f0(X). 
Then for every a = (at> a2) E N 2 

JJ h(z)DaJ(z) dx dy = ( _1)a1 h2 JJ J(z)Dah(z) dx dy. 
x x 

This is proved by integrating by parts (al + a2) times and noting that sinceJ 
has compact support, all the integrals over the boundary are zero. 

Hence, using the notation of Example (24.3.a), 

This motivates the following definition. For T E .9C'(X) set 

(DaT)[J]:= (-1)/a/T[D1] for every J E .9C(X). 

Since fv f implies D"fv Dj, the map D"T:91J(X) IC is continuous, i.e., 
'!IJ '!IJ 

D"T E 91J'(X). This points out that for differentiable functions the derivative 
in the usual sense and in the sense of distributions is the same. 

24.5. Lemma. Suppose given an open subset X c C, a compact subset K c X 
and an open interval I c IR. Suppose g: X x I -> C is an irifinitely (real) differ-
entiable Junction with Supp(g) c K x I and T is a distribution on X. Then the 
function t...--. t)] is infinitely differentiable on I and satisfies 

d [Og(Z, t)j 
dt t)] = -8-t - . (*) 

The subscript z indicates that T operates on g(z, t) as a function of z while 
t is thought of as a parameter. Thus one may interchange the operation of 
applying a distribution to a function depending on a parameter and differen-
tiation with respect to that parameter. 
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PROOF. It suffices to prove (*), since repeated application of this result will 
show the infinite differentiability with respect to t. Since T is linear, 

dd 7;,[g(z, t)] = lim -hI (7;,[g(z, t + h)] - T.[g(z, t)]) 
t h-O 

-1· fg(Z, t + h) - g(z, t)J 
- 1m 7;, h . 

h-O 

For fixed tEl and sufficiently small h E IR* let 

(g(z, t + h) - g(z, t)). 

Then fh E q«X) and 

1, --> t) as h -> o. 
h £i! at 

Hence, because T is continuous, 

o 

The next Lemma asserts that the operation of applying a distribution to a 
function depending on a parameter may be interchanged with integration 
with respect to that parameter. 

24.6. Lemma. Suppose X, Yare open subsets of I[; and K c X, LeY are 
compact subsets. Further suppose g: X x Y -> C is an infinitely (real) differen-
tiable function with Supp(g) c K x L. Then for any distribution T on X 

T. f j) g(z, 0 dry J = tI 7;,[g(z, OJ dry, ( = + iry. 

PROOF. It follows from (24.5) that 7;,[g(z, OJ is infinitely differentiable with 
respect to ( = + iry. Thus the integral on the right hand side is well-defined. 
Suppose ReI[; is a rectangle with sides parallel to the axes which contains 
L. Then the function g(z, 0 extends as zero to K x R. For every integer 
n > 0 partition R into n2 sub rectangles Rnv' v = 1, ... , n2 , by subdividing the 
sides into n equal parts. Choose a point (nv in each Rnv . Let F be the area of 
R. Then the Riemann sums 

F n 2 

Gn(z) :=2 L g(z, (nv) 
n v= 1 

converge as n -> 00 to the integral Sh g(z, 0 dry. Since Supp(Gn) c K for 
each n, 

Gnq; fJ g(., 0 d'1 as n-> 00. 
y 
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Thus from the continuity of T it follows that 

[If g(z, 0 d1J 1 = T[Gn] = If OJ d1J. 0 
y J n 00 y 

24.7. The Smoothing of Functions. Choose a function p E 9)(1[) with the 
following properties: 

(i) Supp(p) c {z E C: Izl < 1}. 
(ii) p is invariant under rotations, i.e., p(z) = p( I z I ) for every z E C. 

(iii) He p(x + iy) dx dy = 1. 

For e > 0 and z E C set 

p,(z):= e\ 
Then Supp(p,) c {z E C: I z I < e} and 

If p,(x + iy) dx dy = 1. 
c 

Denote by D(z, e) the open disk with center z and radius e and by D(z, e) its 
closure. 

If V c C is an open set, then 

V(') := {z E V: D(z, c) c V} 

is also open. 
Given a continuous function f: V C, define a new function 

sm, f: V(f.) C by 

(sm, J)(z) := If p,(z - OJ(O d1J, ( = + i1J. 
u 

Clearly sm, J E C(V('), since one can differentiate under the integral. The 
function sm, J is called a smoothing off 

Remark. Naturally the definition depends on the choice ofthe function p. 

24.S. Lemma. Suppose V c C is open, J E C( V) and e > O. 

(a) For every rx E N 2 

1) = sm,(Dj'"). 

(b) IJ z E V(') and J is harmonic on D(z, e), then 

(sm, J)(z) = J(z). 
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PROOF 

(a) For z E VIE) translation of the integration variable gives 

Thus 

D'(sm, f)(z) = JJ pJODj(z + 0 dry 
1,1 <, 

= II p,(z - OD'{(O dry = sm,(D'f)(z). 
u 

(b) Iff is harmonic on D(z, /0). then for every r E [0, F.[ it satisfies the 
Mean Value Principle (22.4) 

Thus 

smce 

I .2" . 
1(z) = - I f(Z + re'O) dB. 

2n '0 

(smJ)(z) = JJ p,(Of(z + 0 dry 
<, 

JJ p,(r)f(z + reiO)r dr de 
o 

0::58.:5 2rr 

. , 
= I p,(r)r dr' 2nl(z) = f(z), 

• 0 

1 = rr + iry) dll = 2n (pk)r dr. 
•• '0 

o 

24.9. Theorem (Weyl's Lemma). Suppose V is an open set in C and T is a 
distribution on V with T = O. Then T is a smooth function. 

In other words, if T: Q'( V) -> C is a linear functional such that T[ = 0 
for every r.p E £1( U), then there exists a function h E tS( V) with = ° and 

T[f] = JJ h(z)f(z) dx dy for every fE f/(V). 
U 
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PROOF. Suppose e > 0 is arbitrary. For z E Ul<l the function (r--+ p,(( - z) has 
compact support in U. Hence 

h(z) ,= 1([p,(( - z)] 

is defined. By (24.5) the function zr--+ h(z) belongs to 6'( Ulr.)). Obviously it is 
enough to prove that for every functionf E .0J(C) with Supp(.f) c Ule) one 
has 

T[f] = JJ h(z)J(z) dx dy. 
U(,) 

The function sm, J has compact support in U and by (24.6) one has 

T[smJ] = 1( l [f p,(( - z)J(z) dx dy j 

= JJ h(z)J(z) dx dy. 
U(E) 

(1) 

(2) 

By (13.3) there exists a function I/J E 6'(lC) with tlI/J = f The function I/J is 
harmonic on V ,= qSupp(f). Thus by (24.8.b) 

I/J = sm,I/J on Vl<l. 

Hence <p ,= I/J - sm, I/J has compact support in U and by (24.8.a) satisfies 

tl<p = tl(I/J - sm,I/J) = tlI/J - sm, tlI/J =f- sm,f 

Since tl T = 0, one has T[ tlq>] = O. Thus 

T[f] = T[ sm, J + tl<p] = T[ sm, f]' 

Combining this with (2) then yields (1). o 

24.10. Corollary. Suppose T is a distribution on the open set U c C with 
(aTjaz) = O. Then T is a holomorphic Junction on U. 

PROOF. Since (aTjaz) = 0, 

tlT = T) = O. az az 

Thus T E 0"(U) by (24.9). Because (aT/ai) = 0, Tis holomorphic. 0 

Remark. The proof given here for Weyl's Lemma in the plane carries over 
almost word for word for harmonic functions on [R1". But Weyl's Lemma is 
only a special case of a general regularity theorem for elliptic differential 
operators on differentiable manifolds, cf. [35], [43]. 
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EXERCISES (§24) 

24.1. Let X be an open subset of C and T. E Y'(X), V E F\J, a sequence of distributions 
in X. A sequence (TJ,. F is said to converge to a distribution T E 9'(X) if 

T..[qJ]--> T[ qJ] for every qJ E .Q:(X). 

Denote this by T. 7! T. Show that if T. -; T, then 

D"T. if D"T, 

for every differential operator 

( a) 7, ( C ) 7) 

D' = ex 8Y . 
24.2. Let Y c C be open. A sequence of continuous functions I: Y --> C is said to 

converge weakly to a continuous function f: Y --> C if 

r I' I qJ dx dy --> r I' frp dx dy for every qJ E Q(X). 
Y Y 

Show that if all thej;. are harmonic (resp. holomorphic) and converge weakly to 
./; thenfis also harmonic (resp. holomorphic). 

§25. The Runge Approximation Theorem 
The classical Runge Approximation Theorem asserts that on a simply con-
nected domain Y c C every holomorphic function can be approximated, 
uniformly on compact sets, by functions which are holomorphic on all of C 
(and thus by polynomials). This theorem was generalized by Behnke-Stein 
[51] to arbitrary non-compact Riemann surfaces X. In order to approximate 
all holomorphic functions on an open subset Y c X by functions holomor-
phic on X, one has to replace the assumption that Y is simply connected by 
the assumption that no connected component of X\ Y is compact. The proof 
we present is based on a functional analytic proof using Weyl's Lemma which 
was first given by Malgrange [55]. 

25.1. Suppose X is a Riemann surface and Y c X is an open subset. We 
would like to introduce the structure of a Frechet space on the vector space 
Iff(Y) of differentiable functions on Y. To do this, choose a countable family 
of compact sets K j C Y, j E J, with U Kj = Y and such that each K j is 
contained in some coordinate neighborhood (Vj' zJ For j E J and 
v = (Vb V 2 ) E f\j2 define a semi-norm Pj,': $(Y)-> lR+by 

Pj,,(f):= sup 1 Dj f(a) I, 
a E Kj 

where 
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is the appropriate differential operator relative to the coordinates 
Zj = Xj + iYj. These countably many semi-norms Pj, define a topology on 
g(y). A neighborhood basis of zero is given by finite intersections of sets of 
the form 

°ll(pjv, 8) := {f E g(y): Pjv(f) < s}, 8> 0. 

Then convergence f" --> f with respect to this topology means uniform con-
vergence of the functions and all of their derivatives on every K j. With this 
topology g(y) is a Frechet space. One can easily check that this topology is 
independent of the choice of K j and (Uj , zJ On the vector subspace 
(i7(Y) c g(y) the induced topology coincides with the topology of uniform 
convergence on compact subsets. For, in the case of holomorphic functions 
uniform convergence on compact subsets implies the uniform convergence 
on compact subsets of all the derivatives. Analogously one can introduce the 
structure of a Frechet space on the vector space g0. 1 (Y) of (0, 1 )-forms on Y 
with differentiable coefficients. An element WE ICo. l(y) may be written 
W = jj dZ j on Uj , where jj E IC( Uj n Y). Set 

Pjv(w):= sup IDj,fj(a)l· 

Then the Frechet structure is obtained as above from the semi-norms Pjv. 

25.2. Lemma. Suppose Y is an open subset of a Riemann surface X. Then 
every continuous linear map T: 6"(Y) --> C has compact support, i.e., there 
exists a compact subset KeY such that 

T(f] = ° for every f E 6"(Y) with Supp(f) c y\K. 

An analogous result is also true for go. 1 (Y). 

PROOF. Since T is continuous, there exists a neighborhood Oll of zero in IC( Y) 
such that I T(f] I < 1 for every f E Cill. By the definition of the topology on 
g(y) there exist elementsjl,' .. ,jm E J, V1, ... , Vm E f\)2 and 8 > 0, where the 
notation is the same as in (25.1), such that 

°ll(Phvl' 8) n ... n Olf(Pjmvm' 8) cOli. 

Let K := Kh U ... U Kim' We now show that iff E 0"( Y) with Supp(f) c 

y\K, then T(f] = 0. Namely for arbitrary A. > 0, 

PhVl(),f) = ... = PjmvjAf) = 0. 

Thus Af E Olf and 111 Af] I < 1. But this implies I T(f] I < 1/ A for every A > ° 
and this is possible only if T[f] = 0. 0 

25.3. Lemma. Suppose Z is an open subset of a Riemann surface X and 
S: go. l(X) --> C is a continuous linear mapping with S[d"g] = ° for every 
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9 E g(X) with Supp(g) Z. Then there exists a holomorphic I-form (T E Q(X) 
such that 

S[W] = fJ (TI\W 
Z 

for every WE g0, l(X) with Supp(w) Z. 

PROOF. Suppose z: U --+ V c IC is a chart on X which lies in Z. Identify U 
with V. For qJ E .@(U) denote by <p any I-form in go, l(X) which equals qJ dz 
on U and zero on X\U. Then the mapping 

Sv:'@(U)--+IC, 

is a distribution on U which vanishes on all functions of the form 
qJ = og/oz, 9 E .@(U), i.e., oSv/oz = O. Hence by Corollary (24.10) there exists 
a unique holomorphic function hE m(U) with 

S[;P] = fJ h(z )qJ(z) dz 1\ dz for every qJ E ,@(U). 
v 

Setting (Tv:= h dz, we get 

S[ w] = fJ (Tv 1\ W 
v 

for every WE g0, l(U) with Supp(w) U. 
Now if we carry out the same construction with respect to another chart 

Z': U' --+ V', then we get a I-form (T v' E Q( U') with the corresponding proper-
ties. Hence 

for every WE g0, l(X) with Supp(w) U nU', This implies (Tv = (Tv, on 
U nU'. Thus the (Tv piece together to give a I-form (T E Q(Z) such that 

S[ w] = fJ (T 1\ W (*) 
Z 

for every W EgO, l(X) whose support is compact and lies in a chart inside Z. 
If WE g0, l(X) is an arbitrary I-form with Supp(w) Z, then using a parti-
tion of unity one can write W = Wi + ... + W., where each Wj satisfies (*). 
Thus 

o 
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25.4. Theorem. Suppose Y is a relatively compact open Runge subset of a 
non-compact Riemann surface X. Then for every open subset Y' with 
Y c Y' X the image of the restriction map @(Y') ....... 0(Y) is dense, where the 
topology is uniform convergence on compact subsets. 

PROOF. Denote by f3: 6"(Y') ....... g(y) the restriction map. In order to prove 
that f3(0(Y')) is dense in @(Y) we can use the Hahn-Banach Theorem (c.f. 
Appendix B.9). It suffices to show the following. rfT: Io"(Y) ....... C is a contin-
uous linear junctional with T I f3(@(Y')) = 0, then T I (I'!(Y) = O. 

To prove this, define a linear mapping 

S: go. l(X) ....... C 

in the following way. By (14.16) given W Ego. l(X) there exists a function 
f E g(y') with d'f = wi Y'. Then set 

S[w]:= T[f I Y]. 

This definition is independent of the choice of the function f For, if 
d"g = wi Y, then f - g E (i')(Y') and thus by assumption T[(f - g) I Y] = O. 
We will now show that S is also continuous. Consider the vector space 

V:= {(w,f) E 10"0' l(X) x g'(Y'): d'j = wi Y'}. 

Since d": Io"(Y') ....... g0, l(y') is continuous, V is a closed vector subspace of 
10"0. l(X) x g(y') and thus is a Frechet space. Now the projection pr 1: V ....... 
10"0. l(X) is surjective and thus by the Theorem of Banach is open. Also the 
mapping f3 " pr 2: V ....... 10"( Y) is continuous. Since the diagram 

V p, pr, , 6"( Y) 

'" j jT 
gO.l(X) s C 

is commutative by definition, S is continuous because Tis. 
By Lemma (25.2) there exists a compact subset KeY with 

(1) T[f] = 0 for every fE 0"(Y) with Supp(f) c y\K 

and a compact subset LeX with 

(2) S[w] = 0 for every w EgO. l(X) with Supp(w) cX\L. 

If g E C(X) is a function with Supp(g) X\K, then S[d"g] = T[gl Y] = O. 
Thus by Lemma (25.3) there exists a holomorphic 1-form a E Q(X\K) such 
that 

S[ w] = JJ a /\ w 
X\K 
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for every WE go. l(X) with Supp(w) X\K. Because of (2) it must be the 
case that (j I X\(K u L) = O. Every connected component of X\A(K) is not 
relatively compact and hence meets X\(K u L). Thus by the Identity 
Theorem (j I X\A(K) = 0, i.e. 

(3) S[w] = 0 for every W Ego. I(X) with Supp(w) X\A(K). 

Now suppose fE 0(Y). We have to show T[J] = O. Since Y is Runge, 
A(K) c Y. Hence there is a function 9 E g(X) withf = 9 in a neighborhood 
ofA(K) and Supp(g) Y. Then T[J] = T[g I Y] by (1) and T[g I Y] = S[d"g] 
by the definition of S. Since 9 is holomorphic on a neighborhood of A(K), 
one has Supp(d"g) X\A(K) and thus S[d"g] = 0 by (3). Collecting these 
statements together we have T[J] = 0 for every f E 0(Y). 0 

25.5. The Runge Approximation Theorem. Suppose X is a non-compact 
Riemann surface and Y is an open subset whose complement contains no com-
pact connected component. Then every holomorphic function on Y can be 
approximated uniformly on every compact subset of Y by holomorphic func-
tions on X. 

PROOF. It suffices to consider the case when Y is relatively compact in X. 
Suppose f E 0( Y), a compact subset KeY and t: > 0 are given. By (23.9) 
there exists an exhaustion Y1 Y2 • •• of X by Runge domains with 
Yo := Y Yl. By Theorem (25.4) there is a holomorphic functionfl E 0{Yl ) 
with 

where II 11K denotes the supremum norm on K. 
Now using Theorem (25.4) and induction one gets a sequence of functions 

In E 0(y") with 

II f. - In-I II Yn-2 < 2- nB for every n 2. 

For every n E N the sequence (1.)v>. converges uniformly on Y". Hence 
there exists a function F E (!)(X), holomorphic on all of X, which on each y" 
is the limit of the sequence (fv)v>.' Thus, by construction, IIF - filK < B. 

o 

25.6. Theorem. Suppose X is a non-compact Riemann surface. Then given a 
I-form W Ego. 1 (X) there exists a function f E g(X) with d''f = w. 

PROOF. For every relatively compact open subset Y X there exists by 
(14.16) a function g E g(y) with d"g = W I Y. Now the proof is similar to the 
proof of Theorem (13.2), namely one uses an exhaustion process. 
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Suppose Yo ct:: Y1 ct:: Y2 ct:: ••• is an exhaustion of X by Runge domains 
(23.9). By induction on n we will construct functions In E 6"(y") such that 

(i) d'j" = wi Y", 
(ii) 11f,,+1 - f" II Yn-l:S; rn. 

To begin choose any function E 6"(Yo) which is a solution of the differen-
tial equation d"lo = w I Yo· Now suppose 10, ... , In have been constructed. 
There exists gn+ 1 E 6"(Y,,+ d with d"gn+ 1 = wi Y,,+ l' On Yn one has 
d"gn+ 1 = d'fn and thus gn+ 1 - f" is holomorphic on Yn. By the Runge 
Approximation Theorem there exists h E (17( Yn + 1) such that 

II(gn+l - f,,) - hll yn _1 :s; rn. 
Setln+l '=gn+l - h. Then d'fn+l = d"gn+ 1 = wi y"+1 and 

- f"IIYn-l:S; 2- n. 

As in the proof of (13.2) it now follows that the converge to a 
solution I E 6"(X) of the differential equation d'f = w. 0 

EXERCISES (§25) 

25.1. Let X be a Riemann surface and S: g(2)(X) -> I[ a continuous linear functional 
such that S[d'd"g] = 0 for every g E 8(X). Prove that there is a harmonic 
function h E 6"(X) such that 

S[w] = rr hw for every w E 6"(2)(X) with compact support. 
y 

25.2. Let Y c I[ be open. Given any g E sty) show that there exists an! E a'( Y) such 
that 

4{=g. 

§26. The Theorems of Mittag-Leffler and 
Weierstrass 

We now consider the problem of constructing meromorphic functions on 
non-compact Riemann surfaces having prescribed principal parts, resp. 
having zeros and poles of given orders. These are analogues of the Theorems 
of Mittag-Leffler and Weierstrass in the complex plane. For compact 
Riemann surfaces the comparable problems were looked at in sections 18 
and 20. While in the compact case there are particular conditions which are 
necessary in order for a solution to exist (Theorems 18.2 and 20.7), it turns 
out that in the non-compact case the analogues of the Theorems of Mittag-
Leffler and Weierstrass hold without any restriction. 
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26.1. Theorem. Suppose X is a non-compact Riemann surface. Then 

Hl(X, e::') = o. 

PROOF. By the DolbeauIt Theorem (15.14) one has Hl(X, ((;) 
gO, 1 (X)/d"g(x). But by Theorem (25.6) 8,0. l(X) = d"8'(X) and thus 
Hl(X, (l:i) = O. 0 

Remark. Theorem (26.1) is a special case of Theorem B of Cartan-Serre 
which is valid on arbitrary n-dimensional Stein manifolds, c.f. [32], [34]. 

26.2. We now recall the notion of a Mi ttag-Leffler distribution, c.f. (18.1). 
Suppose U = (U;)i E I is an open covering of a Riemann surface X. A family 

f1 = (h)i E I of meromorphic functions j; E jf(U;) is called a Mittag-Leffler 
distribution if the differences h - jj are holomorphic on U i n U j , i.e., the 
functions have the same principal parts. By a solution of f1 one means a 
global meromorphic function f E j{(X) such that for each i E I the differ-
ence .f - h is holomorphic on Ui . The family of differences j;j:= jj -
hE(((Uin Uj ) defines a co cycle (hj)EZ1(U, (D). We proved in (18.1) that 
f1 has a solution precisely if this cocycle is a coboundary, I.e., 
(hj)EBl(U, 6). Thus by Theorem (26.1) we have the following. 

26.3. Theorem. On a non-compact Riemann surface every Mittag-Lejjler dis-
tribution has a solution. 

We now turn to the analogue of the Weierstrass Product Theorem. Given 
a divisor D: X -4 1L. on a Riemann surface X one would like to find a mero-
morphic function f E ,$I*(X) which has the same zeros and poles, counting 
multiplicities, as D, i.e., (f) = D, c.f. definitions (16.1) and (16.2). Recall that 
the notion of a weak solution was defined in (20.1). 

26.4. Lemma. Every divisor D on a non-compact Riemann surface X has a 
weak solution. 

PROOF 
(a) Choose a sequence K I, K 2 , ..• of compact subsets of X with the 

following properties: 

(i) K j = A(KJ for every j 2:: 1, 
(ii) K j C Kj + 1 for every j 2:: 1, 

(iii) Uj20: 1 K j = X. 

This is possible by (23.6). 
(b) We claim that given ao E X\Kj and a divisor Ao with Ao(ao) = 1 and 

Ao{x) = 0 for x # ao, then there exists a weak solution cp of Ao with 
cpIKj=1. 
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In order to prove the claim, note that since K j = A(Kj ), the point ao lies in 
a connected component V of X\Kj which is not relatively compact. Hence 
there exists a point al E V\Kj + 1 and a curve Co in V with initial point a 1 and 
end point ao. By Lemma (20.5) there is a weak solution ({)o of the divisor (7co 
with ({)o I K j = 1. Repeating the construction gives a sequence of points 
av E X\Kj +v, v E curves Cv in X\Kj +v from av+ 1 to av and weak solutions 
({)v of the divisors oCv with ({)v I K j +v = 1. Then oCv = Av - Av+ 1, where Av is 
the divisor which takes the value 1 at av and is zero otherwise. Thus the 
product ({)o ({) 1 ..... ({)n is a weak solution of the divisor Ao - An + 1. The 
infinite product 

<Xl 

({):= n ({)v 
v=o 

converges, since on any compact subset of X there are only finitely many 
factors which are not identically 1. Now (() is the desired weak solution of the 
divisor Ao. 

(c) Now suppose D is an arbitrary divisor on X. For v E set 

Dv(x):= 

where Ko := 0. Then 

if x E KV+1 \K., 
if x KV+1 \K., 

<Xl 

D = L Dv· 
v=o 

Since Dv is non-zero only at a finite number of points, by (b) there is a weak 
solution I/Iv of the divisor Dv with I/Iv I Kv = 1. The product 

<Xl 

1/1:= n I/Iv 
v=o 

is thus a weak solution of D. o 
26.5. Theorem. On a non-compact Riemann surface X every divisor 
D E Div(X) is the divisor of a meromorphic function f E A*(X). 

PROOF. Since the problem has a solution locally, there exists an open cover-
ing U = (V;)i E I of X and meromorphic functions h E .,H*( V;) such that the 
divisor of h coincides with D on Vi. We may assume that all the Vi are 
simply connected. On the intersection Vi n Vj the functionsh andjj have 
the same zeros and poles, i.e., 

E (!)*(V i n V j ) for every i,j E [. 

Now suppose 1/1 is a weak solution of D. This exists by (26.4). Then 1/1 = I/Ii h 
on Vi' where the function I/Ii E B(Vi) has no zeros. Since Vi is simply 
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connected, there exists a function <Pi E o( U;) with 1/1 i = e"", i.e., 1/1 = e"'1i on 
U i . Then on Ui n Uj one has 

e"'j-"" = /; E (0*(U. n U) (*) jj . , ) 

and thus <Pi i := <P i - <Pi E (i;'( U i n U;). Since <Pi i + <P ik = <Pik on any triple 
intersection, the family <Pij is a cocycle (<pij) E Zl(U, 0). Because 
Hl(X, 0) = 0, this co cycle splits. Thus there exist holomorphic functions 
gi E (1;( U;) with 

<Pij = <Pj - <Pi = gj - gi on U i n U j 

for every i, j E I. From (*) one gets eWO, = /; /Jj, i.e., 

= eO:!; on Vi n V j • 

Hence there exists a global meromorphic function f E jl*(X) with f = e91i 
on Vi for every i E 1. Since f and /; define the same divisor on V;, one has 
(f) = D. 0 

26.6. Corollary. On every non-compact Riemann sUllace X there is a holomor-
phic 1-form W E Q(X) which never vanishes. 

PROOF. Suppose 9 is a non-constant meromorphic function on X and 
f E A*(X) is a function with divisor - (dg). Then w := f dg is a holomorphic 
1-form on X which has no zeros. 0 

26.7. Theorem. Suppose X is a non-compact Riemann surface and (av)v E 'J is a 
sequence of distinct points on X which has no point of accumulation. Then 
given arbitrary complex numbers Cv E C there exists a ho[omorphic function 
fE 0(X) with f(aJ = c,.for every v E I\J. 

PROOF. By Theorem (26.5) there is a function hE CQ(X) which has a zero of 
order 1 at each av and is otherwise non-zero. For i EN let 

V , := X\U {aJ. 

Then U :=(Ui)ie 'oj is an open covering of X. Define giEAt(V;) by gi :=ci/h. 
For i # j 

Vin Vj = X\{av : vEN}. 

Thus l/h is holomorphic on Ui n V j . Hence (g;) E CO(U, .41) is a Mittag-
Leffler distribution on X which by (26.3) has a solution gEA(X). Let 
f :=gh. On Vi one has 

f = gh = gih + (g - gi)h = Ci + (g - g;)h. 



26 The Theorems of Mittag-Lerner and Weierstrass 205 

Since g - gi is holomorphic on Vi and h(ai) = 0; it follows thatf E lP(X) and 
f(a j ) = Cj for every i EN. 0 

26.8. Corollary. Every non-compact Riemann surface X is Stein, i.e., the fol-
lowing hold: 

(i) Given any two points x, y E X, x#- y, then there exists a holomorphic 
functionfE lP(X) withf(x) =ff(y). 

(ii) Given a sequence (x.). E 1\ in X having no points of accumulation, then 
there exists a holomorphic function f E lP(X) with lim sUP.-+oo I f(x.) I = 00. 

Remark. The Theorems of Mittag-Leffler and Weierstrass for non-
compact Riemann surfaces were first proved by H. Florack [54] using the 
methods developed by Behnke-Stein [51]. The analogues of these problems 
in several complex variables (the first and second Cousin problems) played 
an important role in the development of the theory of Stein manifolds (c.f. 
[53], [59], [61]). Also, the use of cohomology to solve these problems stems 
from that theory. 

EXERCISES (§26) 

26.1. Let X be a non-compact Riemann surface. Prove 

Hl(X, il) = o. 
[Hint: Using Corollary (26.6) show that il 19.] 

26.2. Let X be a non-compact Riemann surface. 

(a) Given any (j) E G'(2)(X) show that there exists f E G'(X) with 

d'd"f= (j). 

(b) Let Jf' be the sheaf of harmonic functions on X. Show that 

Hl(X, Jf') = o. 
26.3. Show that on a non-compact Riemann surface every meromorphic function is 

the quotient of two holomorphic functions. 

26.4. Let X be a non-compact Riemann surface and suppose f, g E 19(X) are holo-
morphic functions which have no common zero. 

(a) Show that the following sequence of sheaves is exact 

where 
rJ.(I/I)'=(I/Ig, -I/If) 

P(cpJ, CP2) ,= cpd + CP2g· 

(b) Show that there exist holomorphic functions (J), 'JI E 19(X) such that 

(J)f + 'JIg = 1. 
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26.5. Let X be a non-compact Riemann surface and let 
k 

= I (I)(X)jj, jj E (()(X), 
j=1 

be a finitely generated ideal in (I)(X). Prove that is a principal ideal. 
[Hint: Consider the divisor D on X defined by 

D(x) = min ord,,(jj) 
j 

and let f E (()(X) be a holomorphic function with (f) = D. Verify that 
= (()(X)f] 

26.6. Let X be a non-compact Riemann surface and D a divisor on X. Prove 

(a) HI(X, (JD) = 0, 
(b) HI(X, M) = O. 

§27. The Riemann Mapping Theorem 

The Riemann Mapping Theorem asserts that any simply connected 
Riemann surface, which is not isomorphic either to [pI1 or 1[, can be mapped 
biholomorphically onto the unit disk. This means that the universal cover-
ing of an arbitrary Riemann surface is always isomorphic to one of three 
normal forms: the Riemann sphere, the complex plane or the unit disk. The 
Riemann Mapping Theorem was presented by Riemann in his dissertation 
in 1851, but not in its most general form and not with a completely accept-
able proof. The first complete proofs were given by H. Poincare and P. 
Koebe in the year 1907. 

27.1. For a Riemann surface X denote by := Q(X)/dC9(X) the" holo-
morphic" deRham group, cf. (15.15). If X is simply connected, then every 
holomorphic I-form on X has a primitive (10.7) and thus = O. We 
will prove the Riemann Mapping Theorem for Riemann surfaces X satisfy-
ing the seemingly more general condition RhMX) = O. However, one con-
sequence of this will be that = 0 implies X is simply connected. 

27.2. Lemma. Suppose X is a Riemann surface with = O. Then 

(i) For every holomorphicfunctionf: X -+ 1[. a logarithm and a square root 
off exist, i.e., there exist functions g, h E C9(X) such that eg = f and h2 = f 

(ii) Every harmonic function u: X -> IR is the real part of a holomorphic 
function f: X -> IC. 

PROOF 
(i) f- 1 dfis a holomorphic I-form on X. Since = 0, there exists a 

function g E C9(X) with dg = f- 1 df By adding a constant to g if necessary, 
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we may assume that for some point a E X one has eel") = f(a). Now 

d(fe-g) = (df)e- g - fe-9j"-l df = 0 

and thus fe - 9 is constan t1 y equal to 1. Hence e9 = f 
Taking h := e912 one has h2 = f 

207 

(ii) By Theorem (19.4) there is a holomorphic I-form WE Q(X) with 
du = Re(w). Since Q(X) = dl!J(X), one has du = Re(dg) for some g E l!J(X). 
Thus u = Re(g) + const. 0 

27.3. Theorem. Suppose X is a non-compact Riemann surface and Y X is a 
domain with = O. Suppose also that the boundary of Y is regular with 
respect to solving the Dirichlet problem. Then there exists a biholomorphic 
mapping of Y onto the unit disk D. 

PROOF. Choose a point a E Y. By Weierstrass' Theorem (26.5) there exists a 
holomorphic function g on X which has a zero of first order at a and does 
not vanish on X\a. By Theorem (22.17) there exists a function u: Y 
continuous on Y and harmonic on Y, with 

u(y) = 10glg(y)1 for every y E ay. (*) 

By Lemma (27.2.ii) u is the real part of a holomorphic function hE l!J(Y). Set 

f:= e-hg E l!J(Y). 

Now we claim that f maps Y biholomorphically onto the unit disk D. 
First we will show f(Y) c: D. For y E y\a one has 

If(y) I = le-h(Y)llg(y)1 = elog! g(y)!-u(y). 

Hence the function I f I which is defined on Y can be continued to a contin-
uous function cp: Y -+ which because of (*) is identically equal to Ion ay. 
Then the Maximum Principle implies I f(y) I < 1 for every y E Y, i.e., 
f(Y) c: D. 

Now we will show that the mapping f: Y -+ D is proper. To do this, it 
suffices to show that for every r < 1 the preimage y. of the disk {z E IC: 
I z I r} is compact in Y. But 

y. = {y E Y: I f(y) I r} = {y E Y: cp(y) r} 

and thus y. is a closed subset of the compact set Y and so is compact. 
Since f: Y -+ D is proper, each value is attained equally often (Theorem 

4.24). But the value zero is taken exactly once. Thusf: Y -+ D is bijective and 
hence biholomorphic. 0 

27.4. The general Riemann Mapping Theorem can be derived from 
Theorem (27.3) by using an exhaustion process. To do this we require a few 
additional tools. 
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Notation. For r E ]0, 00] let 

D(r) :={z E C: Izi < r}. 

In particular D(1) = D is the unit disk and D( 00) = C is the complex plane. 
The following observation is a simple consequence of Cauchy's Integral 

Formula. Suppose f: D(r) ...... D(r') is a holomorphic mapping. Then 

11'(0)1 
r' s: -. 
r 

27.5. Lemma. Suppose G c C is a domain such that C \G has interior points 
and suppose Wo E G. Then the set 

{IE 0(D):f(D)c G and f(O)=wo} 

is a compact subset of c'j(D) with respect to the topology of uniform convergence 
on compact subsets. 

PROOF. Suppose a is an interior point of C\G. Then the mapping 
Z 1I(z - a) takes the domain G biholomorphically onto a subdomain of 
some disk D(r) with r < 00. Hence the result follows from Montel's 
Theorem. 0 

27.6. Theorem. The set :f of all schlicht (= injective) holomorphic functions 
f: D ...... C with f(O) = 0 and 1'(0) = 1 is compact in (!:'(D). 

PROOF 

(a) Suppose (In}nE r. is a sequence of functions in /1'. It suffices to show 
that there is a subsequence which converges to a function fEY. 

Denote by rn the maximum radius such that D(rn) cf..(D). Then rn s: 1 
since the inverse <Pn of.r. maps D(rn) into D and hence 1 = s: l/r •. 
Choose a point an E aD(rn) with an ¢fn(D) and set gn :=f../an. Then 

Dc gn(D) and 1 f gn(D). 

(b) Since gn(D) is homeomorphic to D and thus is simply connected, there 
exists a holomorphic function t/J: gn(D) ...... C* with t/J(O) = i and 
t/J(zf = z - 1 for every Z E gn(D). Set hn:= t/J gn' Thus = gn - 1. 

We claim that WE hn(D) implies -w ¢ hn(D}. For, otherwise we would 
have w = hn(zd and -w = hn(zz) for Z1> Z2 ED. But then W Z = (_w)Z im-
plies gn(zd = gn(ZZ) and since gn is injective, ZI = Z2' Hence w = -wand 
thus w = hn(z) = O. However this implies gn(Z 1) = 1, which is a 
con tradiction. 

(c) Because Dcgn(D), one has U:=t/J(D)chn(D). Thus (-U)n 
hn(D) = 0. By Lemma (27.5) the sequence (hn) has a convergent sub-

sequence. Since f.. = an(1 + h;) and 1 an 1 s: 1 for every n, the sequence (In) 
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also has a convergent subsequence (fnJ which converges to some function 
f: D -+ rc. Clearly,f(O) = 0 andf'(O) = 1, so f is not constant. 

(d) The remaining point is to show thatfis schlicht. If this were not the 
case, then there would exist an a E C such thatf - a would have at least two 
zeros in D. Then one could find an r < 1 such that f - a has, counting 
multiplicities, at least k ;;::: 2 zeros in D(r) and does not vanish on oD(r). Then 

k = _1 r f'(z) dz. 
2rri . {(z) - a 

Izl =r . 

Thus every function sufficiently close to f also takes the value a k times, 
contradicting the fact that every.tn, is schlicht. 0 

27.7. Lemma. Suppose R E ]0, C1J] and Y is a proper subdomain ()( D(R) with 
o E Y and Rhk(Y) = O. Then there exists an r < R and a holomorphic map 
f: Y -+ D(r) withf(O) = 0 andf'(O) = 1. 

PROOF. First consider the case R < 00. Without loss of generality we may 
assume R = 1 and thus Y c D. By assumption there is a point a E D\ Y. 
Define a biholomorphic map cp: D -+ D by 

z-a 
cp(z)'=-_-- . 

I - az 

Then 0 ¢ cp(Y) and thus by Lemma (27.2) there exists g E (i,(y) with 
g2 = cp I Y. Clearly g(Y) c D. Set 

z-b 
I/t(z):=-- whereb:=g(O). 

1 - Eiz' 

The mapping h := I/t c g: Y -+ D satisfies h(O) = 0 and 

y :=h'(O) = 1/t'(b)g'(O) = I/t'(b) cp'(O) 
2g(0) 

1 + I b 12 
2b 

1 l-Iall 
l-Ibf 2b 

since b l = - a. Thus I y I > 1. Now letting r ,= 1/ I}' I and f:= hh', the map 
f: Y -+ D(r) has the desired properties. 

The case R = 00 is handled similarly. D 

27.8. Lemma. Suppose X is a non-compact Riemann surface with = 0 
and Y c X is a Runge domain. Then Rhk(Y) = 0 as well. 

PROOF. Suppose WE Q(Y) is an arbitrary holomorphic I-form on Y. We 
have to show that W has a primitive. By Corollary (26.6) choose a holomor-
phic I-form Wo on X which has no zeros. Then w = fwo for some f E (1)( Y). 



210 3 Non-compact Riemann Surfaces 

By the Runge Approximation Theorem there exists a sequence In E (YI(X), 
n EN, which converges uniformly on compact subsets in Y to f Hence for 
every closed curve IX in Y the integrals S, I.wo converge to S, w. Since every 
I-formf"wo has a primitive on X, L = O. Thus L w = O. Since all the 
periods of w vanish, by Theorem (10.15) w has a primitive. 0 

27.9. The Riemann Mapping Theorem. Suppose X is a Riemann sUlface with 
RhJ(X) = O. Then X can be mapped bihulumurphically onto either the 
Riemann sphere [pI, the complex plane IC or else the unit disk D. 

Remark. As was pointed out in (27.1), the assumption = 0 holds 
whenever X is simply connected. Since [pI, IC and D are simply connected, 
the Riemann Mapping Theorem shows that the converse also holds. 

PROOF 

(a) If X is compact, then every holomorphic function on X is constant 
and so d{!:'(X) = O. Hence = 0 implies Q(X) = 0, i.e., X has gcnus O. 
By Corollary (16.13) X is biholomorphic to pl. 

(b) Now assume X is non-compact. By Theorem (23.9) there exists an 
exhaustion Yo <s:: YI <s:: Yz <s:: ••. of X by Runge domains Yn whose boundaries 
are regular with respect to solving the Dirichlet problem. By Lemma (27.8) 
RhJ.(Y,,) = 0 for every n. Thus by Theorem (27.3) every Y" is biholomorphic 
to the unit disk. Choose a point a E Yo and a coordinate neighborhood 
(U, z) of a. Then there exists a real number rn > 0 and a biholomorphic 
mapping 

Y,,-->D(rn) 
with 

In(a) = 0 and;:; (a) = 1. 

(c) Now rn <:::: rn+ I for every n. To see this note that the mapping 

h:= f,,+ 1 I;; I: D(rn) --> D(rn+ 1) 

satisfies 11(0) = 0 and 11'(0) = 1 and thus by the Remark in (27.4) one has 
1 = h'(O) <:::: rn+ drn. Let 

R := lim rn E ]0, ex) J. 

We will now show that X is mapped biholomorphically onto D(R). 
(d) We claim that there exists a subsequence of the sequence 

(f,,)n E ',j such that for every m the sequence (f"k I Ymh 2: m converges uniformly 
on compact subsets of Ym . The mapping zf---*Iol(roz) maps D biholo-
morphically onto Yo. Set 

n 2 O. 
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Then gn: D IC is a schlicht holomorphic function with gn(O) = 0 and 
= 1. Hence by Theorem (27.6) there is a subsequence (/"o.)ke '_ of the 

sequence (/,,), which converges uniformly on compact subsets of Yo. By the 
same reasoning there is a subsequence (/"u) of this sequence which con-
verges uniformly on compact subsets of Y1• Repeating this process we get for 
each m a subsequence (/"mk) of the previous subsequence which converges 
uniformly on compact subsets of Ym . Set In. :=Inkk' Then the sequence 
(/".h E " has the desired property. 

Suppose I E &(X) is the limit of the sequence (fn.), i.e. I is that holomor-
phic function on X which coincides on every Ym with the limit of the se-
quence (/".1 Ymk,: m' The mapping I: X -+ IC is injective and satisfies 

dl 
I(a) = 0 and dz (a) = 1. 

(e) Finally we claim I maps X biholomorphically onto D(R). Since it is 
obvious thatI(X) c D(R), it suffices to show I: X D(R) is surjective. Sup-
pose the contrary. Then by Lemma (27.7) there exists an r < R and a holo-
morphic mapping g:I(X)-+ D(r) with g(O) = 0 and g'(O) = 1. Choose n so 
large that r. > r. Then the mapping 

h :=g 0 I J I;; 1: D(rn) D(r) 

satisfies h(O) = 0 and h'(O) = 1. Since r < r., this is not possible. This contra-
diction shows that I: X D(R) is surjective and thus the proof of the 
Riemann Mapping Theorem is complete. 0 

27.10. Suppose X is a Riemann surface and X is its universal covering. Since 
g is simply connected, we may apply the Riemann Mapping Theorem to it. 
It is standard to call X elliptic, parabolic or hyperbolic depending on whether 
its universal covering is isomorphic to IP>\ IC or D. 

Suppose G = Deck(g / X) is the group of covering transformations of the 
universal covering. Every (J EGis an automorphism of g, i.e., a biholomor-
phic mapping of g onto itself. Also the group G acts without fixed points 
and discretely on g, i.e., 

(i) If (J E G\{id}, then (JX =1= x for every x E g. 
(ii) For every x E g the orbit 

Gx :={O"x: 0" E G} 
is a discrete subset of g. 
Property (i) follows since each covering transformation is uniquely 
determined once one knows the image of any point. Property (ii) holds since 
the covering p: j{ -+ X is Galois and thus Gx = p-l(p(X)). 

The Riemann surface X may be thought of as the quotient of g modulo 
G, i.e., two points of g are identified if one can be transformed into the other 
by some element of G. Thus every hyperbolic Riemann surface is a quotient 
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of the unit disk D modulo a group of automorphisms of D acting without 
fixed points and discretely. 

27.11. Lemma 
(a) Every automorphism of pI has a fixed point. 
(b) Suppose G is a group of automorphisms ofe which acts discretely and 

without fixed points. Then G is one of the following: 

(i) G = {id}. 
(ii) G consists of all translations of the form 

Zf---+Z + ny, n E 71., 

where y is a fixed non-zero complex number. 
(iii) G consists of all translations of the form 

n, m E 71. 

where YI and Yz are two fixed complex numbers linearly independent over IR. 

PROOF 

(a) As is well known, the automorphisms of pI are linear fractional 
transformations of the form 

az + b 
Zf---+--

cz + d' 
ad - bc =1= o. 

Every such transformation has at least one fixed point. 
(b) The automorphisms of e are affine linear mappings of the form 

Zf---+az + b, a E e*, 

If a =1= 1, then this transformation has a fixed point. Thus the group G con-
sists only of translations z + b. Let r be the orbit of zero under G. Then 
r is a discrete additive subgroup of e and G consists of all translations 
Z z + b, where b E r. Let Vee be the smallest real vector subspace 
containing r. Depending on whether dim!T,! V is 0, 1 or 2 one has case (i), (ii) 
or (iii). This follows from Theorem (21.1). 0 

27.12. Theorem 
(a) The Riemann sphere pI is elliptic. 
(b) The complex plane e, the punctured plane e* and all tori e/r are 

parabolic. 
(c) Every other Riemann surface is hyperbolic. 

Thus, in particular, a compact Riemann surface is elliptic, parabolic or 
hyperbolic depending on whether its genus is zero, one or greater than one. 
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Remark. Compact Riemann surfaces of genus one are also called elliptic 
curves. As this is easily confused with the above terminology, [pI is seldom 
called an elliptic Riemann surface. 

PROOF. The assertions (a) and (b) are clear. One only has to show that if X is 
not hyperbolic, then it is isomorphic to one of the surfaces listed in (a) or (b ). 

Case 1. The universal covering of X is isomorphic to [pl. Then Lemma 
(27.11.a) implies X itself is isomorphic to [pl. 

Case 2. The universal covering of X is isomorphic to C. Then the group 
G of covering transformations is, by (27.ll.b), either (i), (ii) or (iii). In case (i) 
X is isomorphic to C and in case (ii) to C*, for then the covering is isomor-
phic to 

C --> C*, ( 21[i ) zl--+exp y Z • 

Finally in case (iii) X is a torus. o 
A simple consequence is the so-called Little Theorem of Picard. 

27.13. Theorem. Suppose f: C --> C is a non-constant holomorphic function. 
Then f takes every value c E C with at most one exception. 

PROOF. Suppose f did not take two distinct values a, b E C. By Theorem 
(27.12) the Riemann surface X :=q{a, b} is hyperbolic. Hence the mapping 
f: C --> X can be lifted to a mapping l: C --> g, where g is the universal 
covering of X. Since X is isomorphic to the unit disk, it follows from Liou-
ville's Theorem that 1 and thus also f are constant. Contradiction! 0 

EXERCISES (§27) 

27.1. Let X be a Riemann surface and 

f,.: X --->q{O, I}, V E N, 

be a sequence of holomorphic functions which do not take the values 0 and 1. 
Suppose there exists a point Xo E X such that (!v(xo))v E " converges to a point 
C E iC\{O, 1}. Prove that there exists a subsequence (fv,h. 'J which converges 
uniformly on every compact subset of X to a holomorphic function 

f: X ---> q{O, I}. 

[Hint: Let g ---> X and D ---> q{O, 1} be the universal coverings (D is isomorphic 
to the unit disk). Consider suitable liftings Jv: g ---> D of the fv and use the 
classical theorem of Montel.] 
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27 .2. Prove the" Big Theorem of Picard:" Let 

U ,= {z E C: ° < I z I < r}, 

and 

J: U --+ C 

3 Non-compact Riemann Surfaces 

where r > 0, 

a holomorphic function having an essential singularity at the origin. Then J 
attains every value C E C with at most one exception. 
[Hint: Consider the sequence of functions 

f.: U --+ C, f.(z) ,= J(2)z) 

and use Ex. 27.1.] 

§28. Functions with Prescribed Summands of 
Automorphy 

In §10 we saw that the integration of differential forms on a Riemann surface 
X gives rise to additively automorphic functions whose summands of auto-
morphy determine a "period homomorphism" 7r 1(X) C. Behnke-Stein 
[51] proved that conversely given any homomorphism 7rl(X) C on a non-
compact Riemann surface X there always exists a holomorphic 1-form 
having these periods. In this section we prove the Theorem of Behnke-Stein. 
At the same time we investigate arbitrary functions having non-constant 
summands of automorphy. 

28.1. Cohomology of Groups. Suppose G is a group whose operation is 
written multiplicatively and A is a G-module, i.e., an additive abelian group 
together with a mapping 

G x A --> A, 

satisfying the following: 

(i) O'(a+b)=O'a+O'b, 
(ii) otra) = (O'r)a, 

(iii) sa = a, 

(0', a) f--+ O'a 

for every 0', rEG and a, b E A. The identity of G is denoted by c. A mapping 

G ->A, 

is called a crossed homomorphism if 

a(fT = a(f + O'a T for every 0', rEG. 

If G operates trivially on A, i.e., O'a = a for every 0' E G, then a crossed 
homomorphism is nothing but a group homomorphism in the usual sense. 
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The set of all crossed homomorphisms G ---+ A has the natural structure of an 
additive group and will be denoted by ZI(G, A). Special crossed homo-
morphisms are obtained in the following way. Suppose I E A is fixed and 

a" :=I - aI for every (J E G. 

Then 

a", =I- (JrI=I - (JI + af - (JrI= (f - an + (J(f - rf) 

Crossed homomorphisms which arise in this way are called coboundaries. 
They form a subgroup of Zl(G, A) which will be denoted by B 1(G, A). The 
quotient 

Hl(G, A):= Zl(G, A)/Bl(G, A) 

is called the 1st cohomology group of G with coefficients in the G-module A. 

28.2. Summands of Automorphy. Suppose p: Y ---+ X is an unbranched holo-
morphic covering mapping between Riemann surfaces and G:= Deck(Y/X) 
is its group of covering transformations. Then (9(Y) is a G-module, if one 
defines aI E (0( Y) by a.f:= I c a 1 for any (J E G and IE (O( Y). The differences 

a,,:= I - aI E 0(Y), (J E G, 

are called the summands oI automorphy of f By (28.1) the summands of 
automorphy of I define a crossed homomorphism 

G ---+ 0( Y), 

If the covering is Galois (Definition 5.5) and all the summands of auto-
morphy of a functionf E 0(Y) are zero, then the functionIlies in the subring 
p*0(X) c 0(Y) and thus may be identified with a function on X. 

One can do the same thing for the meromorphic functions A(Y) and the 
differentiable functions tf( Y). 

28.3. Galois Coverings. The notation will be the same as in (28.2). Assume 
p: Y ---+ X is Galois. Every point x E X has a connected open neighborhood 
U such that 

where the VA are disjoint open subsets of Y and the mappings p I VA ---+ U are 
homeomorphisms. Now we construct a homeomorphism 

cp: U x G, 

where G has the discrete topology, in the following way. Choose an index 
A.o E A. Then for every A. E A there is precisely one a E G such that 
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O"{V,,) = VA' For Y E: V; set lji(Y):= (p(y), 0"). This maps V; homeomor-
phically onto U x {O"} and implies that (p is a homeomorphism. The map-
ping lji is fiber-preserving, i.e., the diagram 

p-l(U) '" • U x G 

U 

is commutative. Moreover lji is compatible with the action of G, i.e., lji(Y) = 
(x, 0") implies lji(ry) = (x, rcr) for every r E: G. We will call such a fiber-
preserving homeomorphism 

lji: p-l(U)-> U x G 

which is compatible with the action of GaG-chart of the Galois covering 
p: Y -> X. A G-chart has a decomposition lji =(p, 1]), where 1]: p - 1 (U) -> G 
is a mapping such that 

I](ry) = rl](Y) for every y E: p-l(U) and r E: G. 

28.4. Theorem. Suppose X and Yare /lon-compact Riemann surfaces, 
p: Y -> X is a holomorphic unbranched Galois covering map and 
G = Oeck(Y/X) is its group of covering tran!!/ormations. Then given any 
crossed homomorphism 

G -> (I (Y), 

there exists a holomorphic function f E: (1'( Y) having summands autoltwrph y 

Remark. Theorem (28.4) asserts that Hl(G, ("i)(Y)) = O. This is also true for 
arbitrary Stein manifolds (Stein [62], Serre [59]). 

PROOF 

(a) Choose an open covering U = (U;)iEl of X and G-charts 

ljii = (p, 1];): p l( Vi) -> Vi x G. 

Now on 1';:= p-l(U;) define functions};: 1'; -> IC by 

.t;(y) := for every y E: 1';. 

Clearly}; is holomorphic on 1';. 
(b) We now claim thatJ: - a.t; = a" on 1'; for every 0" E: G. For y E: 1'; one 

has by definition 

(O"J:)(y) =t;(O"-ly) = = a" 
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The relation a,rr = a" + (Jar with r := (J- l1fJy) implies 

a,,(y) = a"r(Y) - a,((J- 1 y) 

= - y) = /;(y) - (O".fi)(y). 

Thus the functions.fi have the desired automorphic behavior on 1';. 
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(c) By (b) the differen'ces gij :=.t: - jj E (1:(1'; n lj) are invariant under 
covering transformations and thus may be considered as elements 
gij E 0( Vi n VJ Obviously gij + gjk = gik on any triple intersection and 
thus the family (gij) is a cocycle in Zl(U, (0). Because Hl(X, (0) = 0, this 
cocycle splits. Hence there exist elements gj E 0(V i ) with 

gij = gi - gj on Vi n Vi' 

Consider the gj as functions on 1'; which are invariant under covering trans-
formations. Then the functions 

?:= r. - g. E 0(Y) .Ii.li I I 

also satisfyT - aT = Q(I for every (J E G. On any intersection Y; n Yj one has 

T - h =/; - jj - (gj - gJ = gij - (gj - gj) = 0. 

Hence theT piece together to give a global functionf E (1:( Y) withf - (Jf = au 
for every (J E G. 0 

28.5. Theorem. Suppose X and Yare Riemann surfaces, p: Y --> X is a holo-
morphic unbranched Galois covering map and G = Oeck(Y /X) is its group of 
covering transformations. Then given any crossed homomorphism 

G --> g(y), 

there exists a differentiable function f E 0"( Y) having summands of automorph y 
au· 

PROOF. This is proved in the same way as Theorem (28.4), except the sheaf ((, 
is replaced by the sheaf 1&. This is possible since Hl(X, 6') = ° for every 
Riemann surface, regardless of whether it is compact or not (Theorem 12.6). 

o 

28.6. Theorem (Behnke-Stein). Suppose X is a non-compact Riemann surface 
and 

is Q group homomorphism. Then there exists a holomorphic 1 {orm W E Q(X) 
with 

J w = a" for every 0" E 1Tl(X), 
(I 
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PROOF. For the universal covering p: X -> X one has Deck(X/X) = 7rl(X), 
By Theorem (28.4) there exists a holomorphic function F E having the 
constant summands of automorphy a". Then by Theorem (10.13) the differ-
ential dF can be considered as a I-form on X and it has the periods u". 

o 

28.7. Theorem. Suppose X is a compact Riemann surface and 

is Q group homomorphism. Then there is u unique harmonic 
WE Harml(X) with 

J W = Q" for every (J E 7rl(X), 
(1 

PROOF. Similar to (28.6) it follows from Theorem (28.5) that there exists a 
closed I-form cv E g(l){X) with 

J cv = a" for every (J E 7rJ{X), 

By Theorem (19.12) there exists a harmonic I-form W E Harml{X) and a 
function f E c,v(X) with 

w =W + df 

Clearly cv and W have the same periods. The uniqueness follows from (19.8). 
o 

EXERCISES (§28) 

28.1. Let X be a Riemann surface. Prove 

28.2. Let X be a non-compact Riemann surface and let 

RhHX) ,= Q(X)jd0(X) 

be the" holomorphic" deRham group. Prove 

28.3. Let g: I[ --+ I[ be a holomorphic function. Prove that there exists a holomorphic 
functionf: I[ --+ I[ such that 

1(z + 1) =1(z) + g(z) for every z E C. 

[Hint: Consider the Galois covering ex: I[ --+ 1[*, ex(z) = ehiz, and construct 
suitable summands of automorphy 
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§29. Line and Vector Bundles 

In the consideration of many problems of analysis on manifolds the follow-
ing situation arises. To every point x of the manifold X there is associated a 
vector space Ex which depends in some continuous (or if X is a Riemann 
surface, holomorphic) way on x. This leads to the notion of a vector bundle 
on X, which we now make precise. 

29.1. Definition. Suppose E and X are topological spaces and p: E -+ X is a 
continuous mapping. Further suppose that every fiber Ex := p - 1 (x) has the 
structure of an n-dimensional vector space over e. Then p: E -+ X, or simply 
E, is called a vector bundle of rank n on X if every point a E X has an open 
neighborhood V such that there exists a homeomorphism h of Eu:= p-l(V) 
onto V x en with the following properties: 

(i) h is fiber-preserving, i.e., the following diagram 

Eu h I V x en 

V 

is commutative. 
(ii) For every x E V the mapping h I Ex is a vector space isomorphism of 

Ex onto {x} x en en. 
The mapping h: Eu -+ V x en is called a local trivialization or linear chart of 
E over V. IfU = (Vi)iEI is an open covering of X and hi: Eu! -+ Vi X en are 
local trivializations, then the family of all the hi is called an atlas of E. 

29.2. Definition. A vector bundle of rank n is called trivial if there exists a 
global linear trivialization h: E -+ X x en. 

Thus a vector bundle is always locally trivial. For local considerations 
the notion of a vector bundle tells us nothing which is new. It only plays a 
role when one is dealing with global problems. 

29.3. Definition. A line bundle is a vector bundle of rank one. 

29.4. Theorem. Suppose E -+ X is a vector bundle of rank n on the topological 
space X and hi: Eu! -+ Ui X en, i E I, is an atlas of E. Then there are unique 
continuous mappings 

such that the mappings 

({)ij:= hi 0 hj- 1 : (Vi n Uj ) x en -+ (Ui n Uj) x en 
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satisfy 

({Jij(X, t) = (x, gij(x)t) for every (x, t) E (Vi n V j) x 1[:". 

On Vi n Vj n V k one has the "cocyc/e relation" 

Notation. The mappings Yij are called the transition functions and the 
family (gij) is the cocycle associated to the atlas (hJ 

PROOF. The mapping 

({Jij = hi " hj 1: (Vi n V j ) x I[:" ---> (Vi n V j ) X en 
is a fiber-preserving homeomorphism which, restricted to every fiber, is an 
isomorphism of vector spaces. Hence for every x E Vi n Vj there exists a 
matrix gij(x)EGL(n, C) with 

({Jij(x, t) = (x, Yij(x)t). 

Since ({Jij is a homeomorphism, the correspondence x f---+ %(x) is continuous. 
The relation YijYjk = Yik follows from the corresponding one for the map-
pings ({Jij. D 

29.5. Definition. Suppose X is a Riemann surface, E --+ X is a vector bundle 
of rank n on X and 

= {hi: EUi --+ Vi X 1[:", i E I} 

is an atlas of E. The atlas is said to be holomorphic if the associated 
transition functions 

are holomorphic. 
Two atlases and of E are called holomorphically compatible if 
u is a holomorphic atlas. One can easily check that holomorphic 

compatibility of atlases is an equivalence relation. An equivalence class of 
holomorphically compatible atlases is called a holomorphic linear structure. 

A holomorphic vector bundle on a Riemann surface X is a vector bundle 
E --+ X together with a holomorphic linear structure. A holomorphic vector 
bundle E --+ X is called holomorphically trivial if its holomorphic linear struc-
ture contains an atlas consisting of the single chart E --+ X x en. 

29.6. Cocycles. Suppose X is a Riemann surface. For V open in X let 
GL(n, &(V)) denote the group of all invertible n x n-matrices with 
coefficients in &(V). For V c: V one has the natural restriction mapping 
GL(n, (0·(V)) --+ GL(n, (I)(V)). This defines a sheaf GL(n, (0) of groups on X 
which for n;:o: 2 is not abelian. If U = (Vi)iEI is an open covering of X, let 
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Zl(U, GL(n, lD)) denote the set of a1l1-cocycles with values in GL(n, lD) with 
respect to U, i.e., all families (giJi. j EI with 

gij E GL(n, lD(Vi n V j)) 

and 

gijgjk = gik on Vi n Vj n V k 

for every i, j, k E I. Note that for n 2 the set Zl( U, GL(n, 0)) is not a 
group with respect to component-wise multiplication. 

If 21 is a holomorphic atlas of a vector bundle on X, then the family of 
transition functions of III is a co cycle with values in GL(n, 0). Conversely 
given such a co cycle one can construct a holomorphic vector bundle. We 
now prove this. 

29.7. Theorem. Suppose X is a Riemann surface, U = (Vi)iEI is an open 
covering of X and (gij)EZ1(U, GL(n, 0)). Then there exists a holomorphic 
vector bundle p: E -+ X of rank n and a holomorphic atlas 

{hi: Eu,-+ Vi xC, i E I} 

of E, whose transition functions are the given gij. 

PROOF. Let 

E' := U Vi X en x {i} c: X X en x I. 
iel 

Give E' the topology induced from X x C x I, where I has the discrete 
topology. On E' introduce the following equivalence relation: 

(x, t, i) '" (x', t', j)-=- x = x' and t = giix )t'. 

Because of the cocycle relation gij g jk = gik, it is easy to check that this really 
is an equivalence relation. Let E:= E'I '" , together with the quotient topo-
logy, and let K: E' -+ E be the canonical quotient map. Since the equivalence 
relation is compatible with the projection E' -+ X, the induced mapping 
p: E-+X is continuous. The fibers p-l(X) have a natural structure of an 
n-dimensional vector space over C. As well 

Eu, = p-l(V;) = K(Vi X C x {i}) 

and K I Vi X en x {i} -+ EUi is a homeomorphism. Local trivializations 
hi: EUi -+ Ui X en can now be defined as the inverses of these home-
omorphisms followed by the identifications Vi x C x {i} U i x C. By 
construction the transition functions of the atlas (hi) are the given gij. 0 

29.8. Definition. Suppose p: E -+ X is a vector bundle on a topological space 
X and V is a subset of X. A section of E over V is a continuous mapping 
f: V -+ E with p 0 f = idu . 
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The condition p 0 f = idu means that f assigns to each x E Van element 
f(x) E Ex. If hj: EUi --+ V j x en is a local trivialization of E then one can 
associate to the section fa unique continuous function/;: V j n V --+ en such 
that 

hj(f(x)) = (x,.t;(x)) for every x E V j n V. 

The function.t; is called a representation of the sectionfwith respect to the 
local trivialization hi. 

29.9. Definition. Suppose p: E --+ X is a holomorphic vector bundle of rank n 
on the Riemann surface X and {hi: Eu, --+ Vi X en, i E I} is an atlas of the 
holomorphic linear structure on E. A sectionf: V --+ E over an open subset 
V c X is said to be holomorphic ifits representation.t; with respect to every 
local trivialization hi is a holomorphic mapping/;: Vi n V --+ en. Of course 

.t; is to be understood as an n-tuple of holomorphic functions V j n V --+ e. 
Clearly the definition is independent of the choice of atlas. The set of all 

holomorphic sections of E over V has the natural structure of a vector space, 
which we denote by (l)dV). With the natural restriction mappings one gets 
the sheaf (I) E of holomorphic sections of E. 

Suppose (gjJEZ1(U, GL(n, (I))) is the cocycle associated to the atlas 
{hi: EUi --+ Vi X en, i E I}. The representations /;: Vi n V --+ en of a section 
f E (l)E(V) satisfy the relation 

.t;(x) = %(x)fJ(x) for every x E V j n Vj n V. (*) 

Hence (l)E( V) is isomorphic to the vector space of all families (.t;)j E I, with 

.t; E (I)(Vi n V)", 

which satisfy (*). Note (l)E(V;) is isomorphic to (I)(v;)n. If E is holomor-
phically trivial, then the sheaf (l)E is isomorphic to (I)". 

We now give two important examples of holomorphic line bundles on 
Riemann surfaces. 

29.10. The Holomorphic Cotangent Bundle. Suppose X is a Riemann surface 
and (Vj, Zj), i E I, is a covering by coordinate neighborhoods. On Vi n Vj 
the function gij:= dZj /dz j is holomorphic and does not vanish. Thus the 
family (gij) defines a cocycle in Zl(U, (1)*) with respect to the covering 
U = (Vj)j E I. Let T*(X) be the line bundle associated to the cocycle (gjj). 
T*(X) is called the holomorphic cotangent bundle or canonical line bundle of 
X. The sheaf of holomorphic sections of T*(X) is isomorphic to the sheaf 0 
of holomorphic I-forms on X. This isomorphism can be described as fol-
lows. Suppose OJ E O(V). Then on V j n V one may write OJ =.t; dZ j with 
.t; E (I)(V j n V). On Vi n Vj n V one has.t; = fJ dZj /dz j = gij fJ. Thus the 
family (.t;) defines a holomorphic section of T*(X) over V. Conversely every 
family (.t;) of holomorphic functions .t; E (1)( V j n V) with /; = gjj fJ on 
Vi n Vj n V gives rise to a I-form OJ E O(V) with OJ =.t; dZ j on V j n V. 
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29.11. The Line Bundle of a Divisor. Suppose D is a divisor on the Riemann 
surface X. To D we can associate a holomorphic line bundle En such that the 
sheaf of holomorphic sections of En is isomorphic to the sheaf (!)D of mero-
morphic multiples of - D (cf. 16.4). There exists an open covering 
U = (UJiEI of X and meromorphic functions l/1i E Jt(U;) with (1/1;) = Don 
Ui' Then 

1/1. 
gij:= E (!;*(Ui II UJ, 

since 1/1 i and 1/1 j have the same zeros and poles on U i II U j' The family 9 ij 
forms a cocycle (gij)EZ1(U, (1)*). Let En be the holomorphic line bundle 
corresponding to this cocycle (cf. Theorem (29.7)). 

Suppose U is open in X andf E (1) D( U), i.e. (f) z - Don U. Then there are 
holomorphic functionsj; E (!)( Ui II U) such thatf = .[;/1/1 ion Ui II U. Hence 
on any intersection Ui II Uj II U one has 

j; jj 
l/1i = I/1j andthus!;=gijJj. 

Hence the family (!;) defines a holomorphic section of En over U. Con-
versely any holomorphic section of En over U is given by a family (i) of 
holomorphic functions!; E (1)(Ui II U) withj; = gijjj· Then!;Ni =J}Njon 
Ui II Uj II U. Thus there is a meromorphic function f E Jt(U) with 
f=!;Ni on Ui II U for every i E I. ThereforefE (1)n(U). 

We will now prove several facts about cohomology with values in the 
sheaf of holomorphic sections of vector bundles, which are analogous to 
what we did in §14 for the sheaf (1). For the sake of variety we will use 
different methods this time. 

29.12. Lemma. Suppose X is a Riemann surface, E is a holomorphic vector 
bundle on X and Y is a relatively compact open subset of X. Then for every 
open subset Yo c Y the restriction mapping Hl(y, (1)E)---H 1(yo , (1)E) is 
surjective. 

PROOF. There are finitely many open sets U i c X, i = 1, ... , r, which are 
biholomorphic to open sets in e, with Y = U 1 U ... u U r and for which 
there exist holomorphic linear charts hi: Eu, --- Ui X en. For every open 
subset V c U i one then has 

cf. Theorem (26.1). Set 

Hl(V, (OE) Hl(V, 0)n = 0, 

k 

Yk := Yo U U U i 
i= 1 

Clearly it suffices to show that the mappings 

Hl(Yk' (1)d --- Hl(Yk_l' (1)E) 
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for k = 1, ... , r are surjective. Fix k and let 

v; ,= Vi n Yk - 1 for i = 1, ... , r, 

v; ,= V; for if- k and ,= V k • 

Then = (V;h<;i<;r is a Leray covering of 1';.-1 and (Vi)I<;i<;r is a 
Leray covering of Yk • Hence (!E), since 
V; n Vi = V; n Vj for every i =1= j. Thus Hl('!3', 0 E) -> Hl('!3, (('E) is surjec-

0 

29.13. Theorem. Suppose Y is a relatively compact open subset oia Riemann 
sw(ace X and E is a holomorphic vector bundle on X. Then Hl(y, (!JE) isjinite 
dimensional. 

PROOF. There is an open set Y' with Y Y' X and open sets V; Vi' i = 1, 
... , r, in X with the following properties: 

(i) Ui=l V; = Y, Ui=l Vi = Y'. 
(ii) Every Vi is biholomorphic to an open subset of IC. 
(iii) On every Vi there is a holomorphic linear chart hi: EVi -> Vi X e. 
Now U = (V;) and = (V;) are Leray coverings of Y' resp. Y for the 

sheaf 0E' By Lemma (29.12) it follows that the restriction mapping 
Hl(U, (0E) -> Hl('!3, (Cd is surjective. This implies that the mapping 

<p: (lIE) X Zl(U, (Ci E ) -> (f'E) 

(fl, + f3(O 
is surjective, where f3: Zl(U, (fE) -> C'd is the restriction map. One 
can make the spaces Zl(U, (0t:), (Cd and CO('!3, (!E) into Frechet 
spaces in the following way. First (0E(V i n V j )::::: (fJ(Vi n VJn with the top-
ology of uniform convergence on compact subsets is a Frechet space. Thus 
so is C1 (U, (fid = 11 j (liE(Vi n V j ) with the product topology. It is easy to 
see that Zl(U, (!E) is a closed subspace of C 1(U, (f;d. Thus it is likewise a 
Frechet space. The topologies on (fiE) and (f!E) are defined 
similarly. With respect to these topologies the mappings <5: CO('!3, (Cd-> 

(fE) and f3: Zl(U, (fJE) -> (liE) are continuous. Then Montel's 
Theorem implies that f3 is even compact. Hence 

1/1: CO('!3, (!'d x Zl(U, (C'E) -> (!E) 

('7, r-> f3('7) 
is also compact. By the Theorem of L. Schwartz (cf. Appendix B.ll) the 
mappmg 

<p -1/1: CO('!3, (iiE) x Zl(U, (!)E) -> (!)E) 

('7, 6'7 
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as the difference of a surjective and a compact continuous linear operator 
between Frechet spaces, has a finite codimensional image. However the 
image of cp -If; is the vector space (l7d of all coboundaries in 

(l7E)' Thus Hl(y, (l7E):;;: Hl(lJ3, (Od is finite dimensional. 0 

29.14. Corollary. Suppose E is a holomorphic vector bundle on a compact 
Riemann surface X. Then Hl(X, (l7E) isfinite dimensional. 

29.15. Meromorphic Sections. Suppose E is a holomorphic vector bundle of 
rank n on the Riemann surface X. Let U c X be an open set over which a 
holomorphic linear chart h: Eu --> U x en exists and let a be a point of U. A 
section f E (l7E(U\{a)) can be represented with respect to this chart by an 
n-tuple of holomorphic functions (fj, ... , In) E (I7(U\{a})". The point a is 
called a pole of order m off, if all thefi have either a pole of order :s;; m or else 
a removable singularity at a and at least one}; does have a pole of order m at 
a. This definition is independent of the choice of linear chart at a. 

By a meromorphic section of E over an open subset Y c X one means a 
holomorphic section f E (l7dY') over an open subset Y' c Y such that the 
following hold: 

(i) Y\ Y' is a discrete subset of Y. 
(ii) fhas a pole at every a E Y\Y'. 

Similar to Theorem (14.12) one can now prove the following. 

29.16. Theorem. Suppose E is a holomorphic vector bundle on a Riemann 
surface X and Y is a relatively compact open subset of X. Then given any 
a E Y there exists a meromorphic section of E over Y which has a pole at a and 
is holomorphic on Y\{a}. 

29.17. Corollary. Every holomorphic vector bundle on a compact Riemann 
surface has a global meromorphic section which does not vanish identically. 

29.18. Line Bundles and Divisors. Suppose E is a holomorphic line bundle on 
a Riemann surface X and If; is a global meromorphic section of E, which 
does not vanish identically. Then the divisor D of If; is well-defined. For 
a E X let D(a) be the order of If; at a with respect to a holomorphic linear 
chart of E on some neighborhood of a. This order is independent of the 
chart. Now we claim that the sheaf (!)E of holomorphic sections of E is 
isomorphic to the sheaf (l7v of meromorphic multiples of -D. For, if 
fE A(U) with (f) -D on U, thenflf; is a holomorphic section of E over 
U. Conversely for every section cp E (l7E(U) the quotient f = cpN is a well-
defined meromorphic function in A(U) with (f) -D on U. 

This may be considered in some sense to be the converse of (29.11). 
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We are now in the position to interpret the Picard group of a compact 
Riemann surface as a cohomology group. Recall (cf. 21.6) that the Picard 
group of a compact Riemann surface X is defined as 

Pic(X) = Div(X)/Div p(X). 

29.19. Theorem. Let X be a compact Riemann surface. Then there is a natural 
isomorphism of groups 

Hl(X, (()*) Pic(X). 

PROOF 

(a) Define a map ex: Hl(X, (()*) --+ Pic(X) as follows. Suppose 
E Hl(X, (()*) is represented by a cocycle (gij) E Zl(U, (()*) for some open 

covering U = (Vj)ieI of X. By Theorem (29.7) there is a line bundle E --+ X 
associated to this cocycle. Then E has a non-trivial meromorphic section f 
by Corollary (29.17). This section is given by a family of meromorphic 
functions J; E ..II ( Ui)' i = I, satisfying 

/; = gij jj on Ui rl Uj . 

Sincefdoes not vanish identically, we even have/; E ..II*(U;) for every i E I. 
Let D be the divisor off, i.e., 

D(x) = ordx (/;) if x E Ui . 

Clearly this does not depend on the choice of i with x E V;. Now define 

:=D mod Divp(X). 

In order that ex be well-defined, this definition must be independent of the 
various choices made. For example, let 

where /;, ];E..II*(V;). Then fJ]; =jj!lj on V;rl V j. Hence the JiI]; piece 
together to define a global meromorphic (unction cP E ..II*(X). If D and fj 
are the divisors off = (/;)i e I and J = (l); E I respectively, we have 

D = D + (qJ), 

and thus D and D differ only by a principal divisor. We leave it to the reader 
to show that is also independent of the choice of cocycle (gij) represent-
ing It is easy to see that ex is a group homomorphism. 

(b) The surjectivity of ex follows from (29.11). To prove the injectivity, we 
have to show that if 

gij = /;/fj, /; E ..II*(U;) 

and the divisor of (/;)ieI is principal, then the cocycle (gij) lies in Bl(U, (9*). 
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Indeed, let qJ E ..H*(X) be a meromorphic function having the same divisor 
as the family (fai E l' Then 

gi :=!j E (9*(U;) 
qJ 

and gij = 9i/gj. Hence (9ij)E Bl(U, (9*). 

EXERCISES (§29) 

o 

29.1. Let X be a Riemann surface and n: E --+ X be a holomorphic vector bundle of 
rank n on X. A holomorphic sub bundle FeE of rank k is a subset such that 
the following holds. For every x E X there exists a holomorphic local 
trivialization 

h: Eu --+ U x cn, 

of E with x E U such that 

h(Fu) = U x (C k X 0) 

where Fu = Eu n F. 

(a) Let f: X --+ E be a holomorphic section of E which never vanishes. For 
x E X define F% :=C . f(x) c Ex. Show that 

F:= U F% C E 
XEX 

is a holomorphic subbundle of E of rank 1. 
(b) Let f be a meromorphic section of E over X. Show that there exists a 

unique subbundle FeE of rank 1 such that f is a meromorphic section 
of F. 

29.2. Let L --+ X be a line bundle on a compact Riemann surface X. The degree of Lis 
defined as deg(L):= deg(Dt where D is the divisor of a meromorphic section s 
of L over X. 

(a) Show that deg L is well-defined, i.e., it is independent of the choice of the 
meromorphic section s. 

(b) On !p 1 let U = (UJ, U2 ) be the covering given by 

U 1 := {Z E C: I Z I < 1 + e}, U 2 := {z E p1: I Z I > 1 - e}, 0 < e < 1. 

Let L be the hoI om orphic line bundle on p1 defined by some given transition 
function 

Prove that 

deg L f 9'u(Z) dz. 
2m Izl=1 912(Z) 

[Hint: First consider the special case 912(Z) = Zk.] 
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§30. The Triviality of Vector Bundles 

In this section we show that every holomorphic vector bundle on a non-
compact Riemann surface is trivial. This will be used in the next section to 
solve the Riemann-Hilbert problem. 

30.1. Theorem. Suppose E is a holomorphic vector bundle qf rank n on a 
Riemann surface X. Let U = (Vi)iEI be an open covering of X, hi: Eu--> 
Vi X en, i El, be a holomorphic atlas for E and (gij) E Zl(U, GL(n, 0)) be 'the 
corresponding cocycle of transition functions. Then the following are 
equivalent: 

(i) E is holomorphically trivial. 
(ii) There exist n global holomorphic sections F 1, ... , F n q{ E such thatfor 

each point x E X the vectors F 1(x), ... , Fn(x) E Ex are linearly independent. 
(iii) The cocycle (giJ splits, i.e., there exists a cochain 

(gi)E CO(U, GL(n, &)) with 

PROOF 
(i) = (ii). Since E is holomorphically trivial, the holomorphic linear struc-

ture of E contains a chart h: E --> X x en. Let e1, ••• , en be the standard unit 
vectors of en. Define sections F", v = 1, ... , n, of E by 

h(F ,,(x)) = (x, e,,) for every x E X. 

Then the F" are holomorphic and linearly independent in every fiber. 
(ii) = (iii). Any section F" may be represented relative to any chart hi as 

an n-tuple of holomorphic functions E 0(V;), f.1 = 1, ... , n. Let gi be the 
matrix Then gi E GL(n, 0(V;}), since F1, ... , Fn are linearly 
independent in each fiber. Moreover on Vi n Vj one has 

gi = gijgj and thus gij = gig; 1, 

i.e., the co cycle (giJ splits. 
(iii) = (i). Using the charts hi: EUi --> Vi X en we will construct a linear 

chart h: E --> X x en which is holomorphically compatible with all the hi' 
Suppose vEEui and hi(V)=:(x,t). Then set h(v):=(X,gi-1t). This 

definition is independent of the choice of chart. For, suppose v E EUj as well 
and hiv) =: (x, t'). Then t = gij t' = gi g; It' and thus gi-1t = g; It'. Finally it 
follows directly from the definition of h that {h: E --> X x C} is holomor-
phically compatible with the atlas consisting of all the hi' 0 

30.2. Lemma. Suppose X is a non-compact Riemann surface and E is a holo-
morphic vector bundle on X. If E has a non-trivial global meromorphic section, 
then E also has a global holomorphic section which has no zeros. 
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PROOF. Suppose f is a non-trivial meromorphic section of E over X and 
A c X is the discrete subset consisting of its zeros and poles. Suppose a E A 
and h: Eu -+ U x en is a holomorphic linear chart of E on an open neigh-
borhood U of a. Relative to the chart h we may represent f as (ft> ... ,f,,) 
E A(u)n. Let k(a) be the minimum of the orders of the functions J., at the 
point a. By Weierstrass' Theorem (26.5) there exists a meromorphic function 
qJ E A(X) which at each point a E A has order - k(a) and is holomorphic 
and non-zero on X\A. Then F := qJf is a holomorphic section of E which has 
no zeros. 0 

30.3. Theorem. Every holomorphic line bundle E on a non-compact Riemann 
surface X is holomorphically trivial. 

PROOF. Suppose 0 1= Yo Y1 Y2 ••• is a sequence of relatively compact 
Runge domains in X with U Y" = X. By Theorem (29.16) over every Y" 
there is a meromorphic section. Thus by (30.2) there is also a holomorphic 
section which does not vanish. Hence E is trivial over each Y" by Theorem 
(30.1). It then follows from the Runge Approximation Theorem that every 
holomorphic section of E over Y" can be approximated uniformly on com-
pact subsets by holomorphic sections of E over y" + l' Let fo E (9 E( Yo) be a 
section which is not zero at some point a E Yo. One can now construct a 
sequence J., E (9E(y"), v 2 1, such that lim .... oo J.,(a) =F 0 and such that for 
each v E N the sequence (fill YV)Il>' converges in (9E(y"). Then the limit ofthe 
sequence (J.,) is a section f E (9dX) which does not vanish identically. As 
above this implies that E is trivial over X. 0 

30.4. Theorem. Every holomorphic vector bundle E on a non-compact Riemann 
surface X is holomorphically trivial. 

PROOF. The theorem will be proved by induction on n, the rank of E. 
Theorem (30.3) is the case n = 1. Now assume the result has been proved for 
all bundles of rank n - 1 and suppose E is a bundle of rank n. 

(a) First we assume that there exists a section Fn E (9E(X) which does not 
vanish anywhere. Since E is locally trivial, there exists an open covering 
U = (UJi E I of X with the property that for every i E I there are sections 
... , E (9E(U j ) such that ... , Fn(x) are linearly indepen-
dent for every x E Ui • On any intersection U j n Uj these systems are related 
to each other in the following way: 

(1) 

where Fi denotes the column vector with entries ... , h the matrix Gij is 
an element of GL(n - 1, (9(U i n Uj )) and dj is a column vector with n - 1 
rows having coefficients in (9(Ui n Uj)' Then GijGik = Gik on 
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U i n U j n Uk. Hence by the induction hypothesis there exist matrices 
Gi E GL(n - 1, t'9(Ui )) with 

Gij = Gi(Gjt 1 on Ui n Uj . 

Setting pi = (Git 1 Fi and using (1) gives 

(2) 

for some bij E (1"( Ui n U;'I' - 1. On Ui n U i n Uk one has the relation 
bij + bik = bik. Since Hl(U, (1)) = 0, one can thus find holomorphic column 
vectors bi E (9(Uir 1 having (n - 1) rows with 

bij = bi - bj on Ui n Uj . 

Set pi = Fi - biFn • Then it follows from (2) that 

Hence the pi piece together to form a global {n - 1 )-tuple (F b ... , Fn- d 
E(9E(x)n-l. By construction Fl(X), ... , Fn(x) are linearly independent for 
every x E X. Thus E is holomorphically trivial. 

(b) We still have to show that E has a holomorphic section which does 
not vanish. By Theorem (29.16) and Lemma (30.2) this is the case over any 
relatively compact domain Y c X. Thus by (a) one has that E is trivial over 
Y. As in the proof of (30.3) one can now construct with the help of the Runge 
Approximation Theorem a non-trivial holomorphic section of E over X. By 
Lemma (30.2) then E also has a nowhere vanishing holomorphic section. 
This completes the proof of the theorem. D 

30.5. Corollary. Suppose X is a non-compact Riemann surface. Then 

Hl(X, GL(n, (0)) = O. 

In particular, Hl(X, (9*) = O. 

PROOF. Now Hl(X, GL(n, (0)) = 0 means that for every open covering 
U = (Ui ) of X every cocycle (gij)EZ 1(U, GL(n, (1,))) splits. But this is equi-
valent to the triviality of holomorphic vector bundles on X. 0 

EXERCISES (§30) 

30.1. Show that on any Riemann surface X (compact or not) one has 
Hl(X, j{*) = O. 
[Hint: Use the exact cohomology sequence of Ex. 16.4.] 

30.2. Let X be a Riemann surface. For U c X open, let SL(n, (I)(U)) be the group of 
all n x n-matrices of determinant 1 with coefficients in (I)(U). Together with the 
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natural restriction maps this defines a sheaf SL(n, (9) on X. Prove that on a 
non-compact Riemann surface X 

Hl(X, SL(n, (9)) = 0, 

i.e., for every cocyc1e (gij) E Zl(U, SL(n, (9)) there exists a cochain 
(g;) E CO(U, SL(n, (9)) such that 

§31. The Riemann-Hilbert Problem 

In §11 we saw that the automorphic behavior of a fundamental system of 
solutions of a linear differential equation on a Riemann surface X gives rise 
to a homomorphism T: 1C 1 (X) --+ GL(n, IC). This homomorphism associates 
to each (T E 1Cl(X) the factor of automorphy 7;. by which the fundamental 
system is multiplied when it is analytically continued along (T. Conversely 
one may ask if given any homomorphism T: 1Cl(X) --+ GL(n, IC), there exists 
a linear differential equation on X such that the automorphic behavior of a 
fundamental system of solutions is exactly given by the homomorphism T. 
This is called the Riemann-Hilbert problem. In this section we present the 
solution of the Riemann-Hilbert problem on non-compact Riemann sur-
faces using the method of H. Rohrl [57]. 

31.1. Factors of Automorphy. Suppose p: Y --+ X is a holomorphic un-
branched covering mapping between Riemann surfaces and G := Deck(YjX) 
is its group of covering transformations. A holomorphic mapping «1>: Y--+ 
GL(n, IC) is called multiplicatively automorphic with constant factors of 
automorphy T" E GL(n, IC), (T E G, if 

(T«I> = «I>T" for every (T E G. 

In this case one can easily show that the correspondence (TI-+ T" is a group 
homomorphism G --+ GL(n, IC), cf. (11.6). The following theorem is analo-
gous to Theorem (28.4). 

31.2. Theorem. Suppose X and Yare non-compact Riemann surfaces, 
p: Y --+ X is a holomorphic unbranched Galois covering map and 
G:= Deck(YjX) is its group of covering transformations. Then given any 
homomorphism 

T: G --+ GL(n, IC), 

there exists a holomorphic mapping «1>: Y --+ G L( n, IC) with the factors of auto-
morphy T", i.e., (T«I> = «I>T"for every (T E G. 
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PROOF 
(a) There exist an open covering U = (V;); E [ of X and G-charts 

C{J; = (p, t/;): p-l(V;)--+ V; x G, 

cf. (28.3). Now define on Yj := p-I(Uj ) functions '1';: Y; - GL(n, C) by 

'I';(y):= T",(yj-l for every y E Y;. 

Since '1'; is locally constant, in particular it is holomorphic. 
(b) Suppose y E Y; and a E G. Then 

a'l';(y) = 'I';(a- 1 y) = y)-l = 
= T"i(y)- 1 T" = 'I';(y)T". 

Thus the functions 'IIi exhibit the desired automorphic behavior on Y;. 
(c) By (b) the products Fij:= 'IIi'll; 1 E GL(n, llJ(Y; II 1))) are invariant 

under covering transformations. Thus they may be considered as elements 
FijEGL(n, lD(U;1I Uj)) and so define a cocycle (Fij)EZl(U, GL(n, lD)). 
Since Hl(X, GL(n, llJ) = 0 by (30.5), this cocycle is a coboundary. Thus 
there exist elements F; E GL(n, lD(V;) with 

Fij = F;F; 1 on V; n V j . 

Now consider the Fi as elements of GL(n, llJ(Y;)) which are invariant under 
covering transformations and set 

<l>i := F;- I'll; E GL(n, llJ(Yi). 

Then a<l>; = F;-la'l'i = Fi- I'll; T" = <1>; 7;, for every a E G. On any intersec-
tion Y; n 1), 

<I>;l<l>j = Wj-IF;Fj-IWj = W;IF;jWj = W;lWjWj-IWj = 1, 

i.e., <1>; = <l>j. Thus the <1>; piece together to give a global function 
<I> E GL(n, lD(Y») with a<l> = <l>Ta for every a E G. D 

31.3. Corollary. Suppose X is a non-compact Riemann surface and 

T: 1tl(X)--+GL(n, IC}, Ta , 

is a group homomorphism. Then there exists a matrix A E M(n x n, Q(X)) and 
a fundamental system of solutions of the differential equation dw = Aw on the 
universal covering of X which has the T" as factors of automorphy. 

PROOF. By (11.6) one only has to apply Theorem (31.2) to the universal 
covering p: X ...... X of X. D 

31.4. Suppose X is a non-compact Riemann surface, SeX is a closed 
discrete subset and X' := X\S. Then, in particular, one can apply Corollary 
(31.3) to X'. But we would like to sharpen the result of the corollary so that 
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the resulting differential equation has at most regular singular points at all 
the points a E S. In order to be able to carryover the definition in (11.12) to 
this general case, we first prove the following lemma. 

Lemma. Using the same notation as above, suppose p: Y --> X' is the universal 
covering of x'. Further suppose (U, z) is a coordinate neighborhood of a point 
a E S with the following properties: 

(i) z(U) c C is the unit disk and z(a) = O. 
(ii) U n S = {a}. 

Suppose Z is any connected component of p - I (U\a). Then pi Z --> U\a is the 
universal covering of U\a. 

PROOF. By Weierstrass' Theorem (26.5) there exists a holomorphic function 
f E (O(X) which has a zero of first order at a but is otherwise non-zero. Then 
w := dilf is a holomorphic 1-form on X'. Let}' be the positively oriented 
curve in U corresponding to I z I = 1. Then 

. . df I w = 1- = 2ni. '; ., f 
Now the mapping pi Z --> U\a is a covering map. Thus we may apply 
Theorem (5.10) to it. If pi Z --> U\a were not the universal covering, then this 
mapping would be isomorphic to the covering 

D* --> D*, 

for some positive integer k, where D* denotes the punctured unit disk. But 
then there would exist k liftings Yb"" h of I' whose product c = 1'1 ... Yk is a 
closed curve. This implies 

k k 

r p*w = L f p*w = L r w = 2kni. 
·c j=l 'Yi j=l 'y 

But on the other hand Ic p*w = 0, since a primitive for p*w exists on Y. This 
contradiction proves that pi Z --> U\a must be the universal covering. 0 

Now, using the same notation, suppose dw = Aw, where A E 
M(n x n, Q(X')), is a linear differential equation on X' and <l>EGL(n, 0(Y)) 
is a fundamental system of solutions. Then the differential equation is said to 
have a regular singular point at a E S if for every connected component Z of 
p - l( U\a) the function <I> I Z satisfies the condition given in (11.12). 

31.5. Theorem. Suppose X is a non-compact Riemann surface, S is a closed 
discrete subset of X and X' := X\S. Further suppose a homomorphism 

(J 1---* T(f' 
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is given. Then there exists a differential equation dw = A w, where 
A E M(n x n, n(X/)), which has a regular singular point at every a E S, and a 
fundamental system of solutions <I> E GL(n, (!)(Y)) of dw = Aw on the universal 
covering p: Y --+ X' of x' with the factors of automorphy T". 

PROOF. Suppose S = {aj: i E I}. For every i choose a coordinate neighbor-
hood (U;, Zj) of ai satisfying conditions (i) and (ii) of Lemma (31.4). We may 
assume 0 rt I. Let J:= I u {O} and set Uo := X'. Then U := (Uj)jEJ is an 
open covering of X. For i =1= j one has U j (] Uj C X'. Further let Yo := Yand 
Y; := p-l(Ui \aJ for every i E I. 

By Theorem (31.2) there exists a function 'Po E GL(n, (!)(Yo)) such that 
cr'Po = 'Po T:r for every cr E "1(X/). For every i E I there exist, by Theorem 
(11.10), elements 'Pi E GL(n, (!)(Y;)) which have regular singular points and 
display the same automorphic behavior as 'Pol Y;. Hence for i, j E I, i =1= j, 

Fij:='Pi'Pj- 1 E GL(n, (!)(Y; (] lj)) 

is invariant under covering transformations and thus may be considered as 
an element Fij E GL(n, (!)(Ui (] UJ). For every j E J, let 
Fjj := 1 E GL(n, (!)(UJ). Then 

(Fij) E ZI(U, GL(n, (!))) 

is a cocycle. Because Hl(X, GL(n, (!))) = 0, this cocycle is a co boundary. 
Thus there exist Fi E GL(n, (!)(UJ) such that 

Fij = FiF;1 on Uj n U j • 

Now, for every j E J, define 

<l>j := Fj- l'Pj E GL(n, (!)( Yj)). 

As in (31.2) the <l>j piece together to form a global function <I> E GL(n, (!)(Y)) 
which satisfies cr<l> = <l>T" for every cr E "1 (X). On Ui \ai one has <I> = Fi- l'Pi . 
Since 'Pi has regular singular points and F i- 1 is holomorphic on all of U i , it 
follows that <I> also has regular singular points. As well <I> is a fundamental 
system of solutions of the differential equation dw = Aw, where 
A := d<l> . <1>-1 may be considered as an element A E M(n x n, n(X)), since 
it is invariant under covering transformations. This completes the proof of 
the theorem 0 

EXERCISES (§31) 

31.1. Let X and Ybe non-compact Riemann surfaces, p: Y -> X be an unbranched 
holomorphic Galois covering and G := Deck( Y / X). Let 

a: G --+ GL(n, (1)(Y)), 

be a crossed homomorphism, i.e. a map satisfying 

a"T = a,,(O"aT ) for every 0", 1" E G. 



31 The Riemann-Hilbert Problem 

Prove that there exists a holomorphic matrix fII: Y ..... GL(n, C) such that 

aa = fII(uflltl for every uEG. 
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31.2. Let g: C -+ GL(n, C) be a holomorphic invertible matrix. Show that there exists 
a holomorphic matrix!: C -+ GL(n, C) such that 

J(z + 1) = J(z)g(z) for every ZEC. 

[Hint: Consider the Galois covering ex: C -> C*, ex(z) ,= elniz, and apply Ex. 
31.1.] 



Appendix 

A. Partitions of Unity 

Partitions of unity are an important tool in the study of differentiable mani-
folds and have been used throughout this book. As an aid to the reader we 
now gather together some of the main facts concerning them. Proofs may be 
found in the literature, e.g., [40], [43], [45] or [48]. 

A.I. By the support Supp(f} of a real or complex valued function f on a 
topological space X is meant the closure of the set {x E X:f(x} =1= O}. 

The standard example of a eX! function, i.e. an infinitely differentiable 
function, g: [R" -+ IR, whose support is the closed ball of radius <; > 0, is given 
by 

{ 
exp ( ___ 1 ___ ) 

g(x):= 0 e2 - IIxl12 
for Ilxll < e 

for Ilxll ::-0: e. 

Here Ilxll = (I x1 12 + ... + I x" 12)1/2 denotes the euclidean norm on /R". This 
function can now be used to construct all the other COO functions which we 
will need. 

A.2. An n-dimensional manifold is a Hausdorff topological space X with the 
property that every point a E X has an open neighborhood homeomorphic 
to an open subset of [R". A homeomorphism ({J: U -+ V of an open set U c X 
onto an open set V c /R" is called a chart on X. Two charts ({Ji: U i -+ Vi, 
i = 1, 2, are said to be differentiably compatible if the mapping 

({J2 0 ({Jt 1 : ({J1(U 1 n U 2) -+ ({J2(U 1 n U 2) 
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and its inverse are both infinitely differentiable. Now one can define differen-
tiable manifolds in an analogous way to Riemann surfaces (cf. §1), but replac-
ing biholomorphic compatibility by differentiable compatibility. In 
particular Riemann surfaces are special 2-dimensional differentiable 
manifolds. 

On a differentiable manifold one has the notion of a differentiable func-
tion, i.e., a function which is Coo with respect to every chart. 

A.3. Definition. Suppose X is a differentiable manifold and U = (Vi)iEI is 
an open covering of X. Then by a differentiable partition of unity subordinate 
to U one means a family (g;}jEI of differentiable functions gj: X -> IR with 
the following properties: 

(i) 0::; gj ::; 1 for every i E I. 
(ii) Supp(g;) c V j for every i E I. 

(iii) The family of supports SUPP(9j), i E I, is locally finite, i.e., every point 
a E X has a neighborhood V such that 

V n Supp(g;) =fo 0 for only finitely many i E I. 

(iv) Li El gj = 1. 

(Because of (iii) the sum in (iv) is well-defined.) 

A.4. Theorem. Suppose X is a differentiable manifold which has a countable 
topology. Then for every open covering U of X there exists a differentiable 
partition of unity subordinate to U. 

A.5. Corollary. Suppose X is a differentiable manifold, K is a compact subset 
of X and V is an open neighborhood of K. Then there exists a differentiable 
function f: X -> IR such that Supp(f) V and f I K = 1. 

PROOF. We may assume that X has a countable topology. Otherwise, just 
replace X by some relatively compact open neighborhood of K. Now sup-
pose Viis a relatively compact open neighborhood of K which is contained 
in V and let V 2 := X\K. There exists a differentiable partition of unity 
(gb g2) subordinate to the covering U = (VI' V 2)' Then f := 91 is the 
desired function. 0 

B. Topological Vector Spaces 

We now present the notions and facts from functional analysis which we 
have used. Further details and the proofs may be found, for example, in [44), 
[47). 
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B.1. Bya vector space we will always means a vector space over the field of 
complex numbers. A topological vector space is a vector space E, together 
with a topology, such that the operations of addition 

E x E ---+ E, 

and scalar multiplication 

C x E-+ E, 

(x, y)f-+X + y, 

are continuous maps. In particular, for every a E E, the translation E -+ E, 
x f-+ a + x, is a homeomorphism. Thus the topology of E is determined once 
one knows what a neighborhood basis of zero is. For, if m is a neighbor-
hood basis of zero, then the translated sets a + U, U E m, form a neighbor-
hood basis of a. 

B.2. Semi-norms. By a semi-norm on a vector space E is meant a mapping 
p: E -+ IR with the following properties: 

(i) p(x + y):::; p(x) + p(y) for all x, y E E 
(ii) p(AX) = I A I p(x) for all A E C, X E E. 

From (i) and (ii) it follows that p(x) ;::: ° for every x E E. If, in fact, p(x) = 0 
only for x = 0, then p is called a norm. 

A family Pi' i E I, of semi-norms on a vector space E induces a topology 
on E. For iI, ... , im E I, [; > 0, the sets of the form 

U(Pi[' ... , Pim ; G):={x E E: max(Pi[(X), ... , pjJx)) < [;} 

are a neighborhood basis of zero. Note that this topology is Hausdorff 
precisely if pj(x) = 0 for every i E I implies x = O. 

A topological vector space is said to be locally convex if its topology can 
be induced in the above way by a family of semi-norms. 

B.3. Frechet Spaces. A sequence (xn)n E OJ of elements in a topological vector 
space is called a Cauchy sequence if for every neighborhood U of zero there 
exists an no E N such that 

Xn - Xm E U for every n, m ;::: no . 

A topological vector space E is called a Frechet space if the following hold: 

(i) The topology of E is Hausdorff and can be defined by a countable 
family of semi-norms. 

(ii) E is complete, i.e., every Cauchy sequence in E is convergent. 

A Frechet space E is metrizable. For, suppose Pn' n E N, is a family of 
semi-norms which defines the topology on E. If for x, y E E one sets 

d(x, y):= I: rn Pn(x - y) , 
n=O 1 + Pn(x - y) 
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then d: E x E --> IR is a metric on E which induces the same topology as the 
semi-norms Pn, n EN. 

A closed vector subspace FeE of a Frechet space is also a Frechet space. 
If E;, i E J, is a countable family of Frechet spaces, then Il; E I E; with the 
product topology is also a Frechet space. 

B.4. A typical example of a Frechet space is the vector space 0(X) of holo-
morphic functions on an open set X c C with the topology of uniform 
convergence on compact subsets. This topology is induced by the semi-
norms P K, where 

PK(f):= sup I J(x) I, 
XEK 

as K runs through the compact subsets of X. This topology is also defined by 
countably many semi-norms PK , where Kn, n EN, is any sequence of com-
pact subsets of X with UnEr, It: = x. 

B.S. Banach Spaces, Hilbert Spaces. A complete normed vector space is 
called a Banach space. Thus a Banach space is a Frechet space whose 
topology is defined by a single norm. This is usually denoted II II. 

A Hilbert space E is a Banach space whose norm is derived from a scalar 
product 

( , ): E x E --> C, 

i.e., IIxil = .J (x, x). 
If A is a vector subspace of a Hilbert space E, then its orthogonal 

complement 

:={y E E: (y, x) = 0 for every x E A} 

is a closed vector subspace of E. If A itself is closed, then E = A EB 

B.6. Theorem of Banach. Suppose E and Fare Frixhet spaces andJ: E --> F is 
a continuous linear surjective mapping. Then J is open. 

B.7. Corollary. Suppose E and F are Banach spaces andf: E --> F is a contin-
uous linear surjective mapping. Then there exists a constant C > 0 such that 
Jor every y E F there is an x E E with 

J(x) = y and IIxil CilYII· 

PROOF. Let U:= {x E E: IIxil < I}. Since by the Theorem of BanachJis open, 
there exists an r. > 0 such that 

J(U) =:J V:={y E F: IIyll < s}. 

Let C := 2/B. Now suppose y E F is given. If y = 0, choose x = O. Otherwise, 
A.:= IIYII > O. The element Y1 := (l/A.C)y lies in V and thus there exists Xl E U 
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withf(xd = Yl. Then for x :=..1.Cx1, one hasf(x) = yand 

Ilxll = ..1.Qxlll :$ ..1.C = Qyll· 
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B.8. Hahn-Banach Theorem. Suppose E is a locally convex topological vector 
space, Eo c: E is a vector subspace and CfJo: Eo --+ C is a continuous linear 
functional. Then there exists a continuous linear functional CfJ: E --+ C such that 
CfJ I Eo = CfJo' 

B.9. Corollary. Suppose E is a locally convex topological vector space and 
A c: B c: E are vector subspaces. If every continuous linear functional 
CfJ: E --+ C such that CfJ I A = ° satisfies CfJ I B = 0, then A is dense in B. 

PROOF. Suppose A is not dense in B. Then there exists bo E B such that 
bo ¢ A. Let Eo:= A EB Cbo and define a linear functional CfJo: Eo --+ C by 
CfJo(a + ..1.bo):=..1. for a E A, ..1. E C. It is easy to check that CfJo is continuous. 
By the Hahn-Banach Theorem CfJo extends to a continuous linear functional 
CfJ: E --+ C. Then CfJ I A = 0, but CfJ I B ;¢; 0, which is a contradiction. 0 

B.10. Compact Mappings. A linear mapping 1/1: E --+ F between two topolo-
gical vector spaces E and F is called compact or completely continuous, if 
there exists a neighborhood U of zero in E such that I/I(U) is relatively 
compact in F. In particular, a compact linear mapping is continuous. 

Example. Suppose X is an open subset of C and Y X is a relatively 
compact open subset of X. Then the restriction mapping 

fJ: @(X)--+ @(Y), 

is compact. One sees this as follows. Since Y is compact in X, it follows that 

U := {f E @(X): I f(x) I < I} 
XEY 

is a neighborhood of zero in @(X). By Montel's Theorem the set 

M :={g E @(Y): sup Ig(y)1 :$ 1} 
YE Y 

is compact in @(Y). The claim now follows since fJ(U) c: M. 

B.11. Theorem of L. Schwartz. Suppose E and Fare Frechet spaces and CfJ, 
1/1: E --+ F are continuous linear mappings such that CfJ is surjective and 1/1 is 
compact. Then the image of the mapping CfJ -1/1: E --+ F has finite codimension 
in F. 

For the proof see [60]. 
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