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Even if one is interested in singularities of algebraic curves, one is lead to
analytic functions. The standard example is the irreducible curve

y2 − x2 − x3 = 0.

This has a double point in the origin, and in a neighbourhood it seems that
the curve has two branches.

In the ring of formal power series C[[x, y]], or in the ring of germs of analytic
functions around the origin C〈x, y〉,

y2 − x2 − x3 = (y − x
√

1 + x)(y + x
√

1 + x).

Thus, here we see the two branches. If f is an irreducible element in C[[x, y]],
then f (or C[[x, y]]/(f)) is called an algebroid plane branch. If f is an irreducible
element in C〈x, y〉, then f (or C〈x, y〉/(f)) is called an analytic plane branch.

More general, a 1-dimensional domain

C[[x1, . . . , xn]]/P

(C〈x1, . . . , xn〉/P , resp.) is an algebroid branch (an analytic branch, resp.).
An element f ∈ C[[x1, . . . , xn]] (or f ∈ C〈x1, . . . , xn〉) is said to be general

in xn if f(0, . . . , 0, xn) 6= 0. The multiplicity of C[[x1, . . . , xn]]/I is the smallest
order of an element in I.

If f ∈ C[[x1, . . . , xn]] (or f ∈ C〈x1, . . . , xn〉) and o(f) = k, there is a trans-
formation {

xi = yi + ciyn, i = 1, . . . , n
xn = yn

such that f(X(Y )) ∈ C[[y1, . . . , yn]]
(or f ∈ C〈x1, . . . , xn〉) is general in yn of order k.

Weierstrass’ Preparation theorem
If g ∈ C[[x1, . . . , xn]] (or g ∈ C〈x1, . . . , xn〉) is general of order k, there exist

a unit α(x1, . . . , xn) and a polynomial in xn

p = xkn + a1(x1, . . . , xn−1)xk−1n + · · ·+ an(x1, . . . , xn−1),

so p ∈ C[[x1, . . . , xn−1]][xn] such that g = α(x1, . . . , xn)p. Here p is called a
Weierstrass polynomial, and p has the same zeros as g.
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If f ∈ C〈x1, . . . , xn〉, then f = fn1
1 · · · fnr

r , where fi are irreducible for
all i, and the zero set of f is the union of the zero sets of the fi’s, V (f) =
V (f1) ∪ · · · ∪ V (fr). The rings C[[y1, . . . , yn]] and C〈x1, . . . , xn〉 are in many
respects similar to the polynomial ring. They are Noetherian UFD’s.

The implicit function theorem
Suppose f ∈ C〈x1, . . . , xn, y〉, f(0) = 0, and ∂f/∂y(0) 6= 0. Then there ex-

ists φ(x1, . . . , xn) such that f(x1, . . . , xn, φ(x1, . . . , xn)) = 0 in a neighbourhood
of 0. We get a parametrization

x1 = t1
...

xn = tn
y = φ(t1, . . . , tn)

Now f = x3 − y2 is an irreducible power series, so if we could paramertize
f = 0 as {

x = t
y = φ(t)

we would have t3 − (φ(t))2 = 0, which is impossible, but we can write{
x = t
y = t3/2

or {
x = t2

y = t3

Parametrization in Puiseux series
Theorem Suppose f ∈ C[[x, y]] (or f ∈ C〈x, y〉) is general in y of order

k ≥ 1. Then there exist n ≥ 0 and φ(t) ∈ C[[t]] such that φ(0) = 0 and
f(tn, φ(t)) = 0.

Let O = C[[tn,
∑
ait

i]] be a plane branch. Then the integral closure of O
is Ō = C[[t]], which is a discrete valuation ring. (v(f) = o(f).) Thus O and
Ō have the same fraction field. Thus there are elements f1, f2 ∈ O such that
f1/f2 = t, so v(f1) = 1 + v(f2), so v(f1) and v(f2) are relatively prime. This
gives that the set of values is a numerical semigroup. that O is defined by a
Weierstrass polynomial f = yn + · · · . The blowup of f (or quadratic transform)
is defined as f ′ from

f(x′, x′y′) = (x′)nf ′(x′, y′).

As an example, if
O = C[[t4, t6 + t7]] =

C[[x, y]]/(y4 − 2x3y2 + x6 − 4x5y − x7),

then the blowup of y4−2x3y2 +x6−4x5y−x7 is f ′ = y4−2xy2 +x2−4x2y−x3
so the blowup ring is C[[x, y]]/f ′ or C[[t4, t2 + t3]].
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Successive blowups give less and less singular rings, and after a finite number
of blowups, we get a regular ring. The multiplicity sequence is the sequence of
multiplicities of the successive blowups. This is a decreasing sequence. In the
example above, it is 4, 2, 2, 1, . . ..

Two algebroid plane curves are defined to be equisingular (Zariski) if they
have the same multiplicity sequence. For analytic curves C,C ′ this means that
they are topologically equivalent, i.e. there is a homeomorphism between neigh-
bourhoods of the respective origins such that C is mapped onto C ′. It is known
that any analytic branch is equivalent to an algebraic branch.

The Apery set Ap(S; s) with respect to s ∈ S of a semigroup S is the set
of smallest representatives in S of the congruence classes (mod s). If we order
Ap(S; e) (e the multiplicity or smallest positive element in S) as 0 = a0 <
a1 < · · · < ae−1, then the ordered Apery set with respect to e of the blowup is
0 < a1 − e < a2 − 2e < · · · < ae−1 − (e− 1)e (Apery).

Let O = O(0),O(1), . . . be the sequence of blowups, and let e0, e1, . . . , ek = 1
be the corresponding multiplicity sequence. Then v(O(k)) = N, which has
ordered Apery set {0, 1, . . . , ek−1−1}. This gives the Apery sequence of O(k−1),
and thus its semigroup.

Conclusion: Two plane curves are equisingular if and only if they have the
same semigroup.

Let S be a semigroup minimally generated by a0 < a1 · · · < ak, and let
di = gcd(a0, . . . , ai). Then S is a semigroup of a plane curve if and only if
(1) d0 > d1 > · · · > dk = 1
(2) ai > lcm(di−2, ai−1)

Example S = 〈30, 42, 280, 855〉 is the semigroup of C[[t30, t42 + t112 + t127]].
The semigroup of C[[t8, t12 + t14 + t15]] is 〈8, 12, 26, 55〉.

Question 1 Can these semigroups be characterized in some other way? E.g.,
are they special in the semigroup tree?

The moduli problem for plane branches.
Recall that two plane branches C and C ′ are topologically equivalent if there

is a homeomorphism between neighbourhoods of the respective origins such that
C is mapped onto C ′. They are called analytically equivalent if there is such an
analytic isomorphism. The moduli space of an equisingular class is the quotient
space of this equivalence relation. (We want to know which curves have the
same semigroup, but we consider two curves with isomorphic rings equal.)

This is a hard problem, because the answer is not an algebraic variety in
the coefficients. As an example, the rings with semigroup 〈4, 6, 13〉 is either
isomorphic to C[[t4, t6, t13]] (not plane) or to
C[[t4, t6 + ct7 + dt9]] with c 6= 0.

One question in this vein is the following. For which semigroups have only
the semigroup ring in its class?

Answer (Pfister-Steenbrink,Micale): A curve with semigroup S = 〈a1, · · · , ak〉
(a1 < · · · < ak) is isomorhic to C[[ta1 , . . . , tak ]] if and only if it is in one of the
following classes:
(1) The only elements below the conductor are multiples of a1.
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(2) x /∈ S for only one x > a1.
(3) The only elements greater than a1 that are not in S are a1 + 1 and 2a1 + 1,
a1 ≥ 3.

Question 2 Can one characterize these semigroups in some other way? E.g.,
are they special in the semigroup tree?

There is a hierarchy of local domains: (A) regular, (B) complete intersec-
tions, (C) Gorenstein, (D) Cohen-Macaulay. For curves this means:

(A) C[[x]],
(B) C[[x1, . . . , xk]]/(f1, . . . , fk−1), where f1, . . . , fk−1 is a regular sequence,
(C) O/(f) has a 1-dimensional socle for each f 6= 0
(D) all.

For the corresponding semigroup rings C[[S]], this means:
(A) S = N
(B) Characterized by Delorme
(C) S symmetric
(D) all

For a local ring (A,m), the associated graded ring (or the tangent cone)
gr(A) = ⊕i≥0m

i/mi+1, is an important invariant. The local ring itself is always
“better” than the associated graded ring. There has been a lot of work on when
the associated ring of a local (mostly 1-dimensional) ring is Cohen-Macaulay or
Gorenstein.

Semigroup rings have been used to get examples and counterexamples in
local algebra, because they are more accessible than general rings. For an el-
ement s in a semigroup S = 〈a1, . . . , ak〉, let o(s) = max{

∑
ni; s =

∑
niai},

and let r(S) = min{k; a1 + kM = (k + 1)M}. These numbers corresponds to
o(ts) and the reduction number with respect to ta1 of the maximal ideal, i.e.
min{k; ta1mk = mk+1}.

There are two general results for the CM-ness of the associated graded of
semigroup rings:

(Garcia) gr(A) is CM iff o(s+ a1) = 1 + o(s) for all s ∈ S, and
iff o(ω + ka1) = o(ω) + k for all ω ∈ Ap(S, a1).

(Barucci-F) gr(A) is CM iff Ap(B(S), a1) = {ω−o(ω);ω ∈ Ap(S, a1)}, where
B(S) is the blowup of S.

(Bryant) The associated graded to a semigroup ring is Gorenstein iff o(ωi)+
o(ωj) = o(ωa1−1) = r(S) when i+ j = a1 − 1.

Question 3 For which semigroup rings is grA a complete intersection?
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