BRIEF COMMUNICATIONS

On Function Spaces that are Interpolating at Any \(k \) Nodes

V. A. Vasil'ev

Let \(M \) be a topological space, and \(L \) be a finite-dimensional vector subspace in the space of continuous real-valued functions on \(M \). The interpolation properties of the space \(L \) can depend on the choice of nodes of interpolation. We investigate the dimensions of function spaces interpolating any function on \(M \) at any \(k \) nodes.

Definition 1. The space \(L \) is called \(k \)-interpolating if any function \(M \to \mathbb{R} \) can be interpolated at any \(k \) points by an appropriate function from \(L \).

In other words, \(L \) is \(k \)-interpolating if for any \(k \) distinct points \(x_1, \ldots, x_k \) in \(M \) and any real numbers \(a_1, \ldots, a_k \), there exists a function \(F \in L \) taking the value \(a_i \) at the point \(x_i \) for any \(i = 1, \ldots, k \).

Denote by \(I(M, k) \) the minimal dimension of \(k \)-interpolating spaces of functions on \(M \).

The main problem is to find the numbers \(I(M, k) \) for all \(M \) and \(k \).

Examples. If \(M = \mathbb{R}^1 \), then \(I(M, k) = k \): for a \(k \)-interpolating space we can take the space of polynomials of degree \(\leq k - 1 \).

If \(M = S^1 \), then \(I(M, k) = k \) for odd \(k \), and \(I(M, k) = k + 1 \) for even \(k \): in both cases the \(k \)-interpolating space is presented by Fourier polynomials of degree \(\leq \lfloor k/2 \rfloor \).

Consider the first nontrivial case, \(M = \mathbb{R}^2 \).

Theorem 1. The number \(I(\mathbb{R}^2, k) \) satisfies the inequality
\[
2k - d(k) \leq I(\mathbb{R}^2, k) \leq 2k - 1,
\]
where \(d(k) \) is the number of ones in the binary representation of \(k \). In particular, \(I(\mathbb{R}^2, k) = 2k - 1 \) if \(k \) is a power of 2.

Note that in the first questionable case (when \(k = 3 \)) the complicated lower estimate turns out to be realistic, and not the simple upper one: the 4-dimensional space spanned by the functions 1, \(x \), \(y \), \(x^2 + y^2 \) is 3-interpolating for \(\mathbb{R}^2 \).

Theorem 2. For any \(n \) and for any \(n \)-dimensional manifold \(M \) we have
\[
I(M, k) \leq k(n + 1).
\]

Conjecture 1. If \(n \) is a power of 2, then
\[
I(\mathbb{R}^n, k) \geq k + (n - 1)(k - d(k)).
\]

This conjecture is closely related to certain conjectures on the multiplicative structure in the cohomology of configuration spaces; see Conjecture 2 below.

Definition 2. A space \(L \) of functions \(M \to \mathbb{R} \) is called \(k \)-distinguishing if the linear span of \(L \) and the function identically equal to 1 is a \(k \)-interpolating space.

This notion has an obvious geometrical interpretation: a set of functions \(f_1, \ldots, f_N \) forms a basis of a \(k \)-distinguishing space iff the map \(M \to \mathbb{R}^N \) defined by them takes any \(k \) different points from \(M \) to the vertices of some \((k - 1) \)-dimensional simplex in \(\mathbb{R}^N \). In particular, the calculation of the minimal dimension \(D(M, k) \) of \(k \)-distinguishing spaces involves (for \(k = 2 \)) the problem of imbedding of manifolds into Euclidean spaces. On the other hand, \(I(M, k) = D(M \cup \{ \text{a point} \}, k) \).

Theorem 3. Theorems 1, 2 remain valid if we replace the numbers \(I(M, k)\) in their statements by \(D(M, k) + 1\).

Proof of Theorem 1. The upper estimate \(I(\mathbb{R}^2, k) \leq 2k - 1\) is provided by the functions \(1, \text{Re}(z^t), \text{Im}(z^t), t = 1, \ldots, k - 1\), where \(z\) is the complex coordinate on \(\mathbb{R}^2\).

Now, for an arbitrary topological space \(M\), consider the configuration space \(B(M, k)\), i.e., the space of all subsets of cardinality \(k\) in \(M\) with the obvious topology. Consider the \(k\)-dimensional vector bundle \(T(M, k)\) over \(B(M, k)\) whose fiber over the point \(\{x_1, \ldots, x_k\}\) is the space of real-valued functions on the set \(\{x_1, \ldots, x_k\}\). For any \(N\)-dimensional space \(L\) of functions on \(M\), consider also the trivial \(N\)-dimensional vector bundle \(\{L\} \cong L \times B(M, k)\) over \(B(M, k)\). There exists a natural homomorphism \(\text{Restr}: \{L\} \to T(M, k)\): over any point \(\{x_1, \ldots, x_k\} \in B(M, k)\), to any function \(F \in L\) there corresponds its restriction to the set \(\{x_1, \ldots, x_k\}\). Obviously, the space \(L\) is \(k\)-interpolating iff this morphism is epimorphic, and hence the \((N-k)\)-dimensional vector bundle \(\ker\text{Restr}\) is well-defined. This implies

Theorem 4. For any \(M\) and \(k\), \(I(M, k) - k \geq \deg w^{-1}(T(M, k))\), where \(w(E)\) is the total Stiefel-Whitney class of the vector bundle \(E\) (see [1]), \(w^{-1}(E)\) is its inverse in the multiplicative group of the ring \(H^*(B(M, k), \mathbb{Z}_2)\), and \(\deg\) is the grading of the highest nonzero homogeneous part of an element of a graded ring.

For example, put \(M = \mathbb{R}^2\). The rings \(H^*(B(\mathbb{R}^2, k), \mathbb{Z}_2)\), as well as the Stiefel–Whitney classes of the bundles \(T(\mathbb{R}^2, k)\), were calculated in [2]. In particular, it follows from [2] that \(\deg w(T(\mathbb{R}^2, k)) = k - d(k)\). In [2] it was also proved that \(h^2 = 0\) for any element \(h\) of positive dimension in the ring \(H^*(B(\mathbb{R}^2, k), \mathbb{Z}_2)\). Hence, \(w^{-1}(E) = w(E)\) for any bundle \(E\) over \(B(\mathbb{R}^2, k)\), and \(\deg w^{-1}(T(\mathbb{R}^2, k)) = k - d(k)\). This proves the lower estimate in Theorem 1.

The estimate \(I(S^1, k) \geq k + 1\) for even \(k\) is proved similarly.

Theorem 2 immediately follows from Thom's multijet transversality theorem; see [3]. Indeed, let \(F(M, k)\) be the space of ordered subsets of cardinality \(k\) in \(M\). Then the set of real-valued functions \(f_1, \ldots, f_N\) on \(M\) defines a map of \(F(M, k)\) into the space of \(k \times N\)-matrices. The set of matrices of nonmaximal rank has codimension \(N - k + 1\) in this space, so, if \(N - k + 1 > k \dim M\), then the image of \(F(M, k)\) under the map defined by a generic set \(\{f_1, \ldots, f_N\}\) does not intersect this set.

Remark. The estimate of Theorem 2 is not realistic even in the case \(k = 2\): the strong Whitney imbedding theorem implies that \(I(\mathbb{R}^n, 2) \leq 2n + 1\).

Conjecture 2. If \(n\) is a power of \(2\), then the \(n\)th power of any element of positive dimension in \(H^*(B(\mathbb{R}^n, k), \mathbb{Z}_2)\) equals zero. In particular, \([w(T(\mathbb{R}^n, k))]^n = 1\).

Conjecture 1 follows (in the same way as Theorem 1) from the latter conjecture and from the fact that if \(k\) is a power of \(2\), then the class \([w_{k-1}(T(\mathbb{R}^n, k))]^{n-1}\) is nontrivial.

References

Translated by V. A. Vasil'ev