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SOME NEW CANONICAL FORMS FOR POLYNOMIALS

BRUCE REZNICK

Abstract. We give some new canonical representations for forms over C. For
example, a general binary quartic form can be written as the square of a quadratic
form plus the fourth power of a linear form. A general cubic form in (x1, . . . , xn)
can be written uniquely as a sum of the cubes of linear forms ℓij(xi, . . . , xj), 1 ≤ i ≤
j ≤ n. A general ternary quartic form is the sum of the square of a quadratic form
and three fourth powers of linear forms. The methods are classical and elementary.

1. Introduction

Let Hd(C
n) denote the N(n, d) =

(

n+d−1
d

)

-dimensional vector space of complex
forms of degree d in n variables, or n-ary d-ic forms. One of the major accomplish-
ments of 19th century algebra was the discovery of canonical forms for certain classes
of n-ary d-ics, especially as the sum of d-th power of linear forms. By a canoni-
cal form we mean a polynomial expression F (t; x), t ∈ CN(n,d) so that, for general
p ∈ Hd(C

n), there exists t for which p(x) = F (t; x). In this paper, we present some
new canonical forms, whose main novelty is that they involve intermediate powers of
forms of higher degree, or forms with a restricted set of monomials. (These variations
are suggested by the study of Hilbert’s 17th problem, as well as by a theorem of B.
Reichstein.) They are less susceptible to apolarity arguments than the traditional
canonical forms, and lead naturally to (mostly open) enumeration questions.
To take a simple, yet familiar example,

(1.1) F (t1, t2, t3; x, y) = (t1x+ t2y)
2 + (t3y)

2

is a canonical form for binary quadratic forms. By the usual completion of squares,
p(x, y) = ax2 + 2bxy + cy2 = a(x+ b

a
y)2 + (c− b2

a
)y2, as long as a 6= 0. Many of the

examples in this paper can be viewed as attempts to generalize (1.1).
In 1851, Sylvester [38, 39] presented canonical expressions for binary forms.

Theorem 1.1 (Sylvester’s Theorem).
(i) A general binary form p of odd degree 2s− 1 can be written as

(1.2) p(x, y) =

s
∑

j=1

(αjx+ βjy)
2s−1.
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(ii) A general binary form p of even degree 2s can be written as

(1.3) p(x, y) = λx2s +

s
∑

j=1

(αjx+ βjy)
2s.

for some λ ∈ C.

The somewhat unsatisfactory nature of the asymmetric summand in (1.3) has been
the inspiration for other canonical forms for binary forms of even degree.
Another familiar canonical form is the generalization of (1.1) into the upper-

triangular expression for quadratic forms, found by repeated completion of the square:

Theorem 1.2. A general quadratic form p ∈ H2(C
n) can be written as:

(1.4) p(x1, . . . , xn) =

n
∑

k=1

(tk,kxk + tk,k+1xk+1 + · · ·+ tk,nxn)
2, tk,ℓ ∈ C.

There are two ways to verify that a candidate expression F (t; x) is, in fact, a
canonical form. One is the classical non-constructive method based on the existence
of a point at which the Jacobian matrix has full rank. (See Corollary 2.3, and see
Theorem 3.2 for the apolar version.) Lasker [23] attributes the underlying idea to
Kronecker and Lüroth – see [45, p.208].
Ideally, however, a canonical form can be derived constructively, and the number

of different representations can thereby be determined. The convention in this paper
will be that two representations are the same if they are equal, up to a permutation
of like summands and with the identification of fk and (ζf)k when ζk = 1. The
representation in (1.2) is unique in this sense, even though there are s! · (2s − 1)s

different 2s-tuples (α1, β1, . . . , αs, βs) for which (1.2) is valid.
In addition to Theorem 1.1, another motivational example for this paper is a re-

markable canonical form for cubic forms found by Reichstein [30] in 1987, which can
be thought of as a “completion of the cube”.

Theorem 1.3 (Reichstein). A general cubic p ∈ H3(C
N) can be written uniquely as

(1.5) p(x1, . . . , xn) =

n
∑

k=1

ℓ3k(x1, . . . , xn) + q(x3, . . . , xn),

where ℓk ∈ H1(C
n) and q ∈ H3(C

n−2).

This is a canonical form, provided q is viewed as a t-linear combination of the
monomials in (x3, . . . , xn); since N(n, 3) = n2 + N(n − 2, 3), the constant count is
right. Iteration (see (6.1)) gives p as a sum of roughly n2/4 cubes. The minimum
from constant-counting, which is justified by the Alexander-Hirschowitz Theorem [1],
is roughly n2/6. We give Reichstein’s constructive proof of Theorem 1.3 in section
six.
Here are some representative examples of the new canonical forms in this paper.
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Theorem 1.4. A general cubic form p ∈ H3(C
n) has a unique representation

(1.6) p(x1, . . . , xn) =
∑

1≤i≤j≤n

(t{i,j},ixi + · · ·+ t{i,j},jxj)
3,

where t{i,j},k ∈ C.

Theorem 1.5. A general binary sextic p ∈ H6(C
2) can be written as p(x, y) =

f 2(x, y) + g3(x, y), where f ∈ H3(C
2) is a cubic form and g ∈ H2(C

2) is a quadratic
form.

Theorem 1.4 has a constructive proof. Theorem 1.5 is in fact, a very special case
of much deeper recent results of Várilly-Alvarado. (See [42], especially Theorem 1.2
and Remark 4.5, and section 1.2 of [43].) We include it because our proof, in the
next section, is very short.
Theorems 1.1 and 1.5 are both special cases of a more general class of canonical

forms for Hd(C
n), which is a corollary of [8, Thm. 4.4] (see Theorem 3.4), but not

worked out explicitly there.

Theorem 1.6. Suppose d ≥ 1, {ℓj : 1 ≤ j ≤ m} is a fixed set of pairwise non-
proportional linear forms, and suppose ek | d, d > e1 ≥ · · · ≥ er, 1 ≤ k ≤ r, and

(1.7) m+
r
∑

k=1

(ek + 1) = d+ 1.

Then a general binary d-ic form p ∈ Hd(C
2) can be written as

(1.8) p(x, y) =
m
∑

j=1

tjℓ
d
j (x, y) +

r
∑

k=1

f
d/ek
k (x, y),

where tj ∈ C and fk ∈ Hek(C
2).

The condition ek < d excludes the vacuous case m = 0, r = 1, e1 = d. If each ek = 1
and r = ⌊d+1

2
⌋, then m = d+1−2⌊d+1

2
⌋ ∈ {0, 1} and Theorem 1.6 becomes Theorem

1.1; Theorem 1.5 is Theorem 1.6 in the special case d = 6, m = 0, r = 2, e1 = 3, e2 = 2.
As an example of a canonical form which is unlikely to find a constructive proof: for
a general p ∈ H84(C

2), there exist f ∈ H42(C
2), g ∈ H28(C

2) and h ∈ H12(C
2) so that

p = f 2 + g3 + h7.
By taking d = 2s, e1 = 2, e2 = · · · = es−1 = 1 and m = 0, in Theorem 1.6, we

obtain an alternative to the dangling term “ λx2s” in (1.3).

Corollary 1.7. A general binary form p of even degree 2s can be written as

(1.9) p(x, y) = (α0x
2 + β0xy + γ0y

2)s +

s−1
∑

j=1

(αjx+ βjy)
2s.
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Cayley proved that, after an invertible linear change of variables (x, y) 7→ (X, Y ),
a general binary quartic can be written as X4+6λX2Y 2+Y 4. There are two natural
ways to generalize this to higher even degree, and almost 100 years ago, Wakeford
[44, 45] did both.

Theorem 1.8 (Wakeford’s Theorem). After an invertible linear change of variables,
a general p ∈ Hd(C

n) can be written so that the coefficient of each xd
i is 1 and the

coefficient of each xd−1
i xj is zero.

There areN(n, d)−n2 unmentioned monomials above, and when combined with the
n2 coefficients in the change of variables, the constant count is correct for a canonical
form. Wakeford was also interested in knowing which sets of n(n − 1) monomials
can be eliminated by a change of variables, and we are able to settle this for binary
forms in Theorem 2.4. (Theorem 1.8 was independently discovered by Guazzone [14]
in 1975, as an attempt to generalize the canonical form X3 + Y 3 + Z3 + 6λXY Z for
H3(C

3). Babbage [2] subsequently observed that this can be proved by the Lasker-
Wakeford Theorem, without noting that Wakeford had already done so in [45].)
The second generalization of X4 + 6λX2Y 2 + Y 4 will not be pursued here; see [8,

Cor. 4.11]. A canonical form for binary forms of even degree 2s is given by

(1.10)
s
∑

k=1

ℓ2sk (x, y) + λ
s
∏

k=1

ℓ2k(x, y), ℓk(x, y) = αkx+ βky.

This construction is due to Sylvester [39] for 2s = 4, 8. His methods failed for 2s = 6,
but Wakeford was able to prove it in [44]. The full version of (1.10) is proved in
[45, p.408], where Wakeford notes that “the number of ways this reduction can be
performed is interesting”, citing “3,8,5” for 2s = 4, 6, 8.
The non-trivial study of canonical forms was initiated by Clebsch’s 1861 discovery

([5], see e.g. [12, pp.50-51] and [31, pp.59-60]) that, despite the fact that N(3, 4) =
5×N(3, 1), a general ternary quartic cannot be written as a sum of five fourth powers
of linear forms. This was early evidence that constant-counting can fail. But N(3, 4)
is also equal to 1×N(3, 2)+3×N(3, 1), and ternary quartics do satisfy an alternative
canonical form as a mixed sum of powers.

Theorem 1.9. A general ternary quartic p ∈ H4(C
3) can be written as

(1.11) p(x1, x2, x3) = q2(x1, x2, x3) +
3
∑

k=1

ℓ4k(x1, x2, x3),

where q ∈ H2(C
3) and ℓk ∈ H1(C

3).

One might also consider polynomial maps F : S 7→ Hd(C
n), where S is an N -

dimensional subspace of some CM . In the simplest case, for binary quadratic forms,
observe that the coefficient of x2 in

(1.12) (t1x+ t2y)
2 + (it1x+ t3y)

2,
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is 0, so (1.12) is not canonical. This is essentially the only kind of exception.

Theorem 1.10. Suppose (c1, c2, c3, c4) ∈ C4, and it is not true that c3 = ǫc1 and
c4 = ǫc2 for ǫ ∈ {±i}. Then for general p ∈ H2(C

2), there exists (t1, t2, t3, t4) ∈ C4

satisfying
∑4

j=1 cjtj = 0 and such that

(1.13) p(x, y) = (t1x+ t2y)
2 + (t3x+ t4y)

2.

In the exceptional case, there exists (x0, y0) so that for all feasible choices of tj,
p(x0, y0) = 0.

Another alternative version of (1.3) is the following conjecture, which can be veri-
fied up to degree 8.

Conjecture 1.11. A general binary form p of even degree 2s can be written as

(1.14) p(x, y) =

s+1
∑

j=1

(αjx+ βjy)
2s, where

s+1
∑

j=1

(αj + βj) = 0.

Here is an outline of the paper. In section two, we introduce notation and defini-
tions. The definition of canonical form is the classical one and roughly parallels that
in Ehrenborg-Rota [8], an important updating of this subject about 20 years ago.
Our point of view is considerably more elementary in many respects than [8], but
uses the traditional criterion: A polynomial map F : CN 7→ Hd(C

n) is a canonical
form if a general p ∈ Hd(C

n) is in the range; this occurs if and only if there is at least
one point u ∈ CN so that { ∂F

∂tj
(u)} spans Hd(C

n). (See Corollary 2.3.) This leads to

immediate non-constructive proofs of Theorems 1.2, 1.5, 1.8 and 1.9, and a somewhat
more complicated proof of Theorem 2.4, which answers Wakeford’s question about
missing monomials for binary forms.
In section three, we discuss classical apolarity and its implications for canonical

forms. (Apolarity methods become more complicated when a component of a canon-
ical form comes from a restricted set of monomials.) A generalization of the classical
Fundamental Theorem of Apolarity from [33] allows us to identify a class of bases
for Hd(C

n) which give a non-constructive proof of Theorem 1.6, and hence Theorem
1.1. We also present Sylvester’s Algorithm, Theorem 3.8, allowing for a constructive
proof of Theorem 1.1. We conclude with a brief summary of connections with the
theorems of Alexander-Hirschowitz and recent work on the rank of forms.
In section four we discuss some special cases of Theorem 1.6. Sylvester’s Algorithm

is used in constructive proof of Theorem 1.6 when ek ≡ 1, in which case the repre-
sentation is unique. We give some other constructive proofs for d ≤ 4, and present
numerical evidence regarding the number of representations in Corollary 1.7 and a
few other cases. Using elementary number theory, we show that, for each r, there are
only finitely many canonical forms (1.8) with m = 0, and, up to degree N , there are
N +O(N1/2) such canonical forms in which the ek’s are equal.
Section five discusses some familiar results on sums of two squares of binary forms

and canonical representations of quadratic forms as a sum of squares of linear forms.
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This includes a constructive proof of Theorem 1.2, which provides the groundwork
for the proof of Theorem 1.4. Constant-counting has long been recognized as not
fully applicable to sums of squares. We also give a short proof of a canonical form
which illustrates the classical result that a general ternary quartic is the sum of three
squares of quadratic forms.
In section six, we turn to forms in more than two variables and low degree, give

constructive proofs of Theorems 1.3 and 1.4, as well as the non-canonical Theorem

6.2, which shows that every cubic in H3(C
n) is a sum of at most n(n+1)

2
cubes of

linear forms. Theorem 1.3 can be “lifted” to an ungainly canonical form for quartics
as a sum of fourth powers (see Corollary 6.3), but not further to quintics. Number
theoretic considerations rule out a Reichstein-type canonical form for quartics in 12
variables; see Theorem 6.4 for other instances of this phenomenon.
In section seven, we offer a preliminary discussion of canonical forms in which the

domain of a polynomial map F : CM 7→ Hd(C
n) is restricted to an N -dimensional

subspace of CM , of which Theorem 1.10 and Conjecture 1.11 are examples.
The greatest debt of the author is due Richard Ehrenborg and Gian-Carlo Rota

for writing [8]. Thanks to Dave Anderson and Julianna Tymoczko for organizing
the Special Session on Geometric Commutative Algebra and Applications at the
March 2011 AMS Sectional Meeting in Iowa City, to Lek-Heng Lim for organizing the
Minisymposium on Tensor Rank at the October 2011 SIAM Conference on Applied
Algebraic Geometry in Raleigh and to Eugene Mukhin for organizing ALGECOM5
in Indianapolis in October 2011. Invitations to speak at these conferences provided
an opportunity to present preliminary versions of this material. I am indebted to
Tony Várilly-Alvarado for extremely helpful correspondence. I also want to thank
T. Y. Lam, Hal Schenck, Bernd Sturmfels and Doron Zeilberger for their assistance.
Special thanks go to the Center for Advanced Study at UIUC, where the author was
an Associate in the Fall 2011 semester, and thereby free of teaching responsibilities.

2. Canonical forms

Let I(n, d) denote the index set of monomials in Hd(C
n):

(2.1) I(n, d) =
{

(i1, . . . , in) : 0 ≤ ik ∈ Z,
∑

k

ik = d
}

.

Let xi = xi1
1 · · ·xin

n and c(i) = d!∏
ik!

denote the multinomial coefficient. If p ∈ Hd(C
n),

then we write

(2.2) p(x1, . . . , xn) =
∑

i∈I(n,d)

c(i)a(p; i)xi, a(p; i) ∈ C.

We say that two forms are distinct if they are non-proportional, and a set of forms
is honest if the forms are pairwise distinct. For later reference, recall Biermann’s
Theorem; see [31, p.31].
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Theorem 2.1 (Biermann’s Theorem). If p ∈ Hd(C
n) and p 6= 0, then there exists

i ∈ I(n, d) so that p(i) 6= 0.

The easy verification of whether a formula is a canonical form for Hd(C
n) relies on

a crucial alternative. A self-contained accessible proof is in [8, Thm. 2.4], for which
Ehrenborg and Rota thank M. Artin and A. Mattuck. For further discussion of the
underlying algebraic geometry, see Section 9.5 in Cox, Little and O’Shea [7].

Theorem 2.2. Suppose M ≥ N and F : CM → CN is a polynomial map; that is,

F (t1, . . . , tM) = (f1(t1, . . . , tM), . . . , fN(t1, . . . , tM))

where each fj ∈ C[t1, . . . , tM ]. Then either (i) or (ii) holds:
(i) The N polynomials {fj : 1 ≤ j ≤ N} are algebraically dependent and F (CM)

lies in some non-trivial variety {P = 0} in CN .
(ii) The N polynomials {fj : 1 ≤ j ≤ N} are algebraically independent and F (CM)

is dense in CN .
The second case occurs if and only there is a point u ∈ CM at which the Jacobian

matrix
[

∂fi
∂tj

(u)
]

has full rank.

When M = N = N(n, d), we may interpret such an F as a map from CN to Hd(C
n)

by indexing I(n, d) as {ik : 1 ≤ k ≤ N} and making the interpretation in an abuse
of notation that

(2.3) F (t; x) =

N
∑

k=1

c(ik)fk(t1 . . . , tN)x
ik .

Definition. A canonical form for Hd(C
n) is any polynomial map F : CN 7→ Hd(C

n)
in which F satisfies Theorem 2.2(ii).

That is, F is a canonical form if and only if, for a general p ∈ Hd(C
n), there exists

t ∈ CN so that p(x) = F (t; x). In the rare cases where F is surjective, we say that
the canonical form is universal. By translating the definitions and using (2.1) and
(2.3), we obtain an immediate corollary of Theorem 2.2:

Corollary 2.3. The polynomial map F : CN 7→ Hd(C
n) is a canonical form if and

only if there exists u ∈ Cn so that { ∂F
∂tj

(u)} spans Hd(C
n).

We shall let J := J(F ; u) denote the span of the forms { ∂F
∂tj

(u)}. In any particular

case, the determination of whether J = Hd(C
n) amounts to the computation of the

determinant of an N(n, d) × N(n, d) matrix. As much as possible in this paper, we
give proofs which can be checked by hand, by making a judicious choice of u and
ordering of the monomials in Hd(C

n), showing sequentially that they all lie in J .
Classically, the use of the term “canonical form” has been limited to cases in which

F (t; x) has a natural interpretation as a combination of forms in Hd(C
n), such as a

sum of powers of linear forms, or as a result of a linear change of variables. It seems
odd that canonical forms are perceived as rare, since a “general” polynomial map
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from CN 7→ Hd(C
n) is a canonical form. (This is an observation which goes back at

least to [37].) For example, if {fj(x)} is a basis for Hd(C
n), then

(2.4) F (t; x) =
N
∑

j=1

tjfj(x)

should be (but usually isn’t) considered a canonical form. In particular, (2.2) with
fj(x) = c(ij)x

ij is itself a canonical form.
The following computation will occur repeatedly. If es = d, then

(2.5) g =
∑

ij∈I(n,e)

tjx
ij =⇒ ∂gs

∂tj
= sxijgs−1.

If g is specialized to be a monomial, then all these partials will also be monomials.

Non-constructive proof of Theorem 1.2. Given (1.4), let

ℓk(x) =

n
∑

m=k

tk,mxm, F (x) =

n
∑

k=1

ℓ2k(x).

Then ∂F
∂tk,m

= 2xmℓk. Set tk,m = δk,m, so that ℓk = xk and ∂F
∂tk,m

= 2xkxm. Since

1 ≤ k ≤ m ≤ n, all monomials from H2(C
n) appear in J . �

Non-constructive proof of Theorem 1.5. Suppose

(2.6)
p(x, y) = f 2(x, y) + g3(x, y) :

f(x, y) = t1x
3 + t2x

2y + t3xy
2 + t4y

3, g(x, y) = t5x
2 + t6xy + t7y

2.

Then by (2.5), the partials with respect to the tj ’s are:

2x3f, 2x2yf, 2xy2f, 2y3f ; 3x2g2, 3xyg2, 3y2g2.

Upon specializing at f = x3, g = y2, these become:

2x6, 2x5y, 2x4y2, 2x3y3; 3x2y4, 3xy5 , 3y6.

It is then evident that J = H6(C
2). �

Non-constructive proof of Theorem 1.8. Let L ⊂ I(n, d) consist of all n-tuples except
the permutations of (d, 0, . . . , 0) and (d − 1, 1, . . . , 0) and let Xi =

∑n
j=1 αijxj . The

assertion is that, with the (N(n, d)− n−
(

n
2

)

) + n2 = N(n, d) parameters tℓ and αij,

(2.7)
n
∑

i=1

Xd
i +

∑

ℓ∈L

tℓX
ℓ

is a canonical form. Evaluate the partials at the point where Xi = xi and tℓ = 0:
they are dxjx

d−1
i (for αij) and xℓ (for tℓ). Taking 1 ≤ i, j ≤ n and ℓ ∈ L, we see that

J contains all monomials in Hd(C
n). �
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As a special case (used later in Theorem 4.6), we obtain the familiar result that
after appropriate linear changes of variable, a general binary quartic may be written
as x4 + 6λx2y2 + y4. It is classically known (see [9, §211]) that for a given general
quartic, there are six different values of λ: ±λ,± 1−λ

1+3λ
,± 1+λ

1−3λ
. We do not know any

other quantitative results about the number of different values for the tk’s which
appear in (2.7).
Wakeford asserts that Theorem 1.8 is also true with xd−1

i xj replaced by xd−r
i xr

j (ev-

idently when r 6= d
2
), but his proof seems sketchy. He also gives necessary conditions

for sets of n(n − 1) monomials which may be omitted, and these are hard to follow
as well. Below, we answer his question in the binary case: in the only two excluded
cases below, (2.8) has a square factor, and so cannot be canonical.

Theorem 2.4. Let B = (m1, m2, n1, n2) be four distinct integers in {0, . . . , d} so that
{m1, m2} 6= {0, 1}, {d − 1, d}. Then, after an invertible linear change of variable, a
general binary form p of degree d can be written as

(2.8) p(x, y) = xd−n1yn1 + xd−n2yn2 +
∑

k/∈B

tkx
d−kyk

for some {tk} ⊂ C.

Proof. Writing (x, y) 7→ (α1x+ α2y, α3x+ α4y) := (X, Y ), we have

(2.9) F = Xd−n1Y n1 +Xd−n2Y n2 +
∑

k/∈B

tkX
d−kY k.

Evaluate the partials of (2.9) at (α1, α2, α3, α4) = (1, 0, 0, 1) (so X = x, Y = y) and
tk = 1 (note the difference with the previous proof, in which tk = 0). The d − 3
partials with respect to the tk’s are simply xd−kyk, k /∈ B, so these are in J . Further,

(2.10)
∂F

∂α1
=

∑

j 6=m1,m2

(d− j)xd−jyj,
∂F

∂α4
=

∑

j 6=m1,m2

jxd−jyj.

Since most monomials used in (2.10) are already in J , it follows that J also contains

(2.11) (d− n1)x
d−n1yn1 + (d− n2)x

d−n2yn2, n1x
d−n1yn1 + n2x

d−n2yn2,

and since (d − n1)n2 6= (d − n2)n1, (2.11) implies that xd−njynj ∈ J for j = 1, 2.
To this point, we have shown that J contains all monomials from Hd(C

2) except for
xd−mjymj , where m1 < m2. The two remaining partial derivatives are

(2.12)
∂F

∂α2
=

∑

j 6=m1,m2

(d− j)xd−j−1yj+1,
∂F

∂α3
=

∑

j 6=m1,m2

jxd−j+1yj−1,

and so J contains as well the forms in (2.12) of the shape c1x
d−m1ym1 + c2x

d−m2ym2.
We need to distinguish a number of cases. If m1 = 0, m2 = d, then these forms
are yd, xd. If m1 = 0 and 2 ≤ m2 ≤ d − 1, then these forms are (d − m2)x

d−m2ym2

and xd + (m2 + 1)xd−m2ym2, and similarly when 1 ≤ m1 ≤ d − 2 and m2 = d. In
the remaining cases, 1 ≤ m1 < m2 ≤ d − 1. If m2 = m1 + 1, then these forms are
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(d− (m1− 1))xd−m1ym1 and (m2+1)xd−m2ym2 . Finally, if m2 > m1+1, then all four
terms appear, and the forms are

(2.13)
(d−m1 + 1)xd−m1ym1 + (d−m2 + 1)xd−m2ym2,

(m1 + 1)xd−m1ym1 + (m2 + 1)xd−m2ym2.

In each of the cases, linear combinations of the forms produce the missing monomials,
so J = Hd(C

2). �

Remark. By writing p(x, y) =
∏

k(x + αky), it follows from Theorem 1.8 that, for a
general set of d complex numbers αk, there exists a Möbius transformation T so that

(2.14)
d
∑

k=1

T (αk) = 0,
d
∑

k=1

T ( 1
αk
) = 0,

d
∏

k=1

T (αk) = 1.

Non-constructive proof of Theorem 1.9. Write (1.11) as F (x; t), where

q(x1, x2, x3) = t1x
2
1 + t2x

2
2 + t3x

2
3 + t4x1x2 + t5x1x3 + t6x2x3,

ℓk(x1, x2, x3) = tk1x1 + tk2x2 + tk3x3.

Evaluate the partials at: q = x1x2 + x1x3 + x2x3 and (ℓ1, ℓ2, ℓ3) = (x1, x2, x3). Then
∂F
∂tkℓ

= 4xℓx
3
k, so x4

i , x
3
ixj ∈ J ; since ∂F

∂t1
= 2x2

1q = 2x2
1(x1x2 + x1x3 + x2x3), it follows

that x2
1x2x3 ∈ J , similarly, by considering ∂F

∂t2
and ∂F

∂t3
, it follows that x1x

2
2x3, x1x2x

2
3

are in J . Finally, ∂F
∂t4

= 2x1x2q = 2x1x2(x1x2 + x1x3 + x2x3), and so now x2
1x

2
2 ∈ J .

Similarly, by considering ∂F
∂t5

and ∂F
∂t6

, it follows that x2
1x

2
3, x

2
2x

2
3 are also in J , and this

accounts for all monomials in H4(C
3). �

Other applications of Corollary 2.3 to canonical forms can be found in [8], [37] and
[41, pp.265-269].

3. Apolarity

Using the notation of (2.1) and (2.2), for p, q ∈ Hd(C
n), define the following bilinear

form:

(3.1) [p, q] =
∑

i∈I(n,d)

c(i)a(p; i)a(q; i).

Recall two basic notations. For α ∈ Cn, define (α·)d ∈ Hd(C
n) by

(3.2) (α·)d(x) = (α · x)d =
( n
∑

j=1

αjxj

)d

=
∑

i∈I(n,d)

c(i)αixi.

Define the differential operator f(D) for f ∈ He(C
n) in the usual way by

(3.3) f(D) =
∑

i∈I(n,e)

c(i)a(f ; i)
(

∂
∂x1

)i1
· · ·
(

∂
∂xn

)in
.
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It follows immediately that for α ∈ Cn,

(3.4) [p, (α·)d] =
∑

i∈I(n,d)

c(i)a(p; i)αi = p(α),

If i 6= j ∈ I(n, d), then ik > jk for some k, so Dixj = 0; otherwise Dixi =
∏

k(ik)! =
d!/c(i). Suppose p, q ∈ Hd(C

n). Bilinearity and (3.3) imply the classical result that

(3.5)

p(D)q =
∑

i∈I(n,d)

c(i)a(p; i)Di

(

∑

j∈I(n,d)

c(j)a(q; j)xj

)

=

∑

i∈I(n,d)

∑

j∈I(n,d)

c(i)c(j)a(p; i)a(q; j)Dixj =
∑

i∈I(n,d)

c(i)c(i)a(p; i)a(q; i)Dixi

=
∑

i∈I(n,d)

c(i)2a(p; i)a(q; i)
d!

c(i)
= d![p, q] = d![q, p] = q(D)p.

Definition. If p ∈ Hd(C
n) and q ∈ He(C

n), then p and q are apolar if p(D)q =
q(D)p = 0.

Note that if d = e, then p and q are apolar if and only if [p, q] = 0 and if d > e,
say, then the equation p(D)q = 0 is automatic, so only q(D)p = 0 need be checked.
By (3.4), p is apolar to (α·)d if and only if p(α) = 0.
The following lemma is both essential and trivial.

Lemma 3.1. Suppose X = span({hj}) ⊆ Hd(C
n). Then X = Hd(C

n) if and only if
there is no 0 6= p ∈ Hd(C

n) which is apolar to each of the hj’s.

From this point of view, Theorem 3.2 is a direct consequence of Corollary 2.3:

Theorem 3.2 (Lasker-Wakeford). If F : CN → Hd(C
n), then F is a canonical form

if and only if there is a point u so that there is no non-zero form q ∈ Hd(C
n) which

is apolar to all N forms { ∂F
∂tk

(u)}.
The attribution “Lasker-Wakeford” (for [23, 45]) is taken from [41]: H. W. Turnbull

(1885-1961) was one of the last practicing invariant theorists who had been trained
in the pre-Hilbert approach, see [10, pp.231-232]. (His text [41] is a Rosetta Stone for
understanding the 19th century approach to algebra in more modern terminology.)
Turnbull referred to Theorem 3.2 as “paradoxical and very curious”. E. Lasker (1868-
1941) received his Ph.D. under M. Noether at Göttingen in 1902. He is probably
better known for being the world chess champion for 27 years (1894-1921), spanning
the life of E. K. Wakeford (1894-1916). J. H. Grace, Wakeford’s professor at Oxford,
edited the second half of his thesis into the article [45] and also wrote a memorial
article [13] for him in 1918:

“He [EKW] was slightly wounded early in 1916, and soon after coming
home was busy again with Canonical Forms.... [H]e discovered a paper
of Hilbert’s which contained the very theorem he had long been in
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want of – first vaguely, and later quite definitely. This was in March;
April found him, full of the most joyous and reverential admiration
for the great German master, working away in fearful haste to finish
the dissertation ... He returned to the front in June and was killed in
July.... He only needed a chance, and he never got it.”

The following properties are easily established; see, e.g., [31, 33] for proofs.

Theorem 3.3.

(i) If f ∈ He(C
n), g ∈ Hd−e(C

n) and p ∈ Hd(C
n), then

(3.6) d![fg, p] = (fg)(D)p = f(D)g(D)p = e![f, g(D)p].

Thus, p is apolar to every multiple of g in Hd(C
n) if and only if p and g are apolar.

(ii) If p ∈ Hd(C
n), then 1

d
∂p
∂xj

(α) = [p, xj(α·)d−1]. Thus, p is apolar to (α·)d−1 if

and only if p is singular at α. More generally, p is apolar to (α·)d−e if and only if p
vanishes to e-th order at α.
(iii) If e ≤ d and g ∈ Hd−e(C

n), then g(D)(α·)d = d!
e!
g(α)(α·)e.

By (2.5), if h(x) =
∑

ℓ∈I(n,e) tℓx
ℓ and F (t; x) contains hs as a summand, then

∂F
∂tℓ

= sxℓhs−1, and if p is apolar to each ∂F
∂tℓ

, then it is apolar to hs−1. It is critical to
note that this observation fails in case h is defined as a sum from a restricted set of
monomials.
We are now able to give a short proof of the “Second main theorem on apolarity”

from [8], which was not concerned with preserving the constant-count.

Theorem 3.4. Suppose jℓ = (jℓ,1, . . . , jℓ,m), 1 ≤ ℓ ≤ r, are m-tuples of non-negative
integers, and suppose positive integers dk, 1 ≤ k ≤ m, and d are chosen so that

(3.7) uℓ := d−
m
∑

k=1

jℓ,kdk ≥ 0.

Fix forms qℓ ∈ Huℓ
(Cn) and for fk ∈ Hdk(C

n), define

(3.8) F (f1, . . . , fm) =
r
∑

ℓ=1

qℓ(x)f
jℓ,1
1 · · ·f jℓ,m

m .

Let Fj :=
∂F
∂fj

. Then a general p ∈ Hd(C
n) can be written as (3.8) if and only if there

exists a specific f̄ = (f̄k) so that no non-zero p ∈ Hd(C
n) is apolar to each Fj(f̄),

1 ≤ j ≤ m. If, in addition,

(3.9)
m
∑

k=1

N(n, dk) = N(n, d),

then (3.8) is a canonical form.
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Proof. Let

(3.10) fj(x) =
∑

iv∈I(n,dj)

tj,vx
iv .

By Theorem 2.2, (3.7) and Lemma 3.1, (3.8) represents general p ∈ Hd(C
n) if and only

if there is some f̄ so that there is no non-zero form in p ∈ Hd(C
n) which is apolar to

each ∂F
∂tj,v

(f̄) = dkx
ivFj(f̄), or by Theorem 3.3(i), to each Fj(f̄). The constant count

is checked by (3.9). �

By Theorem 3.3(ii) and Theorem 3.4, F =
∑r

k=1(αk·)d is a canonical form if
and only if there exist r points ᾱk ∈ Cn at which no non-zero form p ∈ Hd(C

n)
is singular. This result is classical. A particularly deep result of Alexander and
Hirschowitz [1] from the early 1990s states that a general form in Hd(C

n), d ≥ 3,
may be written as a sum of ⌈ 1

n
N(n, d)⌉ d-th powers of linear forms, except when

(n, d) = (5, 3), (3, 4), (4, 4), (5, 4), when an extra summand is needed. (For much
more on this, see [12, Lecture 7], [16, Cor.1.62], [21, Ch.15] and [29, Thm.0.2]; for
a brief exposition of the proof, see [21, Ch.15].) These references also discuss the
exceptional examples, which were all known in the 19th century. The expression of
forms as a sum of powers of forms is currently a very active area of interest; see the
references above as well as [3], [11] and [22].
The Fundamental Theorem of Apolarity (see [33] for a history) states that if f is

irreducible and p ∈ Hd(C
n), then f and p are apolar if and only if p can be written

as a sum of terms of the form (α·)d, where f(αj) = 0. This was generalized in [33].

Theorem 3.5. [33, Thm. 4.1] Suppose q ∈ He(C
n) factors as

∏r
j=1 q

mj

j into a product

of distinct irreducible factors and suppose p ∈ Hd(C
n). Then q(D)p = 0 if and only

if there exist αjk ⊂ {qj(α) = 0}, and φjk ∈ Hmj−1(C
n) such that

p(x) =

r
∑

j=1

(

nj
∑

k=1

φjk(x)(αjk · x)d−(mj−1)

)

.

The application of apolarity to binary forms is particularly simple, because zeros
correspond to factors. If e = d + 1, then q(D)p = 0 for every p ∈ Hd(C

n), and we
obtain the following result, also found in [8, Thm.4.5].

Corollary 3.6. Suppose {αjx + βjy : 1 ≤ j ≤ r} is honest and suppose
∑r

j=1mj =

d+ 1. Then the following set is a basis for Hd(C
2):

(3.11) S =
{

xkymj−1−k(βjx− αjy)
d−mj+1 : 0 ≤ k ≤ mj − 1, 1 ≤ mj ≤ r

}

.

Proof. If p is apolar to each term in (3.11), then (αjx+βjy)
mj | p by Theorem 3.3(ii).

Thus p = 0 by degree considerations, and S has d+ 1 elements, so it is a basis. �

If each mj = 1, then Corollary 3.6 states that an honest set S = {(αjx+ βjy)
d} of

d+1 forms is a basis forHd(C
2). This is easily proved directly, since the representation



14 BRUCE REZNICK

of S with respect to the basis {
(

d
j

)

xd−jyj}, [αd−k
j βk

j ], has Vandermonde determinant

(3.12)
∏

1≤i<j≤n

(αiβj − αjβi).

Each product in (3.12) is non-zero because {(αjx+βjy)
d} is honest. One implication

of this independence is found in [35, Cor.4.3].

Lemma 3.7. If p(x, y) ∈ Hd(C
2) has two honest representations

(3.13) p(x, y) =
m
∑

i=1

(αix+ βiy)
d =

n
∑

j=1

(γjx+ δjy)
d

and m+ n ≤ d+ 1, then the representations are permutations of each other.

Proof. If (3.13) holds, then {(αix+ βiy)
d, (γjx+ δjy)

d} is linearly dependent, which
is impossible unless the dependence is trivial. �

It follows immediately from Lemma 3.7 that the representations (1.2) and (1.3),
if they exist for p, are unique. When n ≥ 3, the linear dependence of a set {(αj ·)d}
depends on the geometry of the points as well as the number (see the discussion of
Serret’s Theorem in [31, p.29].) Even for powers of binary forms of degree e ≥ 2, there
are singular cases. It is not hard to show that a general set of (2k+1) k-th powers of
quadratic forms is linearly independent; however, for example, (x2 − y2)2 + (2xy)2 =
(x2 + y2)2. For much more on this, see [36].

Non-constructive proof of Theorem 1.6. For 1 ≤ k ≤ r, write

fk(x, y) =

ek
∑

ℓ=0

tk,ℓx
ek−ℓyℓ.

By Corollary 2.3 and (2.5), (1.8) is a canonical form in the variables {tj , tk,ℓ} provided
there is a point at which the partials

{ℓdj , 1 ≤ j ≤ m} ∪ {xek−ℓyℓf
d/ek−1
k , 1 ≤ ℓ ≤ ek, 1 ≤ k ≤ r}

span Hd(C
2). Let fk = ℓ̃ekk , where {ℓ1, . . . , ℓm, ℓ̃1, . . . , ℓ̃r} is chosen to be honest. Then

by (1.7), the desired assertion follows immediately from Corollary 3.6. �

We present now Sylvester’s Algorithm. For modern discussions of this, along with
Gundelfinger’s generalization [15], which is not included here, see [20, §5], [17],[18],
[19], [33] and [35].

Theorem 3.8 (Sylvester’s Algorithm). Let

p(x, y) =
d
∑

j=0

(

d

j

)

ajx
d−jyj
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be a given binary form and suppose {αjx+ βjy} is an honest set. Let

h(x, y) =

r
∑

t=0

ctx
r−tyt =

r
∏

j=1

(βjx− αjy).

Then there exist λk ∈ C so that

p(x, y) =
r
∑

k=1

λk(αkx+ βky)
d

if and only if

(3.14)









a0 a1 · · · ar
a1 a2 · · · ar+1
...

...
. . .

...
ad−r ad−r+1 · · · ad









·









c0
c1
...
cr









=









0
0
...
0









.

Theorem 3.8 can be put in the context of our previous discussion. Let Ar(p)
denote the (d − r + 1) × (r + 1) Hankel matrix on the left-hand side of (3.14). If
h(D) =

∏r
j=1(βj

∂
∂x

− αj
∂
∂y
), then a direct computation shows that

(3.15) h(D)p =
d−r
∑

m=0

d!

(d− r −m)!m!

(

d−r
∑

i=0

ai+mci

)

xd−r−mym.

It follows from (3.15) that the coefficients of h(D)p are thus, up to multiple, the rows
of the matrix product, so (3.14) is equivalent to h(D)p = 0. In this way, Theorem
3.8 follows from Theorem 3.5. Sylvester’s algorithm can also be visualized as seeking
constant-coefficient linear recurrences satisfied by {ak} and looking for the shortest
one whose characteristic equation has distinct roots; this is the proof given in [35].
In this case, Gundelfinger’s results handle the case when the roots are not distinct.

Constructive proof of Theorem 1.1. Suppose d = 2s− 1 is odd. The matrix As(p) is
s×(s+1) and has a non-trivial null-vector. The corresponding h (which can be given
in terms of the coefficients of p) has distinct factors unless its discriminant vanishes.
Thus for general p ∈ H2s−1(C

2), Theorem 3.8 gives p as a sum of s (2s−1)-st powers
of linear forms.
If d = 2s, the matrix As(p) is square, and if p is a sum of s 2s-th powers, then

detAs(p) = 0. Conversely, if detAs(p) = 0 and the corresponding h has distinct
factors (which is generally true), then p is a sum of s 2s-th powers. If M1 and M2 are
two square matrices and rank(M2) = k, then det(M1 + λM2) is a polynomial in λ of
degree k. In particular, if q = (αx+ βy)2s, then rank(Hs(q)) = 1. Thus, in general,
there is a unique value of λ and some matrixM so that 0 = detAs(p−λ(αx+βy)2s) =
detAs(p)− λ detM . (When αx + βy = x, M is the (1,1)-cofactor of As(p).) In the
special case αx + βy = x, this proves Theorem 1.1(ii). The same argument shows
that for general q ∈ H2s(C

2), there exist s+ 1 values of λ so that p− λq is a sum of
s 2s-th powers. �
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In 1869, Sylvester [40] recalled his discovery of this algorithm and its consequences.

“I discovered and developed the whole theory of canonical binary forms
for odd degrees, and, as far as yet made out, for even degrees too, at
one evening sitting, with a decanter of port wine to sustain nature’s
flagging energies, in a back office in Lincoln’s Inn Fields. The work
was done, and well done, but at the usual cost of racking thought — a
brain on fire, and feet feeling, or feelingless, as if plunged in an ice-pail.
That night we slept no more.”

Example 3.1. This example of Sylvester’s algorithm will be used in Example 4.1. Let
p(x, y) = 2x3+3x2y−21xy2−41y3 =

(

3
0

)

·2 x3+
(

3
1

)

·1 x2y+
(

3
2

)

·(−7) xy2+
(

3
3

)

·(−41) y3

Since
(

2 1 −7
1 −7 −41

)

·





6
−5
1



 =





0
0
0



 ,

we have h(x, y) = 6x2 − 5xy + y2 = (2x− y)(3x− y). It now follows that p(x, y) =
λ1(x+ 2y)3 + λ2(x+ 3y)3, and a simple computation shows that λ1 = 5, λ2 = −3.

Lemma 3.1, when applied to Theorem 2.1, yields the following corollary.

Corollary 3.9. A basis for Hd(C
n) is given by {(i·)d : i ∈ I(n, d)}.

This in turn gives a weak version of the Alexander-Hirschowitz Theorem,

Corollary 3.10. A general form in Hd(C
n) is a sum of N(n, d−1) = nd

n+d−1
· 1
n
N(n, d)

d-th powers of linear forms.

Proof. Consider the sum

N(n,d−1)
∑

ℓ=1

(tℓ,1x1 + · · ·+ tℓ,nxn)
d,

and apply Corollary 2.3 with tℓ specialized to iℓ ∈ I(n, d − 1). Then J contains
xk(iℓ·)d−1 for each k, ℓ and hence xkHd−1(C

n) ⊆ J for each k, so J = Hd(C
n). �

4. Some new binary canonical forms

This section is devoted to special cases of Theorem 1.6. First, if ek = 1, we give a
constructive proof showing uniqueness, which gives a kind of interpolation between
Sylvester’s Theorem and the representations of Hd(C

2) by (2.4) with a fixed basis
consisting of d-th powers, as in Corollary 3.6.

Corollary 4.1. Suppose d ≥ 1, and {ℓj(x, y) = αjx + βjy} is a fixed honest set of
m = d + 1 − 2r linear forms. Then a general binary d-ic form p ∈ Hd(C

2) can be
written uniquely as

(4.1) p(x, y) =
m
∑

j=1

tj(αjx+ βjy)
d +

r
∑

k=1

(tk1x+ tk2y)
d.
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for some tk ∈ C.

Proof. Let

f(x, y) =
m
∏

j=1

(βjx− αjy).

Then f(D)p has degree d −m = 2r − 1 and by Theorem 3.8 generally has a unique
representation as a sum of r 2r − 1-st powers of linear forms, say

(4.2) f(D)p =

r
∑

k=1

(uk1x+ uk2y)
2r−1.

Further, it is generally true that f(uk1, uk2) 6= 0. Let

(4.3) q(x, y) =
(2r − 1)!

d!

r
∑

k=1

(uk1x+ uk2y)
d

f(uk1, uk2)
.

It follows from Theorem 3.3(iii), (4.2) and (4.3) that f(D)p = f(D)q. Since f has
distinct factors, it then follows from Theorem 3.8 that there exist tj ∈ C so that

p(x, y)− q(x, y) =

m
∑

j=1

tj(αjx+ βjy)
d.

Conversely, suppose p has two different representations:

(4.4)

m
∑

j=1

tjℓ
d
j (x, y) +

r
∑

k=1

(tk1x+ tk2y)
d =

m
∑

j=1

t̃jℓ
d
j (x, y) +

r
∑

k=1

(t̃k1x+ t̃k2y)
d.

By combining the first sum on each side, (4.4) becomes a linear dependence with m+
2r = d+1 summands, which by Lemma 3.7 must be trivial; thus, the representations
in (4.4) are essentially the same. �

Example 4.1. Let ℓ1(x, y) = x+ y and ℓ2(x, y) = −x+ 3y and let

p(x, y) = −x5 + 15x4y − 170x3y2 + 390x2y3 − 505x2y3 + 483y5.

In an application of the last proof, f(x, y) = (x− y)(3x+ y) = 3x2 − 2xy − y2, and

3
∂2p

∂x2
− 2

∂2p

∂x∂y
− ∂2p

∂y2
= 160x3 + 240x2y − 1680xy2 − 3280y3.

Example 3.1 implies that this expression equals 400(x + 2y)3 − 240(x + 3y)3. Since
f(1, 2) = −5 and f(1, 3) = −12, it follows that

p(x, y) =

3! · 400
5! · (−5)

(x+ 2y)5 +
3! · (−240)

5! · (−12)
(x+ 3y)5 + t1(x+ y)5 + t2(−x+ 3y)5 =

−4(x+ 2y)5 + (x+ 3y)5 + t1(x+ y)5 + t2(−x+ 3y)5

and it can be readily be computed that t1 =
7
2
and t2 =

3
2
.
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If each ek = 2 in Theorem 1.6 and m is as small as possible, then we obtain an
analogue of Sylvester’s Theorem for forms of even degree.

Corollary 4.2.

(i) A general binary form of degree d = 6s can be written as

(4.5) λx6s +
2s
∑

j=1

(αjx
2 + βjxy + γjy

2)3s

for some λ ∈ C.
(ii) A general binary form of degree d = 6s+ 2 can be written as

(4.6)
2s+1
∑

j=1

(αjx
2 + βjxy + γjy

2)3s+1.

(iii) A general binary form of degree d = 6s+ 4 can be written as

(4.7) λ1x
6s+4 + λ2y

6s+4 +

2s+1
∑

j=1

(αjx
2 + βjxy + γjy

2)3s+2

for some λi ∈ C.

We have not been able to find an analogue to Sylvester’s Algorithm for determining
the representations (4.5), (4.6), (4.7) in Corollary 4.2. In the linear case, (αx+ βy)d

is killed by β ∂
∂x

− α ∂
∂y
, and two operators of this shape commute. Although each

(αx2+2βxy+γy2)d is killed by the non-constant-coefficient (βx+γy) ∂
∂x
−(αx+βy) ∂

∂y
,

two operators of this kind do not usually commute. The smallest constant-coefficient
differential operator which kills (αx2 +2βxy+ γy2)d has degree d+1; the product of
any two of these would kill every form of degree 2d and so provide no information.
Let us say that (1.8) is a neat canonical form if m = 0, and of Sylvester-type if it is

neat and if ek = e for 1 ≤ k ≤ r. Counting the numbers of neat and Sylvester-type
canonical forms leads to some number theory. The first lemma is standard.

Lemma 4.3. Given 0 < p
q
∈ Q and 0 < n ∈ N, there exist only finitely many choices

of mj ∈ Z, 0 < m1 ≤ m2 · · · ≤ mn, such that p
q
=
∑n

j=1
1
mj

.

Proof. If n = 2, then p
q
> 1

m1
≥ p

2q
implies that there are finitely many integral

choices for m1, each of which determines m2 = (p
q
− 1

m1
)−1. Supposing the lemma

valid for n − 1, we have p
q
> 1

m1
≥ p

nq
, and each choice of m1 implies the equation

p
q
− 1

m1
=
∑n

j=2
1
mj

. This has finitely many solutions by the induction hypothesis. �

Theorem 4.4. For fixed value of r, there are only finitely many neat canonical forms
(1.8) with r summands.
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Proof. Suppose m = 0 in Theorem 1.6. Write d = ekmk, then by (1.7),

(4.8) d+ 1 =

r
∑

k=1

(

d

mk
+ 1

)

=⇒ 1 =

r
∑

k=1

1

mk
+

r − 1

d
=

r
∑

k=1

1

mk
+

r−1
∑

ℓ=1

1

d
.

Now apply Lemma 4.3 with p
q
= 1 and n = 2r − 1: there are only finitely many

expressions of 1 as a sum of 2r − 1 unit fractions, of which only a subset satisfy the
additional restrictions of (4.8). �

It is not hard to work out that for r = 2, there are three neat canonical forms:
(d, e1, e2) = (3, 1, 1), (4, 2, 1) and (6, 3, 2). The first is Theorem 1.1(i) with d = 3, the
second is Corollary 1.7 with d = 4 (see Theorem 4.6 below), and the third is Theorem
1.5. When r = 3, there are twenty-two neat canonical forms.
Let s(d) denote the number of neat Sylvester-type canonical forms of degree d.

Suppose ek = e for all k in one of these. Then e | d and, by (1.7), r(e+1) = d+1, so
(e+ 1) | (d+1). Since d ≡ 0 (mod e) and d ≡ −1 (mod (e+1)), it follows from the
Chinese Remainder Theorem that d ≡ e (mod e(e + 1)); that is, d = e + ue(e + 1),

u ≥ 1, so that e <
√
d.

Theorem 4.5. Let S(N) :=
∑N

d=1 s(d). Then S(N) = N +O(N1/2) and supd s(d) =
∞.

Proof. The generating function for the sequence (s(d)) is

(4.9)
∞
∑

n=1

s(d)xd =
∞
∑

e=1

∞
∑

u=1

xe+ue(e+1) =
∞
∑

e=1

xe2+2e

1− xe2+e
.

Let T = ⌊N1/2⌋. It follows from (4.9) that

(4.10) S(N) =

N
∑

n=1

sn =

∞
∑

e=1

⌊

N − e

e2 + e

⌋

=

T
∑

e=1

⌊

N − e

e2 + e

⌋

.

Thus, using the telescoping sum for
∑

1
e(e+1)

, (4.10) implies that

(4.11)
S(N) ≤

T
∑

e=1

N − e

e2 + e
= N

T
∑

e=1

1

e2 + e
−

T
∑

e=1

1

e + 1

≤ N(1− 1
T+1

)− log T +O(1) = N −N1/2 +O(logN).

The lower bound is the same, minus T , so (4.11) implies that S(N) = N +O(N1/2).
Now, s(d) counts the number of e < d so that e divides d and e+1 divides d+1. If

d = 2r −1, then e+1 | 2r implies that e+1 = 2t for some t < r. But 2t−1 | 2r −1 if
and only if t | r, hence s(2r − 1) = d(r)− 1, where d(n) denotes the divisor function.
In particular, s(22

t − 1) = t, so the sequence (s(d)) is unbounded. More generally,
if e | d and e + 1 | d + 1, then e | d2 + 2d and e + 1 | d2 + 2d + 1, and since e = d
contributes to the count in s(d2 + 2d) but not in s(d), s(d2 + 2d) ≥ s(d) + 1. �
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Half of the neat Sylvester forms come from Theorem 1.1(i), another sixth come
from Corollary 4.2(ii), etc. The smallest d for which s(d) = 2 is d = 15: (e, r) =
(1, 8), (3, 4), so a general binary form of degree 15 is a sum of eight linear forms to
the 15th power, or four cubics to the 5th power. The smallest d for which s(d) = 3
is d = 99: (e, r) = (1, 50), (3, 25), (9, 10). For d < 107, the largest value of s(d) is

s(7316000) = 12. Note that 22
13 − 1 = 24096 − 1 ≈ 1.04 × 101233, so the examples

given in the proof are not likely to describe the fastest growth. We conjecture as well
that {s(d)} has an underlying distribution.
If the degree d is prime, then Theorem 4.1 accounts for all canonical forms in

Theorem 1.6. The smallest d which is not covered by Theorem 4.1 is then d = 4,
and there are two such cases, one of which is neat: e1 = 2, e2 = 1, m = 0 and
e1 = 2, m = 2. Both can be discussed constructively.

Theorem 4.6. A general binary quartic p ∈ H4(C
2) can be written as

(4.12) p(x, y) = (t1x
2 + t2xy + t3y

2)2 + (t4x+ t5y)
4

in six different ways. Further, the set { t5
t4
} is the image of the set {0,∞, 1,−1, i,−i}

under a Möbius transformation.

Proof. By Theorem 2.4, if p is a general binary quartic, then there exist ci, λ so that
p(c1x+ c2y, c3x+ c4y) = pλ(x, y) := x4 + 6λx2y2 + y4. If (4.12) holds for pλ, then

(4.13)
1 = t21 + t44, 0 = 2t1t2 + 4t34t5, 6λ = 2t1t3 + t22 + 6t24t

2
5,

0 = 2t2t3 + 4t4t
3
5, 1 = t23 + t45.

First suppose that t4 = 0. Then (4.13) implies that 1 = t21 and 0 = 2t1t2, so t1 = 1
(without loss of generality) and t2 = 0. The remaining equations imply that t3 = 3λ
and t45 = 1− 9λ2. A similar argument works if t5 = 0, giving two representations:

(4.14) pλ(x, y) = (x2 + 3λy2)2 + (1− 9λ2)y4 = (3λx2 + y2)2 + (1− 9λ2)x4.

Now suppose t4t5 6= 0, so t1t2t3 6= 0 and so

t3
t1

=
−2t2t3
−2t1t2

=
4t4t

3
5

4t34t5
=

t25
t24

=⇒ 1− t23
1− t21

=
t45
t44

=
t23
t21

=⇒ t21 = t23.

It follows that t5 = ikt4 and t3 = (−1)kt1, and (4.13) can be completely solved:

t44 = 1− t21, t2 = 2ik(t1 − t−1
1 ), 2 + 6(−1)kλ = 4t−2

1 .

After some massaging of the algebra, this gives four representations:

(4.15)

pλ(x, y) =

(

(−1)k2

3λ+ (−1)k

)

(

x2 − i3k(3λ− (−1)k)xy + (−1)ky2
)2

+

(

3λ− (−1)k

3λ+ (−1)k

)

(

x+ iky
)4

, k = 0, 1, 2, 3.

In order to find the six representations of p as (4.12), we start with the six rep-
resentations of pλ given in (4.14) and (4.15), in which t4x + t5y is a multiple of
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d e1, . . . , er m F (d; e) Source

d 1⌊
d+1

2
⌋ 0 or 1 1 Theorem 1.1

d 1r d+ 1− 2r 1 Theorem 4.1
4 2,1 0 6 Theorem 4.6
4 2 2 2 Theorem 4.7
6 3,2 0 40 [42, 43]
6 2,12 0 22 Experiment
6 3,1 1 14 Experiment
6 22 1 9 Experiment
6 2,1 2 12 Experiment
6 3 3 5 Experiment
6 2 4 5 Experiment
8 2,13 0 62 Experiment
10 2,14 0 147 Experiment
12 2,15 0 308 Experiment
2s 2,1s−1 0 2

(

s+3
5

)

−
(

s+2
3

)

Conjecture

Table 1. Values of F (d; e)

one of the six linear forms x, y, x + iky. Apply the the inverse of the map (x, y) 7→
(c1x+c2y, c3x+c4y), which takes t4x+t5y to a multiple of t4(c4x−c2y)+t5(−c3x+c1y):
t5
t4
7→ G( t5

t4
), where G(z) = c1z−c2

c4−c3z
. �

Theorem 4.7. Given two fixed distinct binary linear forms ℓ1, ℓ2, a general binary
quartic in H4(C

2) has two representations as

(4.16) p(x, y) = (t1x
2 + t2xy + t3y

2)2 + t4ℓ
4
1 + t5ℓ

4
2.

Proof. Given p, ℓ1, ℓ2, make an invertible linear change of variable taking (ℓ1, ℓ2) 7→
(x, y), and suppose p(x, y) 7→ q(x, y) =

∑

i aix
4−iyi. Then q has the shape (4.16) if

and only if the coefficients of x3y, x2y2, xy3 in (t1x
2+ t2xy+ t3y

2)2 and q agree. Thus,
we seek to solve the system

(4.17) a1 = 2t1t2, a2 = 2t1t3 + t22, a3 = 2t2t3.

But (4.17) implies a1t
2
2 − 2a2t1t2 + 2a3t

2
1 = 0, hence in general, there are exactly two

values of β so that t2 = βt1; in each case, t21 =
a1
2β
. The two choices of sign for t1 lead

to the same square, and t3 =
a1
a3
t1, so (4.17) has these two solutions. �

In the case of Theorem 1.6 let F (d; e1, . . . , er) denote the number of different rep-
resentations that a general p ∈ Hd(C

2) has, by our convention. We present in Table
1 a complete list of proved or conjectural values when d ≤ 6, reflecting numerical
experiments on Mathematica. (Recall that if d is prime, then Theorem 4.1 presents
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all possible canonical forms of this type.) The conjectural value of F (2s; 2, 1s−1) is
suggested by the given data for 2 ≤ s ≤ 6 and OEIS[24, A081282].
Várilly-Alvarado, in [42, 43], constructs explicitly all 240 representations of x6+y6

as f 2+g3; he considers forms multiplied by roots of unity as different, which explains
the appearance of 240

2·3
in the table above. This is also proved to be the number of

representations for a general sextic.
To describe the experiments for F (2s; 2, 1s−1) more precisely, we generate a form

p(x, y) =
2s
∑

k=0

(

2s

k

)

akx
2s−kyk,

where ak = t + iu for random integers t, u in [−100, 100]. In case m ≤ 2, we assume
a change of variables so that the fixed linear forms are xd or yd; for m > 2 we choose
additional linear forms with random coefficients. Let h(x, y) = Ux2 + V xy + Wy2

for variables (U, V,W ) and let q(x, y) = p(x, y) − hs(x, y), and apply Sylvester’s
Algorithm to q. That is, we construct the (s+2)×s matrix As−1(q), with polynomial
entries in (U, V,W ) of degree s and require that it have rank < s. This is done by
counting the number of (U, V,W ) which are common zeros of all s× s minors. This
number is divided by s to account for hs = (ζks h)

s. As a back of the envelope
calculation, one might take the first s − 1 rows of As−1 and use the cofactors to
compute a non-trivial null-vector. Ignoring possible cancellation, the components
would be polynomials of degree s(s − 1) in (U, V,W ). Taking the dot product with
the last three rows of As−1 gives three polynomials of degree s2. Ignoring cancellations
and multiplicity, there should be (s2)3 common zeros, and dividing by s gives an upper
bound for F (2s; 2, 1s−1) of s6. The conjectural value is asymptotically 1

60
s5, which at

least has the same order of growth.

5. Quadratic forms and sums of squares

We begin this section with a constructive proof of Theorem 1.2 which will serve as
a template for constructive proofs involving cubic forms.

Constructive Proof of Theorem 1.2. Suppose p ∈ H2(C
n), and specifically,

p(x1, . . . , xn) =
n
∑

i=1

aiix
2
i + 2

∑

1≤i<j≤n

aijxixj .

Then ∂p
∂x1

= 2
∑n

j=1 a1jxj, Since a11 6= 0 in general, we can define q(x1, . . . , xn) =

p(x1, . . . , xn)− 1
a11

(
∑n

j=1 a1jxj)
2; observe that ∂q

∂x1
= 0, so q = q(x2, . . . , xn). Iterating

this argument gives the construction. There is only one linear form ±ℓ so that
∂p
∂x1

= 2ℓ ∂ℓ
∂x1

, so the representation is unique. �

As we saw in the proof of Theorem 5.2, constant-counting for sums of squares
is complicated by the action of the orthogonal group on a sum of t squares. If
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M ∈ Matt(C) and MM t = I, then

t
∑

i=1

f 2
i =

t
∑

i=1

(

t
∑

j=1

mijfj

)2

.

When t = 2, choose θ ∈ C and let eiθ = cos θ + i sin θ := (u, v), so that

(5.1) f 2 + g2 = (uf − vg)2 + (vf + ug)2.

This means that we may safely remove one monomial from one of the summands.

Theorem 5.1. A general binary form p ∈ H2s(C
2) can be written as

(5.2)

(

s
∑

k=0

tkx
s−kyk

)2

+

(

s
∑

k=1

ts+kx
s−kyk

)2

.

in
(

2s−1
s

)

different ways.

Proof. The non-constructive proof is a simple application of Corollary 2.3. Writing
(5.2) as f 2 + g2 gives the partials with respect to the tj ’s as

{

2xs−kykf, 0 ≤ k ≤ s
}

∪
{

2xs−kykg, 1 ≤ k ≤ s
}

;

specializing to f = xs and g = ys above gives all monomials in H2s(C
2).

The more obvious expression

(5.3) p(x, y) = f 2(x, y) + g2(x, y), g, h ∈ Hs(C
2)

is not a canonical form, because 2(s+1) > 2s+1. However, every sum of two squares
can be formally factored, and these behave nicely with respect to (5.1).

f 2 + g2 = (f + ig)(f − ig) ⇐⇒
(uf + vg)2 + (vf − ug)2 =

(

eiθ(f + ig)
) (

e−iθ(f − ig)
)

.

Suppose p(1, 0) = a0 6= 0 (true for general p) and (5.3) holds, where f(1, 0) = ρ and
g(1, 0) = τ . Then ρ2 + τ 2 = a0, so that τ

ρ
6= ±i and the coefficient of xs in vf + ug

will be vρ + uτ = sin θρ + cos θτ , which is zero exactly when tan θ = − τ
ρ
. Thus for

precisely one value of tan θ, the right-hand side of (5.1) will be in the form (5.2).
This determines a pair (±u,±v); however, the squares in (5.2) will be the same.
In other words, each distinct factorization of p (up to multiple) as a product of

two s-ic forms, when combined with the orthogonal action of (5.1), yields exactly
one representation as (5.2). A general p ∈ H2s(C

2) is a product of 2s distinct linear
factors; these can be organized into an unordered pair of products of s distinct linear
factors in 1

2

(

2s
s

)

=
(

2s−1
s

)

ways. �

The “lost” degree of freedom in a sum of squares never arises in Theorem 1.6
because 2(d

2
+ 1) > d+ 1. The missing monomial xs in the second summand of (5.2)

may be replaced by any specified xs−k0yk0 by a similar argument.
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Another classical result is that a general ternary quartic is a sum of three squares
of quadratic forms, generally in 63 different ways up to the action of the orthogonal
group (see [28].) Hilbert proved that every (not just a general) positive semidefinite
real p ∈ H4(R

3) is a sum of three squares from H2(R
3). A constructive discussion

has recently been given in papers by Powers and the author [27], Powers, Scheider,
Sottile and the author [28], Pfister and Scheiderer [25] and Plaumann, Sturmfels and
Vinzant [26]. A non-constructive proof (without the count) can easily be given.

Theorem 5.2. A general ternary quartic p ∈ H4(C
3) can be written as p = q21 + q22 +

q23, where qj ∈ H2(C
3).

Proof. We take qi’s so that the monomial x2 only appears in q1 and the mono-
mial y2 only appears in q1 and q2, and so the number of coefficients in the qj ’s is
6 + 5 + 4 = 15. Taking the partials where (q1, q2, q3) = (x2, y2, z2) shows that J
contains 2x2{x2, y2, z2, xy, xz, yz}, 2y2{y2, z2, xy, xz, yz} and 2z2{z2, xy, xz, yz}, and
so is equal to H4(C

3). �

Since 3
(

m+2
2

)

− 3 <
(

2m+1
2

)

for m ≥ 3, this result does not generalize to ternary
forms of higher even degree.
The situation is somewhat simpler over R. A real version of Theorem 5.1 appears in

[34]. If p is real and positive definite and p = f 2+g2, where f and g are also real, then
the factors of p consist of s conjugate pairs. In the factorization p = (f + ig)(f − ig),
the pairs must be split between the conjugate factors, and if p has distinct factors,
this can be done in 2s−1 different ways. A real generalization of Theorem 5.2 appears
in [4, Cor.2.12]. Suppose a real psd form p ∈ H2s(R

n) is a sum of t squares and
xβi ∈ Hs(R

n), 1 ≤ i ≤ t, is given. Then there is a representation p =
∑t

j=1 g
2
j , in

which xβi does not occur in gj for j > i. This argument can also be applied to a
general sum of t squares over C, but it is not universal, and depends on the psd
condition: if xy = (ax+ by)2 + (cx+ dy)2, then abcd 6= 0.

6. Cubic forms

In this section, we present three representations for forms in H3(C
n) as a sum of

cubes of linear forms. The first two are canonical; the third isn’t, but it is universal.
We begin with Theorem 1.3, which first appeared [30] in a 1987 paper of Boris

Reichstein. At the time of this writing, [30] has had no citations in MathSciNet. (It
was discussed in [32] and, from there, in [6]. The former was never submitted for
publication and the latter appeared in an unindexed journal.) The original presenta-
tion and proof in [30] were given for trilinear forms (see §2); the theorem is applied
to cubic forms there mainly in the examples.
By iterating (1.5), we obtain a canonical form for p ∈ H3(C

n), see [30, p.98].



SOME NEW CANONICAL FORMS FOR POLYNOMIALS 25

Corollary 6.1. A general n-ary cubic p ∈ H3(C
n) can be written uniquely as

(6.1) p(x1, . . . , xn) =

⌊(n−1)/2⌋
∑

m=0

n−2m
∑

k=1

(t
{k}
m,1+2mx1+2m + · · ·+ t{k}m,nxn)

3

for some t
{k}
m,j ∈ C.

This gives p as a sum of n+(n−2)+· · · =
⌊ (n+1)2

4

⌋

cubes. Recall that by Alexander-
Hirschowitz, for n 6= 5, a general cubic form in n variables can be written as a sum

of
⌈

(n+1)(n+2)
6

⌉

cubes. Thus (6.1) represents a general cubic as a sum of about 50%
more cubes than the true minimum; this is due to the large number of linear forms
with restricted sets of variables.
Reichstein’s proof of Theorem 1.3 requires the well-known “generalized eigenvalue

problem” for pairs of symmetric matrices, as interpreted for quadratic forms: if a
general pair of quadratic forms f, g ∈ H2(C

n) is given, then there exist n linearly
independent forms Li(x) =

∑n
j=1 αijxj and ci ∈ C so that

(6.2) f =
n
∑

i=1

L2
i , g =

n
∑

i=1

ciL
2
i .

We may also assume that the coefficients αij are generally non-zero; c.f. Corollary
6.3.

Proof of Theorem 1.3. For general p ∈ H3(C
n), we simultaneously diagonalize f =

∂p
∂x1

and g = ∂p
∂x2

as in (6.2). Since mixed partials are equal,

(6.3)
∂f

∂x2

=
∂g

∂x1

=
n
∑

i=1

2αi2Li =
n
∑

i=1

2ciαi1Li,

and since the Li’s are linearly independent, (6.3) implies that αi2 = ciαi1.
It is generally true that αi1 6= 0. Let

q(x1, . . . , xn) = p(x1, . . . , xn)−
n
∑

i=1

1
3αi1

L3
i .

It follows that

∂q

∂x1
=

∂p

∂x1
−

n
∑

i=1

3αi1

3αi1
L2
i =

∂p

∂x1
−

n
∑

i=1

L2
i = 0,

∂q

∂x2
=

∂p

∂x2
−

n
∑

i=1

3αi2

3αi1
L2
i =

∂p

∂x2
−

n
∑

i=1

ciL
2
i = 0.

Since ∂q
∂x1

= ∂q
∂x2

= 0, we have q = q(x3, . . . , xn). �

We now give a constructive proof of Theorem 1.4, which gives a different canonical
form for H3(C

n) requiring even more cubes.
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Proof of Theorem 1.4. The constant-counting makes this a potential canonical form:
the variables are t{i,j},k with 1 ≤ i ≤ j ≤ k ≤ n, and there are

(

n+2
3

)

= N(n, 3)

such triples (i, j, k). Given p ∈ H3(C
n), ∂p

∂xn
is a quadratic form, so we can generally

complete the square by Theorem 1.2:

∂p

∂xn
=

n
∑

j=1

(tjjxj + · · ·+ tjnxn)
2.

Then tjn 6= 0 for general p and if we let

q(x1, . . . , xn) = p(x1, . . . , xn)−
n
∑

j=1

1
3tjn

(tjjxj + · · ·+ tjnxn)
3,

then ∂q
∂xn

= 0, so q = q(x1, . . . , xn−1). Iterate this construction to get (1.6). �

It is not hard to give nonconstructive proofs of Theorems 1.3 and 1.4 using Corol-
lary 2.3. These are left for the reader.
We first presented this next construction in [32]; an outline of the proof can be

found in [6]. This is not a canonical form, but is included here because it gives an
absolute upper bound for the length of cubic forms.

Theorem 6.2. If p ∈ H3(C
n), then there exists an invertible linear change of vari-

ables yj =
∑

λjkxk and n linear forms ℓj so that

(6.4) p(x1, . . . , xn) =

n
∑

j=1

ℓ3j (x1, . . . , xn) + q(y2, . . . , yn).

Thus every cubic in n variables is a sum of at most
(

n+1
2

)

cubes of linear forms.

Proof. Define linear forms ℓj,m(y) for 1 ≤ j ≤ m+ 1 by

(6.5)

ℓj,m(y1, . . . , yn) = yj + α
m
∑

j=1

yj, 1 ≤ j ≤ m,

ℓm+1,m(y1, . . . , yn) = −(1 +mα)

m
∑

j=1

yj, α =
−(m+ 1) +

√
m+ 1

m(m+ 1)
.

Then it can be easily checked that

(6.6)

m+1
∑

j=1

ℓj,m(y) = 0 and

m+1
∑

j=1

ℓ2j,m(y) =

m
∑

k=1

y2k.

Suppose 0 6= p ∈ H3(C
n). Use Biermann’s Theorem to find a point u where

p(u) 6= 0, and after an invertible linear change of variables, taking {xj} 7→ {uj}, we
may assume that p(1, 0, . . . , 0) = 1 and so

(6.7) p = u3
1 + 3h1(u2, . . . , un)u

2
1 + 3h2(u2, . . . , un)u1 + h3(u2, . . . , un),
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where deg hj = j. Now let u1 = y1 − h1(u2, . . . , un) to clear the quadratic term, so

(6.8) p = y31 + 3y1h̃2(u2, . . . , un) + h̃3(u2, . . . , un),

where again deg h̃j = j. Diagonalize h̃2(u2, . . . , un) as a quadratic form into y22 +
· · ·+y2r , where r ≤ n, and make the accompanying change of variables. We now have

(6.9) p = y31 + 3y1(y
2
2 + · · ·+ y2r) + k3(y2, . . . , yn); r ≤ n,

where deg k3 = 3. Finally, using (6.5) and (6.6), we construct g, a sum of r ≤ n
cubes:

(6.10)

g(y1, . . . , yn) :=
1

r

r
∑

j=1

(

y1 +
√
r · ℓj,r−1(y2, . . . , yr)

)3

=
1

r

r
∑

j=1

y31 +
3√
r

r
∑

j=1

y21ℓj,r−1 + 3

r
∑

j=1

y1ℓ
2
j,r−1 +

√
r

r
∑

j=1

ℓ3j,r−1

= y31 + 3y1(y
2
2 + · · ·+ y2r) +

√
r

r
∑

j=1

ℓ3j,r−1(y2, . . . , yr).

Then q := p− g is a cubic form in (y2, . . . , yn) as in (6.4). Iteration of this argument

shows that any cubic p ∈ H3(C
n) is a sum of at most n(n+1)

2
cubes. �

Theorem 1.5 can be extended to a canonical form for quartics as a sum of fourth
powers of linear forms. Note that xn appears in each summand of (6.1), with, gener-
ally, a non-zero coefficient.

Corollary 6.3. For general p ∈ H4(C
n), there exist ℓk ∈ H1(C

n) and q ∈ H4(C
n−1)

so that, with a(n) = ⌊ (n+1)2

4
⌋,

p(x1, . . . , xn) =

a(n)
∑

k=1

ℓk(x1, . . . , xn)
4 + q(x1, . . . , xn−1).

As a consequence, a general p ∈ H4(C
n) can be written as

p(x1, . . . , xn) =

⌊(n−1)/2⌋
∑

m=0

n
∑

r=1+2m

r−2m
∑

k=1

(t
{k}
m,r,1+2mx1+2m + · · ·+ t{k}m,r,rxr)

4.

Proof. By Corollary 1.3 and (6.1), for general p ∈ H4(C
n), we can write

(6.11)

∂p

∂xn
=

⌊(n−1)/2⌋
∑

m=0

n−2m
∑

k=1

(t
{k}
m,1+2mx1+2m + · · ·+ t{k}m,nxn)

3

:=

⌊(n−1)/2⌋
∑

m=0

n−2m
∑

k=1

(ℓ{k}m (x))2.
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As before, if q = p −∑k,m
1

4t
{k}
m,n

ℓ4k,m, then
∂q
∂xn

= 0, so q = q(x1, . . . , xn−1). Repeat

as before. There are N(n, 3) coefficients in (6.11), and since N(n, 3) +N(n− 1, 4) =
N(n, 4), the count is correct for a canonical form. �

Note that there is no variable which appears in each linear form in (6.11), so the
argument can’t be extended to quintics. For the same reason, Theorem 1.4 does
not extend to quartics. By combining Theorems 1.3 and 6.3, we obtain canonical
forms as a sum of powers of linear forms in the four exceptional cases of Alexander-
Hirschowitz, of course at the expense of the number of summands. With regards
to ternary quartics, and Theorem 1.9, Corollary 6.3 becomes the following canonical
form for H4(C

3) as a sum of seven fourth powers.

3
∑

k=1

(tk1x1 + tk2x2 + tk3x3)
4 + t10x

4
3 +

2
∑

ℓ=1

(uℓ1x1 + uℓ2x2)
4 + u5x

5
1.

There is an arithmetic obstruction to a “Reichstein-type” canonical form for quar-
tics; that is, one in which each linear form is allowed to involve each variable. If

(6.12) p(x1, . . . , xn) =

r
∑

k=1

(αk1x1 + · · ·+ αknxn)
4 + q(x1, . . . , xm).

were a canonical form for some n, then we would have N(n, 4) = rn + N(m, 4).
However, for n = 12, there does not exist m < 12 so that 12 |

(

15
4

)

−
(

m+3
4

)

, so no
such canonical form can exist. More generally, let

(6.13) Ad =
{

n : 0 ≤ m < n =⇒ n 6 |
(

n+d−1
d

)

−
(

m+d−1
d

)}

denote the set of n for which this argument rules out Reichstein-type canonical forms.
We present without proof a number of results about Ad. Note that there is no obstacle
for (6.12) in prime degree, such as d = 2, 3.

Theorem 6.4.

(i) If 3 6 | k, then n = 22k · 3 ∈ A4.
(ii) If p ≡ 1 (mod 144) is prime, then 12p ∈ A4.
(iii) If p is prime, then p |

(

n+p−1
p

)

−
(

n
p

)

, hence Ap = ∅ for prime p .

(iv) The smallest elements of A6, A8, A10, A12, A14 and A15 are 10, 1792, 6, 242,
338 and 273 respectively. If A9 or A16 are non-empty, then their smallest elements
are at least 105.

7. Subspace canonical forms

One natural generalization of the definition of canonical forms is to consider maps
F : X 7→ Hd(C

n) where X ⊂ CM is an N(n, d)-dimensional subspace of CM . These
can be analyzed completely in the simplest non-trivial case: M = 4, N(2, 2) = 3.
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Proof of Theorem 1.10. Assume that some cj 6= 0. Without loss of generality, we
may assume that c4 6= 0 and divide through by c4 so that the equation is t4 =
a1t1+a2t2+a3t3, where ai = −ci/c4 for i = 1, 2, 3. Then (1.13) can be parameterized
as a map from C3 7→ H2(C

2) as:

(7.1) F (t; x) = (t1x+ t2y)
2 + (t3x+ (a1t1 + a2t2 + a3t3)y)

2.

The partials with respect to the tj ’s are:

(7.2)

2x(t1x+ t2y) + 2a1y(t3x+ (a1t1 + a2t2 + a3t3)y),

2y(t1x+ t2y) + 2a2y(t3x+ (a1t1 + a2t2 + a3t3)y),

2(x+ a3y)(t3x+ (a1t1 + a2t2 + a3t3)y).

Now, (7.1) is a canonical form if and only if there exists a choice of ti so that the
three quadratics in (7.2) span H2(C

2). A computation shows that the determinant
of the forms in (7.2) with respect to the basis {x2, xy, y2} is the cubic

(7.3) − 8((a1a2 − a3)t1 + (1 + a22)t2 + (a2a3 + a1)t3)(a1t
2
1 + a2t1t2 + a3t1t3 − t2t3).

The second factor in (7.3) always has the term −t2t3 and so never vanishes, hence
this determinant is not identically zero (and (7.1) is a canonical form), unless

(7.4) a1a2 − a3 = 1 + a22 = a2a3 + a1 = 0.

In the exceptional case where (7.4) holds, then a2 = ǫ, where ǫ = ±i, and a3 = ǫa1.
Evaluating (7.1) at (x, y) = (a1, ǫ) yields

(a1t1 + ǫt2)
2 + (a1t3 + ǫa1t1 + ǫ2t2 + ǫ2a1t3)

2

= (a1t1 + ǫt2)
2 + ((1 + ǫ2)a1t3 + ǫa1t1 + ǫ2t2)

2 = (a1t1 + ǫt2)
2 + ǫ2(a1t1 + ǫt2)

2 = 0,

as claimed. �

It would be interesting to know how this generalizes in higher degrees.
Conjecture 1.11 is true for degree 2 by Theorem 1.10. We have verified it for even

degrees up to eight by Corollary 2.3 applied to random choices for αj, βj in (1.14).
We hold some hope that generalizations such as Corollary 1.11 will have applications
in more than two variables as well.
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