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Let I be an ideal in a polynomial ring S over an infinite field such
that I is generated by a generic sequence of homogeneous polyno-
mials of specified degrees. Fröberg has conjectured a formula for
the Hilbert series of S/I . Moreno-Socías has conjectured a combi-
natorial property for the initial ideal of I with respect to degree
reverse lexicographic order. I show that Moreno-Socías’ Conjecture
implies Fröberg’s Conjecture. I also give a criterion for a Hilbert
series to admit an ideal with the property proposed by Moreno-
Socías and show that the Hilbert series proposed by Fröberg does
have this property.
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1. Introduction

Let S = k[x1, . . . , xn], where k is an infinite field, and let f1, . . . , fr be homogeneous polynomials
of degrees d1, . . . ,dr generating an ideal I . If the f i are chosen “at random”, then what properties
should we expect of I? This paper is concerned with what we should expect of the Hilbert function
of S/I and the reverse lexicographic initial ideal of I .

I use “at random” in a sense that is more evocative than rigorous. More precisely, this paper is
concerned with generic properties of such sequences. To make sense of this, view

∏r
i=1 Sdi , the set

of all such sequences of the specified degrees, as an affine space for which the coordinates are the
coefficients of the polynomials in the sequence. Say that a property P of such sequences is generic if
it holds on a nonempty Zariski-open U ⊆ ∏r

i=1 Sdi . Loosely, such a property holds “most of the time”.
The property ought to hold for a randomly chosen sequence. I will often say that a generic property
holds “for a generic sequence”. But, the precise meaning is that the property holds on a nonempty
Zariski-open set, as above.

Fröberg gave a famous conjecture for the Hilbert function of an ideal generated by a generic se-
quence, Conjecture A in Section 3. Moreno-Socías gave a conjecture describing the initial ideal of
such an ideal with respect to degree reverse lexicographic order, Conjecture D in Section 4. The main
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result of this paper is that Conjecture D implies Conjecture A, and that Conjecture A is equivalent
to Conjecture E, a weak form of Conjecture D. I also formulate three more conjectures equivalent to
Conjecture A to facilitate the proofs.

More specifically, the contents of the paper are as follows. In Section 2 I give some basic defini-
tions and sketch a proof that there is some generically occurring Hilbert function and initial ideal. In
Section 3 I introduce Fröberg’s Conjecture and the notion of a semi-regular sequence. In Section 4, I
discuss different versions of Moreno-Socías’ Conjecture. In Section 5, I prove the main theorem of this
paper, giving implications between the various conjectures. In the final section, I further explore the
combinatorics of weakly reverse lexicographic ideals.

I am grateful to Karen Chandler, Tony Iarrobino, David Lieberman and David Wagner for helpful
conversations related to this paper. David Wagner accumulated substantial computational evidence
for Corollary 6 long before I discovered a proof. Tony Iarrobino caught an embarrassing error in an
early version of this paper. I am also grateful to the referee for his or her helpful comments, which
led me to clarify some issues with the notion of genericity.

Considerable time has elapsed since I submitted this paper, a situation for which I am responsible,
and a great deal has been written on the subject since. To prevent further delays, I have not attempted
to bring this paper up-to-date with the current literature, but have expanded the bibliography to
include some more recent relevant papers, notably [1,4,5,7,16,18–22]. Most importantly, [4] and [21]
include several results from this paper, independently discovered by Cho and Park.

Some of these papers cite “Generic Polynomials”. That paper was an early draft of the present
paper that did not include all of the results in the submitted version of this paper.

2. Hilbert functions, initial ideals and genericity

In this section, I give some basic definitions and then sketch a proof that Hilbert functions and
initial ideals are constant in a nonempty open set in

∏r
i=1 Sdi .

In this paper, k always represents an infinite field and S = k[x1, . . . , xn]. We will view S as a graded
k-algebra in the standard way, with all variables having degree 1.

If I ⊆ S is a homogeneous ideal, then the Hilbert function of S/I is the function from Z to N given
by

hS/I(i) = dimk(S/I)i,

and the Hilbert series of S/I is the generating function of the Hilbert function

H S/I (t) =
∞∑

i=0

hS/I(i)ti .

Degree reverse lexicographic order on the monomials of S is defined by xμ > xν if deg xμ > deg xν ,
or deg xμ = deg xν and the last nonzero entry of μ − ν is negative. This is the only monomial order
that I use in this paper.

If f is the sum of αxμ , where α ∈ k∗ , and a k-linear combination of monomials xν < xμ , then
xμ = in f , the initial term of f . If I is an ideal, then in(I) is the ideal generated by the initial terms of
elements of I . It is not hard to see that for a homogeneous ideal I , the Hilbert functions of S/I and
S/ in(I) are the same.

Let I be generated by an element of
∏r

i=1 Sdi , which is to say a sequence f1, . . . , fr of homo-
geneous polynomials of degrees d1, . . . ,dr . We would like to see that there is a nonempty open set
U ⊆ ∏r

i=1 Sdi such that the Hilbert function of S/I is the same for every sequence in that set. What is
easy to see is that for each d ∈ N there is an open set Ud such that hS/I (d) is the same for every se-
quence in Ud . This is the set where Id has as large dimension as possible. Failure to have that largest
possible dimension is equivalent to the vanishing of certain polynomials in the coefficients, arising
as determinants of certain minors of a coefficient matrix. The trick is to see that the intersection of
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all of the Ud is equal to the intersection of only finitely many, so that the intersection is open and
nonempty.

First consider this problem in the case of r � n. Then for d sufficiently large, d > D = d1 + · · · + dr

is more than sufficient, the largest that Id can be is all of Sd . Indeed, this is the case if f1 = xd1
1 , . . . ,

fn = xdn
n . But, if Id = Sd , then Id+1 = Sd+1 so that Ud ⊆ Ud+1 for every d � D . So, the intersection of

all of the Ud is equal to the intersection of U0, . . . , U D and is thus open and nonempty.
Now, consider this problem in the case of r < n. We wish to show that there is an open set such

that f1, . . . , fr is a regular sequence. But, f1, . . . , fr is a regular sequence if and only if there are
independent linear homogeneous �r+1, . . . , �n such that f1, . . . , fr, �r+1, . . . , �n is a regular sequence.
So, let di = 1 for r + 1 � i � n. As seen in the previous paragraph, there is a nonempty open set U ′ ⊆∏n

i=1 Sdi consisting of regular sequences f1, . . . , fr, �r+1, . . . , �n . Projecting
∏n

i=1 Sdi onto
∏r

i=1 Sdi ,
the image of U ′ contains a nonempty open set U , since the projection is surjective.

The assertion that the image of U ′ contains an open set U follows from the theory of constructible
sets. See Section 6 of Chapter 2 of [15], especially 6.C and 6.E. I will make further use of this method
in the proof of Theorem 2.

Now, we will see that there is an open set V ⊆ ∏r
i=1 Sdi such that the initial ideal of I is the same

for every sequence in V . Let U be the set on which the Hilbert function is constant, so that we at
least know ad = dimk Id for every d. It is easy to see that there is an open set Vd on which the space
(in I)d is constant. There is an order on monomial subspaces of dimension ad in Sd such that the
earliest space Wd ⊆ Sd that ever occurs in this order for a sequence f1, . . . , fr from U is the one that
must occur unless certain polynomial conditions on the coefficients of f1, . . . , fr are satisfied. Vd ⊆ U
is the open set on which these conditions are not satisfied so that for sequences in Vd , (in I)d = Wd .
Again, the problem is to see that the intersection of all of the Vd is the same as the intersection of
only finitely many.

Since Vd and Vd+1 intersect nontrivially, we must have that S1Wd ⊆ Wd+1. Let J be the mono-
mial ideal generated by all of the Wd . Then Jd = Wd . Since S is Noetherian, J is generated by only
finitely many of the Wd , say W0, . . . , Wt . Then the intersection of all of the Vd is the intersection of
V 0, . . . , Vt . On this open set, in I = J .

3. Semi-regular sequences

In this section, I develop the language of semi-regular sequences, which gives the most transparent
version of Fröberg’s Conjecture, and a convenient link to Moreno-Socías’ Conjecture.

If
∑∞

d=0 adtd is a power series with integer coefficients, then |∑∞
d=0 adtd| = ∑∞

d=0 bdtd where
bd = ad if ai > 0 for 0 � i � d and bd = 0 otherwise.

Conjecture A. (See Fröberg [10].) If k is an infinite field and I is generated by a generic sequence of polynomials
of degrees d1, . . . ,dr , then

H S/I (t) =
∣∣∣∣
∏r

i=1(1 − tdi )

(1 − t)n

∣∣∣∣.
I will show that this conjecture is equivalent to several other conjectures. The most transparent

conjecture equivalent to these is phrased in terms of semi-regular sequences.

Definition. If A = S/I , where I is a homogeneous ideal, and f ∈ Sd , then f is semi-regular on A if
and only if for every e, the vector space map Ae−d → Ae given by multiplication by f is of maximal
rank (either injective or surjective). A sequence of homogeneous polynomials f1, . . . , fr of degrees
d1, . . . ,dr is a semi-regular sequence if each f i is semi-regular on A/( f1, . . . , f i−1).

Notice that regular sequences are semi-regular. In fact, regular and semi-regular elements can be
characterized by Hilbert series.
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Proposition 1. If A = S/I , and f1, . . . , fr are homogeneous polynomials of degrees d1, . . . ,dr , then f1, . . . , fr

is a semi-regular sequence if and only if

H A/( f1,..., f s) =
∣∣∣∣∣
(

s∏
i=1

(
1 − tdi

))
H A(t)

∣∣∣∣∣
for 1 � s � r. f1, . . . , fr is a regular sequence on A if and only if

H A/( f1,..., fr) =
(

r∏
i=1

(
1 − tdi

))
H A(t).

Proof. If r = 1, then the dimension of (A/ f1)e is at least max{dim Ae − Ae−d1 ,0}, with equality if and
only if the multiplication by f1 map Ae−d1 → Ae has maximal rank. Also, should the dimension of
(A/ f1)e be 0 for some e, then the dimension of (A/ f1)e+1 is 0 as well. This proves the first statement
in the case r = 1. That this statement holds in general now follows from the easy observation that if
H(t) = ∑∞

i=0 aiti is a power series, and d ∈ N, then |(1 − td)(|H(t)|)| = |(1 − td)H(t)|.
The characterization of regular sequences is well known. �
The idea of a semi-regular sequence, although not the name, appears in Valla’s discussion of

Fröberg’s Conjecture in [24]. A proof of one direction of Proposition 1 is also in that paper.
A corollary of this proposition is the well-known fact that permutations of homogeneous regular

sequences are also regular. This does not hold for semi-regular sequences. For example, x2, y2, xy is a
semi-regular sequence on k[x, y], but x2, xy, y2 is not.

Notice that this proposition implies that Conjecture A is equivalent to the following natural con-
jecture.

Conjecture B. If k is an infinite field and S = k[x1, . . . , xn], and d1, . . . ,dr are non-negative integers, then
a generic sequence of polynomials of degrees d1, . . . ,dr is semi-regular.

Indeed, if Conjecture A is true, then there are nonempty Zariski-open sets U1, . . . , Ur ⊆ ∏r
i=1 Sdi

such that for a sequence f1, . . . , fr ∈ Us , with 1 � s � r, the ideal generated by f1, . . . , f s gives the
Hilbert series predicted by Conjecture A. If we let U = U1 ∩ · · · ∩ Ur , then Proposition 1 tells us that
any sequence in U is a semi-regular sequence, proving Conjecture B. Conversely, if Conjecture B is
true, then there is a nonempty open set U ⊆ ∏r

i=1 Sdi such that every sequence in U is semi-regular.
But, Proposition 1 tells us that this sequence generates an ideal giving the Hilbert series predicted by
Conjecture A.

These conjectures are known to be true in only a few cases. If r � n, then generic sequences of
homogeneous polynomials are regular sequences. For r = n +1, Stanley showed that these conjectures
are true for characteristic 0 [13,23]. The conjectures are also true if n � 3 [10,2]. ([24] has a charac-
teristic 0 proof of the case n = 2 that is very much in the spirit of this paper.) If d1 = · · · = dr = d,
Hochster and Laksov have shown that Conjecture A predicts the correct value of the Hilbert function
at i = d + 1 [12]. Their work was extended to certain other values by Aubry [3]. Fröberg and Hollman
have also established several cases through computer experimentation [11]. See [14] for a discussion
of similar conjectures concerning powers of generic linear forms and of the Weak Fröberg Conjecture.

One other conjecture in the spirit of this section which is equivalent to those so far is the fol-
lowing. Note that in this conjecture, and some later conjectures, the number of polynomials and the
number of variables is the same.

Conjecture C. If k is an infinite field and S = k[x1, . . . , xn] and d1, . . . ,dn ∈ N and fi ∈ Sdi are generic homo-
geneous polynomials, and A = S/( f1, . . . , fn), then xn, xn−1, . . . , x1 is a semi-regular sequence on A.
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4. Initial ideals in the generic case

In this section, I discuss Moreno-Socías’ Conjecture and variants.

Conjecture D. (See Moreno-Socías [17].) If k is an infinite field and S = k[x1, . . . , xn] and d1, . . . ,dn ∈ N

and fi ∈ Sdi are generic homogeneous polynomials generating an ideal I , and J = in(I), the initial ideal with
respect to degree reverse lexicographic order, then J is a weakly reverse lexicographic ideal.

A reverse lexicographic ideal is an ideal J generated by monomials such that if xμ ∈ J then every
monomial of the same degree which preceeds xμ must be in J as well. A weakly reverse lexicographic
ideal is an ideal J generated by monomials such that if xμ ∈ J is one of the minimal generators of J
then every monomial of the same degree which preceeds xμ must be in J as well.

Deery studied reverse lexicographic ideals in his master’s thesis [6]. In his thesis, he calls weakly
reverse lexicographic ideals “almost reverse lexicographic ideals”.

I have stated the Moreno-Socías Conjecture only in the case in which r = n, which is the only
case treated in this paper, but this special case implies the cases in which the number of polynomials
r and the number of variables n may be different. To see this for n < r, note that the computation
of a reverse lexicographic initial ideal commutes with forming the quotient ring by the last variable,
and the image of a weakly reverse lexicographic ideal in that quotient ring is also weakly reverse
lexicographic. (See Proposition 15.12 in [8].) So, if Conjecture D holds for r polynomials in n variables,
then it also holds for r polynomials in n − 1 variables. This shows that Conjecture D as stated implies
Conjecture D with n variables and r � n polynomials.

On the other hand, if r < n, then for a generic sequence f1, . . . , fr we have that f1, . . . , fr, xn, . . . ,

xr+1 is a regular sequence. Another property of reverse lexicographic order gives that the initial ideal
of the ideal generated by f1, . . . , fr is generated by monomials not divisible by any of xn, . . . , xr+1.
(See Theorem 15.13 and Proposition 15.14 in [8].) This means that the generators for this ideal are
the same as the generators in the case of r = n. This shows that Conjecture D as stated implies
Conjecture D with more variables than polynomials.

In the case of the same number of variables as polynomials, we know that we have a regular
sequence generically, so that we know the generic Hilbert function. For a given Hilbert function there
is at most one weakly reverse lexicographic ideal, so Conjecture D allows us to write down generators
for the predicted initial ideal. Whether or not there actually is a weakly reverse lexicographic ideal
with the desired Hilbert function is a problem that I address in the last section of this paper.

I will show that Moreno-Socías’ Conjecture implies the other conjectures in this paper, but it is
not clear that the converse is true. The other conjectures in this paper are equivalent to a weak form
of Moreno-Socías’ Conjecture.

Conjecture E. If k is an infinite field and S = k[x1, . . . , xn] and d1, . . . ,dn ∈ N and fi ∈ Sdi are generic ho-
mogeneous polynomials generating an ideal I , and J = in(I), the initial ideal with respect to degree reverse
lexicographic order, and xμ is a minimal generator of J of degree d which is divisible by a variable xm, then
every monomial of degree d in the variables x1, . . . , xm−1 is in the ideal J .

The last equivalent conjecture in this paper is the following.

Conjecture F. If k is an infinite field and S = k[x1, . . . , xn] and d1, . . . ,dn ∈ N and fi ∈ Sdi are generic ho-
mogeneous polynomials generating an ideal I , and J = in(I), the initial ideal with respect to degree reverse
lexicographic order, then xn, . . . , x1 is a semi-regular sequence on S/ J .

5. Equivalence of the conjectures

Theorem 2. Conjectures A, B, C, E and F are all equivalent, while Conjecture D implies the others.

Proof. The equivalence of Conjectures A and B follows from Proposition 1 as noted in Section 3.
To see that Conjecture B implies Conjecture C, let r = 2n, and di = 1 for n < i � 2n. If Conjecture B

holds, then there is a nonempty open set U0 ⊆ ∏n
i=1 Sdi × Sn

1 consisting of semi-regular sequences.
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We wish to show that there is a nonempty open set U1 ⊆ ∏n
i=1 Sdi consisting of sequences f1, . . . , fn

such that f1, . . . , fn, xn, . . . , x1 is a semi-regular sequence.
We may replace U0 by a smaller nonempty open set consisting of sequences f1, . . . , fn, �n, . . . , �1

such that �n, . . . , �1 are linearly independent. Choose a particular sequence �n, . . . , �1 that occurs at
the end of a sequence in U0. Let

U2 = U0 ∩
n∏

i=1

Sdi × (�n, . . . , �1).

Then U2 is a nonempty open subset of
∏n

i=1 Sdi × (�n, . . . , �1), which is naturally homeomorphic to∏n
i=1 Sdi . Let U3 ⊆ ∏n

i=1 Sdi be the image of U2 under this homeomorphism. Then U3 is a nonempty
open set consisting of sequences f1, . . . , fn such that f1, . . . , fn, �n, . . . , �1 is semi-regular. Let γ ∈
GL(n) be such that γ (�i) = xi . Then γ gives a homeomorphism of

∏n
i=1 Sdi to itself and we may take

U1 = γ (U3). Indeed, for every sequence f1, . . . , fn in U3, γ ( f1), . . . , γ ( fn), xn, . . . , x1 is a semi-regular
sequence. This proves that Conjecture B implies Conjecture C.

To see that Conjecture C implies Conjecture A, note that we only have to consider the case in which
r > n, since Conjecture A is known to be true if r � n. So, assume that r > n and that Conjecture C
holds. Consider the degree sequence d1, . . . ,dr for a polynomial ring S ′ = k[x1, . . . , xr] of r variables.
By Conjecture C, there is a nonempty open set U ⊆ ∏r

i=1 S ′
di

consisting of sequences f ′
1, . . . , f ′

r such
that f ′

1, . . . , f ′
r , xr, . . . , xn+1 is a semi-regular sequence. Viewing S as S = S ′/(xr, . . . , xn+1), the image

of U in
∏r

i=1 Sdi contains a nonempty open set U ′ .
For a sequence in U , the Hilbert series of S ′/( f ′

1, . . . , f ′
r , xr, . . . , xn+1) is

∣∣∣∣(1 − t)r−n

∏r
i=1(1 − tdi )

(1 − t)r

∣∣∣∣ =
∣∣∣∣
∏r

i=1(1 − tdi )

(1 − t)n

∣∣∣∣.
Taking f i to be the image of f ′

i in S = S ′/(xr, . . . , xn+1), the f i form a sequence of homogeneous
polynomials of specified degrees which gives the Hilbert series predicted by Conjecture A. Thus, the
Hilbert series predicted by Conjecture A holds on the nonempty open set U ′ , proving that Conjec-
ture C implies Conjecture A.

To see that Conjecture C is equivalent to Conjecture F, consider the following useful property of
degree reverse lexicographic order: If I is a homogeneous ideal and I ′ is the image of I in S ′ =
S/(xn, . . . , xm), then in(I ′) is the image of in(I) in S ′ . (See Proposition 15.12 in [8].) This implies
that the Hilbert functions of S/(I + (xn, . . . , xm)) and S/(in(I) + (xn, . . . , xm)) are the same. So, by
Proposition 1, xn, . . . , x1 is semi-regular on both S/I and S/ in(I), or on neither of them.

To see that Conjecture F implies Conjecture E, let J be an ideal generated by monomials such that
xn, . . . , x1 is a semi-regular sequence on S/ J . Let xμ be a generator of J of degree d which is divisible
by a variable xm . Without loss of generality, we may assume that there is no lower degree generator of
J divisible by xm , and thus no monomial at all in J of lower degree and divisible by xm . Furthermore,
we may assume without loss of generality that xμ is not divisible by any xi with i > m. Consider
the map (S/( J + (xn, . . . , xm+1)))d−1 → (S/( J + (xn, . . . , xm+1)))d given by multiplication by xm . Since
xμ

xm
/∈ J (otherwise xμ would not be a minimal generator), but xμ ∈ J , this multiplication map is not

injective. But, xm is semi-regular on S/( J + (xn, . . . , xm+1)), so the map must be surjective. Thus, every
monomial of degree d that is not divisible by xm must be in J + (xn, . . . , xm+1). Thus, every monomial
of degree d in the variables x1, . . . , xm−1 must be in J , so that J satisfies Conjecture E.

To see that Conjecture E implies Conjecture F, let J be an ideal satisfying the conclusion of Con-
jecture E: for every degree d and for every xm , if there is a monomial generator of J of degree d
which is divisible by xm , then all monomials in the variables x1, . . . , xm−1 of degree d are in J . We
must show that for every m, multiplication by xm is semi-regular on S/( J + (xn, . . . , xm+1)). Let d be
the smallest degree such that there is a generator of J of degree d which is divisible by xm . Con-
sider the map (S/( J + (xn, . . . , xm+1)))i−1 → (S/( J + (xn, . . . , xm+1)))i given by multiplication by xm .
I claim that this map is injective if i < d and surjective if i � d. Say that i < d and f ∈ Si−1 and
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xm f ∈ J + (xn, . . . , xm+1). We may assume that f is a monomial. If f is divisible by any x j , with
j > m, then f ∈ J + (xn, . . . , xm+1). Otherwise, xm f is divisible by a minimal generator xν of J . Since
xν has degree less than d, it is not divisible by xm . So, f is divisible by xν and f ∈ J . This proves
injectivity. Now, say that i � d. Then every monomial of degree i in the variables x1, . . . , xm−1 is in J .
Thus, every monomial in the monomial basis of (S/( J + (xn, . . . , xm+1)))i is divisible by xm . So, the
map is surjective. Therefore, J satisfies the conclusion of Conjecture F.

We now have that Conjectures A, B, C, E and F are equivalent. To see that Conjecture D implies
Conjecture E, and thus all of the others, note that a weakly reverse lexicographic ideal satisfies the
condition of Conjecture E. �

I have stated and proven Theorem 2 with each conjecture taken in its entirety. The same argu-
ments show that Conjecture E for a fixed number r of polynomials and variables is equivalent to
Conjecture A for the same fixed number r of polynomials, but any number n � r of variables.

6. Weakly reverse lexicographic ideals

One might guess that Conjecture D is too weak. One might expect instead that the initial ideal
of a generic sequence of homogeneous polynomials should actually be a reverse lexicographic ideal.
But, this is rarely true, thanks to Deery’s characterization of which Hilbert series admit reverse lexi-
cographic ideals. In this theorem, � is the coefficient-wise partial order on Z[[t]].

Theorem 3. (See Deery [6].) Let H(t) = ∑
h(i)ti ∈ Z[[t]] be a series with non-negative coefficients. Then H(t)

is the Hilbert series of S/I for a reverse lexicographic ideal I if and only if

(1) 1
(1−t)n � H(t) and

(2) if the first degree in which 1
(1−t)n differs from H(t) is d, then h(i + 1) � h(i) for all i � d.

For example, if I is generated by six generic quadratics in six variables, then the Hilbert series
of S/I is 1 + 6t + 15t2 + 20t3 + 15t4 + 6t5 + t6. This Hilbert series does not satisfy the criterion of
Deery’s Theorem: the first degree in which it differs from (1− t)−6 = 1+6t +21t2 +· · · is in degree 2,
but the coefficients are not weakly decreasing thereafter. Thus, there is no reverse lexicographic ideal
with this Hilbert series. In particular, the initial ideal of I is not reverse lexicographic.

What criterion is there for a Hilbert series to admit a weakly reverse lexicographic ideal, or even
just an ideal modulo which xn, . . . , x1 is a semi-regular sequence? If one can produce a Hilbert series
of a regular sequence which does not admit an ideal such that xn, . . . , x1 is a semi-regular sequence,
then all of the conjectures in this paper are false. The following theorem gives the desired criterion.

Theorem 4. Let H(t) = ∑∞
i=0 h(i)ti be a series with non-negative coefficients such that h(0) = 1. Let S =

k[x1, . . . , xn] where k is a field and n � h(1). Then the following are equivalent:

(1) There is a weakly reverse lexicographic ideal J such that S/ J has Hilbert series H(t).
(2) There is an ideal J such that S/ J has Hilbert series H(t) and xn, . . . , x1 is a semi-regular sequence on S/ J .
(3) For every r ∈ Z, let

∞∑
i=0

hr(i)ti = ∣∣(1 − t)r H(t)
∣∣.

If hr(i) � hr(i − 1) then hr(i + 1) � hr(i).

Proof. (1) → (2): In the proof of Theorem 2, the argument that Conjecture F implies Conjecture E
shows that xn, . . . , x1 is a semi-regular sequence modulo a weakly reverse lexicographic ideal.
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(2) → (3): First, I will prove that (3) is true for r < 0. Since H(t) is a Hilbert series, should some
coefficient be zero then all later coefficients are zero as well. Thus, if H(t) is not a finite sum, then
the coefficients of (1 − t)r H(t) are positive and strictly increasing. If H(t) is a polynomial of degree D ,
then the coefficients of (1 − t)r H(t) are positive and, if r < −1, they are strictly increasing, while if
r = −1, the coefficients are strictly increasing up to i = D and constant thereafter.

(3) is also true for r � h(1) irrespective of (2). In fact (1 − t)r H(t) = 1 + (h(1) − r)t + · · · so that
|(1 − t)r H(t)| = 1 for r � n.

Now, if 0 � r � n − 1, let J be an ideal as in (2). Then xn, . . . , xn−r+1 is a semi-regular sequence on
S/ J , so that the Hilbert series of S/( J + (xn, . . . , xn−r+1)) is |(1 − t)r H(t)|. Say that hr(i) � hr(i − 1).
Then, since xn−r is semi-regular on S/( J + (xn, . . . , xn−r+1)), the multiplication by xn−r map

S/
(

J + (xn, . . . , xn−r+1)
)

i−1 → S/
(

J + (xn, . . . , xn−r+1)
)

i

is surjective. But, this forces the next multiplication by xn−r map

S/
(

J + (xn, . . . , xn−r+1)
)

i → S/
(

J + (xn, . . . , xn−r+1)
)

i+1

to be surjective as well, giving the inequality hr(i + 1) � hr(i).
(3) → (1): If h(1) = 0, then H(t) = 1 and the weakly reverse lexicographic ideal giving H(t) is

generated by x1, . . . , xn .
I will now proceed by induction on n. If n = 0 then h(1) = 0 and we are in the case above. So,

assume that n > 0 and h(1) > 0. Notice that the series G(t) = |(1 − t)H(t)| satisfies the hypotheses of
the theorem with n replaced by n − 1, since

G(t) = 1 + (
h(1) − 1

)
t + · · · ,

and of condition (3), since |(1 − t)r G(t)| = |(1 − t)r+1 H(t)|. So, there is a weakly reverse lexicographic
ideal I ′ ⊆ S ′ = k[x1, . . . , xn−1] such that S ′/I ′ has Hilbert series G(t). Let I = I ′ S . Then I is a weakly
reverse lexicographic ideal and S/I has Hilbert series 1

1−t G(t). If G(t) = (1 − t)H(t), then I is the
desired ideal. Otherwise,

G(t) =
D∑

i=0

(
h(i) − h(i − 1)

)
ti

where D + 1 = min{d: h(d) � h(d − 1)} and h(−1) = 0. Then, 1
1−t G(t) = ∑D−1

i=0 h(i)ti + ∑∞
i=D h(D)ti .

So, 1
1−t G(t) − H(t) = ∑∞

i=D+1(h(D) − h(i))ti , a series with positive, bounded, weakly increasing coef-
ficients.

I will show how to add monomials to I so as to close the gap between the Hilbert series of S/I
and H(t), while preserving the weakly reverse lexicographic property. To do this, I will use a formula
of Eliahou and Kervaire for the Hilbert series of a “stable” ideal [9]. I do not require the definition of
a stable ideal, except that stable ideals are monomial ideals and weakly reverse lexicographic ideals
are stable.

For a monomial xμ , write degμ for the degree of xμ , and maxμ for the highest index of a variable
dividing xμ . If K ⊆ S is a stable ideal and Gen(K ) is its minimal set of monomial generators, then

H S/K = 1

(1 − t)n
−

∑
xμ∈Gen(K )

tdegμ

(1 − t)n−maxμ+1
.
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In particular, if K is a weakly reverse lexicographic ideal and we add another monomial xν /∈ K which
does not divide any of the monomials of Gen(K ), and K + xν S is also weakly reverse lexicographic,
then

H S/(K+xν S)(t) = H S/K (t) − tdegν

(1 − t)n−maxν+1
.

If maxν = n then the Hilbert series decreases by exactly tdegν + tdegν+1 + · · · .
Notice that (S ′/I ′)D+1 = 0, so that I ′ contains every monomial of degree D + 1 in the variables

x1, . . . , xn−1, and is generated by monomials in degrees less than or equal to D + 1. I will inductively
construct an ascending chain of weakly reverse lexicographic ideals I(s) with I(0) = I and for s > 0,
I(s) = I(s−1) + ms−1 S , where ms−1 is a monomial, such that the coefficients of H S/I(s) (t) − H(t) are
a non-negative, bounded, weakly increasing sequence and the degrees of ms are at least D + 1 and
weakly increasing.

If H S/I(s) (t) 	= H(t), then choose the first degree d in which the coefficients differ. Since the coef-

ficient for td must then be positive, there is a monomial of degree d which is not in I(s) . Choose the
reverse lexicographically earliest such monomial, and call it ms . Let I(s+1) = I(s) + ms S .

Note that xn divides ms , since d � D + 1 so that all monomials of degree d in the variables
x1, . . . , xn−1 are already in I . I also claim that d is at least as large as any of the degrees of the
minimal generators of I(s) . If s = 0, note that d � D + 1 and I(0) is generated in degrees less than
or equal to D + 1. If s > 0, then d is at least equal to the degree of ms−1. This is because ms−1 was
chosen to be the first degree d′ in which H S/I(s−1)

(t)− H(t) has a nonzero coefficient. Thus the Hilbert
series H S/I(s−1)

(t) and H S/I(s) (t) must be the same in degrees less than d′ , so d � d′ . This proves the
claim.

Thus, ms does not divide any of the minimal generators of I(s) . Since none of these minimal gen-
erators divide ms either, Gen(I(s+1)) = Gen(I(s)) ∪ {ms}. By the choice of ms , I(s+1) is a weakly reverse
lexicographic ideal. By Eliahou and Kervaire’s formula, H S/I(s+1)

(t) = H S/I(s) (t)−(td +td+1 +· · ·). By the
choice of d and induction, the coefficients of H S/I(s+1)

− H(t) are non-negative, bounded, and weakly
increasing, and the lowest nonzero coefficient is in degree at least d.

Since the I(s) form an ascending chain of ideals in a polynomial ring, the chain must stabilize. But,
we can extend the chain if the Hilbert series of S/I(s) is not equal to H(t), so it must stabilize at a
weakly reverse lexicographic ideal J such that S/ J has Hilbert series H(t). �

The question still remains if there is a Hilbert series of a regular sequence which fails to satisfy
condition (3) of Theorem 4. The next theorem shows that there is not. Thus, counterexamples to the
conjectures in this paper are not apparent.

Theorem 5. Let d1, . . . ,dn be positive integers and for each r ∈ Z, let

∑
i

hr(i)ti = (1 − t)r
n∏

j=1

(
1 + t + · · · + td j−1).

Let cr = max{c: hr(i) > 0 for 0 � i � c}. If 0 � i � cr and hr(i − 1) � hr(i), then hr(i) � hr(i + 1).

Proof. If r � n then hr(1) = n−r � 0 and hr(0) = 1 so that cr = 0. Since it is always true that hr(−1) =
0, the conclusion is vacuous for r � n.

Now, consider the case n = 0. If r � 0, then this is included in the case above. Otherwise, hr(i) =(i−r−1
−r−1

)
> 0 so that cr = ∞. If r = −1, h−1(i) = 1 is constant for i � 0, while if r < −1, hr(i) is strictly

increasing for i � 0, both of which satisfy the conclusion of the theorem.
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If n > 0, let

∑
h′

r(i)ti = (1 − t)r
n−1∏
j=1

(
1 + t + · · · + td j−1)

and let c′
r = max{c: h′

r(i) > 0 for 0 � i � c}. By induction on n, the theorem is true for all h′
r . Let

d = dn . Since

∑
hr(i)ti = (1 − t)r

n∏
j=1

(
1 + t + · · · + td j−1)

= (
1 − td)(1 − t)r−1

n−1∏
j=1

(
1 + t + · · · + td j−1) = (

1 − td)∑
h′

r−1(i)ti,

comparing coefficients gives that hr(i) = h′
r−1(i) − h′

r−1(i − d). This turns out to be a key equation in
the argument. First, I use it to establish that cr � c′

r−1. Examining the equation at i = c′
r−1 + 1, and

noting that h′
r−1(c′

r−1 + 1) � 0 while h′
r−1(c′

r−1 + 1 − d) � 0 gives that hr(c′
r−1 + 1) � 0. This shows

that cr � c′
r−1.

Now, assume that the conclusion of the theorem is false for some hr . Then there is some i such
that 0 � i � cr and hr(i) � hr(i − 1), but hr(i) < hr(i + 1). Rewriting hr(i) � hr(i − 1) in terms of h′

r−1,
gives

h′
r−1(i) − h′

r−1(i − d) � h′
r−1(i − 1) − h′

r−1(i − d − 1),

h′
r−1(i) − h′

r−1(i − 1) � h′
r−1(i − d) − h′

r−1(i − d − 1),

h′
r(i) � h′

r(i − d),

where the last inequality follows from the identity hr( j) = hr−1( j) − hr−1( j − 1). Rewriting hr(i) <

hr(i + 1) gives

h′
r−1(i) − h′

r−1(i − d) < h′
r−1(i + 1) − h′

r−1(i − d + 1),

h′
r−1(i − d + 1) − h′

r−1(i − d) < h′
r−1(i + 1) − h′

r−1(i),

h′
r(i + 1 − d) < h′

r(i + 1).

First assume that i � c′
r . Since h′

r(i) � h′
r(i − d), the induction hypothesis says that there is some

j � i such that h′
r is weakly decreasing on the interval [ j, c′

r + 1]. In particular, h′
r(i + 1) � h′

r(i). This,
together with the inequalities above, gives that h′

r(i + 1 −d) < h′
r(i −d). This implies that h′

r(i −d) > 0
so that i � d and the induction hypothesis again says that h′

r is weakly decreasing on the interval
[i − d, c′

r + 1]. But, this contradicts that h′
r(i + 1 − d) < h′

r(i + 1).
So, it must be that c′

r < i � cr � c′
r−1. By the definition of c′

r , h′
r(c′

r + 1) � 0, so that h′
r−1(c′

r + 1) �
h′

r−1(c′
r). The induction hypothesis then says that h′

r−1 is weakly decreasing on [c′
r, c′

r−1 + 1], which in
turn implies that h′

r( j) � 0 on [c′
r +1, c′

r−1 +1]. Since i +1 is in this interval, it follows from one of the
inequalities derived above that h′

r(i + 1 − d) < h′
r(i + 1) � 0. Rewriting h′

r(i + 1 − d) in terms of h′
r−1,

gives that h′
r−1(i + 1 − d) < h′

r−1(i − d). Since the left-hand side is not negative, the right-hand side
is positive, implying that i � d. Applying the induction hypothesis again, h′

r−1 is weakly decreasing
on [i − d, c′

r−1] so that h′
r−1(i − d) � h′

r−1(i). Then hr(i) = h′
r−1(i) − h′

r−1(i − d) � 0, contradicting that
0 � i � cr . �



K. Pardue / Journal of Algebra 324 (2010) 579–590 589
Corollary 6. Let S = k[x1, . . . , xn], r ∈ N, d1, . . . ,dr be positive integers and

H(t) =
∣∣∣∣
∏r

i=1(1 − tdi )

(1 − t)n

∣∣∣∣.
Then there is a weakly reverse lexicographic ideal J in S, such that S/ J has Hilbert series H(t).

Proof. First consider the case in which r � n. Then

H(t) =
∏r

i=1(1 − tdi )

(1 − t)n
=

∏r
i=1(1 + t + · · · + tdi−1)

(1 − t)n−r
.

Let D be the number of i with 1 � i � r such that di � 2. Then the leading coefficient of H(t) is 1 and
the coefficient of t is n − r + D � n. So, the hypotheses of Theorem 4 apply to H(t). By Theorem 5,
condition (3) of Theorem 4 applies to H(t), so that condition (1) gives the desired weakly reverse
lexicographic ideal.

Now, consider the case in which r > n. Let

H ′(t) =
∏r

i=1(1 − tdi )

(1 − t)r
.

Then by the case considered above, there is a weakly reverse lexicographic ideal J ′ in S ′ =
k[x1, . . . , xr] such that S ′/ J ′ has Hilbert series H ′(t). Let J be the image of J ′ in S = S ′/(xr, . . . , xn+1).
Then J is a weakly reverse lexicographic ideal in S .

Since J ′ is weakly reverse lexicographic, xr, . . . , xn+1 is a semi-regular sequence on S ′/ J ′ . So, the
Hilbert series of

S ′/
(

J ′ + (xr, . . . , xn+1)
) � S/ J

is

∣∣∣∣(1 − t)r−n

∏r
i=1(1 − tdi )

(1 − t)r

∣∣∣∣ =
∣∣∣∣
∏r

i=1(1 − tdi )

(1 − t)n

∣∣∣∣.
So, J is the desired ideal. �
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