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Preface 

Fermat's problem, also called Fermat's last theorem, has attracted the 
attention of mathematicians for more than three centuries. Many clever 
methods have been devised to attack the problem, and many beautiful 
theories have been created with the aim of proving the theorem. Yet, despite 
all the attempts, the question remains unanswered. 

The topic is presented in the form of lectures, where I survey the main 
lines of work on the problem. In the first two lectures, there is a very brief 
description of the early history, as well as a selection of a few of the more 
representative recent results. In the lectures which follow, I examine in suc- 
cession the main theories connected with the problem. The last two lectures 
are about analogues to Fermat's theorem. 

Some of these lectures were actually given, in a shorter version, at the 
Institut Henri Poincark, in Paris, as well as at Queen's University, in 1977. 

I endeavoured to produce a text, readable by mathematicians in general, 
and not only by specialists in number theory. However, due to a limitation 
in size, I am aware that certain points will appear sketchy. 

Another book on Fermat's theorem, now in preparation, will contain a 
considerable amount of the technical developments omitted here. It will 
serve those who wish to learn these matters in depth and, I hope, it will 
clarify and complement the present volume. 

It is for me gratifying to acknowledge the help and encouragement I 
received in the preparation of this book: A. J. Coleman and the Mathematics 
Department at Queen's University-for providing excellent working con- 
ditions; E. M. Wight-for her dilligent and skillful typing of the manuscript; 
G.  Cornell-who read the book and helped very much in improving the 
style; The Canada Council-for partial support; C. Pisot and J. Oesterle- 
who arranged for my lectures at the Institut Henri Poincare. 
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It is also my pleasure to report here various suggestions, criticisms and 
comments from several specialists, whom I consulted on specific points or 
to whom I have sent an earlier typescript version of this book. In alphabetical 
order: A. Baker, D. Bertrand, K. Inkeri, G. Kreisel, H. W. Lenstra Jr., J. M. 
Masley, M. Mendes-France, B. Mazur, T. Metsankyla, A. Odlyzko, K. 
Ribet, A. Robert, P. Samuel, A. Schinzel, E. Snapper, C. L. Stewant, 
G. Terjanian, A. J. van der Poorten, S. S. Wagstaff, M. Waldschmidt, 
L. C. Washington. 
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LECTURE I 

The Early History of 
Fermat's Last Theorem 

1 .  The Problem 

Pierre de Fermat (1601-1665) was a French judge who lived in Toulouse. 
He was a universal spirit, cultivating poetry, Greek philology, law but mainly 
mathematics. His special interest concerned the solutions of equations in 
integers. 

For example, Fermat studied equations of the type 

where d is a positive square-free integer (that is, without square factors 
different from 1) and he discovered the existence of infinitely many solutions. 
He has also discovered which natural numbers n may be written as the sum 
of two squares, namely those with the following property: every prime factor 
p of n which is congruent to 3 modulo 4 must divide n to an even power. 

In the margin of his copy of Bachet's edition of the complete works of 
Diophantus, Fermat wrote : 

It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of 
like degree; I have discovered a truly remarkable proof which this margin is 
too small to contain. 

This copy is now lost, but the remark appears in the 1670 edition of the 
works of Fermat, edited in Toulouse by his son Samuel de Fermat. It is 
stated in Dickson's History of the Theory of Numbers, volume 11, that 
Fermat's assertion was made about 1637. Tannery (1883) mentions a letter 
from Fermat to Mersenne (for Sainte-Croix) in which he wishes to find two 
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cubes whose sum is a cube, and two biquadrates whose sum is a biquadrate. 
This letter appears, with the date June 1638, in volume 7 of Correspondance 
du PPre Marin Mersenne (1962); see also Itard (1948). The same problem was 
proposed to Frenicle de Bessy (1640) in a letter to Mersenne, and to Wallis 
and Brouncker in a letter to Digby, written in 1657, but there is no mention 
of the remarkable proof he had supposedly found. 

In modern language, Fermat's statement means: 

The equation X" + Y n  = Z", where n is a natural number larger than 2, 
has no solution in integers all diferent from 0. 

No proof of this statement was ever found among Fermat's papers. He 
did, however, write a proof that the equations x4 - Y4 = Z2 and X4 + y 4  = 

Z4 have no solutions in integers all different from 0. In fact, this is one 
of two proofs by Fermat in number theory which have been preserved'. 
With very few exceptions, all Fermat's other assertions have now been 
confirmed. So this problem is usually called Fermat's last theorem, despite 
the fact that it has never been proved. 

Fermat's most notable erroneous belief concerns the numbers F, = 

22n + 1, which he thought were always prime. But Euler showed that F, 
is not a prime. Sierpinski and Schinzel pointed out some other false assertions 
made by Fermat. 

Mathematicians have debated whether Fermat indeed possessed the proof 
of the theorem. Perhaps, at one point, he mistakenly believed he had found 
such a proof. Despite Fermat's honesty and frankness in acknowledging 
imperfect conclusions, it is very difficult to understand today, how the most 
distinguished mathematicians could have failed to rediscover a proof, if one 
had existed. 

To illustrate Fermat's candor, we quote from his letter of October 18, 
1640 to FrCnicle de Bessy : 

Mais je vous advoue tout net (car par advance je vous advertis que comme 
je suis pas capable de m'attribuer plus que je ne sqay, je dis avecmeme franchise 
ce que je ne sqay pas) que je n'ay peu encore demonstrer I'exclusion de tous 
diviseurs en cette belle proposition que je vous avois envoyee, et que vous 
m'avez confirmee touchant les nombres 3,5, 17,257,65537 & c. Car bien que 
je reduise l'exclusion a la plupart des nombres, et que j'aye mime des raisons 
probables pur le reste, je n'ay peu encore demonstrer necessairement la 
verite de cette proposition, de laquelle pourtant je ne doute non plus a cette 
heure que je faisois auparavant. Si vous en avez la preuve assuree, vous 
m'obligerez de me la communiquer: car apres cela rien ne m'arrestera en ces 
matikres. 

The other proof, partial but very interesting, was brought to light and reproduced by Hofmann 
(1943, pages 41-44). Fermat showed that the only solutions in integers of the system x = 2yZ - 1, 
x Z = 2 z 2  - l a r e x  = 1 a n d x = 7 .  

Again, in a letter to Pascal from August 29, 1654, Fermat proposes the 
same problem : 

Au reste, il n'est rien a I'avenir que je ne vous communique avec toute 
franchise. Songez cependant, si vous le trouvez a propos, a cette proposition: 
les puissances carrkes de 2, augmentees de I'unite, sont toujours des nombres 
premiers: 22 + 1 = 5,  222 + 1 = 17, 22' + 1 = 257, 22' + 1 = 65537, sont 
premiers, et ainsi a l'infini. C'est une proposition de la verite de laquelle je 
vous repond. La demonstration en est tres malaisee, et je vous avoue que je 
n'ai pu encore la trouver pleinement; je ne vous la proposerois pas pour la 
chercher si j'en etois venu a bout. 

Incidentally Pascal has written to Fermat stating: 

Je vous tiens pour le plus grand geometre de toute 1'Europe. 

It is also highly improbable that Fermat would have claimed to have 
proved his last theorem, just because he succeeded in proving it for a few 
small exponents. 

In contrast, Gauss believed that Fermat's assertions were mostly extra- 
polations from particular cases. In 1807, Gauss wrote: "Higher arithmetic 
has this special feature that many of its most beautiful theorems may be 
easily discovered by induction, while any proof can be only obtained with 
the utmost difficulty. Thus, it was one of the great merits of Euler to have 
proved several of Fermat's theorems which he obtained, it appears, by 
induction". 

Even though he himself gave a proof for the case of cubes, Gauss did not 
hold the problem in such high esteem. On March 21, 1816, he wrote to 
Olbers about the recent mathematical contest of the Paris Academy on 
Fermat's last theorem : 

I am very much obliged for your news concerning the Paris prize. But I 
confess that Fermat's theorem as an isolated proposition has very little 
interest for me, because I could easily lay down a multitude of such proposi- 
tions, which one could neither prove nor dispose of. 

In trying to prove Fermat's theorem for every positive integer n 2 3, 1 
make the following easy observation. If the theorem holds for an integer m 
and n = lm is a multiple of m, then it holds also for n. For, if x, y, z are non- 
zero integers and xn + yn = zn then (xi)" + (yi)" = (zi)", contradicting the 
hypothesis. Since every integer n 2 3 is a multiple of 4 or of a prime p # 2, 
it suffices to prove Fermat's conjecture for n = 4 and for every prime p # 2. 
However, I shall occassionally also mention some proofs for exponents 
of the form 2p, or pn where p is an odd prime. 

The statement of Fermat's last theorem is often subdivided further into 
two cases: 

The j rs t  case holds for the exponent p when there do not exist integers 
x, y, z such that p$ xyz and xp + yP = zP. 
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The second case holds for the exponent p when there do not exist integers 
x, y, z, all different from 0, such that plxyz, gcd(x,y,z) = 1 and xp + yP = zP. 

2. Early Attempts 

It was already known in antiquity that a sum of two squares of integers may 
well be the square of another integer. Pythagoras was supposed to have 
proven that the lengths a, b, c of the sides of a right-angle triangle satisfy the 
relation 

a2 + b2 = c2; 

so the above fact just means the existence of such triangles with sides mea- 
sured by integers. 

But the situation is already very different for cubes, biquadrates and so on. 
Fermat's proof for the case of biquadrates is very ingenious and proceeds 
by the method which he called injnite descent. Roughly, it goes as follows: 
Suppose a certain equation f(X,Y,Z) = 0 has integral solutions a, b, c, with 
c > 0, the method just consists in finding another solution in integers a', b', c' 
with 0 < c' < c. Repeating this procedure a number of times, one would 
reach a solution a", b", c", with 0 < c" < 1, which is absurd. This method of 
infinite descent is nothing but the well-ordering principle of the natural 
numbers. 

Little by little Fermat's problem aroused the interest of mathematicians 
and a dazzling array of the best minds turned to it. 

Euler considered the case of cubes. Without loss of generality, one may 
assume x3 + y3 = z3 where x, y, z are pairwise relatively prime integers, 
x, y are odd, so x = a - b, y = a + b. Then x + y = 2a, x2 - xy + y2 = 

a2 + 3b2 and z3 = x3 + y3 = 2a(a2 + 3b2), where the integers 2a, a2 + 3b2 
are either relatively prime or have their greatest common divisor equal to 3. 
Euler was led to studying odd cubes a2 + 3b2 (with a, b relatively prime), 
and forms of their divisors; he concluded the proof by the method of infinite 
descent. The properties of the numbers a2 + 3b2 which were required had 
to be derived from a detailed study of divisibility, and therefore were omitted 
from the proof published in Euler's book on algebra (1822). This proof, with 
the same gap, was reproduced by Legendre. Later, mathematicians intrigued 
by the missing steps were able without much difficulty, to reconstruct the 
proof on a sound basis. In today's language, numbers of the form a' + 3b2 
are norms of algebraic integers of the quadratic extension Q ( p )  of the 
rational field Q and the required properties can be deduced from the unique 
factorization theorem, which is valid in that field. 

Gauss gave another proof for the case of cubes. His proof was r,ot 
"rational" since it involved complex numbers, namely those generated by 
the cube root of unity ( = (- 1 + , f3)/2,  i.e., numbers from the quadratic 
field ~(,f3). He consciously used the arithmetic properties of this field. The 

underlying idea was to call "integers" all numbers of the form (a + b-)/2 
where a, b are integers of the same parity; then to define divisibility and the 
prime integers, and to use the fact that every integer is, in a unique way, the 
product of powers of primes. Of course some new facts appeared. First, 
the integers f c, kc2 that divide 1 are "units" since [c2 = 1 and therefore 
should not be taken into account so to speak, in questions of divisibility. 
Thus, all the properties have to be stated "up to units". Secondly, the unique 
factorization, which was taken for granted, was by no means immediate-in 
fact it turned out to be false in general. I shall return to this later. 

Gauss's proof was an early incursion into the realm of number fields, i.e., 
those sets of complex numbers obtained from the roots of polynomials by 
the operations of addition, subtraction, multiplication, and division. 

In the 1820s a number of distinguished French and German mathema- 
ticians 'were trying intensively to prove Fermat's theorem. 

In 1825, G. Lejeune Dirichlet read at the Academie des Sciences de Paris 
a paper where he attempted to prove the theorem for the exponent 5. In fact 
his proof was incomplete, as pointed out by Legendre, who provided an 
independent and complete proof. Dirichlet then completed his own proof, 
which was published in Crelle Journal, in 1828. 

Dirichlet's proof is "rational", and involves numbers of the form a2 - 5b2. 
He carefully analyzed the nature of such numbers which are 5th powers 
when either a, b are odd, or a, b have different parity, and 5 does not divide a, 
5 divides b, and a, b are relatively prime. Nowadays the properties he derived 
can be obtained from the arithmetic of the field ~ ( 6 ) .  In this field too, 
every integer has a unique factorization. Moreover every unit is a power of 
(1 + $)/2, which is of crucial importance in the proof. Of course, for 
Dirichlet this knowledge took the form of numerical manipulations which 
lead to the same result. 

In 1832 Dirichlet settled the theorem for the exponent 14. 
The next important advance was due to Lame, who, in 1839 proved the 

theorem for n = 7. Soon after, Lebesgue simplified Lame's proof consider- 
ably by a clever use of the identity, 

x [(X2 + Y2 + z2 + X Y  + xz + YZ)2 + XYZ(X + Y + Z)] 

already considered by Lame. 
While these special cases of small exponents were being studied, a 

very remarkable theorem was proved by Sophie Germain, a French 
mathematician. 

Previously Barlow, and then Abel, had indicated interesting relations that 
x, y, z must satisfy if xP + yP = zP (and x, y, z are not zero). Through clever 
manipulations, Sophie Germain proved : 

If p is an odd prime such that 2p + 1 is also a prime then the Jirst case of 
Fermat's theorem holds for p. 
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These results were communicated by letter to Legendre and Cauchy since 
the regulations of the Academy prevented women from presenting the dis- 
coveries in person. 

There are many primes p for which 2p + 1 is also prime, but it is still not 
known whether there are infinitely many such primes. 

Following Sophie Germain's ideas, Legendre proved the following theo- 
rem: Let p, q be distinct odd primes, and assume the following two conditions: 

1. p is never congruent modulo q to a pth power. 
2. the congruence XP + YP + ZP E 0 (mod q) has no solution s, y, z, unless 

q divides syz.  

Then the first case of Fermat's theorem holds for p. With this result, 
Legendre extended Sophie Germain's theorem as follows: 

I f  p is a prime such that 4p + 1,8p + 1, lop + 1,14p + 1, or 16p + 1 is also 
a prime then the jrs t  case of Fermat's theorem holds for the exponent p. 

This was sufficient to establish the first case for all prime exponents 
p < 100. 

3. Kummer 's Monumental Theorem 

By 1840, Cauchy and Lame were working with values of polynomials at 
roots of unity, trying to prove Fermat's theorem for arbitrary exponents. 
Already In 1840 Cauchy published a long memoir on the theory of numbers, 
which however was not directly connected with Fermat's problem. In 1847, 
Lame presented to the Academy a "proof" of the theorem and his paper was 
printed in full in Liouville's journal. However, Liouville noticed that the 
proof was not valid, since Lame had tacitly assumed that the decomposition 
of certain polynomial expressions in the nth root of unity into irreducible 
factors was unique. 

Lame attributed his use of complex numbers to a suggestion from Liouville, 
while Cauchy claimed that he was about to achieve the same results, given 
more time. Indeed, during that same year, Cauchy had 18 communications 
printed by the Academy on complex numbers, or more specifically, on 
radical polynomials. He tried to prove what amounted to the euclidean 
algorithm, and hence unique factorization for cyclotomic integers. Then, 
assuming unique factorization, he drew wrong conclusions. Eventually 
Cauchy recognized his mistake. In fact, his approach led to results which 
were later rediscovered by Kummer with more suitable terminology. A 
noteworthy proposition of Cauchy was the following one, (C. R. Acad. Sci. 
Paris, 25, 1847, page 181) later also found by Genocchi and by Kummer : 

If thejrs t  case of Fermat's theorem fails for the exponent p, then the sum 

is a multiple of p. 
By the year 1847, mathematicians were aware of both the subtlety and 

importance of the unique decomposition of cyclotomic integers into ir- 
reducible factors. 

In Germany, Kummer devoted himself to the study of the arithmetic of 
cyclotomic fields. Already, in 1844, he recognized that the unique factoriza- 
tion Qeorem need not hold for the cyclotomic field Q(ip). The first such case 
occurs for p = 23. However, while trying to rescue the unique factorization 
he was led to the introduction of new "ideal numbers". Here is an excerpt 
of a letter f ~ o m  Kummer to Liouville (1847): 

. . . Encouraged by my friend Mr. Lejeune Dirichlet, I take the liberty of 
sending you a few copies of a dissertation which I have written three years ago, 
a t  the occasion of the century jubileum of the University of Konigsberg, as 
well as of another dissertation of my friend and student Mr. Kronecker, a 
young and distinguished geometer. In these memoirs, which I beg you to 
accept as a sign of my deep esteem, you will find developments concerning 
certain points in the theory of complex numbers composed of roots of unity, 
i.e., roots of the equation f' = 1, which have been recently the subject of some 
discussions at your illustrious Academy, at the occasion of an attempt by 
Mr. Lame to prove the last theorem of Fermat. 

Concerning the elementary proposition for these complex numbers, that 
a composite complex number may be decomposed into prime factors in only one 
way, which you regret so justly in this proof, which is also lacking in some 
other points, I may assure you that it does not hold in general for complex 
numbers of the form 

but it is possible to rescue it, by introducing a new kind of complex numbers, 
which I have called ideal complex number. The results of my research on this 
matter have been communicated to the Academy of Berlin and printed in 
the Sitzungsberichte (March 1846); a memoir on the same subject will appear 
soon in the Crelle Journal. I have considered already long ago the applications 
of this theory to the proof of Fermat's theorem and I succeeded in deriving 
the impossibility of the equation xn + yn = z" from two properties of the 
prime number n, so that it remains only to find out whether these properties 
are shared by all prime numbers. In case these results seem worth some of 
your attention, you may find them published in the Sitzungsberichte of the 
Berlin Academy, this month. 

The theorem which Kummer mentioned in this letter represented a 
notable advance over all his predecessors. 

The ideal numbers correspond to today's divisors. Dedekind rephrased 
this concept, introducing the ideals, which are sets I of algebraic integers of 
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the cyclotomic field such that 0 E I ;  if a, P E I then a + P, a - P E I ;  if a E I 
and f l  is any cyclotomic integer then ap E I. ldeals may be multiplied in a 
very natural way. 

Each cyclotomic integer a determines a principal ideal consisting of all 
elements pa, where p E A, the set of cyclotomic integers. 

If all ideals are principal there is unique factorization in the cyclotomic 
field, and conversely. For the cases when not all ideals are principal, Kummer 
wanted to "measure" to what extent some of the ideals were not principal. 
So he considered two nonzero ideals I, I' equivalent when I' consists of all 
multiples of the elements of I by some nonzero element a in the cyclotomic 
field. Thus, there is exactly one equivalence class when all ideals are principal. 
Kummer proved that there are only finitely many equivalence classes of 
ideals in each cyclotomic field Q(5,). 

Let h, denote the number of such classes. If p does not divide hp then p is 
said to be a regular prime. In this case, if the ideal IP is a principal ideal then 
I is itself a principal ideal. But the main property used by Kummer is the 
following lemma : 

If p is a regular prime, p # 2, if o is a unit in the ring A of cyclotomic integers 
of a([&, and if there exists an ordinary integer m such that w - m E A(l  - 
then o is the pth power of another unit. 

The proof of this lemma requires deep analytical methods. 
Armed with this formidable weapon, Kummer proved that Fermat's last 

theorem holds for every exponent p which is a regular prime. This is the 
theorem which Kummer mentioned in his letter to Liouville. At first Kummer 
believed that there exist infinitely many regular primes. But, he later realized 
that this is far from evident-and in fact, it has, as yet, not been proved. 

A well-known story concerning a wrong proof of Fermat's theorem 
submitted by Kummer, originates with Hensel. Specifically, in his address 
to commemorate the first centennial of Kummer's birth, Hensel(1910) stated : 

Although it is not well known, Kummer at one time believed he had found 
a complete proof of Fermat's theorem. (This is attested to by reliable witnesses 
including Mr. Gundelfinger who heard the story from the mathematician 
Grassmann.) Seeking the best critic for his proof, Kummer sent his manuscript 
to Dirichlet, author of the insuperably beautiful proof for the case i. = 5. 
After a few days, Dirichlet replied with the opinion that the proof was excellent 
and certainly correct, provided the numbers in cc could not only be decomposed 
into indecomposable factors, as Kummer proved, but that this could be done 
in only one way. If however, the second hypothesis couldn't be satisfied, most 
of the theorems for the arithmetic of numbers in u would be unproven and 
the proof of Kummer's theorem would fall apart. Unfortunately, it appeared 
to him that the numbers in a didn't actually possess this property in general. 

This is confirmed in a letter, which is not dated (but likely from the summer 
of 1844), written by Eisenstein to Stern, a mathematician from Gottingen. 

In a recent paper, Edwards (1975) analyzes this information, in the light 
of a letter from Liouville to Dirichlet and expresses doubts about the exis- 
tence of such a "false proof" by Kummer. 

4. Regular Primes 

To decide whether a prime is regular it is necessary to compute the number 
of equivalence classes of ideals of the cyclotomic field. Kummer succeeded 
in deriving formulas for the class number hp which were good enough to 
allow an explicit computation for fairly high exponents p. In this way, he 
discovered that 37, 59,67 were irregular primes-actually these are the only 
ones less than 100. 

One of the most interesting features in this study was the appearance of 
the Bernoulli numbers. In the derivation of the class number formula, there 
was an expression of the type 

which had to be computed for large values of k and n. First it is easy to show 
that there is a unique polynomial S k ( X )  with rational coefficients of degree 
k + 1, having leading coefficient l / ( k  + 1) and such that for every n 2 1 its 
value is Sk(n) = l k  + 2k + . . . + nk. These polynomials can be determined 
recursively and may be written as follows: 

The coefficients B,, B,, . . . , Bk had already been discovered by Bernoulli. 
In fact Euler had already studied these numbers and found that they can be 
generated by considering the formal inverse of the series 

namely 

This series appears in the Taylor expansion of the cotangent function: 
cot x = i + ( l / x )  . (2ix/e2'" - 1). 

It is easily seen that B, = 0 for every odd k, k # 1. The first Bernoulli 
numbers are B,  = - 1/2, B, = 116, B, = - 1/30, B, = 1/42, B ,  = - 1/30, 
B10 = 5/66, B I 2  = -69112730, B,, = 716, B16 = -3617/510, BIB = 

43867/798. The numerators grow quickly. for example: 
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Bernoulli numbers have fascinating arithmetical properties, but I have 
to refrain from describing them. I will just mention their relation with 
Riemann's zeta-function [(s) = x,"= (lln" (for s > 1). The following formula 
holds : 

2(2k)! B 2k  -(-l)k-I- - 
( 2 7 ~ ) ~ ~  

[(2k) (for k 2 1). 

Through his studies of the class number formula, Kummer showed that 
a prime number p is regular if and only if p does not divide the numerators 
of the Bernoulli numbers B,, B,, . . . , Bp_ ,. 

From the data he acquired, it was reasonable to conjecture that there are 
infinitely many regular primes, at least they seemed to appear more frequently 
than the irregular primes. Yet, this has never been proved and appears to be 
extremely difficult. Paradoxically, Jensen proved in 1915, in a rather simple 
way that there are in fact infinitely many irregular primes. 

This was the situation around 1850. The theorem was proved for regular 
primes, the Bernoulli numbers had entered the stage and the main question 
was how to proceed in the case of irregular primes. 

5. Kummer's Work on Irregular Prime Exponents 

In 1851 Ktlmmer began examining the irregular prime exponents. Aiming 
to derive congruences which must be satisfied ifthe first case fails, he produced 
some of his deepest results on cyclotomic fields. 

It is impossib!e to describe in a short space Kummer's highly technical 
considerations, but the main points, which we mention here, give at least 
some idea of his astonishing mastery. First, he carefully studied the periods 
of the cyclotomic polynomial 

Suppose q is a prime number, q # p, f is the order of q modulo p, p - 1 = fr, 
and let g be a primitive root modulo p, and [ a primitive pth root of 1. Kummer 
considered the r periods off terms each yo, y . . , y,- (already defined and 
used by Gauss). For example q, = [ + cgr + ig2" + . . . + [g(f - ' I r ,  the other pe- 
riods being conjugate to yo. If A is the ring of cyclotomic integers, and A' is the 
ring of integers of the field K' = Q(qo) = . . . = Q(q,-l), Kummer showed 
that A is a free module over A', with basis {l,(, . . . ,if -I),  and A' = 

Z[qo,. . . . ,yr- is a free abelian group with basis {yo,yl,. . . ,yr- He also 

studied the decomposition of the prime q in the ring A'. 
Then, Kummer gave his beautiful proof that the group of classes of ideals 

of the cyclotomic field is generated by the classes of the prime ideals with 
prime norm. 

Another ingredient in his work was the use of the cyclotomic functions 
first introduced by Jacobi. If q is an odd prime of the form q = kp + 1, if h 
is a primitive root modq, ( a primitive pth root of 1 and q a primitive qth 
root of 1, let 

q - 1  
((,q) = 1 (indh(')q* 

i = 1  

where ind,(t), the index o f t  (with respect to h, q) is the only integer s, 1 5 s 5 
q - 1 such that t = hymod q). 

For every integer d E Z, let 

If Q is the ideal of A generated by q and hk - [ (where q = kp + 1) then of 
course Q is a prime ideal of norm q, that is, Aq = n::: oi(Q) (where a is a 
generator of the Galois group). The main results concern certain products 
of conjugates of Q which are principal ideals: 

with ge = ge(modp), IT = (p - 1)/2 and if 

All this was put together to give Kummer his congruences. If x, y, z are 
pairwise relatively prime integers, not multiples ofp, such that xP + yP + zP = 

0, then 
P - 2  

( A Z ) ~  = A(xP + yP) = A(x + y) n A(x + Cgky), 
k = O  

where g is a primitive root modulo p. The ideals A(x + y), A(x + Cgky) are 
pth powers of ideals, say A(x + y) = Jg, A(x + igky) = J f  ( J ,  being a con- 
jugate of Jo). For every d, 1 I d s p - 2, and Id defined as before, niGId o'( J.) 
is a principal ideal, say AM, where M = F([), F(X) being a polynomial with 
coefficients in Z and degree at most p - 2. Then 

where M ( X )  E Z[X]. 
Considering these polynomials as functions of the real variable t > 0, 

letting t = e" and taking an appropriate branch of the logarithm we obtain: 

@,(eU)M(e") log(x + eUgiy) = mu + plog F(e") + log 1 + 
i e I d  [ emv(F(e") )p 



12 I The Early History of Fermat's Last Theorem 7. The Golden Medal and the Wolfskehl Prize 

Let DnG denote the nth derivative of G(v), at = 0. Kummer showed for 
2s = 2,4,. . . , p - 3 (p # 2,3) that the following congruences are satisfied: 

[DP-2s log(x + eUy)]B2, = 0 (mod p), 

where B2, is the Bernoulli number of index 2s. 
Since ~ j l o g ( x  + e"y) = Rj(x,y)/(x + y)', where Rj(X, Y) is a homogeneous 

polynomial of total degree j, multiple of Y, writing Rj(X,Y) = XjPj(T), it 
follows that 

Pp- 2s(t)B2s -- 0 (modp) 

f o r 2 s = 2 , 4  , . . . ,  p - 3 .  
The polynomials Pj(T) may be computed recursively. With these con- 

gruences, Kummer improved his previous result: 

If p divides the numerator of ut most one of the Bernoulli numbers 
B,, B,, . . . , Bp-,, then the first case of Fermat's theorem holds for p. 

In 1905 Mirimanoff generalized this last result of Kummer, as follows: 

If p does not divide the numerator of one of the four Bernoulli numbers 
Bp- 3 ,  Bp- S r  Bp- ,, BP- O, then the first case holds for the prime p. 

This theorem is again a tour de force. However, due to the long com- 
putations involving large Bernoulli numbers, its applicability is limited. 

It was becoming increasingly clear that new and significantly more 
powerful methods were necessary to provide any substantial progress. 

Later, I shall describe the sensational work by Wieferich and Mirimanoff 
early this century, and how Furtwangler used class field theory (more 
specifically Eisenstein's reciprocity law for the power residue symbol) to 
improve and simplify these results. All this brought into the battle the newly 
created forces of class field theory. 

6. Other Relevant Results 

In 1856, Griinert considered the size of possible solutions of Fermat's 
equation. 

He proved that if x, y, z are nonzero integers such that xn + yn = zn, with 
0 < x < y < z, then necessarily x > n. This was very easy to prove. 

For example, if p = 101 the smallest nontrivial solution, if it exists, would 
involve numbers greater than 102'01. This pointed to a fact which was 
becoming more and more apparent: In order to disprove Fermat's statement 
one has to deal with very large numbers. 

In 1894, following the line of Sophie Germain, Wendt contributed an 
interesting theorem. He considered the determinant Wn of the circulant 

matrix 

which is equal to npi [(1 + tj)n - 11, where to = 1, t,, . . . , 5,-I are the 
nth roots of 1. 

Wendt proved: 

If p is an odd prime, if there exists h 2 1 such that q = 2hp + 1 is prime, if 
q does not divide W2, and p2, $ 1 (modq), then the first case of Fermat's 
conjecture holds for p. 

A first step in the proof is the following: if x, y, z are integers not divisible 
by q and if xP + yP + zP - 0 (mod q) then q divides W,,. 

This leads to the interesting and related problem: if p, q are odd primes 
does the congruence 

have a solution in integers x, y, z not multiples of q?  Of course this depends 
on P, 9. 

If, given p, there exist infinitely many primes q such that the above con- 
gruence does not have a solution as indicated, then Fermat's theorem would 
hold for p. 

But in 1909, Dickson showed that this hypothesis is false. More precisely, 
if q > (p - l)'(p - 2)' + 6p - 2 then the above congruence modulo q has 
a solution. In the same year, Hurwitz generalized this theorem, in a very 
beautiful paper, by counting the number of solutions of 

a, XP + a2X4 + . . . + unX,P _= 0 (mod q). 

All these considerations led again to deep investigations of the number of 
zeros of polynomials over finite fields, eventually linking up with the Riemann 
hypothesis for function fields. 

7. The Golden Medal and the Wolfskehl Prize 

In 1816, and again in 1850, the Acadtmie des Sciences de Paris offered a 
golden medal and a prize of 3000 Francs to the mathematician who would 
solve Fermat's problem. The judges in 1856 were Cauchy, Liouville, Lame, 
Bertrand, and Chasles. 
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Cauchy wrote the following report 

Eleven memoirs have been presented to the Secretary. But none has solved 
the proposed question. The Commissaries have nevertheless noted that the 
piece registered under number 2 contained a new solution of the problem in 
the special case developed by Fermat himself, namely when the exponent is 
equal to 4. 

Thus, after being many times put for a prize, the question remains at  the 
point where M. Kummer left it. However, the mathematical sciences should 
congratulate themselves for the works which were undertaken by the ge- 
ometers, with their desire to solve the question, specially by M. Kummer; and 
the Commissaries think that the Academy would make an honourable and 
useful decision if, by withdrawing the question from the competition, it 
would adjugate the medal to M. Kummer, for his beautiful researches on the 
complex numbers composed of roots of unity and integers. 

In 1908 the very substantial Wolfskehl Prize, in the amount of 100,000 
Mark, was offered with the same aim by the Konigliche Gesellschaft der 
Wissenschaften, in Gottingen, Germany: 

By the power conferred on us, by Dr. Paul Wolfskehl, deceased in 
Darmstadt, hereby we fund a prize of one hundred thousand Marks, to be 
given to the person who will be the first to prove the great theorem of Fermat. 

In his will, Doctor Wolfskehl observed that Fermat (Oeuvres, Paris, 1891, 
volume I, p. 291, observation 2) asserted mutatis mutandis that the equation 
x" yy" = zQas no integral solutions for any odd prime number i.. This 
theorem has to be proved, either following the ideas of Fermat, or completing 
the researches of Kummer (Crelle's Journal, vol. XL, page 130; Abhandlungen 
der Akademie der Wissenschaften zu Berlin, 1857), for all exponents i, for 
which it has some meaning [consult Hilbert, Theorie der Algebraischen 
Zahlkorper, 1894-1895, and Enzyklopadie der Mathematischen Wissenschaften, 
(1900-1904), I C 4b, page 7131. 

The following rules will be followed : 
The Konigliche Gesellschaft der Wissenschaften in Gottingen will decide 

in entire freedom to whom the prize should be conferred. It will refuse to 
accept any manuscript written with the aim of entering the competition to 
obtain the Prize. It  will only take in consideration those mathematical memoirs 
which have appeared in the form of a monograph in the periodicals, or which 
are for sale in the bookstores. The Society asks the authors of such memoirs 
to send at least five printed exemplars. 

Works which are published in a language which is not understood by the 
scholarly specialists chosen for the jury will be excluded from the competition. 
The authors of such works will be allowed to replace them by translations, of 
guaranteed faithfulness. 

The Society declines its responsibility for the examination of works not 
brought to its attention, as well as for the errors which might result from the 
fact that the author of a work, or part of a work, are unknown to the Society. 

The Society keeps the right of decision in the case where various persons 
would have dealt with the solution of the problem, or for the case where the 
solution is the result of the combined efforts of several scholars, in particular 
in what concerns the partition of the Prize, at its own discretion. 

The award of the Prize by the Society will take place not earlier than two 
years after the publication of the memoir to be crowned. The interval of time 

is aimed to allow the German and foreign mathematicians to voice their 
opinion about the validity of the solution published. 

As soon as the Prize will be conferred by the Society, the laureate will be 
informed by the secretary, on the name of the Society, and the result will be 
published everywhere the Prize would have been announced during the 
preceding year. The assignment of the Prize by the Society is not to be the 
subject of any further discussion. 

The payment of the Prize will be made to the laureate, in the next three 
months after the award, by the Royal Cashier of Gottingen University, or, 
a t  the receivers own risk, at any other place he will have designated. 

The capital may be delivered against receipt, at the Society's will, either 
in cash, or by the transfer of financial values. The payment of the Prize will be 
considered as accomplished by the transmission of these financial values, even 
though their total value at the day's course would not attain 100,000 Mark. 

If the Prize is not awarded by September 13, 2007, no ulterior claim will 
be accepted. 

The competition for the Prize Wolfskehl is open, as of today, under the 
above conditions. 

Gottingen, June 27, 1908 
Die Konigliche Gesellschaft der Wissenschaften. 

A memorandum dated 1958 states that the Prize of 100,000 DM has been 
reduced to approximately 7,600 DM, in virtue of the inflation and financial 
changes. 

Dr. F. Schlichting, from the Mathematics Institute of the University of 
Gottingen, was kind enough to provide me with the following information 
on the Wolfskehl Prize: 

Gottingen, March 23, 1974. 

Dear Sir: 
Please excuse the delay in answering your letter. I enclose a copy of the 

original announcement, which gives the main regulations, and a note of the 
"Akademie" which is usually sent to persons who are applying for the prize, 
now worth a little bit more than 10,000 DM. There is no count of the total 
number of "solutions" submitted so far. In the first year (1907-1908) 621 
solutions were registered in the files of the Akademie, and today they have 
stored about 3 meters of correspondence concerning the Fermat problem. 
In recent decades it was handled in the following way: the secretary of the 
Akademie divides the arriving manuscripts into (1) complete nonsense, which 
is sent back immediately, and into (2) material which looks like mathematics. 
The second part is given to the mathematical department and there, the work 
of reading, finding mistakes and answering is delegated to one of the scientific 
assistants (at German universities these are graduated individuals working 
for Ph.D. or habilitation and helping the professors with teaching and 
supervision)-at the moment I am the victim. There are about 3 to 4 letters 
to  answer per month, and there is a lot of funny and curious material arriving, 
e.g., like the one sending the first half of his solution and promising the second 
if we would pay 1000 D M  in advance; or another one, who promised me 10 
per cent of his profits from publications, radio and TV interviews after he 
got famous, if only I would support him now; if not, he threatened to send 
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it to a Russian mathematics department to deprive us of the glory of dis- 
covering him. From time to time someone appears in Gottingen and insists 
on personal discussion. 

Nearly all "solutions" are written on a very elementary level (using the 
notions of high school mathematics and perhaps some undigested papers in 
number theory), but can nevertheless be very complicated to understand. 
Socially, the senders are often persons with a technical education but a failed 
career who try to find success with a proof of the Fermat probIem. I gave 
some of the manuscripts to physicians who diagnosed heavy schizophrenia. 

One condition of Wolfskehl's last will was that the Akademie had to 
publish the announcement of the prize yearly in the main mathematical 
periodicals. But already after the first years the periodicals refused to print 
the announcement, because they were overflowed by letters and crazy 
manuscripts. So far, the best effect has been had by another regulation of the 
prize: namely, that the interest from the original 100,000 Mark could be used 
by the Akademie. For example, in the 1910s the heads of the Gottingen 
mathematics department (Klein, Hilbert, Minkowski) used this money to 
invite Poincare to give six lectures in Gottingen. 

Since 1948 however the remainder of the money has not been touched. 
I hope that you can use this information and would be glad to answer any 

further questions. 

Yours sincerely, 
F. Schlichting. 
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LECTURE I1 

Recent Results 

Some of the most common questions I have been asked are: 

a. For which exponents is Fermat's theorem true? 
b. Is serious work still being done on the problem? 
c. Will it be solved soon? 

Anyone over 40, hearing my reply to the first question, will say: "When 
I was younger, we knew that it was true up to . . ." and will then state some 
rather small exponent. 

Below I will try to present whatever information I have gathered. I will 
not, however, attempt to answer the last question. 

There has always been considerable work done on the subject-though 
of rather diverse quality-so it is necessary to be selective. My purpose is to 
show the various methods of attack, the different techniques involved, and 
to indicate important historical developments. 

Here are 10 recent results which will later be discussed in more detail. 

1. Stating the Results 

1. Wagstaff (1976): Fermat's last theorem (FLT) holds for every prime 
exponent p < 125000. 

2. Morishima and Gunderson (1948): The first case of FLT holds for every 
prime exponent p < 57 x lo9 (or, at worst, as I will explain, for every 
prime exponent p < 3 x lo9, according to Brillhart, Tonascia and 
Weinberger, 1971). 

In fact the first case also holds for larger primes. 

3. The first case of FLT holds for the largest prime known today. 
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The above results are on the optimistic side. But some mathematicians 
think that there might be a counterexample. How large would the smallest 
counterexample have to be for a given exponent p? 

4. Inkeri (1953): If the first case fails for the exponent p, if x, y, z are integers, 
0 < x < y < Z, p$ xyz, xP + yP = zP, then 

And in the second case, 

x > p3p-4 and y > 3p3p-1. 

Moreover, Ptrez Cacho proved in 1958 that in the first case, y > ~ ( P ~ P  + 
where P is the product of all primes q # p such that q - 1 divides p - 1. 

There might also be only finitely many solutions. In this respect: 

5. Inkeri and Hyyro (1964): (a) Given p and M > 0, there exist at most 
finitely many triples (x,y,z), such that 0 < x < y < z, xP + yP = zP, and 
y - x , z - y < M .  

(b) Given p, there exist at most finitely many triples (x, y,z) such that 
0 < x < y < z, xP + yP = zP, and x is a prime power. 

For each such triple, cf. Inkeri (1976), we have the effective majoration 
(and this is a very important new feature): 

Another sort of result, this time for even exponents is the following: 

6. Terjanian (1977): If x, y, z are nonzero integers, p is an odd prime, and 
xZP + y2p = z2P, then 2p divides x or y. In other words, the first case of 
FLT is true for every even exponent. 

The possibility that FLT (or even its first case) holds for infinitely many 
prime exponents is still open. In this respect we have: 

7. Rotkiewicz (1965): If Schinzel's conjecture on Mersenne numbers is 
true, then there exist infinitely many primes p such that the first case 
of FLT holds for p (Schinzel conjectured that there exist infinitely many 
square-free Mersenne numbers). 

The next results are intimately connected with the class group of the 
cyclotomic fields Q([), where [ is a primitive pth root of 1. 

8. Vandiver (1929): If the second factor h+ of the class number of Q([) 
is not a multiple of p and if none of the Bernoulli numbers B,,, (n = 
1,2, . . . , (p  - 3)/2) is a multiple of p3, then Fermat's last theorem holds 
for the exponent p. 

2. Explanations 2 1 

9. Eichler (1965): If the first case fails for p, then p [@- l  divides the first 
factor h* of the class number of Q([) and the p-rank of the ideal class 
group of Q([) is greater than & - 2. 

10. Briickner (1975): If the first case fails for p, then the irregularity index of 
p, ii(p) = # {k = 2,4, . . . ,p - 3 1 p divides the Bernoulli number Bk) 
satisfies 

ii(p) > f i  - 2. 

2. Explanations 

Now, I shall explain the significance of these various theorems and 
computations. 

Result (1). Wagstaff obtained his result with a computer, but what is the 
theory behind it? 

Kummer's theorem asserts that FLT holds for the prime exponents p 
which are regular. A prime p is regular if p does not divide the class number 
h of the cyclotomic field Q([), where [ is a primitive pth root of 1. Kummer 
showed that this is equivalent to p not dividing the first factor h* of the class 
number. Since the computation of the class number, or even of its first factor, 
is rather involved, and even more because the class number grows so rapidly 
with p, it was imperative to find a more amenable criterion. Kummer charac- 
terized the regular primes p by the condition: 

Here B2, denotes the 2kth Bernoulli number. These are defined by the formal 
power series expansion 

X -- X" 
- 1 Bn-. 

ex - 1 .=,, n! 

They may be obtained recursively; moreover if n is odd, n 2 3, then B, = 0. 
Vandiver gave a practical criterion to determine whether p is irregular, 

by means of the congruence 

The advantage of this congruence is that it involves a sum of relatively few 
summands, contrary to the previous congruences. If both the right-hand side 
and the left-hand factor of the above congruence are multiples of p then the 
above congruence does not decide the question and other similar congruences 
have to be used. Once it is known that p is irregular, the following criterion is 
used (Vandiver, 1954 and Lehmer, Lehmer, and Vandiver, 1954): 

Let p be an irregular prime, let P = rp + 1 be a prime such that P < p2 - p 
and let t be an integer such that tr $ 1 (mod P). If p I BZk, with 2 I 2k I p - 3 
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and 

If Q;, $ 1 (modp) for all 2k such that plB,,, then FLT holds for the ex- 
ponent p. This criterion is well suited to the computer. 

During his extensive calculations, Wagstaff noted many facts about the 
irregular primes. The maximum irregularity index found was 5. Moreover, 

This confirms a heuristic prediction of Siege1 (1964). 
Let me now recall various interesting results about regular and irregular 

primes. 
It is suspected that there exist infinitely many regular primes, but this 

has never been proved. On the other hand, Jensen proved in 1915 that there 
exist infinitely many irregular primes. Actually they are abundant in the 
following sense. In 1975, Yokoi proved for N an odd prime, and Metsankyla 
(1976), for arbitrary N 2 3, that if H is a proper subgroup of the multiplicative 
group (Z/NZ)*, then there exist infinitely many irregular primes p such that p 
modulo N is not in H. 

Taking N = 12 and letting H be the trivial subgroup, gives the following 
puzzling theorem previously obtained by Metsankyla (1971): There exist 
infinitely many irregular primes p which satisfy either one of the congruences 
p = 1 (mod 3), p = 1 (mod 4). But he couldn't decide which of these con- 
gruence classes must contain infinitely many irregular primes. 

So it is rather startling that it is possible-and not too difficult-to show 
that there are infinitely many irregular primes, however, it is not known 
whether there are infinitely many regular ones, even though heuristic argu- 
ments seen to indicate that these are much more numerous. 

Among the many conjectures-and all seem difficult to prove-let me 
mention : 

1. There exist primes with arbitrarily large irregularity index. 
2. There exist infinitely many primes with given irregularity index. 
3. There exists a primep and some index 2k such that p2 I B2,, 2 5 2k < p - 3. 

Result (2). The fact that the first case holds for all prime exponents less 
than 3 x lo9 depends on the scarcity of primes p satisfying the congruence 
2 ~ - 1  = - 1 (modp2). 

Fermat's little theorem says that if p is a prime and p y m, then mP-' = 1 
(modp). Hence the quotient qp(m) = (mP-' - l)/p is an integer. It is called 
the Fermat quotient of p with base m. 

2. Explanations 23 

In 1909 Wieferich proved the following theorem: 

If the j rs t  case of FLT fails for the exponent p, then p satisjes the stringent 
condition that 2P- - 1 (mod p2); or equiualently qp(2) - 0 (mod p). 

This theorem had a new feature, in that it gives a condition involving only 
the exponent p, and not a possible solution (x,y,z) of Fermat's equation as in 
most of the previous results. The original proof of Wieferich's theorem was 
very technical, based on the so-called Kummer congruences for the first case: 

I fpyxyz  and x P +  yP+zP=O,  then for 2k=2 ,  4 , . .  . , p -  3, we have 
the congruences (for a real variable u) 

x B,_,, = 0 (modp) 

(as well as the similar congruences for (y,x), (x,z), (z,x), (y,~),  (z,y)). These 
congruences were obtained with intricate considerations involving the arith- 
metic of the cyclotomic field and transcendental methods (the latter, as a 
matter of fact, may be replaced by p-adic methods). 

Thus, it suffices to show that 2P-' $ 1 (modp2) to guarantee that the first 
case holds for p. For a few years no such p was found. Only in 1913 Meissner 
showed that p = 1093 satisfies 2P-1 _= 1 (modp2). The next prime satisfying 
this congruence was discovered by Beeger in 1922; it is p = 3511. Since then, 
computations performed up to 3 x 10' by Brillhart, Tonascia and 
Weinberger (1971) have not found any other such prime. Thus, in the above 
range, the first case holds for all but these two primes. 

The handling of these exceptional primes was actually done by a similar 
criterion. Indeed, in 1910 Mirimanoff gave another proof of Wieferich's 
theorem and showed also that if the first case fails for p then 3P-1 = 1 
(modp2). The primes p = 1093 and 3511 do not satisfy this congruence. 

Several more criteria of a similar kind were successively obtained by 
various authors. In 1914 Frobenius and Vandiver showed independently 
that qp(5) = 0 (modp) and qp(ll) = 0 (modp), if the first case fails for p. 
Successively, Pollaczek, Vandiver, Morishima proved that qp(m) - 0 (mod p) 
must hold for all primes m I 31. Morishima proved the same criterion for 
m = 37,41,43 (except for finitely many primes p). The exceptions were ruled 
out by Rosser in 1940 and 1941. However, in 1948 Gunderson pointed out 
that Morishima's proof was incomplete. I have been assured by Agoh and 
Yamaguchi, who worked with Morishima and studied his papers, that the 
proofs are sound. 

Rosser, Lehmer and Lehmer, using the above criteria (up to m = 43), and 
the Bernoulli polynomials to estimate the number of lattice points in a 
certain simplex in the real vector space of 14 dimensions, gave the following 
well-known bound : 

If the first case fails for p, then p > 252 x lo6. 
These computations have been superseded by the bound 3 x lo9, 

obtained using a computer, as I have already indicated. 
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Furthermore, Gunderson devised, in 1948, another sharper method to 
bound the exponent. Assuming the Fermat quotient criteria up to 31, this 
gives the bound p > 43 x lo8, and up to 43, the bound is p > 57 x lo9. 

Result (3). The largest prime known today' is the Mersenne number 
M ,  = 24 - 1 where q = 19937. It has 6002 digits. Its primeness was shown 
by Tuckermann in 1971, using the famous Lucas test: if q > 2, M ,  is prime 
if and only if M ,  divides S,. The numbers S, are defined by recurrence: 
S2 = 4, Sn+ = S; - 2, so the sequence is 4, 14,194, . . . . 

But how was it possible to show that the first case holds for such a large 
exponent? As a matter of fact, this is a consequence of Wieferich's and 
analogous criteria, and it is a special case of a result which was proved suc- 
cessively by Mirimanoff, Landau, Vandiver, Spunar, Gottschalk. Namely: 

Suppose that there exists m not divisible by p, such that mp = a + b, 
where the prime factors of a and of b are at most 43 (this depends on the 
Fermat quotient criteria). Then the first case holds for p. Therefore, it holds 
for all Mersenne primes M ,  = 2, - 1, as well as for many other numbers. 

Do there exist infinitely many prime numbers p satisfying the conditions 
of the preceding proposition? This is an open question. In 1968 Puccioni 
proved : 

If this set of primes is finite, then for all primes 1 5 43, 1 $ f 1 (mod 8) 
the set A, = {qlq is a pime and P-' z l(q3)) is infinite. 

Primes in A, are very hard to find, but this doesn't preclude these sets 
being infinite. 

Result (4). The first lower bound for a counterexample to FLT was given 
by Griinert in 1856. He showed that if 0 < x < y < z and xn + yn = z" then 
x > n. So it is useless to try to find a counterexample with small numbers. 
For example, if n = 101 the numbers involved in any counterexample would 
be least 102'01. 

It was easy to improve this lower bound. Based on congruences of 
Carmichael (1913), if xP + yP = zP, 0 < x < y < z, then x > 6p3. 

But, with some clever manipulations Inkeri arrived at the lower bound 
already given. Taking into account that the first case holds for all prime 
exponents p < 57 x lo9, then 

This is a very large number; it has more than 18 x 10'' digits! 

Since this book was written, a larger prime M,, with q = 21701 was discovered by two 18-year- 
old students of California State University at Hayward. Laura Nickel and Curt Noll announced 
their discovery on November 15, 1978, and their computations were confirmed by Tuckermann 
(see Los Angeles Times, November 16, 1978, part 11, page 1). The search lasted for three years, 
it required 440 computer hours. The new prime has 6533 digits. 

Similarly, for the second case we may take p = 125000, hence 

This number has more than 18 x lo5 digits. 
To give some sense of the magnitudes involved, I have inquired about 

some physical constants, as they have been estimated by the physicists. 
For example, the radius of the known universe is estimated to be loz8 cm. 

The radius of the atomic nucleus, about 10-l3 cm. So the number of nuclei 
that may be packed in the universe, is just about (1028+13)3 = 10lZ3-a very 
modest number indeed! 

But I should add that the above is rather controversial, and I have quoted 
it only to stress the enormous disparity between the sizes of the candidates 
for a counterexample to FLT, and the reputedly largest physical constants. 

Despite the monstrous size of the numbers involved, it is perhaps not 
quite safe to assert that no counterexample to the theorem will ever be 
available. Consider, for example, the equation 

which is easy to establish. Yet, the numbers involved have more than 10loO 
digits. - 

This being said, mathematicians had better try to prove FLT, or at least 
some weaker form of it, rather than look for a counterexample. 

Result (5). For example, it might be possible to show that the Fermat 
equation has at most finitely many solutions. It might even be that the 
number of solutions is bounded by an effectively computable bound. I 
should warn however that this has not yet been proved. 

It was only under a further restriction that a finiteness result was proved 
by Inkeri. He considered possible solutions (x,y,z) such that the integers are 
not too far apart, more precisely y - x < M ,  and z - y < M ,  where M  > 0 
is given in advance. Then the problem becomes actually one of counting 
integer solutions of an equation involving only 2  variables. For this purpose 
there are the theorems of Siegel, or Landau, Roth, or similar ones. Actually 
Inkeri and Hyyro used the following: Let m, n be integers, max{m,n) 2 3. 
Let f ( X )  = aoxn  + alXn-' + . . . + an E Z [ X ] ,  with distinct roots. If a is an 
integer, a # 0, then the equation f(X) = aYm has at most finitely many 
solutions in integers. 

Given this theorem they proved statement (a). 
Concerning (b), I wish to mention that it partially answers a conjecture 

of Abel (1823). Abel conjectured that if xP + yP + zp = 0 (with nonzero 
integers x, y, z )  then, at any rate, x, y, z are not prime powers. I suppose that 
Abel might have had in mind a procedure, which would produce from a 
nontrivial solution (x,y,z) another one (xl,y,,zl), where the minimum number 
of prime factors of the integers XI, y,, zl is strictly smaller than it was for 
x, y, z. In this situation he would "descend" on this number, eventually 
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finding a solution with some prime-power integer-and if this turned out to 
be impossible, he would have proved FLT. 

To date Abel's conjecture has not been completely settled. Sauer in 1905, 
and Mileikowsky in 1932 obtained some partial results. In 1954 Moller 
proved: 

If xn + vn = zn. 0 < x < y < z, and if n has r distinct odd prime factors 
then z, y have at least r + 1 distinct prime factors, while x has at least r such 

- 

factors. If n = p is a prime, this tells that y, z cannot be prime-powers. More- 
over, if p does not divide xyz, then x also cannot be a prime-power (this was 
proved by Inkeri in 1946). It remains only to settle the case plxyz, and to 
show that x is not a prime-power. 

Inkeri has succeeded in proving that there are at most finitely many 
triples (x,y,z), as above, where x is a prime-power. Using the methods of 
Baker, which give effective upper bounds for the integral solutions of certain 
diophantine equations, Inkeri showed (1976), that 

x < y < expexp[2p(p - 1)'O'P ')](P- 

I pause now to indicate another very interesting use of Baker's estimates. 
The famous Catalan problem is the following: to show that the only 

solution in natural numbers, x, y, m > 1, n > 1, of the equation xm - yn = 1 
is x = 3, m = 2, y = 2, n = 3. This problem is still open. However, using 
Baker's methods, Tijdeman determined a number C > 0 such that if (x,y,m,n) 
is a solution then x, y, m, n are less than C. In particular, there are only finitely 
many solutions. 

Closely related is the following conjecture, which is a generalization of a 
theorem bf Landau (published in his last book of 1959): 

Let a, < a, < .  . . be the increasing sequence of all integers which are 
proper powers (i.e., squares, cubes, etc. . .). Then limn., (an+, - an) = m. 

In his result, Landau considered two fixed exponents m, nand the sequence 
of mth powers and nth powers. 

Result (6). Now I will turn to a more elementary result. 
In his very first paper on Fermat's problem, published in 1837, Kummer 

considered Fermat's equation with exponent 2n, where n is odd. And he 
showed that if it has a nontrivial solution, x2" + y2n = z2", with gcd(n,xyz) = 1 
then n r 1 (mod 8). 

So, there exist infinitely many primes p such that the first case is true for 
the exponent 2p. 

Kummer's result was rediscovered several times. It has also been .,.. im- 
proved. For example, in 1960 Long showed that if gcd(n,xyz) = 1, x'" + yL" = 

zZn then n r 1 or 49 (mod 120). Some more elementary manipulation 
shows that if m - 4 or 6 (mod 10) then Xm + Y m  = Zm cannot have a solution 
(x,y,z) with gcd(m,xyz) = 1. But the best possible result dealing with the first 
case, for an even exponent, was just obtained by Terjanian. It plainly states 
that the first case is true for any even exponent. The proof is ingenious, but 
elementary. This leads to the speculation that there might be an elementary 

proof for the first case and arbitrary prime exponents. I think, however, that 
it shows rather that the equation with prime exponents is far more difficult 
to handle than with even exponents. 

Result (7). Schinzel's conjecture has been supported by numerical evidence. 
To date, no one has ever found a square factor of any Mersenne number. 
Moreover if p2 divides a Mersenne number, then p > 9 x lo8. 

Rotkiewicz's theorem says that Schinzel's conjecture implies that there 
exist infinitely many primes p such that 2P-1 $ 1 (modp2). Hence by 
Wieferich's theorem, there would exist infinitely many primes p for which 
the first case holds. I believe, however, that a proof of this last statement, and 
a proof of Schinzel's conjecture are equally difficult. 

Result (8). To better explain the meaning of Vandiver's result, it is neces- 
sary to return to Kummer's monumental theorem: 

If p is a regular prime, then FLT holds for the exponent p. 

As I have already mentioned, Kummer was led to study the arithmetic of 
cyclotomic fields, to take care of the phenomenon of nonunique factorization 
into primes. To recover uniqueness Kummer created the concept of ideal 
numbers. Later Dedekind interpreted these ideal numbers to be essentially 
what we call today ideals. However, it should be said that Kummer's ideal 
numbers were in fact today's divisors. Besides the ideal numbers, he con- 
sidered of course the actual numbers, that is, the elements of the cyclotomic 
field. For the ideal numbers unique factorization holds. Ideal numbers 
were called equivalent when one was the product of the other by an actual 
number. Kummer showed that the number of equivalence classes is finite-it 
is called the class number of the cyclotomic field and usually denoted by h. 

Moreover, Kummer indicated precise formulas for the computation of h. 
He wrote h = h*h+, where 

In the above formulas, yl is a primitive (p - 1)th root of 1 ; g is a primitive 
root modulo p ;  for each j, gj is defined by 1 gj I p - 1 and gj - gj (modp); 
G(X) = El: gjXj; and R is the regulator of the cyclotomic field, which is 
a certain invariant linked to the units of the field. 

h* is called the j rs t  factor, while h+ is the second factor of the class 
number. Kummer proved that h*, hf are integers-rather an unpredictable 
fact, from the defining expressions. Actually, he recognized hi as being the 
class number of the real cyclotomic field Q([ + [-l). He gave also the fol- 
lowing interpretation of h+. Let U be the group of units of Q([), i.e., all 
@ E Z[[] such that there exists P E Z[[] such that aP = 1. Let U +  denote the 
Set of those units which are real positive numbers. For every k, 2 I k I 
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so hk is a real positive unit of Q([). Let V be the subgroup of Ui generated by 
all these (p - 3)/2 "circular" units. Kummer showed that h+ = (Ui : V), the 
index of V in U +  . 

Moreover, he proved that if p does not divide h*, then p does not divide 
h+. Therefore p is a regular prime if and only if p does not divide h*. Then, 
he proceeded to compute h* for all primes p 5 163 and he found the following 
irregular primes p = 37, 59, 67, 101, 103, 131, 149, 157. Based on his com- 
putations, he conjectured that the first factor h* = h*(p) of the class number 
is asymptotic to 

h*(p) - Y(P) = 2~ 

This conjecture, which agrees with recent numerical evidence, has yet to be 
proved. In 1951, Ankeny and Chowla proved that 

1% h*(p) = 1% y(p) +  log p) = $(p + 3) log p - i p  log 271 + o(1og p). 

Later, in 1964, Siege1 published his weaker result: 

It follows that log h*(p) - $p logp. 
In 1976, Masley and Montgomery showed that if p > 200, then 

and Pajunen has shown also in 1976 that if 5 < p 5 641, then 

Concerning the growth of the first factor, Ankeny and Chowla proved in 
1951 that there exists po such that h*(p) is monotonically increasing for 
p 2 p,. It is conjectured by Lepisto that one may take p, = 19. 

The second factor is much more difficult to handle, since it is tied to the 
structure of the group of units. It was Kummer who already found the first 
example, p = 163, for which h+(p) is even. However not many more examples 
were known before 1965, when Ankeny, Chowla, and Hasse, using a lemma of 
Davenport and class field theory, proved: if q is a prime, n > 1, and p = 
(2qn)2 + 1 is a prime, then hi(p) > 2. 

If p 1 h*(p) but p ,/' hi(p) the cyclotomic field is called properly irregular. 
It is improperly irregular if pl hi(p) and so pl h*(p). It is not known whether 
there are improperly irregular cyclotomic fields. At any rate, none has been 
found for p < 125000. Vandiver, Pollaczek, Denes, and Morishima have 
studied irregular fields. 

Vandiver's Result (8) finds its origin in Kummer's work of 1857, where 
Kummer considered in depth the first case for irregular primes. Vandiver 

analyzed the work of Kummer, corrected mistakes, filled gaps and was able 
to generalize it to include the second case also. A paper written by Vandiver 
in 1934 contains the claim that if p does not divide the second factor, then 
the first case of FLT holds for p. However, his proof is now considered as 
questionable. 

Result (9). The result of Eichler is beautiful and far reaching, and the 
method used relies on basic principles, rather than on the previous criteria. 
Actually, Eichler proved that if the first case fails for p then pr*G1-l divides h*. 
The other assertion may be proved in the same way. 

Without knowing this variant of Eichler's theorem, Skula proved that if 
the p-rank of the ideal class group of Q([) is 1, that is, if the p-class group is 
cyclic, then the first case holds for p. A simpler proof was given by Bruckner. 
But, this is contained already in Eichler's theorem. 

Result (10). To explain the scope of the latest of Briickner's theorems, let 
r be the ideal class group of Q([), h the class number. If p is irregular, then 
r # pT so y, = dim(T/pr) 2 1 (where T/pT is considered as a vector space 
over the field with p elements). In 1965, Eichler proved that if the first case 
fails, then y, > f i  - 2. However, the computation of y, is difficult. Bruckner 
succeeded in relating the above dimension y, to the irregularity index ii(p), 
and proved that if the first case fails for p, then more than & - 2 Bernoulli 
numbers B,, (with 2 5 2k 5 p - 3) are multiples of p. 

This fits into a series of classical results. Cauchy(1847) and Genocchi 
(1852) proved that if the first case fails for p, then B,-, is a multiple of p. 
In 1857, Kummer showed that both B,-, and B,_, must be multiples of p. 
Later, Mirimanoff showed that B p _ ,  and B,-, must also be multiples of p. 

In 1934 Krasner proved quite an interesting result: there exists a prime 
po (which could be effectively computed) such that if p 2 p, and if the first 
case of FLT fails for p, then the k Bernoulli numbers Bp- ,, Bp- , , . . . BP-(,,+ ,, 
are all multiples of p; in this statement k = [YE]. Thus, in the event of 
a solution in the first case of FLT a reasonably large number of successive 
Betnoulli numbers would be multiples of p. Even though this number is 
usually smaller than the one indicated by Bruckner's theorem, in this case 
the Bernoulli numbers are consecutive. This is a most unlikely conclusion, 
perhaps pointing to the fact that the first case of Fermat's theorem may very 
well be true. 
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LECTURE I11 

B.K. = Before Kummer 

In this lecture, I wish to report various early attempts to solve Fermat's 
problem. I begin by considering the case of exponent 2, which is much earlier 
than Fermat's time. As Zassenhaus kindly pointed out to me, 2 is the oddest 
of the primes. Among its special properties, this oddest of all the primes is 
even; it is also the only exponent for which it is known that the Fermat 
equation has a nontrivial solution. 

Then, I will give Fermat's famous proof by infinite descent for the case 
of fourth powers. After that, I will present Euler's and Gauss's proof for the 
case of cubes, as well as sketch proofs for other exponents. 

Other attempts were not restricted to specific exponents. Noteworthy- 
though not successful-were the contributions of Cauchy and Lame. Barlow 
and Abel found interesting relations which must be satisfied by any possible 
solution of Fermat's equation. Sophie Germain proved a clever and beautiful 
theorem for the first case. 

Since I have already given some of the early history of the problem in 
Lecture I, I will now limit myself to the technical details of the theorems. 

All these methods, devised before Kummer, have a certain naivete in 
common. Normally, they use only properties of the rational numbers. 
However elementary they may have been, they didn't lack ingenuity. On the 
contrary, they were often very tricky. 

Before entering into the details, I wish once more to recall: 
The jrst case of Fermat's theorem holds for the prime exponent p > 2 

when there do not exist integers x, y, z, such that p does not divide xyz and 
xP + yP + zP = 0. 

The second case holds for p > 2 when there do not exist relatively prime 
integers x, y, z, such that xP + yP + zP = 0 and p divides x, y, or z. 
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In order to prove Fermat's theorem for all exponents n 2 3, it is sufficient 
to prove it for the exponent 4 and for all prime exponents p 2 3. Because of 
this, I will mainly be interested in prime exponents. 

Another obvious though still general remark, which I will not repeat is 
the following. If there exists a solution for Fermat's equation, 

xn + yn + zn = 0, 

we may assume without loss of generality that gcd(x, y,z) = 1 and thus x, y, z 
must be pairwise relatively prime. 

1. The Pythagorean Equation 

If x, y, z are nonzero integers satisfying 

X2 + Y2 = z 2 ,  

then so are 1x1, yI, 121. These numbers are the lengths of the sides of a right- 
angled triangle. 

To determine all nontrivial integer solutions of (1.1) it suffices to determine 
the so-called primitive (Pythagorean) triples (x,y,z): 

x, y, z > 0, gcd(x,y,z) = 1, x even. 

All the other solutions are obtained by changing signs, permuting x, y, 
and by multiplication with some nonzero integer. 

The following theorem gives a complete description of all the primitive 
triples : 

(1A) If a, b are integers, a > b > 0, gcd(a,b) = 1, a, b not of the same 
parity, let 

x = 2ab, 

y = a2 - b2, (1.2) 

z = a2 + b2. 

Then (x, y,z) is a primitive triple. And conversely, every primitive triple may be 
so obtained. 

Distinct pairs (a$) give rise to distinct primitive triples and these may all 
be obtained from some pair (a,b). For example, the smallest primitive triples, 
ordered according to increasing values of z are as follows: 

(4,3,5), (12,5,13), (8,15,17), 
(24,7,25), (20,21,29), (12,35,37). 

Listing ofthe primitive triples amounts to determining the representations 
of odd positive integers as sums of two squares. Fermat proved, in this 

2. The Biquadratic Equation 

context, the well-known theorem: 

(1B) n > 0 is a sum of two squares of integers if and only if every prime 
factor p of n, such that p = 3 (mod4), appears to an even power in the fac- 
torization of n into prime factors. 

There remains then the question of finding the number of representations 
as sums of two squares. 

Let r(n) denote the number of pairs (a,b) of integers (not necessarily 
positive) such that n = a2 + b2. For example, r(1) = 4 and r(5) = 8. The 
determination of r(n) was done by Jacobi and by Gauss, independently: 

where 

dI(n) = # {d 1 1 i d, dl n, d = 1 (mod 4)), 

d3(n) = # {d 1 1 i d, dl n, d = 3 (mod 4)). 

With this information, it is possible to determine all the primitive Pythag- 
orean triples. Clear proofs of these beautiful theorems may be found in the 
book of Hardy and Wright. 

2. The Biquadratic Equation 

Here is Fermat's proof using the method of injinite descent. The idea is the 
following: assume that (xo,yo,z,) is one solution in nonzero integers, then 
there is another solution (x,,yI,zI) of the same kind, with 0 < lxIl < Ixol. 
Since this procedure may be repeated indefinitely, one would obtain an 
infinite decreasing sequence ofpositive integers lxol > lxIl > lxz/ > . . . > 0- 
which is absurd. So, there couldn't be any solution in nonzero integers. 

(2A) The equation 

X4 + Y4 = z2 
has no solution in nonzero integers. In particular, the same is true for the 
equation 

X4 + Y4 = z 4 .  (2.2) 

PROOF. Let (x,y,z) be a triple of positive integers satisfying (2.1). It is easy to 
see that we may assume, without loss of generality that gcd(x,y,z) = 1. We 
may also assume that x is even. Then (x2,y2,z) is a primitive Pythagorean 
triple: x4 + y4 = z2. 
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By (1A) there exist integers a, b such that a > b > 0, gcd(a,b) = 1, a, b 
have different parity, and 

As easily seen, b must be even. 
Since b2 + y2 = a2 and gcd(b,y,a) = 1, by (IA) there exist integers c, d 

such that c > d > 0, gcd(c,d) = 1, c, d of different parity, and 

Hence 
x2 = 2ab = 4cd(c2 + d2). 

Since c, d, c2 + d2 are pairwise relatively prime, from (2.5) using the 
uniqueness of factorization into primes, we conclude that c, d, c2 + d2 are 
squares of positive integers: 

2 c = e ,  

d =  f2 ,  (2.6) 

c2 + d2 = g2. 
Hence 

that is, the triple (e, f,g) is a solution of (2.1). 
But z = a2 + b2 = (c2 + d2)2 + 4c2d2 > g4 > g > 0. By infinite descent, 

this leads to a contradiction. 0 

Various equations of 4th degree, similar to (2.1) may be treated with this 
methods. I quote the following theorems: 

(2B) The following equations have no solution in nonzero integers: 

X4 - y 4  = +Z2,  (2.8) 

X4 + 4Y4 = Z2, (Euler) (2.9) 

X4 - 4Y4 = +z2. (2.10) 

Also Legendre proved: 

(2C) If x, y, z are nonzero integers: 

If X4 + y4 = 2z2, then x2 = y2 and z2 = x4. (2.1 1) 

If 2x4 + Zy4 = z2, then x2 = y2, and z2 = 4x4. (2.12) 

3. The Cubic Equatlon 

3. The Cubic Equation 

In my first lecture, I mentioned that the first published proof of Fermat's 
theorem for the case of cubes is due to Euler. It appears in Euler's Algebra 
published in St. Petersburg in 1770. This book was posthumously translated 
into German in 1802 and into English in 1822. An important step in Euler's 
proof, which used divisibility properties of integers of the form u2 + 3b2, was 
done without sufficient justification. Legendre, who reproduced Euler's 
proof in his book (1830) did not give any further explanations. Since he was 
himself also an expert on such matters, he had certainly understood Euler's 
reasoning. However, later mathematicians were less comfortable about the 
possible gap. In 1894, Schumacher pointed it out explicitly. The gap was 
again the object of comments by Landau (1901), a paper by Holden (1906) 
and a note by Welsch (1910). Quite recently in 1966, Bergmann published a 
thorough analysis of Euler's proof, with historical considerations, throwing 
more light on this controversy. Indeed, already in 1760, in his paper Supple- 
mentum quorundum . . . supponuntur, published in Noci commentarii aca- 
demiae scientiarum Petropolitunae (also in Opera Omnia, series prima, 11, 
pages 556-575), Euler rigorously proved that if s is odd and s3 = a2 + 3b2, 
with gcd(a,b) = 1, then s = u2 + 3c2, with u, c integers. 

Another proof of Fermat's theorem for cubes was given by Gauss, and 
published posthumously. Both proofs use the method of infinite descent. 
However, while Euler worked with integers of the form a2 + 3b2, Gauss used 
complex algebraic numbers of the form a + b J - 3  

(3A) The equation 
X 3  + Y 3  + z3 = 0 

has no solution in nonzero integers. 

PROOF. Suppose that x, y, z are pairwise relatively prime integers such that 
x3 + y3 + z3 = 0, with x, y odd, z even and /z( is the smallest possible. This 
may be assumed without loss of generality. Then 

where a, b are relatively prime nonzero integers of different parity. Therefore 

It follows easily that a2  + 3b2 is odd, 8 divides 2a, b is odd and 
gcd(2a, a2  + 3b2) = 1 or 3. 

Case I. gcd(2a, a2 + 3b2) = 1. 
From (3.3), 2a and a2 + 3b2 are cubes: 
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And finally 

(31) Let s be an odd integer, such that s3 = u2 + 3v2, with nonzero integers 
u, c. Then s = t2 + 3w2, with t, w integers and 

2 u = t(t - 9w2), (3.17) 
t. = 3w(t2 - w2). 

The above property was the one needed by Euler. 
Now I turn to Gauss's proof. As a matter of fact, as I hope to explain, 

it does more than prove Fermat's last theorem for exponent 3. 
Gauss worked with complex numbers of the form a + bi, where a, b are 

integers, and 5 = (- 1 + -)/2 is a primitive cubic root of 1. Let A be the 
set of all such numbers. Using modern language, A is a ring, namely the ring 
of algebraic integers of the imaginary quadratic field K = ~ ( 6 3 ) .  Every 
(nonzero) element in A whose inverse is again in A is called a unit of A. The 
units of A are known to be: 1, - 1, i ,  - i ,  c2, - 1'; they are all roots of unity. 

If a, fl  E A, a divides P when there exists y E A such that ay = //; this is 
written a 1 P. If a1 p and pl a then a and fl are associated; a - B. This happens 
only when a = py where y is a unit. 

a E A is a prime element if the only elements of A dividing a are either 
associated with a or units. There are "enough" prime elemeiits, so that every 
a E A may be written as a product of a unit and powers of prime elements. 
For the rings in question, such a factorization is essentially unique: if 
a = wn;l . . . n:" = wln';'l . . . n p '  with w, w' units, s > 0, sf > 0, ni  distinct 
prime elements, ei 2 1, n; distinct prime elements, e; 2 1, then s = st, and up 
to a permutation of indices n1 - n;, . . . , IT, - n:, el = e;, . . . , es = e:. 

Since there is unique factorization into primes, it is possible to define the 
greatest common divisor of elements of A-they are unique, up to multiplica- 
tion by units. Elements of A are relatively prime if their greatest common 
divisors are units. 

An element which plays an important role is 1 = 1 - ( = (3--)/2. 
I is a prime element and 3 - L2. 

If a, p, y E A, then a r p (mod y) means that y 1 a - p. This congruence 
relation satisfies properties analogous to ordinary congruence. 

I note that since 3 - i 2 ,  if a r p (modi,), then a3 = f13 (mod A3). 
There are exactly three congruence classes modulo 2, namely the classes 

of 0, 1 and - 1. 
The following congruence was needed in Gauss's proof: 

Lemma. If a E A and 1" If a, then a3 - + 1 (mod i.4). 

The proof is straightforward. And now, Gauss's theorem: 

(35) The equation 
x3 + y3 + z3 = 0 

x 3. The Cubic Equation 

PROOF. Suppose the theorem is false. Dividing by a greatest common divisor, 
there is no loss ofgenerality in assuming that there exists ci, P, y E A, relatively 
prime, such that ci3 + P3 + y3  = 0. It follows that ci, P, y are also pairwise 
relatively prime. Hence it may be assumed that A$ ci, A 1 P. 
Case I. A $  y. 

The congruence classes of a, 8, y are therefore those of 1 or - 1. So a r + 1 
(mod A), hence ci3 = + 1 (mod A3). Similarly, P3 E + 1 (mod 13), y3  = + 1 
(mod i3). SO 

The combinations of signs give + 1 or rt 3. Clearly 0 $ + 1 (mod A3); also, 
if 0 E + 3 (mod A3), then ,I3 I + 3 - f A2 hence A I $- 1 and l would be a unit, 
a contradiction. 

Case 2 . 1  ( y. 
Lety = i n S w i t h n 2  1 , ; 1 ) 6 , 6 ~  Ahence 

with a, p, 6 E A, n 2 1. 
So the following property (P,) is satisfied. 
(P,): There exist a, p, 6 E A such that A $  ci, A I f  P, i.) 6, ci, f i  are relatively 

prime and ci, /3,6 are a solution of an equation of the form 

where w is a unit (in (3.19), w = 1). 
The idea of the proof is the following: to show that if (P,) is satisfied, then 

n 2 2 and (P,- ,) is also satisfied. Repeating this procedure, eventually (PI) 
would be satisfied, which is a contradiction. This is nothing but a form of 
infinite descent (on the exponent n). 

So there remain two steps in the proof. 

Step 1. If (P,) is satisfied, then n 2 2. 
Since Axil, A$/? by the lemma a' - + 1 (modi4), P3 - k 1 (mod14) 

and + 1 + 1 = - wA3"6' (mod i4) with A )  6. The left-hand side must be 0, 
since A 1 +2, hence 3n 2 4 and n 2 2. 

Step 2. If (P,) is satisfied, then (Pn- ,) is also satisfied. 
By hypothesis : 

-wA3nd3 = ci3 + P3 = (ci + P)(a + @)(a + 12P). (3.21) 
The prime element 1 must divide one of the factors in the right-hand side. 

Now a + P E a + cS = ci + 12P ( m o d 4  because 1 = [ = (' (modl), so A 
divides each factor. Hence 

has no solutions in algebraic integers a, p, y E A all different from 0. 
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and 

From n 2 2 (by the first step) A divides one of the factors in the right-hand 
side. It is easily seen that a + P, a + CP, a + i 2P  are pairwise incongruent 
modulo A2. Hence A divides only one of the factors of right-hand side of (3.22). 
For example i divides (a + P)/A (the other cases are analogous, replacing P 
by ifl or i2P, which is permissible). 

So L3("-') divides (a + P)/A. Hence 

with ti1, ti2, ti3 E A and A does not divide ti,, ti2, ti3. 
Multiplying: 

-oh3 = ti1ti2rc3. (3.24) 

It is easy to see that til,ti2, ti3 are pairwise relatively prime. Since the ring A 
has unique factorization, ti,, ti,, ti3 are associated with cubes 

where qi are units, cpi E A (i = 1,2,3), cp,, cp,, cp3 are pairwise relatively prime, 
and A does not divide cp,, cp2, cp3. Then 

+ p = ~ ~ ~ - ~ ~ ~ c p : ,  

a + ib' = A' I2d  (3.26) 

a + i2p  = Aq3cp:. 

From 1 + [ + C 2  = 0 it follows that 

where z, z' are units, cp,, cp,, cp3 E A are not multiples of A, and cp2, cp3 are 
relatively prime. 

If z = 1, then cp2, cp3, cpl is a solution of 
x3 + y3 + z r ~ 3 ( n -  1 ) ~ 3  = 0 (3.28) 

If z = - 1, then cp,, - cp3, cpl is such a solution. 
It remains to show that z # + i ,  5 1'. Indeed, since n 2 2, 

cp: + zcp: E 0 (mod A2). (3.29) 

But by the lemma 

hence + 1 + z = 0 (mod A'). 
However + 1 f i = 0 (mod A2) and + 1 + i2 - 0 (mod iL2). So z # Ifr i, 

& l2 and this establishes the propery (Pn_ ,), concluding the proof. 0 

Various other cubic or sextic equations were treated by similar methods: 

(3K) The following equations have no solutions in nonzero integers: 

X3 + 4Y3 = 1, (3.30) 

x6 - 27y6 = 2z3, (3.31) 

16X6 - 27Y6 = Z3, (3.32) 

X3 + y 3  = 3z3. (3.33) 

4. The Quintic Equation 

In 1825, Dirichlet read at the Academy of Sciences of Paris a paper where 
he claimed to have proved Fermat's theorem for the exponent 5. However, 
he neglected to consider one of the possible cases. In the meantime, Legendre 
independently found a complete proof, while Dirichlet was settling the 
remaining case to finish his proof. 

Essentially, Dirichlet's proof uses facts about the arithmetic of the field 
K = Q($). It would take too long to describe the proof in detail. It suffices 
to say that it proceeds by considering two cases separately. The first case is 
quite easy. The second case was treated by infinite descent. 

The following lemma is the basic technical tool in the proof: 

Lemma. Let a, b be relatively prime nonzero integers of different parity, 
5 $a ,  5 1 b. If 

(with e 2 0, f ,  g integers of the same parity) then there exist relatiuely prime 
integers c, d ,  of diJierent parity, 5 $ c, such that 

A similar lemma is necessary if (a2 - 5b2)/4 is of the form (4.1). These 
lemmas reflect the unique factorization (up to units) ofelements into products 
of prime elements, which is valid in K = ~(8) .  
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5. Fermat's Equation of Degree Seven 

In 1839, Lame proved Fermat's theorem for the exponent 7. He had been 
preceeded by Dirichlet, who proved the theorem for the exponent 14 in 
1832. It should be emphasized that the proof for 14 was substantially easier 
than for 7. Obviously, Dirichlet would have been happier to discover a proof 
for the exponent 7. 

In 1840, Lebesgue found a much simpler proof than LamFs. It used the 
following polynomial identity. 

which was used already by Lame. 
Cauchy and Liouville, while reporting on LamFs paper of 1839, indicated 

other general polynomial identities. If p is a prime, p > 3, then 

(X + l)P - XP - 1 = pX(X + 1)(X2 + X + l)EGp(X), (5.2) 

where 
1 when p r - 1 (mod 6), 
2 when p = 1 (mod 6), 

and Gp(X) is a polynomial with integral coefficients, not a multiple of 
XZ + X + 1. 

The identity used by Lame in 1840 was: If m is odd, then 

With such complicated tools, Lame published a "proof" of Fermat's 
theorem for arbitary exponent. As I explained in my first lecture, this was a 
fiasco, because Lame made unjustified use of what amounts to unique 
factorization in the ring of cyclotomic integers (generated by the nth roots of 
1)-and this is not ge~erally valid. 

For the exponent 7 the main steps in Lebesgue's proof are the following: 

(a) If x. v, z are pairwise relatively prime nonzero integers such that 

where 
s = x + y + z ,  
u = x2 + y2 + z2 + xy + xz + yz, 

v = (x + Y)(Y + z)(z + x), 
(5.5) 

(b) Then v # 0, s # 0, v and s are even, u is odd, t = 1 (mod 4), gcd(t,xyz) = 

1 gcd(t,v) = 1. 
(c) t is the 14th power of an integer and 7 J' t. Let t = q14, q I u so u = qr. 
(d) v = 7'jp7 with p even, hence 

(x2 + y2 + z2 + xy + yz + zx)2 + xyzs = q14, (5.7) 

x2 + y2 + z2 + xy + XZ + yz = qr. (5.9) 
(e) Putting r - 372p2q3 = a, q3 = b, p2 = 2 ""c and manipulating with 

the above relations yields 

where a, b, c are odd and relatively prime. 
(f) The proof is concluded by showing that (5.10) is impossible. This is 

done by induction on m. As a matter of fact, this step is actually longer than 
the rest of the proof. 

Summarizing, I have tried to describe, at least in part, the proof of Lebesgue 
(already simpler than Lame's) so as to convey the idea of how involved the 
proofs were becoming, as the exponent increased. 

Such elementary methods are not of the same level of difficulty as the 
problem. But, by this time, there were already many other attempts, which 
which 1'11 describe in the following lectures. 
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LECTURE IV 

The Nai've Approach 

In this lecture, I will relate what has been done with Fermat's problem 
without using any sophisticated methods. Let me say, that these attempts 
should not be looked down on. On the contrary, they show much ingenuity, 
and they have helped to understand the intrinsic difficulties of the problem. 
I'll point out, in various cases, how these attempts have brought to light 
quite a number of other interesting, perhaps more difficult problems than 
Fermat's. 

If I have decided to group these various results under the heading of 
"the naive approach," it is only because Fermat's problem has proved itself 
to be at another level. In fact, it is possible that all other approaches tried 
as yet may someday be considered naive. Who knows? 

I will group the various results according to the main ideas involved, 
rather than chronologically. 

1. The Relations of Barlow and Abel 

A natural thought in trying to prove Fermat's theorem is to assume that 
there exist integers x, y, z, different from 0 (not multiples of p in the first case) 
and satisfying the Fermat equation 

where p is an odd prime, and then, though whatever manipulations our fancy 
dictates, to derive relations involving these numbers x, y, z, and p. In this 
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way, the idea is to aim to reach a contradiction, thereby proving that (1.1) 
was impossible. 

Since 

- $ J = x P +  ~ P = ( x +  y ) ( X ~ - l  - x P - ~  + X ~ - 3 y 2  - . . . - x y ~ - 2  $. yp-'), 

(1.2) 

(xp + yP)/(x + y) is an integer and it is certainly of importance to study this 
expression and its divisibility properties. 

From the very beginning, attention was given to the study of 

for n 2 1, a, b nonzero integers. 
If a + b # 0, then Qn(a,b) = (an - (-  b)")/(a + b) and if moreover n is odd 

then 

Results of this kind are scattered through the literature. I prefer to list 
them together here, even though some of the properties won't be required 
until much later. The proofs are exercises. To avoid repetition, in what 
follows, a, b will be nonzero relatively prime integers, n, m 2 1 and p is a 
prime. 

Lemma 1.1 (Birkhoff and Vandiver 1904; also Inkeri, 1946). If an f bn 
but p $ am + bm (for every proper divisor m of n), then p E 1 (mod n). 

Lemma 1.2 (Moller, 1955; see also Inkeri, 1946 and Vivanti, 1947, for 
parts (41, (51, (6)). 

1. If gcd(n,m) = d, then gcd(Q,(a,b), Q,(a,b)) = Q,(a,b). 
2. nPln Qp(a,b) divides Qn(a,b). 
3. If n is odd, n 2 3 and a > b, then Qn(a,b) 2 n. 

The equality holds only when: a = 1, b = - 1; or n = 3, a = 2, b = 1; or 
n = 3 , a =  - l i b =  -2. 

4. gcd(Qn(a,b), a + b) = gcd(n, a + b). 
5. If p # 2 and pe 1 1  a + b (with e 2 I), then pe+' 1 1  aP + bP. 
6. If p # 2 and p ( a  + b, then p2 Y Qp(a,b). 
7. If p # 2, pella + b, e 2 1 and n = prm, p t m ,  r 2 0, then pe+'IIan - (-by. 
8. If every prime factor of n divides a + b, then n(a + b) divides an - (- b)". 

In one form or another, these lemmas are the background of several 
results to be mentioned. 

1. The Relat~ons of Barlow and Abel 

Barlow (famous for the Barlow tables), discovered in 1810 the following 
relations; these were found later in 1823 by Abel, who mentioned them in a 
letter to Holmboe. 

(1A) If x, y, z are pairwise relatively prime (nonzero) integers, satisfying 
xP + yP + zP = 0 and ifp # 2 does not divide z, then there exist integers t, t, 
such that 

Moreover, p,j' tt,, gcd(t,t,) = 1, t, is odd and t, > 1. 

PROOF. Since x + y + z r xP + yP + zP = 0 (mod p), it follows that -z = 
x + y (mod p), so p y x  + y. 

Clearly 
( - 2)" = xP + yP = Qp(x,y) . (X + y). (1.6) 

By Lemma 1.2, part (4), the two factors Qp(x,y), x + y are relatively prime. 
By unique factorization, they are pth powers. 

The rest of the proof is even easier. 0 
So, if pairwise relatively prime integers x, y, z are not multiples of p and 

satisfy (1.1), then the Barlow-Abel relations 

are satisfied. 
In the above expressions the integers r, s, t, r,, s,, t, are not multiples of 

p, r , ,  s,, t, are odd, gcd(t,t,) = gcd(r,r,) = gcd(s,s,) = 1, and gcd(r,s,t) = 

gcd(r,,s,,t,) = 1. 
(1.7) may be rewritten as 

Abel had also indicated relations like the above, when pl z. In analogy 
with (lA), Abel stated (1823): 
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(1B) If x, y, z are pairwise relatively prime nonzero integers satisfying (1.1), 
if p # 2 divides z, then there exist integers n 2 2, t, r, s, t,, r,, s, such that 

As before, r, s, t, r,, s,, t, satisfy the same properties already indicated. 

PROOF. In view of (1A) the relations of the last two lines of (1.9) must hold. 
By hypothesis x + y - - z - 0 (modp). Writing u = x + y = pm-'t' with 

m 2 2, p ,/' t' and writing 

then by Lemma 1.2, gcd(x + y, Qp(x,y)) = p. So Qp(x,y) = pt;, pyt;.  From 

it follows that m is a multiple of p, m = pn, leading to the required relations. 
The other assertions are immediate, except that n 2 2 still needs to be 

proved. 
From 

y + z = r P ,  z + x = s P  

it follows that 

So r - - s (mod p), hence rP -- - sP (mod p2). 
BY (1.9) 

22 = rP + sP - ppn-ltp = 0 (mod p2) 

showing that n 2 2. 

2. Sophie Germain 

Sophie Germain was a French mathematician, a contemporary of Cauchy 
and Legendre, with whom she corresponded. Her theorem, brought by 
Legendre to the attention of the illustrious members of the Institut de 

France, was greeted with great admiration. I want to indicate how beautiful 
and neat is her result. Its core is the following proposition: 

(2A) Let p, q be distinct odd primes, satisfying thefollowing conditions: 

1. p is not congruent to the pth power of an integer modulo q. 
2. If x, y, z are integers and if 

then q divides x, y or z. 

Then theJirst case ofFermat's theorem is true for the exponent p. 

PROOF. Assume the contrary: x, y, z are pairwise relatively prime integers 
such that xP + yP + zP = 0. A fortiori, from hypothesis (21, q divides one 
(and only one) of the integers x, y, z. Say, q (x, q ,/' yz. By Relations (1.8) 

By hypothesis (2) q divides r, s, or t. As easily seen, q( r ,  q,/'st. So the 
following congruences hold (by (1.7)): 

y = -z(modq); 

tf = yP-I (mod q) because (x + y)tf = XP + yp; 

yP + zP - r = ptf (mod q), because r'; = - - yP-l + YP-2(- Z) + Y ~ - 3 ( -  z ) ~  + . . . 
Y+Z 

= - p y ~ - l  = - pt'; (mod q). 

Noting that q If t,, and letting t' be such that t't, = 1 (mod q), then (t'r,)P r 
p (mod q). This contradicts hypothesis (1). 0 

Sophie Germain's celebrated theorem of 1823 is the following: 

(2B) If p is an odd prime such that 2p + 1 is also a prime, then theJirst case 
of Fermat's theorem holds for p. 

PROOF. It suffices to check that the primes p and q = 2p + 1 satisfy the 
hypotheses of (2A), which is quite easy. 

If p = aP (mod q), computing the Legendre symbol yields 

so p = 1 (mod q), and this is impossible. 
Next, suppose xP + yP + zP = 0 (mod q) and q ,/' xyz. Since p = (q - 1)/2, 

the little Fermat theorem implies that 

xP f 1 (mod q), 
yP = f 1 (mod q), 

ZP f 1 (mod q). 
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SO 0 = xP + yP + zP =- _+ 1 _+ 1 + 1 (mod q), which is again impossible. 
And that is the proof! 0 

Various comments are in order. 
Such a nice result inspired at once several generalizations. Indeed, using 

the same idea, though with a somewhat more detailed analysis, Legendre 
could prove the following result: 

(2C) T h e j r s t  case of Fermat's theorem holds for the odd prime exponent p, 
provided one of the following numbers is also a prime: 4p + 1,8p + 1, lop + 1, 
14p + 1,16p + 1. 

With this theorem, Sophie Germain and Legendre covered all the primes 
p < 100 and thereby established the first case for these primes. Though it 
was only the first case, still it represented a considerable advance over 
previous attempts, even more so because it was proved as early as 1823. 

The method however has its limitations. It is difficult to extend it for 
primes p such that 2kp + 1 is prime, when k is large. This may be seen, 
examining the proofs given by Legendre. Secondly, the method does not 
work for the second case of Fermat's theorem. 

More interesting is the problem it leads to. Given k 2 1, what can be 
said about the set of primes p such that 2hp + 1 is also prime, for some h, 
l l h l k ?  

More specifically, are there infinitely many Sophie Germain primes p 
(those such that 2p + 1 is also a prime)? This question is of the same order 
of difficulty as the well-known "twin prime" problem. 

I wish to state that the answer is positive, provided one assumes the 
following hypothesis H of Schinzel (1958): 

"Let s 2 1, let f l (x) ,  . . . , f , (X)  be irreducible polynomials with integral 
coefficients; assume that the leading coefficient of f l ( X )  is positive and that 
no integer n > 1 divides all the numbers f l ( m ) f 2 ( m )  . . f,(m). Then there 
exists one (and it may be proved, necessarily infinitely many) natural num- 
ber (~)  m such that f,(m), f,(m), . . . , f , (m)  are all primes." 

For example, taking f l ( x )  = X, f,(X) = 2X + 1 this hypothesis would 
imply that there exist infinitely many Sophie Germain primes. Taking 
f i ( X )  = X ,  f,(X) = X + 2, it yields infinitely many twin primes. As a matter 
of fact, when the polynomials are linear, the hypothesis was made by Dickson 
(1904). 

For the case where m = 1, f , (X)  = a x  + b, with relatively prime integers 
a, b, the answer is positive and given by the famous Dirichlet theorem on 
primes in arithmetic progression. This is in fact, the only case for which the 
answer is known. 

It appears to be extremely difficult to prove hypothesis H, but just as 
difficult to disprove it-a matter for deep thought. 

Bateman and Horn, in 1962, looked at Schinzel's hypothesis from the 
quantitative point of view. With a heuristic argument, they made plausible 

where Q ( N )  is the number of primes p I N such that 2p + 1 is also prime. 
Another result in this connection was given by Vaughan in 1973. Namely, 

the two statements ( H I )  and (H,) below cannot be simultaneously true: 
( H I )  there exist an infinity of primes p such that 8p + 1 is a prime. 
(H,) for infinitely many n, d(n) = d(n + 1) [where d(n) denotes the number 

of positive divisions of n].  
There have been more recent developments by Krasner (1940) and 

Denes (1951). Krasner's approach, as well as DCnes's, are not completely 
naive. Indeed, Krasner appeals to a theorem of Furtwangler (which requires 
class field theory), while Denes uses some results about cyclotomic fields and 
estimates for the size of the least exponent p for which the first case might 
be false. Here is Krasner's theorem: 

(2D) Assume that p is an odd prime, and h is an integer such that: 

1. q = 2hp + 1 is a prime, 
2. 3$h ,  
3. 3hJ2 < 2hp + 1 ,  
4. 22h $ 1 (mod q). 

Then thefirst case of Fermat's theorem holds for p. 

In 1951 Denes proved: 

(2E) I f  p is an odd prime, i f  h is an integer, not a multiple of 3, h I 55 and 
such that q = 2hp + 1 is a prime, then thefirst case of Fermat's theorem holds 
for P .  

3. Congruences 

The idea now will be to derive congruences which must be verified by nonzero 
pairwise relatively prime integers x, y, z satisfying 

The first result is due to Fleck (1909). It was repeatedly rediscovered by 
Frobenius (1914), Vandiver (1914), and Pomey (1923). [To his credit, I must 
add that Vandiver also proved a corresponding result valid for the second 
case; however, since it uses the methods of class field theory, I will postpone 
giving it until later.] 

(3A) With the abol:e assumptions on x, y, and z, i f p  does not diuide x, then 
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This is a rather stringent congruence, since by Fermat's little theorem, 
it is only expected that xP-I G 1 (modp). The following lemma, due to 
Sophie Germain is required for the proof (for notation, see $1). 

Lemma 3.1. If p does not divide x, y, z, then r, - 1 (mod p2), s, r 1 (mod p2), 
t1 1 (modp2). 

PROOF (following Pkrez-Cacho, 1958). I prove that r ,  = 1 (mod p2). It suffices 
to show that if q is any prime dividing r,, then q = 1 (modp2). 

From q 1 r1 it follows that q 1 x, q $ yz. Since gcd (r,r,) = 1, we have 
q y y + z. qlx implies that sf = zP-' (mod q) and tf = yP-' (mod q) so 
0 = yP + zP = ytf + zsf (mod q), that is, - ytf = zsf (mod q). But girl so 
ql yP + zP, and q j' y + z. By Lemma 1.1, q = 1 (mod p). Hence, raising to the 
power (q - z(4- 'VP = - y(4- ')/P (mod 9). 

But if y' is such that y'y - - 1 (modq), then from zP = - yP (mod 1) it 
follows that (zyl)P = 1 (mod q). So, from z + - y (mod q), the order of zy' 
modulo q is equal to p. 

But ( ~ y ' ) ( ~ - l ) ~ ~  = 1 (modp) so p divides (q - l)/p, that is, q = 1 (modp2), 
as it was required to show. 0 

Using this lemma, Theorem (3A) is proved as follows: 

Case I. p y xyz. 
Then r, - 1 (mod p2). Hence x = - rr, r - r (modp2) and xP E - rp 

(mod p3). 
By symmetry 

yP - sP (mod p3) and zP G - tP (mod p3). 

Hence 
rP + sP + tP = 0 (modp3). 

From (1.8), x r - rP (mod p3) so 

x r xP (mod p3) and xP- ' = 1 (mod p3). 

Case 2. p 1 z, p ,/' xy. 
I omit the proof, since it is similar. It requires a lemma like 3.1, which 

asserts that if p ( z then t, = 1 (mod p2). 0 

The quantities r, s, t satisfy various divisibility properties. Vandiver (1925) 
and Inkeri (1946) are responsible for the following result: 

(3B) 

1. If p yxyz, then x + y + z is a multiple of rstp3 and r + s + t is a multiple 
of p2. 

2. If plxyz, then x + y + z is a multiple of rstp2 but r + s + t is not a multiple 
of P. 

3. Congruences 

In particular, in the second case, r + s + t # 0. 
But this is true in general, as shown by Spunar (1929) and again by James 

(1934), Segal(1938): 

The next group of results involves congruences of the following type: 

(1 + x ) ~ "  = 1 + xpm (mod pm+ l). (3.3) 
It is convenient before proceeding, to state the following lemma of 

Ferentinou-Nicolacopoulou (1965): 

Lemma 3.2. If p is an odd prime and p does not divide a, nor a + 1, if m 2 2, 
then (a + aPm + 1 (mod pm+ ') if and only if (a + ' = up"- ' + 1 
(mod pm + I). 

The special case where m = 2 had been noted by G. D. Birkhoff (see 
Carmichael, 191 3). 

The next lemma was proved by Carmichael for m = 1 in 1913; Klosgen 
proved it in general (1970). 

Lemma 3.3. Let p be an odd prime, m 2 1. Then the following conditions 
are equivalent: 

a. There exist x, y, z, not multiples of p, such that 

b. There exists a, 1 I a I (p - 3)/2 such that 

I omit the proofs of these lemmas, since they don't offer much difficulty. 
In particular, if the first case fails for the exponent p, there exist x, y, z, not 

multiples of p, satisfying (3.1). Then 

hence 

But Carmichael and Meissner proved in 1913 and 1914 the more precise 
congruences : 

(3D) Let (3.1) be satisjied. Then 

1. If p y xyz, then there exists a, 1 I a I (p - 3)/2, such that 

1 + aP = (1 + (modp3). (3.7) 
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2. If p 1 xyz, then there exists a, 1 I a I (p - 3)/2 such that 

PROOF. I give only a proof of the first assertion. The other is handled in a 
similar way. By (3A) xP = x (modp3), so xp2 = xP = x (modp3). Similarly 
Yp2 = y (modp3), zpZ 3 z (modp3). Hence by (3B): 

xp2 + yp2 + zp2 = x + y + z - 0 (mod p3). 

By the preceding lemmas, there exists a, 1 <_ a I (p - 3)/2 such that 
(1 + a)p2 - 1 + ap2 (modp3) hence (1 + - 1 + aP (mod p3). 0 

The congruence (3.7) may be investigated by computers. Wagstaff verified 
(in 1975) that for every prime p < lo5, p r - 1 (mod 6), the congruence 
(1 + X)P -- 1 + XP (mod p3) has no solution a, such that 1 <_ a I (p - 3)/2. 
This shows that the first case holds for such exponents p (I stated in Lecture 
I1 that the first case is known to hold for p < 3 x lo9). 

In 1950, Trypanis announced without proof the following strengthening 
of Carmichael's result; this was rediscovered (and proved) by Ferentinou- 
Nicolacopoulou in 1965 : 

(3E) If p > 5 and the first case fails for p, there exists a, 1 I a I (p - 5)/2 
such that 

(1 + a)p2 = 1 + ap2 (modp4). (3.9) 

It is easily seen that (3.9) implies (3.7). A recent result of Gandhi (1976) 
follows at once from the above. 

Wells Johnson (1977) investigated whether the congruences of Carmichael 
and Trypanis may be further extended, modulo every power pnf (n 2 1). 
This is a situation best handled with p-adic methods. 

Let a j  denote the unique p-adic integer such that cry-' = 1 and a j  = j 
(mod p) (where j = 1,2, . . . ,p - 1). The existence and uniqueness of a j  follows 
from Hensel's lemma. 

(3F) If p is a prime and p $ a, pX a + 1 then the following conditions are 
equivalent: 

a. (1 + a)Pn = 1 + aPn (mod pnt2) for every n 2 1. 
b. 1 + a, = a, +,. 
c. a2 + a + 1 = 0 (modp). 

It is worth noting that already in 1839 Cauchy had shown that (c) 
implies that (1 + a)" r 1 + aP (modp3). In essence this is his proof: Since 
a2 + a + 1 = 0 (mod p), - 3 is a square modulo p, so p = 1 (mod 6). 

But Cauchy had established the identity, when p = 1 (mod 6): 

(1 + X)P - 1 - XP = pX(1 + X)(1 + X + X 2 ) 2 f ( ~ ) ,  (3.10) 

where f(X) is a polynomial with integral coefficients. For X = a this gives 
the required congruence. 

It would be interesting to know whether the following statement is true: 

(S) If a is an integer, 1 I a I p - 2, and if (1 + r 1 + aP (modp3), 
then a2  + a + 1 = 0 (modp). 

Assume that (S) is true. Then the first case of Fermat's theorem would 
hold for every prime exponent p r 5 (mod 6). 

Otherwise, by (3D), there exists an a such that 1 + aP r (1 + a)P (mod p3), 
hence by (S) a2 + a + 1 _= 0 (modp) and therefore p = 1 (mod 6), a con- 
tradiction. 

A strengthening of (S) is false, as shown by Arwin in 1920; there exist 
integers a and a prime p such that (1 + = 1 + aP (modp2) and yet 
a2 + a $  1 f O(modp). 

4. Wendt's Theorem 

In 1894, Wendt gave a criterion for the first case, involving a certain matrix 
with binomial coefficients. But, because of the size of the matrix, his criterion 
is quite awkward. Even worse, it was later recognized, that it is essentially 
equivalent to Sophie Germain's theorem. Yet, I'll present it now, because 
of other interesting connections. 

For n 2 2 let Wn be the determinant of the n x n matrix: 

W, = det 

This is a circulant. For example, W2 = - 3, W, = 22 x 7, W4 = - 3 x 53, 
W8 = - 3' x 53 x 173. Stern explicitly computed this determinant in 1871. 
The general result is the following: 

If f(X) = a. + a,X + . . . + an-,Xn-' the circulant with first row 
(ao,a,, . . . ,an- ,) is equal to nl1d f(ii), where 5, = I, [,, . . . , in-, are the 
nth roots of 1. 

Since (1 + X)" - Xn = 1 + (l)X + (;)X2 + . . . + (,,nl)Xn-', 
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The first result leading towards Wendt's theorem is the following: 

(4A) Let p # 2, let q = 2hp + 1 (h 2 1) be primes. Then there exist integers 
x, y, z such that q ,/' xyz and 

x P + y P + z P = O ( m o d q )  (4.3) 

if and only if q 1 W2,. 

And now, Wendt's theorem: 

(4B) Let p # 2, let q = 2hp + 1 (h 2 1) be primes. If q y  W2, and p2h $ 1 
(modq), then the jirst case of Fermat's theorem holds for the exponent p. 

1 wish to say only a few words about the proof. The fact that q,/' W2, 
implies the congruence has only the trivial solution, may be established with 
routine arguments using linear algebra over the field with q elements. 

Moreover, if p = rP (mod q) then P2h = r2Ph = r'-l 3 1 (mod q), contrary 
to the hypothesis. Thus, the hypotheses of Sophie Germain's theorem (2A) 
are satisfied and so the first case holds for p. 

Another corollary of Sophie Germain's theorem was given by Vandiver 
(1926): 

(4C) If p is an odd prime, if q = 2hp + 1 is a prime, if q ,/' W2, and 2h = 

2upk, where p,/' v, k 2 0, then the jirst case of Fermat's theorem holds for p. 

For example, this provides a new proof of Legendre's results for primes 
p such that 4p + 1, or 8p + 1, or 16p + 1 is also a prime. 

It is not known whether for every prime p there exists h > 1 such that 
q = 2hp + 1 is a prime and q,/' W2,. This is a difficult problem. 

To be more specific, in 1909 Dickson proved that for every prime p there 
exists an integer go such that if q is any prime, q 2 go, then there exist integers 
x, y, z, not multiplies of q, such that xP + yP + zP = 0 (modq). By (4A), this 
means that ql W2, for every prime q, q 2 go, q = 2hp + 1. So, there are at 
most finitely many primes q of the form q = 2hp + 1 for which q ,/' W,,. What 
is not known is whether one such prime q actually exists. 

1 shall return to Dickson's theorem in one of the later lectures. 
To conclude the discussion of Wendt's determinant, I present several of 

its divisibility properties. 

1. If n is even, then Wn = -(2" - 1)u2, where u is an integer 
2. If d 1 n, then W, I Wn. 
3. W, = 0 if and only if61n. 

5. Abel's Conjecture 

Less routine and more interesting are the next results. 
.p. Emma Lehmer proved in 1935 : 

(4E) If p is an odd prime then Wp-I is a multiple of pp-2 qp(2), where 

The number qp(2) is an integer (by Fermat's little theorem) called the 
Fermat quotient (with base 2). I'll return often to the Fermat quotient, in 
connection with various important theorems. 

In particular, Wieferich's theorem of 1909 (to which I referred in Lecture 
11) states that if the first case fails for p, then qp(2) 0 (mod p). As a corollary: 

(4F) If pP-I ,/' Wp- ,, then the jirst case of Fermat's theorem is true for the 
exponent p. 

It is important, therefore, to determine the residue of Wp-, modulo pp-l. 
Carlitz proved in 1959: 

From this congruence, he was able to improve E. Lehmer's result (4960): 

(4H) If pP+33 ,/' Wp- ,, then the first case of Fermat's theorem is true for 
the exponent p. 

5. Abel's Conjecture 

In 1823, Abel conjectured that if n > 2 and if x, y, z are nonzero pairwise 
relatively prime integers such that 

then none of x, y, z can be prime-powers. 
I have explained in my second lecture what may have been the reason 

for Abel's conjecture. Perhaps he had in mind a descent on the number of 
prime factors of a would-be solution, but he left no written explanation. 
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This conjecture is still unsettled. To be more precise, only a very particular 
assertion still needs to be established. To fix notation, let 0 < x < y < z. 

In 1884, Jonquikres proved that y is not a prime, and if x is prime, then 
z - y = l .  

Let me just pause to say that up to now the possibility that there exist 
numbers x,  y, n for which 0 < x < y and xn + yn = ( y  + 1)" cannot yet be 
ruled out. 

Jonquieres' result was rediscovered by Gambioli in 1901. 
Lucas proved more in 1891 : y, z have at least two prime factors. He also 

had an alleged proof that x is not a prime power, however in 1895, Markoff 
pointed out a gap. Again, in 1905, Sauer rediscovered the result of Lucas. 

Mileikowsky gave a new proof of Lucas's theorem in 1932. He has also 
shown that if n is not a prime, then x cannot be a prime-power. 

All these partial results are contained in the following recent result of 
Moller (1955). 

(5A) Let m 2 1 be an odd integer with r distinct prime factors, let u 2 0. 
Let 0 < x < y be relatively prime integers and a = y2um + x2"", b = 

yzUm - x ~ " ~ .  Then: 

1. a and b have at least r distinct prime factors. 
2. If a has exactly r distinct prime factors, then r = 1 and a = 23 + l 3  (so 

u = 0, m = 3). 
3. If b has exactly r distinct prime factors, then b = ( x  + 1)" - xm (so u = 0, 

y = x + 1). 

PROOF. I sketch the proof of the first assertion. This is a place where I need 
Lemma 1.2. Replacing x, y by x2", y2u, y2", it may be assumed that u = 0. Let 
p,, . . . , p, be the distinct prime factors of m. Since y f x # 0, by Lemma 1.2 

is a multiple of ( y  + x )  n;=, Qpi(y ,  & x). The integers Qpi(y ,  + x )  are also 
pairwise relatively prime, so a, b have at least r distinct prime factors. 

The other two assertions again need Lemma 1.2 for their proof. 

As a corollary 

(5B) If n is an integer with r distinct odd prime factors, if 0 < x < y < z 
are pairwise relatively prime integers such that (5.1) holds, then: 

1. z, y have at least r + 1 distinct prime factors. 
2. x has at least r distinct prime factors; moreover, i f  x has exactly r distinct 

prime factors, then n is odd and z = y + 1. 

PROOF. Let n = 2"m with u 2 0. By (5A) z" = xn + yn and y" = zn - xn have 
at least r + 1 distinct prime factors (note that n # 3 and z - x > 1). 

6 .  Fermat's Equation with Even Exponent 

Similarly, from xn = zn - yn, x has at least r + 1 distinct prime factors, 
except when z = y + 1 and n is odd, in which case, it can only be said that x 
has at least r distinct prime factors. 0 

And now, more explicitly. 

(5C) Let n > 2, let 0 < x < y < z be relatively prime integers satisfying 
(5.1). Then 

1. z, y are ,not prime powers. 
2. If x is a prime power, then z = y + 1 and n is an odd prime. 

(1)  If z is a prime power, so is zn = xn + yn. B y  the preceding result, n is a 
power of 2, n 2 4, and this contradicts Fermat's theorem, which is true for 
such exponents. The same argument is enough to show that y is not a prime 
power. 

(2)  If x is a prime power, by (5B), n = pe, e 2 1,  p an odd prime and 
z = y + 1. It remains to show that e = 1. 

Assume e > 1 so zPe- ' - ype- ' > 1 and 

Hence p does not divide 

because p divides all but the last summand. So xPe is the power of a prime 
q # p. Hence q divides both factors of (5.2), that is, 

Thus q divides y and therefore by (5.3), q divides z = y + 1 ,  a contradiction. 

0 

With more refined, but still elementary methods, Inkeri proved in 1946 
that if 0 < x < y < z, xP + yP = zP, and p y x y z ,  then z - y > 1 and so x is 
not a prime-power. I'll return to this question in my lecture on estimates. 

6. Fermat's Equation with Even Exponent 

As I shall indicate, it is possible to prove the first case of Fermat's theorem 
, for even exponents. Clearly, it suffices to consider the exponents 2p ,  where p 

is an odd prime. a" 



66 IV The Naive Approach 

The first result in this connection was obtained by Kummer, in 1837. It 
is his first paper on Fermat's equation and it is written in Latin. Later, this 
result was rediscovered many times (Niedermeier, 1943; Griselle, 1953; 
Oeconomu, 1956). 

The best theorem concerning the exponent 2p was published by Terjanian, 
in December 1977. It is indeed quite surprising that his proof, which requires 
only very elementary considerations, was not found beforehand. I'll not 
jump to the conclusion that perhaps there is also a simple proof of Fermat's 
theorem awaiting to be discovered. I would rather say that Terjanian's result 
shows that the first case of Fermat's theorem for an even exponent is far 
easier than for a prime exponent. 

I begin with Kummer's theorem: 

(6A) Let n > 1 be an odd integer. If there exist nonzero integers x, y, z such 
that x2" + y2" = z2" and gcd(n,xyz) = 1, then n r 1 (mod 8). 

PROOF. It is possible to take x, y, z positive and relatively prime. A simple 
observation tells that x may be assumed even, while y, z are odd. Write 

and observe that if the two factors on the right are relatively prime, then they 
are 2nth powers. 

z2 - y2 is even, and 

is a sum of n odd summands, hence it is odd, therefore of the form k2", with 
k odd. 

Each summand on the right is of the form (2a + = 4a(a + 1) + 1 r 1 
(mod 8). 

Thus (6.2) becomes an equality of the form 

8b + 1 = (8a1 + 1) + . . . + (8an + 1). 

Therefore n = 1 (mod 8). 0 

For example, the first case of Fermat's theorem holds for 2n = 14. 
Kummer's theorem was extended by Grey in 1954 and by Long in 1960. 

Just for the record, I quote one of Long's results: 

(6B) If n is an integer whose last digit (in decimal notation) is 4 or 6, and 
if x, y, z are nonzero integers such that xn + yn = z", then gcd(n,xyz) > 2. 

Now I shall give the proof of Terjanian's theorem, which contains all the 
above results as corollaries. Once more, as in 41, it is question of the quotient 

If m, n are nonzero relatively prime integers, n odd, n 2 3, let (r) denote 
the Jacobi symbol defined by (g) = 1 when m is a square modulo n and 
(r) = - 1 otherwise. 

Lemma 6.1. Let y, z be distinct nonzero integers. 

1. If m = nq + r, 0 < r < n < m, then 

3. If z, y are odd, relatively prime, z r y (mod 4) and m is odd, then Qm(z, - y) E 
m (mod 4), so Qm(z, - y) is odd. 

4. If z, y are odd, relatively prime, z E y (mod 4) and m and n are odd natural 
numbers, then 

PROOF. The assertions (1) and (2) follow at once from the definitions. 
(3) Let z = y + 4t. Then 

because m - 1 is even, y is odd, so y'"- ' r 1 (mod 4). 
(4) The assertion is proved by induction on m + n. It is trivial when 

m = n = l . L e t r n + n > 2 .  
If m > n, then there exist an integer r, odd, 0 < r < n, and q such that 

m = q n + r o r m = q n - r .  
If m = qn + r, then m - r is even, so by (1) and induction 

If m = qn - r, then m - n and n - r are even, so by (2) and induction 

By (3), Qn(z,y) = n (mod 4). If n = n;= pFi, then it is easy to check that 
n - 1 = C;= (pi '- l)ei (mod 4), so 



Since Q,(z, y) = n (mod 4), 

L L 

hence 

Thus 

Now, if m < n, by Jacobi's reciprocity law and the above proof 

After this lemma, Terjanian's result follows almost at once: 

(6C) Let p  be an odd prime. If x, y,z are nonzero integers such that 
xZP + y2p = z2P, then 2 p  divides x or y. 

PROOF. There is no loss of generality in assuming that x, y, z are pairwise 
relatively prime. Also x, y cannot be both odd, since this would imply that 
x2P = y2p = 1 (mod 4) and hence that zZP = 2  (mod4), which is impossible. 
Let x be even, so y, z are odd. Then 

By Lemma 1.2 

If the greatest common divisor is p, then p  divides xZP, so 2p divides x. 
I show now that it is not possible that z2 - y2 and (z2p - y2p)/(z2 - y2) are 

relatively prime. If they are, both must be squares. But z2 - y2 (mod4). 
Since p  is not a square, there exists a prime q such that p  is not a square 
modulo q. It follows from Lemma 6.1 that 

In this final section, I have grouped results of many different kinds. I can see 
by these deductions, that their authors enjoyed toying with Fermat's equation 
and were fully aware that their contributions would not solve the problem. 
Yet, not only are the proofs sometimes rather elegant or simple, but some 
of these results have been rediscovered and used in more substantial ways. 

I start with a few divisibility properties. Massoutie and Pomey proved in 
1931 the following result: 

(7A) If p = - 1 (mod 6) and x, y, z are non-zero integers such that 
xP + yP + zP = 0, then 3 divides x, y, or z. 

In 1934, Pomey claimed also to have proved a similar result for all p > 2 
and also with 5, instead of 3. According to A. Brauer (1934) his argument was 
erroneous. Inkeri proved in 1946 the weaker statement for 5: 

(7B) I f  p  > 2, p $ 1,9 (mod 20) and ifx, y, z are nonzero integers such that 
xP + yP + zP = 0, then 5 divides x, y, or z. 

There are various other partial results of this kind in the literature, but 
, I shall refrain from giving them. 

Other curiosities follow. Swistak proved in 1969: 

(7C) If p > 2, ifx, y, z are positive pairwise relatively prime integers, and 
xP + yP = zP, then p divides cp(x), cp(y), and q ( z )  (where cp denotes Euler's 
totient function). 

Goldziher proved the next result in 1913. It was rediscovered by Mihaljinec 
in 1952 and Rameswar Rao in 1969 : 

(7D) Positive integers x, y, z in arithmetic progression cannot satisfy the 
equation xn + y" = zn (with n > 2). 

Rameswar Rao proved also: 

(7E) I f  n > 2 is an odd integer and ifx, y, z are positive integers such that 
x" + y" = z", then p(x + y) = 0 (p  denotes the Mobius function). 

Here are several statements which are equivalent to Fermat's theorem. 
They were given by Perez-Cacho in 1946. The equivalence between conditions 
(I), (2) and (3) was first proved by Bendz in 1901, and was rediscovered by 
S. Chowla in 1978. 

(7F) Let m 2.2, n = 2m - 1. Then the following statements are equivalent: 

which is absurd, because Qp(z2, - y2) is a square. 
This concludes the proof. 

1. The equation X" + Y" = Z" has only the trivial solutions in 27. 
0 2. The equation X(l + X) = T" has only the trivial solutions in Q. 
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3. The equation X 2  = 4Yn + 1 has only the trivial solutions in Q. 
4. The equation X 2  = Yn+' - 4Y has only the trivial solutions in Q. 
5. For every non-zero rational number a, the polynomial Z Z  - amZ + a 

is irreducible over Q. 
6. The equation (XY)" = X + Y has only the trivial solutions in Q. 
7. The equation Xm = ( X / Y )  + Y has only the trivial solutions in Q. 
8. If u,, r are nonzero rational numbers, if u,, u,, . . . is a geometric progres- 

sion of ratio r, then u i  - u1 + r # 0. n 
9. If A is a triangle with vertices A, 8, C,  if the angle CAB = 90", if = 2, 

and if I2BI + is a nth power of a rational number, then 1x1 is not 
rational. 

Moreover, these conditions imply: 

10. The tangents to the parabola Y 2  = 4X at every rational point distinct from 
the origin, cut the curve Y = Xm at irrational points. 

In conclusion, I would like to mention a nice paper o f  Hurwitz (1908). 
He considered the diophantine equation 

XrnY" + YmZn + zmxn = 0, 

where m 2 n, gcd(m,n) = 1 (without loss o f  generality), and he proved: 

(7G) The above equation has the trivial solution alone ifand only i f  Fermat's 
theorem is true for the exponent m2 - mn + n2. 

For example, letting m = 3, n = 1 it follows that 

X3Y  + y 3 z  + z3x = 0 
has only the trivial solution. 
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LECTURE V 

Kummer's Monument 

This lecture is about Kummer's famous theorem: Fermat's last theorem is 
true for every exponent p which is a regular prime. I will explain how Kummer 
arrived at the notion of a regular prime and show why his approach to the 
problem may be considered quite natural. In some sense, it forces itself on us. 

1. A Justification of Kummer's Method 

In my first Lecture, I already gave a historical survey of what was known 
about the problem circa 1835-1845. 

To show the difficulties one might encounter and to show how natural 
Kummer's approach was, I wish to make some preliminary remarks. The 
first idea which has been used, time and time again, is to write 

then to express xP + yP as a product of factors which are pairwise relatively 
prime and therefore must themselves be pth powers, since integers factor 
uniquely into primes. 

For p = 3 this was done by Gauss (see Lecture 111) using cubic roots of 1. 
It will work in general: 

Here i represents a pth root of 1, namely, the complex number 
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It is necessary to be sure that there are precisely p pth roots of 1, all 
being powers of [, and that 

To follow the main idea, it is necessary to give some sense to the statement 
that the various factors x + y, x + [ y ,  x + i2y, .  . . x + iP-ly are pairwise 
relatively prime. This requires an a priori notion of divisibility. In such a 
theory, a quantity is an integer exactly when it is a multiple of 1. So "integers" 
must be defined. Since the only complex numbers which are relevant have 
to do with [ and its powers, and since the ordinary operations of addition, 
subtraction, multiplication, and division have to be allowed, Kummer was 
led to consider those complex numbers which are obtained from i and the 
rational numbers using the above operations. These numbers have the form 

A summand involving {P-' is unnecessary, since it may be expressed by 
means of (1.4) in terms of lower powers of [. 

The totality of such numbers is the field Q([). Every element satisfies an 
algebraic equation over Q, of degree at most (and in fact dividing) p - 1. 

The elements of the form (1.5) where each ai is an integer, are called the 
cyclotomic integers of Q([). They form a ring Z[[]. Each ordinary integer is 
a cyclotomic integer. 

If a, p E Q([), a divides P when there exists y E Z[[] such that ay = p. One 
writes a l p  

The notions of divisibility of cyclotomic integers and ordinary integers 
share various properties. 

However, and this is the main point, there are at least two major differences. 
First, there are cyclotomic integers (not equal to 1 or - I), which divide 1. 
For example, the numbers 1, - 1, {, -{, C2, -C2, . . . , iP-', -[P-'. In fact, 
I will show that there are many others. From the point of view of divisibility, 
they play no role, so they are called units, and their union is the multiplicative 
group of units. 

Suppose two nonzero elements a, P are such that a divides P and f l  divides 
a. In this case a, p are called associated elements and the notation a - P is 
used. It is obvious that a, p are associated if and only if alp is a unit. 

An example is the following: 

Indeed, let j' be such that jj' r k (modp). Then 

In the same way (1 - i')/(l - ik) E Z[i]. 

The existence of units forces an indeterminacy in describing elements with 
given divisibility. Lumping together all the elements with the same behavior 
is therefore a reasonable idea. 

Following the model of ordinary arithmetic, a cyclotomic integer is 
prime if the only cyclotomic integers which divide it are either associated to 
it, or units. So essentially primes have no proper divisor. 

It is not at all difficult to show that every cyclotomic integer is a product 
of primes. However, it can be shown that it is false, in general, that if a is a 
prime and a divides p y  then a I /3 or a I y.  It is known that if this property were 
true, then the unique factorization theorem would hold. That is, every 
cyclotomic integer would be, in a unique way (up to units) equal to a product 
of primes. Conversely, the unique factorization theorem would imply the 
above property. 

It took some time before mathematicians were convinced that in general 
unique factorization will not hold for cyclotomic integers. This is the second 
essential difference with ordinary arithmetic. Kummer himself found, some- 
time later, by an indirect method, the first example of this possibility-the 
field of 23rd roots of 1. 

Now the crucial point in any proof of Fermat's theorem would have to 
be the knowledge that the factors in (1.2) are pth powers. This conclusion 
being unwarranted, Kummer invented certain "ideal numbers" such that 
the factors in (1.2) would become pth powers of these ideal numbers. 

He had not only to invent these ideal numbers, but also to extend to them 
the language of divisibility and ensure that for these numbers, unique 
factorization holds. The next problem was to measure to what extent unique 
factorization for cyclotomic integers was lacking. 

The success of Kummer's theory of cyclotomic ideal numbers prompted 
its generalization to other fields of algebraic numbers. This work was done 
by Dedekind, who reinterpreted Kummer's ideal numbers as being certain 
subsets in Z[[] (or even in Q([)), which constitute the Dedekind ideals 
(respectively, fractional ideals). Kummer's ideal numbers were closer to the 
modern-day notion of "divisors", which embodies all the features for the 
local and global study of number theory. 

2. Basic Facts about the Arithmetic of 
Cyclotomic Fields 

For the sake of fixing notations, I'll recall now some of the basic facts about 
cyclotornic fields, which we will need. All this, and much more may be found, 
with proofs, in any of the standard textbooks on algebraic numbers. I will 
adopt the current modern terminology. 

Let p 2 3 be a prime number. Let i = i, be a primitive pth root of 1. 
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K = Q([) is the cyclotomic field (corresponding to p). Its elements are 
the complex numbers a, + a,[ + . . . + ap-2[P-2 (with a,,a,, . . . ,ap-, E Q). 

A = Z[[] is the ring of cyclotomic integers: a, + a,[ + . . . + a , - , [ ~ - ~  
(with a,,a, . . . ,ap-, E Z). 

The minimal polynomial of [ over Q is the pth cyclotomic polynomial: 

It is an irreducible polynomial with roots { L C 2 ,  . . . 7[P-1). The trace and 
norm of [ are 

Tr(0 = [ + C2 + . . .  + CP-' = - 1, 

N ( [ )  = 1. 
Moreover P-  1 

@,(XI = n ( X  - ri) 
i =  1 

and 

Every a E A may be written in unique way in the form indicated, so 
(l,[, . . . ,<P-') is an integral basis of A. The elements a E A are roots of monic 
irreducible polynomials with coefficients in Z. The basis {l,[, . . . ,[p-') has 
discriminant 

d = det(Tr(ti + j ) ) . , j -  l -O, I , . . . ,~ -2 .  

d is also the discriminant of any other integral basis. 
A computation yields 

d = (- l)(P-1)/2 P-2. P 

A nonempty subset I of A is an ideal if it satisfies the following properties: 

1. If a, p E I, then a + B, cr - p E I. 
2. 1 f a ~ I , p ~ A ,  t h e n a p ~ I .  

Among the ideals there are I = 0 (consisting only of 0) and I = A. If 
a,, . . . , cr, E A the set (x'!! , piai I PI, . . . ,fin E A) is an ideal of A. It is said to 
be generated by (a,, . . . ,an). If a E A, then the set Aa = (flalfl E A) is called 
the principal ideal generated by a. 

Ideals of A may be added and multiplied together. If I, J are ideals: 

I + J ,  IJ are again ideals. It is easy to establish the rules of operations with 
ideals. 

2. Basic Facts about the Arithmetic of Cyclotomic Fields 79 

If I,, I,, I ,  are ideals and I,I, = I ,  then I, and I, are said to divide I,. 
If P is an ideal, P # 0, P # A, and the only ideals dividing P are P and A, 
then P is called a prime ideal. It may be shown that I divides J if and only if 
I 3  J (as sets). Thus prime ideals are maximal among the ideals different 
from A (as subsets of A), and conversely. 

If Aa = AP # 0 then alp and p/a are both in A, so P divides a and a 
divides P. In the sense already indicated a, P are associated (a - P) and 
alp, /?/a are units of A. The group of units of A is denoted by U ;  it is a subgroup 
of the multiplicative group K' of nonzero elements of K. 

The fundamental theorem for ideals is the following: 

(2A) Every nonzero ideal of A is, in unique way, equal to the product of 
(not necessarily distinct) prime ideals. 

This theorem is also valid for any algebraic number field, as was shown 
by Dedekind. 

It follows that the rules of divisibility of ordinary integers remain valid 
for the divisibility of ideals. In particular, it is possible to define the greatest 
common divisor gcd(I,J) and the least common multiple lcm(I,J) of ideals I, J. 
Since I, divides I, if and only if I, 3 I,, then 

If a, fi E I the congruence a = P(mod I )  means that a - P E I, that is, I 
divides the principal ideal A(a - P). Congruences modulo ideals satisfy pro- 
perties analogous to ordinary congruences of integers. The set of congruence 
classes modulo I forms the residue ring AII; it is a field if and only if I is a 
prime ideal. 

It is of course important to describe the prime ideals of A. It is easy to see 
that if Q is a prime ideal of A it contains exactly one ordinary prime number 
q. Since q E Q, Q divides the principal ideal Aq, so Q is among its prime ideal 
factors. This leads to determining the prime ideal factors of Aq for any 
prime number q. There are two cases: q = p and q # p. 

(2B) Let A = 1 - [ E A. Then A1 is aprime ideal containingp, Ap = (A1)P- 
and A/AI is the,field with p elements. 

Because Ap is the product of p - 1 ideals equal to A5 the prime p is said 
to be ram$ed in the cyclotomic field K = Q([). 

For any prime q # p, Kummer also indicated how to proceed. Let F, be 
the field with q elements and let 6, E [F,[X] be the polynomial obtained from 
Qp by reducing its coefficients modulo q. Let 6P = F'," . . . . . EL-; (e, 2 
1, . . . ,e,-, 2 1, r 2 O), be the decomposition of @, as product of powers of 
irreducible polynomials of F,[X]. Then: 

(2C) With notation as above, r divides p - 1, e, = . . . = e,-, = 1. ~f 
f = (p - l)/r, then each polynomial pi has degree f .  The ideal Aq is equal to 
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the product of r distinct prime ideals, say Aq = Q, . Ql . . . . . Qr- ,. Each 
A/Qi is the uniqueBeld of degree f over [F,. The prime ideals Qi correspond to 
the factors F, as follows: if Fi E Z[X] and F ,  reduced modulo q is F,, then Qi 
is generated by the two elements q, Fi([). Moreover, f is the order of q modulo 
p, in the multiplicative group FP. 

Thus, each prime q # p is unramified in the cyclotomic field (since 
e o = " .  =e r - ,  = 1). 

The cyclotomic field K = Q([) is a Galois extension of Q; its Galois 
group is cyclic of order p - 1. If g is any primitive root modulo p, then the 
automorphism o of K such that o([) = cg is a generator of this Galois group. 

The conjugates of (, i.e., the roots of @,(X) appear in pairs of complex- 
conjugate numbers (none are real numbers). It is convenient to label the 
conjugates of [ as follows: [ = [('), [('), . . . , [(P-'), where [('+") (with = 

(p - 1)/2) is the complex-conjugate of ["', for i = 1, 2, . . . , n. 
The Galois group transforms any ideal I of A into other ideals, which are 

the conjugates of I. If I is a prime ideal so are its conjugates. Actually, it is 
possible that an ideal is equal to certain of its conjugates. In the decomposition 
of any prime q into prime ideals as indicated in (2C) the prime ideals 
Qo, . . . , Qr- are conjugate to each other. 

The product of an ideal I and all its conjugates gives a new ideal N(I), 
called the norm of I. This is necessarily the principal ideal generated by an 
ordinary integer; in symbols N(I) = An. The number of elements of the 
residue ring AII is the absolute value In]. 

To measure the existence of nonprincipal ideals in A, it is convenient to 
introduce the fractional ideals. These are subsets I of K such that there exists 
a E K, a # 0 for which a l  = {UP I P E I}  is an ideal of A. Thus, every ideal of 
A is a fractional ideal; K itself is not a fractional ideal. The set of nonzero 
fractional ideals of K is a multiplicative abelian group under the operation: 

This group is denoted by Yd(K). Among the nonzero fractional ideals of K 
are the principal fractional ideals, namely those of the form Aa = {Pa I P E A}, 
where a # 0. They constitute a subgroup of Yd(K), denoted by PYd(K). 

Two nonzero fractional ideals I, J are said to be equivalent when there 
exists a nonzero principal fractional ideal Aa such that I = (Aa)J. This is 
indeed an equivalence relation; the nonzero principal fractional ideals are 
those equivalent to the unit ideal. Each equivalence class of ideals is called 
simply an ideal class. The class of the ideal J shall be denoted [J]. The set 
of ideal classes forms a multiplicative abelian group, namely the quotient 
group Yd(K)/P Yd(K), which is called the ideal class group (or, simple, the 
class group) of K and is denoted by %t(K). 

(2D) The group of ideal classes of K is jinite. 
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For a proof of this theorem, which is true for any algebraic number field, 
see [Ri], page 123. 

The number h = h(p) of ideal classes of K = Q([,) is called the class 
number of K. Thus h = 1 if and only if every ideal of K is principal. This is 
equivalent to saying that every algebraic integer is equal, up to a unit, to the 
product of powers of prime algebraic integers (those whose only factors are 
units or associated numbers). 

The structure of the abelian group %[(K) is easily described. For every 
prime q, let %t,(K) be the q-primary component of the ideal class group 
%t(K). It consists of all ideal classes having order a power of q; in other words 
%t,(K) is the q-Sylow subgroup of %'t(K). By the structure theorem for 
finite abelian groups, Wt(K) is isomorphic to the direct product of the groups 
%t,(K). It should be noted that %?t,(K) is nontrivial if and only if q divides 
the class number h of K. Moreover, each W[,(K) is isomorphic to the direct 
product of cyclic groups having order a power of q. If q' is the exponent of 
the group WL',(K), that is, the maximum of the orders of the elements of 
%t',(K), then the order of every element of WL',(K) divides qz (this is a well- 
known property of finite abelian groups). 

The following easy result is true in general for finite abelian groups: 

(2E) I f  h = qeu, where q is a prime not dividing u, e 2 1, and if qz is the 
exponent of %'L',(K), then t I e. 

Some indications about how to compute the class number h will be given 
later. 

Turning to the group of units of the cyclotomic field, let W be the group 
of roots of unity belonging to the cyclotomic field. Then 

The structure of the group of units is as follows: 

(2F) U E W x U', where U' is the free abelian multiplicative group with 
r = (p - 3)/2 generators. 

That is, there exist units E , ,  . . . , 8, in K such that E! # 1 (for every j # 0) 
and such that every unit E E U may be written in unique way in the form 

with w E W, ei E Z (i = 1, . . . ,r). This is a particular case of Dirichlet's general 
theorem (1846) on the structure of the group of units of any algebraic number 
field (see [Ri], page 148). 

{ E ~ ,  . . . ,E,) is a fundamental system of units of K. Any two fundamental 
system of units have the same number of elements. Expressing the units of 
one fundamental system in terms of those of another, considering conjugates, 
their absolute value and logarithms, it may be seen that the following real 
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number is indepeddent of the system of units: R = 2(P-3)121det(~)I, where 

R is called the regulator of the cyclotomic field K. 
The explicit determination of a fundamental system of units turns out to 

be, in general, extremely difficult. I will indicate later its connection with the 
class number. 

Among the units, I have already mentioned the roots of unity (they are 1, 
-1, [, -[,... ,<"I, -cP-') and the elements (1 - [')/(l - [y), where 1 I 
j f k s p - i .  

Certain units are real numbers, for example the Kummer units 
(Kreiseinheiten): 

1 - i  1-[-k 
6, = /k. (positive square root) 

I - [  I - [ - '  

for k = 2, . . . , (p - 1)/2. (It is necessary to prove that 

1 - i k  -. 
I - [  1 - c - '  

is a square in K ;  this follows from (2G) below). 
Let U +  be the totality of real units of K. It is a subgroup of the group U  

of all units of K. Let V denote the subgroup of U + ,  generated by the (p - 3)/2 
Kummer units. It is important to compare these three groups V c U +  c U. 
First, Kummer proved: 

(2G) Every unit of K is the product of a root of unity and a real positiue 
unit. 

The Kummer units are multiplicatively independent: if 

(P- 1)12 n 6y = 1, then e, = . . . = e(,- ,,,, = 0. 
k = 2  

To say that they form a fundamental system of units amounts saying that 
V = U'. Thus the index of V in U +  measures how far V is from U' and it 
will be connected with the class number. 

Later I will mention the deepest of Kummer's results about units, which 
is valid under a special hypothesis about the class number. 

3. Kummkr's Main Theorem 

In 1847: Kummer announced his main theorem in a letter to Dirichlet, who 
then communicated it to the Academy of Sciences of Berlin. 

In this proof, published in 1850, Kummer claims that Fermat's equation, 
for "regular" prime exponents, has only the trivial solution in the cyclotomic 

field Q([). Yet, his proof contains an "unaccountable lapse" (in Weil's 
expression; see Kummer's Collected Papers, vol. I, Notes by A. Weil, page 
955). This concerns the unjustified assumption that a solution a, P, y in the 
cyclotomic field may be chosen such that a, P, y have no nontrivial common 
divisor. However, Kummer's argument did establish without any gaps, that 
there are no (nontrivial) solutions in ordinary integers when the exponent 
is a regular prime. Later, in 1897, Hilbert succeeded in adapting Kummer's 
proof, so as to exclude solutions from the cyclotomic field. 

At the beginning, Kummer proved the theorem under two hypothesis 
about the exponent p: 

Hypothesis 1. The pth power of a nonprincipal ideal is never a principal ideal. 
Hypothesis 2. If a is a cyclotomic unit and there exists an ordinary integer 
m such that a - m (mod Ap), then there exists a unit P such that a = PP. 

In his second communication to the Academy, Kummer writes: 

My proof of Fermat's theorem, which Mr. Lejeune Dirichlet has com- 
municated to the Royal Academy of Sciences, is based on two hypotheses. At 
that time, 1 could not in general decide which primes satisfied these hypothesis. 
For this purpose I was lacking the expression for the number of nonequivalent 
classes of complex ideal numbers, about which, already for a long time, 
Mr. Dirichlet has promised an article. After waiting for its publication, I have 
undertaken, with the help of some oral suggestions from Dirichlet, to derive 
the required expressions, and I have succeeded not only to discover them, 
but also to base, on these expressions, both hypotheses in my proof of Fermat's 
theorem. 

Later, I will indicate how Kummer succeeded in characterizing the ex- 
ponents p for which these hypotheses hold. As a matter of fact, he actually 
proved that if the first hypothesis is satisfied then the second one follows 
automatically. 

A role is played in the proof by the semi-primary integers. An element 
a E A is said to be semi-primary if a + 0 (mod Ai) but there exists an ordinary 
integer m such that a - m (mod ~ i ~ ) .  The following lemma will be useful 
(it is easy to prove): 

Lemma 3.1. 
1. If a = m + n i  (mod Ai2), with m, n ordinary integers, m $ 0 (mod p) and 

if 1 is an integer such that lm = n (modp), then [ 'cr is semi-primary. 
2. If ci, p E A are semi-primary, there exists an integer m such that a = mP 

(mod Ai2). 

In the next lemma, I indicate what can be proved without making any 
hypothesis concerning the exponent. 

Lemma 3.2. Let p > 2 be a prime. Assume that a, P, y E A and let 
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1. If aP+BP+yP=OandifL,+'y,  then foreveryk=O,l, . . . , p -  1 there 
exists an ideal Jk of A such that 

The ideals J,, J, ,  . . . , Jp- , are pairwise relatively prime and not mul- 
tiples of AA. 

2. If aP + PP = &iiPimP, where E is a unit of A, 6 E A and L does not divide 
a, p, 6, then m 2 2. 

3. If aP + /IP + yP = 0 and if y = 6Am, with m 2 1,6 E A, A not dividing a, P, 6, 
then there exists j,, 0 I jo I p - 1, such that for every k = 0,1, . . . , p - 1 
there exists an ideal Jk of A, such that 

where I' = gcd(Aa,AP). The ideals J,, J, ,  . . . , Jp-, are pairwise relatively 
prime and not multiples of AL. 

PROOF. 
(1) To begin 

First I note that if 1 I j < k I p - 1, then gcd(A(a + ('P), A(a + ikfi)) = I. 
This is quite easy. Indeed, if P is any prime ideal, e 2 1, and Pe divides both 
ideals A(a + ijp), A(a + ikp), then 

Then, taking the difference yields 

But 1 - ik-j - 1 - i = 2, SO AP E pe and Pel A@. 
Similarly (ik - iJ)a = ij(ik-j - l)a E Pe and Pel A h .  But P,+' AA, other- 

wise PI Ai, so P = AA (both being prime ideals) and from (3.3) AL I Ay against 
the hypothesis. It follows that Pe divides AM, A P  and therefore Pe I A(a + ['P) 
for every i = 0,1, . . . , p - 1. This is enough to prove the assertion. 
Let 

J; = A(a+ lkP) f o r k = 0 ,  1 , . .  p -  1, 
I 

(3.4) 

so Jb, J;, . . . , Jb- are pairwise relatively prime ideals, not multiples of 
Ai  and 

Then each J; is the pth power of an ideal J;  = JP, in virtue of the unique 
factorization theorem for ideals. 

(2) Multiplying a, P by any pth roots of 1 still gives algebraic integers 
satisfying the same equation aP + PP = &hPilmP. Thus, by Lemma 3.1, it may 
be assumed that a, p are semi-primary integers. 

Assume that m = 1. Since a, fi are semi-primary, there exist a, b E Z such 
that 

a = a (mod AA') and P E b (mod Ail2). 

Since Ap = ALP-', 

aP - aP (mod AAP' ') and PP = bP (mod AAP+ I). 

Sincem= l , aP+bP=aP+PP+pi lP+l  = E A ~ ( ~ ~ + E - ' ~ A ) ,  wherep~A,i l$6 .  
If pe is the exact power of p dividing aP + bP (with e 2 O), then the exact 

power of AL dividing A(aP + bP) is a multiple of p - 1, because Ap = Alp-'. 
Since il$6, Ail$ A(hP + C'pil), so the exact power of AA dividing the ideal 
A(dP(GP + &-lpil)) is ALP-a contradiction. This proves that m 2 2. 

(3) From 
0 -  1 

it follows that there exists j, 0 I j 5 p - 1 such that Ail I A(a + 5jfi). 
But then AA I A(a + ikp) for every index k. Indeed, if k # j, then a + ikp = 

(a + ljP) + ii(ik-j - l)p and rk-j - 1 - ;I. SO 

These elements are pairwise incongruent modulo Al. Otherwise, 

with j # k. So A2 1 (5j - ik)p - ;I/? and il IP, against the hypothesis. 
Since the number of congruence classes modulo il is p, there exists an 

unique index j,, such that (a + ijOP)/Ap - 0 (mod AA), that is, L2 I a + ijOP and 
l2 $a  + ckfi for k # j,. So from (3.5) 

and p(m - 1) + 1 > 1 since m 2 2 (by part (2)). 
If I' = gcd(Aa,AP), then I' I A(a + ikP) for every k and AL $ If. Hence 

where Jb, J;, . . . , Jk-, are ideals, not multiples of Ail. 
These ideals are pairwise relatively prime: if P is a prime ideal dividing 

J J ,  JL (k # j),' then (Al)I'P divides A(a + [jp), A(a + ikP), hence also 
A(p - 5'- kp) = (AA)AP, so I'P I AP. Similarly I'P I Aa, hence I'P divides 
I' = gcd(Aa,AP), which is impossible. 
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Multiplying the relations (3.6) yields 

By the unique factorization of ideals, for each k there exists an ideal J, 
such that Jh = J f  and clearly AiYJ,  moreover these ideals are pairwise 
relatively prime. 

In view of (3.6) this concludes the proof. 0 

A prime p is said to be regular if p does not divide the class number 
h = h(p) of the cyclotomic field K. 

Lemma 3.3. The prime p is regular if and only if the pth power of a non- 
principal ideal of A is never a principal ideal. 

PROOF. By definition p is regular when p does not divide the order h of the 
class group Vt(K). This means that the p-Sylow subgroup of Wt(K) is trivial. 
In other words, there is no element [J] in Wt(K) having order p: if [JIP = [A], 
then [J] = [A]. Or equivalently, if JP is a principal ideal, then J is already 
a principal ideal. 0 

I have indicated already that Kummer succeeded in proving that first 
hypothesis implies the second. This is the contents of his difficult and impor- 
tant lemma on units: 

Lemma 3.4. If p is a regular prime, ifa is a unit of A such that there exists 
m E Z satisfying the congruence a - m (mod Ap), then ci = bP, where /? is a unit 
of A. 

In order to prove this lemma, Kummer introduced A-adic methods. I shall 
give a full proof of this lemma in my forthcoming other book on Fermat's 
theorem. 

And now, finally, here is Kummer's main theorem: 

(3A) If p is a regular prime, there exist no (nonzero) cyclotomic integers 
a, p, y such that aP + PP + yP = 0. 

PROOF. By Gauss's theorem for the exponent 3, the assertion is true for 
p = 3. I shall assume the theorem false (hence p > 3) and will consider the 
traditional two cases. 

First Case. a, p, y are not multiples of A = 1 - j. 
I may assume p 2 7. Indeed, if p = 5, then a, P, y are congruent modulo 

A i  to the integers f 1, or f 2, because A/Ai = [F5 (the field with 5 elements). 
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Then a5, P5, y5  are congruent to f 1, or +32, modulo AA5 (note that 
A5 = AL4). In any case, a5 + P5 + Y5 + 0 (mod AA5), SO the theorem would 
be true for the exponent 5. 

Thus, let p 2 7. 
Multiplying a, P by any root of 1 still gives algebraic integers satisfying 

the same relation. So, by Lemma 3.1, it is possible to assume, without loss 
of generality, that a, P are semi-primary integers in K. 

By Lemma 3.2 
A(a + ckP) = Jf:I (k = O,l, . . . ,p - l), 

where the ideals J,, J , ,  . . . , Jp-, are pairwise relatively prime and not 
multiples of AA, and I = gcd(A(a + P), A(a + [P), . . . , A(a + jP-'P)). 

Since a + [P-'P $ 0 (mod AA), because AA does not divide Ay, there 
exists a root of unity [' such that ['(a + lP-'p) is a semi-primary integer. Let 

Hence a' + iP-lp' = ['-l and A(@' + jkp') = (Jk/Jp- for k = 0, 1,. . . , p - 2. 
The fractional ideals (Jk/Jp- are principal, and p is a regular prime. 

By Lemma 3.3, Jk/Jp-I is also a principal ideal, say Jk/Jp-, = A(yk/nk) 
(for k = O,l, . . . ,p - 2), where y, E A, nk E Z and y,, n, have no common 
factor (not a unit) in A. We note also that A i  does not divide Ap,, An,. 

Taking into account (2G), then 

where E, is a real unit of K, 0 5 c, I p - 1. Since A/AA = FP, y, = m, (mod AA), 
where m, E Z. Hence yf = mf: (mod ALP) because Ap = AAP-I. Therefore 

(for k = O,l, . . . ,p - 2). Considering the complex-conjugates, we have 

(because 2 = 1 - [-' is associate to i).  Hence &,mi = [-cknk(a' + jkp') - 
~ n , ( 2  + [-kp') (mod ALP) and since AA does not divide An,, 

We now evaluate the exponents c,. Since a, p, ['(a + jP-'P) are semi- 
primary integers, it follows from Lemma 3.1 that there exist rational integers 
a, b such that 

a E aj'(a + jP-'p) (mod AA2), 
P - bjl(a + jP-'j?) (mod AA2). 

Since AA $ A(a + iP- 'PI, 

a' + jkp' E a + jkb (mod AA2). 
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Similarly 
2 + i - k v  E a + c-kb (mod AA2). 

But c j  = (1 - A)' - 1 - j A  (mod Ai2) for every j E Z. Hence 

a + b - kbA = (1 - 2ckd)(a + b + kbi) (mod AA') 
SO 

2ck(a + b)A = 2kbA (mod AA2) 
hence 

c,(a + b) = kb (mod AA). 
Since a, b, c,, k E Z, 

ck(a + b) - kb (modp). 

From a + [P- 'p  - (a + cP-'b)l1(cr + lP-'P) (mod AA') it follows that 

1 = (a + CP- ' b)[' (mod AA2). 

But ( - 1 (mod Ad), hence iP-' - [' = 1 (mod AA), so 

a + b - 1 (mod AA), 

hence a +  b -  1 (modp), s o c k -  kb (modp)for k = 0 , 1 ,  . . . , p -  2. 
In particular 

co - 0 (mod p), c, - b (mod p), c2 r 2b (mod p), c3 = 3b (mod p). 

Thus we may rewrite (3.8) as follows (for k = 0,1,2,3): 

where PO? PI, P2, P3 E A. 
Consider the matrix of coefficients 

\ ,  i 3  -p - p 3 /  

By Cramer's rule 

where Mi is the matrix obtained from M by replacing the ith column by 
the right-hand side of the relations (3.9). Thus det(Mi) E and since AA 
does not divide Aa', AP', A$, AT, then necessarily A i P  divides det(M), that is 

(1 - [)(l - lzb)(1 - (2b-1)([ - (2b)(( - [2b-')([2b - Czb-') = 0 (mod ALP). 
(3.10) 

We discuss several possibilities. 

1. b = 0 (modp): then P E 0 (mod AA), against the hypothesis. 
2. b = 1 (mod p): then p = a + /3 (mod AA), hence cc = 0 (mod AA), against 

the hypothesis. 
3. n f 0, 1 (modp) and 2b f 1 (modp): then all the factors in (3.10) are 

associated with 5 thus AP divides A6, so p I 6, against the hypothesis. 
4. b +  0, 1 (modp)and2b- 1 (modp): then2P=cc+ / l ( m o d A A ) s o a = ~  

(mod AA). 

In view of the symmetry of the relation aP + PP + yP = 0, we must also 
have a = y (mod AA). But aP = a, PP - p, yP = y (mod AA), because AIAA = 
[F,. It follows that a + P + y - 3cr = 0 (mod AA) so a = 0 (mod AA) contra- 
dicting the hypothesis. So, we have again reached a contradiction, concluding 
the proof for the first case. 

Second Case. A divides a, 8, or y. 
We assume without loss of generality that A divides y. 
We may write y = 6Am, where 6 E A, A does not divide 6, and 

UP + p' = -#'Amp. 

So there is a relation of the form 

aP + p' = &6PAmP, 

where E is a unit, A does not divide 6 and m is minimal. By Lemma 3.2, m 2 2. 
It follows that A does not divide a otherwise A also divides f l  and from (3.1 1). 
after dividing by AP, we would obtain a similar relation with exponent 
(m - l)p for A, against the minimality of m. Similarly A does not divide j?. 

Our purpose will be to derive a relation analogous to (3.1 1) with smaller 
exponent of A. By Lemma 3.2, after changing P into cjoP (without loss of 
generality), we may write 

A(a + p) = (AA)p(m-l)+lI'Jp o , 
(3.12) 

A(a + Ckp) = (AA)I'Jg (for 1 I k I p - I), 

where I' = gcd(Aa,AP), and the ideals J,, J,, . . . , Jp- , are pairwise relatively 
prime and not multiples of AA. Then 

This shows that the fractional ideals (Jk/J,)P are principal and since p 
is regular, J,/J, is also principal. Thus there exist elements pk E A, nk E Z 
such that Jk/Jo = A(pk/nk). Since AA does not divide J, (0 I k I p - I), we 
may assume that A does not divide the elements p,, n,. So there exist units 
ck of A such that 
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In particular, if k = 1, 2, then 

(a + (P)LP'" - " = 

Multiplying the first relation by 1 + [ and then subtracting the second 
relation gives 

Hence 

But 1 + < is a unit of A and the above relation has the form: 

where a' = pln2, P' = p2nl, 6' = n1n2, A$S1, and E', E" are units. This is not 
yet like relation (3.1 I), but we shall transform it into a relation of that type. 

Since p(m - 1) 2 p, AP divides (a')" + d(Pf)P. But AP' = Ap2n, is relatively 
prime to AA, i.e., AP' + AA = A, so there exists an element K E A such that 
J C ~  - 1 (mod Al). Then K P ~ P  1 (mod Alp) and (JCE')~ + E' = 0 (mod AAP). 
So there exists p E A such that E' = pP (mod AiP). But A/Ai = IFp SO there 
exists r E Z such that p r (mod AA). Then E' - pP = rP (mod Alp). By 
Kummer's Lemma 3.4 on units, E' is the pth power of a unit E; in A:&' = (E ; )~  
and we may rewrite (3.14) as follows: 

This is now a relation like (3.11), with m - 1 instead of m. This contradicts 
the choice of a minimal m, and the proof is concluded. 0 

In particular, if p is a regular prime, there ex$ no nonzero integers 
x, y, z E Z such that xP + yP + ZP = 0. 

In order to understand the force of Kummer's theorem, it will be necessary 
to find out which primes are regular. Is there any neat characterization of 
regularity? This, and other questions, will be considered in the next lecture. 
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LECTURE VI 

Regular Primes 

To utilize the force of Kummer's main theorem, it is imperative to deter- 
mine when a prime p is regular. In theory, at least, this is simple. All one needs 
to do is to compute the class number of the cyclotomic field K,  = Q([,), 
where [, is a primitive pth root of 1. And so Kummer began by discovering 
formulas for the class number. However, it soon became apparent that the 
computations involved were much too difficult, and other more suitable 
criteria for regularity were needed. These were also discovered by Kummer. 

I begin this lecture by giving all these classical results of Kummer and 
then I will describe more recent developments in this area. 

1. The Class Number of Cyclotomic Fields 

Kummer established formulas for the class number of cyclotomic fields in 
a series of very important papers (1850, 1851). A proof of these formulas 
may be found, for example, in the book by Borevich and Shafarevich, or in 
Hilbert's Zahlbericht. 

One formula involving the class number and other invariants of the 
cyclotomic field may be attributed to Dirichlet. 

I recall the notation. Let p be an odd prime, let [ = [, be a primitive pth 
root of 1, let K = K, = Q([) and A = A, = Z[[], the ring of integers of the 
cyclotomic field K. 

For every real number t 2 1, let a(t) be the number of ideals I of A having 
norm N(1) I t .  Then 
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where h = h(p) is the class number of K and R is its regulator (defined in the 
preceding lecture). 

There is an important connection between the class number and the 
Dedekind zeta-function of the field K. 

It is well-known that the Riemann zeta-series I,"= llnvefined for s real, 
s > 1, converges uniformly and absolutely, for every 6 > 0, in the interval 
[I + 6, m). It defines therefore a continuous function for 1 < s < m :  

[(s) is the Riemann zeta-function. [(s) admits the following representation 
as an infinite convergent product (Euler): 

(where the product extends over the set of all primes p). 
The difference 

remains bounded when s tends to 1 (s > 1). In particular, 

lim (s - l)[(s) = 1. 
s + 1 + 0  

(1.5) 

With every algebraic number field F, it is possible to associate its Dedekind 
zeta-function (when F = Q this gives the Riemann zeta-function). To do this, 
for every integer n 2 1 let v(n) be the number of ideals I of the ring of algebraic 
integers of F such that N(1) = n. For every real number s > 1 the series 

(where the sum is over the set of all ideals I of the ring of integers of F) con- 
verges uniformly and absolutely, for every 6 > 0, in the interval [l + 6, a). 
Therefore it defines a continuous function of s, 1 < s < m, called the Dedekind 
zetafunction of F :  

This zeta-function also admits a Euler product expansion: 

(where this product extends over the set of all prime ideals 9). 

It may be shown that if K = Q(0, then 

Formulas (1.1) and (1.9) are clearly not suitable for the computation of 
the class number. They have to be transformed into something more 
appropriate. 

Let m 2 1 be an integer. A mapping x:Z -+ @ (complex numbers) is a 
modular character, belonging to the modulus m, when the following condi- 
tions are satisfied: 

1. ~ ( a )  = 0 if and only if gcd(a,m) # 1. 
2. If a = b (mod m), then ~ ( a )  = ~ ( b ) .  
3. x(a4 = x(a)x(b). 

It follows that IX(a)l = 1 for every integer a, gcd(a,m) = 1. 
Among the modular characters with modulus m there is the principal 

character modulo m, denoted xo, namely: x0(a) = 1 when gcd(a,m) = 1, 
xo(a) = 0 when gcd(a,m) # 1. 

If m divides m' and x is a character with modulus m, it induces a character 
X' with modulus m', which is defined as follows: if gcd(a,mf) # 1, then ~ ' ( a )  = 0; 
if gcd(a,ml) = 1, then ~ ' ( a )  = ~ ( a ) .  

Let x be a character with modulus m, If there exists a divisor d of m and a 
character x' with modulus d which induces x, then x is said to be imprimitive; 
otherwise x is a primitive character. If x is a primitive character with modulus 
m, then its modulus is called the conductor of X, denoted by f,. In particular, 
the principal character of modulus 1 is primitive and has conductor equal to 1. 

If x is a character with modulus m, the series C,"=, x(n)/n"s called the 
L-series of X. For every 6 > 0 and every character x with modulus m, the 
L-series of x converges uniformly and absolutely in the interval [I + 6, a ) .  
Hence it defines a continuous function L(slX) of s on the interval ( 1 , ~ ) :  

" x(n) L(slx) = - (for 1 < s). 
nS 

The function L(s[x) admits the product representation 

P~ 

For the principal character xo, with modulus m: 

Actually, if x # xo, the d o p i n  of convergence of the L-series of x is 
larger: for every 6 > 0 it converges uniformly on the interval [6,a). Hence 
it defines a continuous function bn (O,co), still denoted L(s(x). 
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If x is a character with modulus m, if c = [ ,  is a primitive mth root of 1, 
say < = cos(2nlm) + isin(2z/m), the sums 

m 

z ~ ( x )  = 1 x(a)Yk (k  = O,l, . . . ,m - 1) (1.13) 
gcd(a,m) = 1 

o= 1 

are called the Gauss sums belonging to the character x (and to 5).  In particular 
m d m )  when X = Xo, 

(1.14) 
gcd(a,m)= 1 when x # X O .  

a= 1 

The principal Gauss sum is 

If x is a primitive character with conductor f ,  then lz(x)I2 = f .  
Now if K  = Q([) ,  then its Dedekind zeta-function is expressible as a 

product involving the L-series of the characters modulo p: 

and therefore 

From this may be 
h(p) of Q(ip): 

I d s )  = n I X )  . [(s) (for s > 1). (1.17) 
x + x o  

deduced the following expression for the class number 

In order to compute h = h(p) it is still necessary to evaluate L(l I x )  for 
x # xo. It may be shown that 

This gives 

This last formula has an advantage over the previous one. It does not 
involve any infinite product or series. However it is still not suitable for 
direct computation, since the integer h is expressed in terms of logarithms 
and complex numbers. To put it in appropriate form it is necessary to evaluate 
L(l I X )  when x is an even character, that is, ~ ( a )  = x(-a),  and when x is an 
odd character, that is, ~ ( a )  = -x ( -  a). 

If x is even, then 

r l ( x )  P -  ~ ( k )  log sin - . L 1 ~  P k = l  ( 7) 
If x is odd, then 

This gives the important formulas: 

(1A) The class number of K = Q ( [ )  is h(p) = hl(p)h2(p) where 

and 

where q is a primitive ( p  - 1)th root of 1, g is a primitive root modulo p, 
9 .  - = gj(modp) with 1 < g j < p  T 1 and 

The numbers hl(p), h2(p) are called respectively the first factor and the 
second factor of the class number of K  = Q([) .  

The formula for the first factor may be also written in the following ways. 
First: 

~ J P )  = Y ( P )  . n ~ ( 1  I X I ,  (1 .25) 
X E S  

where S is the set of odd characters modulo p and 

Secondly : 

where S was defined above. 
At this stage of the theory nothing yet may be said about the nature of the 

numbers hl(p), h2(p), but it will soon be seen that they are integers and in fact, 
they admit an arithmetical interpretation. For this purpose it is necessary 
to study the field K C  = Q(l; + [ - I )  which is equal to K n R. K +  is called 
the real cyclotomic jield. 

The degree of the extension K +  IQ is ( p  - 1)/2. The ring of integers A+ of 
K + is equal to A +  = L[1: + l;-'1. The regulator of K + is R+ = R/2(P- 3)/2, 
where R  is the regulator of K .  
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Comparing the Dedekind zeta-series for K and K +  leads eventually to 
the following result: 

(1B) The second factor h2(p) of the class number of K is equal to the class 
number of K +  = Q([ + [ - I ) .  In particular, h2(p) is a positive integer. 

For this reason, the second factor is also called the real class number of 
Q([) and denoted by h+ = h+(p). From now on, I shall use this notation, 
since it is more suggestive. 

Another interpretation of h+(p) is the following: 

(1C) h + ( ~ )  is the index of the subgroup V in the group US 

Recall that U+ denotes the group of positive real units of K and V is the 
subgroup generated by the Kummer circular units 

(it suffices to take k = 2, . . . , (p - 1)/2). 
If g is a primitive root modulo p, let 6 = 6,. If o is the generator of the 

Galois group G of Q([) I Q such that o([) = lg, let 

Then the second factor may be written as 

The Kummer units are independent, since the index (U+ : V) is finite. They 
constitute a fundamental system of units if and only if h+(p) = I .  

The number h(p)/h+(p) = h,(p) is also called the relative class number of 
Q([) and denoted by h* = h*(p). From now on I shall use this notation. 

Kummer also showed: 

(ID) h* is a positive integer. 

In principle, formula (1.23) allows us to compute the first factor of the 
class number-at least when p is not too large. As I shall soon indicate, 
Kummer made extensive computations. On the other hand, formulas (1.24) 
and (1.30) are still unwieldy, the point being that the regulator is extremely 
difficult to compute. Indeed, it would require the knowledge of a fundamental 
system of units for K. This is the crucial difficulty. 

Recall however that all that is needed, is to know whether the prime p 
divides the class number. 

In 1850 Kummer succeeded in proving the important: 

(1E) p divides the class number h ifand only ifp divides the$rst factor h*. 

To establish this theorem, Kummer introduced transcendental methods. 
More precisely, for the first time he made use of p-adic methods (without 
calling them by this name). Such methods appeared explicitly only with 
Hensel (1908). So, once more, Kummer was a pioneer of genius. 

2. Bernoulli Numbers and Kummer's Regularity 
Criterion 

In 1850, Kummer proved the following beautiful condition for regularity: 

(2A) p divides h* ifand only ifthere exists an integer k, 1 I k I (p - 3)/2, 
such that p2 divides the sum 2:: jZk. 

PROOF. I sketch the main points in the proof. By (1.23), h* = lpl/(2p)'-' 
where t = (p - 1)/2, p = G(y)G(y3) . . . G(yP-'). 

From = h*(2p)'-', it follows that p is independent of the choice of g 
(a primitive root modulo p) and of y (a (p - 1)th root of 1). It is convenient 
to choose g such that gP-' - 1 (mod p2), which is always possible. 

Let B = Z[y] be the ring of integers of the field Q(y). To show that p 
divides h* is equivalent to proving that if P is any prime ideal of B dividing 
Bp, then P divides B(p/pt-'). 

Let P be such a prime ideal. By changing y appropriately into some other 
(p - 1)th root of 1, it is possible to insure that PI B(l - gyp'). This may be 
seen by considering the decomposition of Bp into a product of prime ideals. 

Since p = G(y)G(y3) . . . G(yP-'), P divides B(p/p2-') if an only if there 
exists 1, odd, 1 I 1 I p - 2, such that P divides B(G(yl)/p), that is, P2 divides 
BG(yl). It may be seen that P does not divide BG(yP-') (by the choice of y). 
Since 

P- 2 
1 - g ~ - l  = (1 - gyj) = 0 (modp2), 

j = O  

P2 divides 1 - gyp- ', SO g y (mod P2). Therefore 

r - 

G(yl) e C gjgj' (mod P2). 

Since p is unramified in B, P2 divides BG(yl) exactly when p2 divides x$':,2 gjgji. Putting gj = gj + ajp (modp2), with integers aj ,  yields 

(for j = 0,1, . . .,,p - 2). Hence 
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Since p y 1 + 1, p2 divides 21; gjgji if and only if p2 divides 2;; gi+l = 

171: j l+l .  Putting 2k = 1 + 1, this gives the stated condition. 0 

The sums jk have been studied by Fermat, Pascal and Jakob 
Bernoulli. 

(2B) For every integer k 2 0 there exists a polynomial S k ( X )  E Q [ X ]  with 
the following properties: 

1. S,(X) has degree k + 1 and leading coefiicent l / ( k  + 1). 
2. (k + l ) ! S k ( X )  E Z [ X ]  
3. for every n 2 1, Sk(n) = IS=, jk. 

These polynomials are determined recursively as follows: 

So = X 
and if k 2 1, then 

Moreover, S k ( X )  has no constant term. 

PROOF. This is an easy induction on k. 

For example: 

In view of (2B), each polynomial S k ( X )  may be written in the form 

where the coefficients bkj are rational numbers. 
Euler discovered the noteworthy fact that bjk = bkk for all j 2 k. This 

remarkably simplifies the computation of the successive polynomials Sk(X) .  
But, even more is true, the coefficients bjk satisfy a recurrence relation and 
are also intimately connected with a power-series development. 

To be more explicit, the formal power series 

is invertible, since its constant term is 1. Let the inverse be written as follows: 

where Bi are rational numbers ( i  2 0). For example, a simple computation 
1 gives Bo = 1, B ,  = -7, B2 = &. 

(2C) The numbers Bi satisfy the following recurrence relation: 

and for every k 2 1 : 

PROOF. Formula 
the powers of X 

For each n 2 

(2.5) is easily obtained by considering the coefficients of 
in the product of (ex - 1)/X and X/ (eX  - 1). 
2 let 

where T is an indeterminate. 
The coefficient of T k +  ' is equal to 

On the other hand, 

Comparing the coefficient of T k + l  in (2.8) with (2.7): 

hence 
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Since this holds for every n 2 2 and Sk(n) = nk + Sk(n - I), 

It is easily seen from 

- X X X X  
- Bk + - = 1 +  C -Xk 

e-'-1 2 e x - 1  2 k = 2  k !  
that 

B2k,1 = 0 f o r k 2  1. (2.9) 

The numbers Bi are called the Bernoulli numbers. They appear for the 
first time in Jakob Bernoulli's posthumous work Ars Conjectandi (1713, 
page 97). Bernoulli computed Bk for k I 10. 

Euler rediscovered the Bernoulli numbers, while calculating the formula 
for Sk(n). He computed Bk for k I 30. 

As will be seen, the Bernoulli numbers play a fundamental role in con- 
nection with regularity of primes, and so I'll return to them repeatedly. The 
algebraic and arithmetic properties of the Bernoulli numbers are quite 
fascinating and the literature about them is very extensive. 

One of the main theorems about Bernoulli numbers was communicated 
by von Staudt to Gauss. The proof was published by von Staudt, in 1840, 
just after Clausen published the statement of the theorem. This theorem 
gives the exact value of the denominator of any Bernoulli number. 

(2D) If k 2 1, then 

There are numerous proofs of this theorem, for example: Hardy and 
Wright give the proof by Rado (1934). 

Write 

N2k 
B2, = - with D,, > 0, gcd(N2,,D2,) = 1. 

D2k 

Then D2, is square-free and a prime p divides D2k if and only if p - 11 2k. 
In particular, 61 D2, (for every k 2 1). 

Moreover, it follows also that if p - 112k, then: 

pB2, = - 1 (mod p). (2.12) 

Another congruence which may be established is the following: 

(2E) For every integer m 2 2, 

mN2k DzkSzk(m - 1) (mod m2). (2.13) 

To make this precise, if p is any prime number, a rational number alb 
(with a, b integers, b # 0, gcd(a,b) = 1) is said to be p-integral if p does not 
divide b. If moreover, p divides a, then p is said to divide alb. If alb, c/d are 
rational numbers, then alb = c/d (modp) when p divides (alb) - (cld). The 
properties of such congruences are analogous to those of the ordinary 
congruences of integers. 

So to say that p divides the Bernoulli number B2, = N2,/D2, means that 
p 1 N,, (and of course p y D,,, hence p - 1 ,/' 2k). 

Though it is completely known which primes divide the dominator of 
Bernoulli numbers, it remains almost a complete mystery to predict which 
primes divide N,,. Yet, according to the next regularity criterion of Kummer 
(1850) this is precisely what matters. 

(2F) p divides h* (that is, p is not a regular prime) if and only if p divides the 
numerator of one of the Bernoulli numbers B2,  B,, . . . , Bp- 3. 

PROOF. By (2.13) (with m = p) and by (2A), p divides h* if and only ifp2 divides 
pN2,, (where 2 I k I p - 3), that is, if and only if 0 

The situation now has been much improved. It suffices to determine the 
Bernoulli numbers with indices up to p - 3, by means of the recurrence 
relation (2.5), and to determine whether their numerators are multiples of p. 
The only problem lies in the fact that as the index grows, so does the numer- 
ator of the corresponding Bernoulli number-in a rather dizzying way. 

For example 
2577687858367 

B34 = 6 

which is still manageable. However, the numerator of B,,, already has 250 
digits. And in conjunction with Fermat's problem, the computations have 
been pushed much further ahead, requiring further developments of the 
theory of Bernoulli numbers. 

Right now, I only wish to say that Kummer discovered that 37,59,67 are 
the only irregular primes less than 100 (in 1850, 1851). Later in 1874, he 
showed that 101, 103, 131, 149, 157 are the irregular primes less than 164. 

For example 37 ( B 3 , ,  59(B4,. As for p = 157 it divides both B6,  and B,,,. 

3. Various Arithmetic Properties of 
Bernoulli Numbers 

As I have already intimated, a deeper study of the divisibility properties of 
Bernoulli numbers is essential, because the absolute value of their numer- 
ators grows very rapidly. 

This follows from a celebrated formula by Euler, connecting the Bernoulli 
numbers and the values of Riemann's zeta-function at even positive integers. 
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First, Euler established the series development of the cotangent function 
(for z a complex number, lzl < 7c): 

1 X 1 
cotz = -  22 1 

z n =  n27c2 - z2 

Because of the absolute convergence of the series, the order of summation 
may be interchanged, yielding: 

cot z = 1 - 2 1 ((2k) r---. 
Z k = l  7c2k 

From this, it follows: 

2(2k)! B 2 k  - ( - l ) k - l _ _ _  - 
( 2 7 ~ ) ~ ~  

1(2k) (for k 2 1). 

Thus, knowing the Bernoulli numbers is essentially equivalent to knowing 
the values of the Riemann zeta-function at the positive even integers-a 
point which is worth stressing. 

Often quoted are the special cases: 

For k sufficiently large, ((2k) may be easily computed to a high degree of 
accuracy. Since the fractional part of B2, is known, by the theorem of von 
Staudt and Clausen, B2, may be determined with an error less than $. This 
method has been used in the past to build tables of Bernoulli numbers, but 
has its own limitations, since the series for 5(2k) converges very slowly. 

From (3.3) it is seen that B2, > 0 if and only if k is odd. It is also seen with- 
out difficulty that the sequence IB2,1 is strictly increasing (for k 2 4). 

By means of Stirling's formula: 

n! - f i  e-nnn+f (3.4) 
it follows that 

* 
and also that for every M 2 1 

1B2kl - lim ---- - 
k +  5 (2kIM 

All this shows how hopeless is the exact determination of the numerator 
N,,, except for rather small values of 2k. 

One of the most useful congruence properties of Bernoulli numbers was 
already discovered in 1851 by Kummer himself. He had the idea of con- 

3. Various Arithmetic Properties of Bernoulli Numbers 

sidering the function 

B2k f (2k) = -- 2k modulo p, 

defined for integers 2k such that p - 1 y2k. Note that in this case, by the 
theorem of von Staudt and Clausen, B2,/2k is p-integral and it is possible 
to consider its residue class modulo p. 

Kummer showed that the function f  has period p - 1. Explicitly: 

B 2 k + p - l  B2k 
= -- (mod p). 

2 k + p - 1 -  2k 

This is nothing but a special case of the following more general con- 
gruence, also proved by Kummer: 

(3A) Let n 2 1 and k be integers such that 2k 2 n + 1. If p is an odd prime 
and if a is an integer, p y a ,  then 

In particular, - 0 (mod pn). 
j = O  

Concerning the divisibility properties of the numerators of the Bernoulli 
numbers, one of the earliest results is attributed to Adams (1878). In fact, 
he only proved a special case of a theorem previously stated by Sylvester 
(1861). The first proof of Sylvester's theorem is due to Glaisher (1900): 

(3B) I f  p $ D m  i f  2k = p'r, with t 2 1, and if p$r, then ptl N,,. 

Letting B2,/2k = N;,/D;, with D;, > 0, gcd(N;,,D;,) = 1, it follows: 

(3C) If p is a prime, then p 1 D2, if and only if p ID;,. 

In 1845, von Staudt determined some factors of the numerator N,,. Let 

2k = k,k2 with gcd(k,,k2) = 1 (3.10) 

such that I k2 if and only if I D,,. von Staudt proved: 

(3D) With abotle notation: k, IN2,. 

This theorem however does not help to determine whether a prime p 
divides N2, for 2 I 2k I p - 3, since it only pinpoints factors k, I k. 

The following irregularity criterion appears already in Vandiver's paper 
of 1932, though it is not stated explicitly as a lemma or theorem. It was found 
again by Montgomery in 1965; see also Carlitz, 1954. 
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(3E) A prime p is irregular if and only if there exists an integer k such that 
p diuides N2,/k1 (where k, was defined in (3.10)). 

PROOF. AS an illustration, I give this proof. If p is irregular, then there exists 
k, 1 I k I (p - 3)/2 such that PIN,,. But p$ k,, so ~ ( ( N ~ ~ / k l ) .  

Conversely, sincep I N,,, then p ,/' D,, so p - 1 )f 2k. Let 2k = 2h (modp - 1) 
with 2 I 2h I p - 3. By Kummer's congruence B2,/2k - B2,/2h (mod p). So 

N 2 k  2h - D2h - k2N2hD2k (mod p). 
kl 

Since p 4 D,,, p I( k,; by hypothesis, PIN,, and so by Kummer's regularity 
criterion, p, is an irregular prime. 0 

4. The Abundance of Irregular Primes 

In 1847 Kummer did not know whether every prime is regular. But in 1850 
and 1851, he discovered that 37,59,67 are the only irregular primes less than 
100. In 1874, he extended his computations up to 164. At that time and based 
on probabilistic arguments (which he himself regarded as doubtful), Kummer 
advanced the conjecture that asymptotically there should be as many regular 
as irregular primes. 

Today, with extensive tables, it has been observed that the ratio 

number of irregular primes less than N 
number of primes less than N 

is about 0.39 when N is large. I'll return to this point at the final part of this 
lecture, in connection with a heuristic prediction of Siegel. 

Despite the observed plurality of regular primes, it has not yet been shown 
that there exist infinitely many regular primes. 

On the other hand, quite surprisingly, Jensen proved in 1915 that there 
are infinitely many irregular primes. I give below a proof which is due to 
Carlitz (1954): 

(4A) There exist infinitely many irregular primes. 

PROOF. Let p,, . . . , p, be irregular primes. Due to the growth of I B , , ~  with k, 
there is an index k such that 2k is a multiple of (p, - 1) . . . (p, - 1) and 
IB2kl > 2k. Let JB2,)/2k = a/b with a > b 2 1, gcd(a,b) = 1. 

Let p be a prime dividing a. I show that p$ D,,. Indeed, from 

IN2klb = 2kD2ka and pl a, p$ b 

it follows that p 1 N,,, SO p,/' D2k. 
Let 2k = k,k, as in (3.10). Then by (3D) 

b = k2D2,a. 
k, 

5. Computation of Irregular Primes 107 

It follows that p divides N2,/k1. By the Vandiver and Montgomery irregu- 
larity criterion, p is irregular. Since p - 1 $2k (by the theorem of von Staudt 
and Clausen) p is distinct from p,, . . . , p,. 0 

As a matter of fact, Jensen had proved more, namely: 

(4B) There exists an infinite number of irregular primes p such that p r 3 
(mod 4). 

His ingenious proof, written in Danish, was made a available in English 
by Vandiver in 1955. 

Jensen's result was the object of several generalizations. In 1965, 
Montgomery proved that if m > 2, there exist infinitely many irregular 
primes p such that p $ 1 (mod m). 

In 1976, Metsankyla published the following result, which had been 
obtained independently in 1975 by Yokoi, for m prime: 

(4C) Let m > 2, let G be the group of invertible residue classes modulo m. 
If H is any proper subgroup of G, there exist infinitely many irregular primes 
p such that p modulo m is not in H. 

Up to now it is not known whether, given m > 2, there exist infinitely 
many irregular primes p such that p r 1 (mod m). Montgomery conjectures 
that this is indeed true. But the only available result in this direction is due 
to Metsankyla (1971): 

(4D) There exists an infinite number of irregular primes p such that p 1 
(mod 3) or p E 1 (mod 4). 

5. Computation of Irregular Primes 

To  determine whether a prime p is irregular requires the computation of the 
residues modulo p of the Bernoulli numbers B2, for 2 I 2k I p - 3. Due to 
the size of the numbers involved, it is essential to derive congruences which 
reduce the amount of calculation. 

A very general congruence for the sums S,(n) was discovered by Voronoi 
(1889). It is reproduced in the book of Uspensky and Heaslet (1939) and it 
was rediscovered by Griin in 1940. 

m- 1 

(a2k - 1)S2,(m - 1) m 2kmazk-I C j z k - 1  ?! 
j =  1 

[i] (mod m2) (5.1) 

and 
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One of the various applications of Voron0.i'~ congruences is to derive a 
simple proof of the follcwing congruence of Vandiver (1917, and an easier 
proof in 1937): 

(5B) Let P be an odd prime, k 2 1, and a 2 1, such that a < p and p - 1 does 
not divide 2k. Then 

a - 1  

(1 - aik)B2, - 2 k a Z k 1  1 S2k-1 ([$I) (modp). 
j =  1 

I will now show how Stafford and Vandiver derived in 1930 some in- 
teresting congruences for B,,. They are very useful in determining whether 
a given prime is regular. 

(5C) If p is a prime, p 2 7, k 2 1, and p - $2k, then 

Note that the sum in the right-hand side is only for j between p/6 and p/4, 
which is a relatively small range. 

In 1954, Lehmer, Lehmer, and Vandiver made use of (5.4) to determine 
whether a given prime p is regular. By Kummer's regularity criterion, this is 
equivalent to p )( B,, for 2 I 2k I p - 3. If p does not divide 

S2k = C jZk-l> 
pi6 <j<p/4  

then also p $ B,,. Again, if p 1 S,,, but p does not divide 

gp-zk - 4~-2k - 3p-2k + 1, then P~B,,. 

No conclusion may be drawn if p1S2, and p16P-2k - 4J'-2k - 3p-2k + 1. 
In this situation, the same method may be applied (up to now with success) 
to one of the following congruences, which were also proved by Vandiver 
in 1937: 

(5D) I f  P is a prime, p 2 5, k 2 1, and p - 1 I( 2k, then 

The evaluation of the residues modulo p of the sums in the right-hand 
side is laborious, but may still be carried out by computer for quite large 
values of p. 

5. Computation of Irregular Primes 

None of the above tests is theoretically assured to work. 
E. Lehmer proved in 1938 the following congruence: 

which is valid when 2k f 2 (mod p - 1). 
Carrying out the computation of the sum modulo p2, it it is congruent to 0, 

then B2, and conversely. The major inconvenience with the above sum is 
that j runs from 1 to (p - 1)/2. 

After the original computations of Kummer, the irregular primes up to 
617 were determined with desk calculators by Stafford and Vandiver (1930) 
and Vandiver (1931, 1937). 

With the advent of electronic computers this program was extended by 
Lehmer, Lehmer, and Vandiver (in 1954) up to 4001, and then by various 
authors (Selfridge, Nicol, Pollack, Kobelev, and Johnson) up to 30000. 
Finally in 1976 with the IBM 360165 and 370, Wagstaff determined all the 
irregular primes less than 125000. 

In the recent computations, especially those of Johnson and Wagstaff, 
much more numerical data has been accumulated, which 1 will now explain. 

If p is a prime, if 2 I 2k I p - 3 the couple (p,2k) is called an irregular 
couple if pl B,,. 

The index of irregularity of p, denoted ii(p), is the number of irregular --- 

couples (p,2k), where 2 I 2k I p - 3. Thus p is regular when ii(p) = 0. 
For every N > 1 and r 2 1, let n,(N) = # (p < N(ii(p) = r). Let also 

nl(N) = # {p I N lp is irregular) 
and 

n(N) = # (p prime, p < N). 

I summarize the results obtained by Wagstaff, which he kindly com- 
municated to me: 

For N = 125000: 
n(N) = 11734 

d(N)  = 4605 

n2(N) = 875 

n3(N) = 153 

7~4(N) = 16 

n5(N) = 2 
( N )  = 0 for r 2 6. 

Moreover , 

All the irregular couples (for p I N) have been completely determined. 
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Two pairs of "successive" irregular couples were found: (491,336), (491,338) 
and (587,90), (587,92). 

If h > 1, no successive irregular couples (p,2k), (p, 2k + 2), . . . , (p, 2k + 2h) 
were ever found. 

Such occurrences of successive irregular couples turn out to be important 
in the light of other theorems which I will explain in a later lecture. 

No prime p was found such that pZ divides some B,,. 
Among the open questions, I single out: Given s 2 1, do there exist 

infinitely many primes p such that ii(p) = s? Similarly, if s 2 2 do there exist 
infinitely many primes p such that ii(p) 2 s? This is only known to be true 
for s = 1 (Jensen's theorem). 

According to a heuristic argument of Siege1 (1964) 

n'W) - 1 lim ---- - 1 - - 2 0.39. 
N - a  n(N) 4 

This is very close to the observed distribution of irregular primes. His argu- 
ment may be extended and yields: 

This also agrees very closely with the observed values. 
In a letter to Serre, Shanks wrote (3 December, 1975): 

. . . one does have 

as one should. But this implies, and I do not know whether anyone has noted 
it earlier, that 

So, among the n(N) - 1 odd primes I N  one should expect about 

pairs of irregular primes and the Bernoulli numbers they divide [=irregular 
couples]. Here is recent data of Wagstaff for N = lo5, n(N) - 1 = 9591 

k primes of index k 

0 5802 O x 5 8 0 2  
1 2928 1 x 2928 
2 728 2 x 728 
3 123 3 x  123 
4 8 4 x  8 
5 2 5 x  2 - - 

9591 4795 

Actually with N = 125000, the coincidence is not so accurate: 

while 1 x 3559 + 2 x 875 + 3 x 153 + 4 x 16 + 5 x 2 = 5842. 
Yet it would be worth while to prove (5.8) since "it would imply that 

F.L.T. is true for at least one-half of the primes." 
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LECTURE VII 

Kummer Exits 

After having established Fermat's theorem for regular prime exponents, 
Kummer continued his work, considering the first case for arbitrary prime 
exponents. He was able to derive congruences, involving Bernoulli numbers, 
which must be satisfied by any would-be solution. From these congruences, 
he derived specific divisibility properties about Bernoulli numbers. 

The results of Kummer were expanded and given another form by 
Mirimanoff, and more recently, extended considerably by Krasner. I will 
explain these more recent results in my next lecture. 

As in his preceding work, Kummer began by breaking new ground in the 
theory of cyclotomic fields. This is what I will consider first. 

1. The Periods of the Cyclotomic Equation 

I will use the following notations: 

p = odd prime 
[ = primitive pth root of 1. 

@,(x)=xP-~ + X P - ~  + . .  . + X + 1 cyclotomic polynomial 
A = 1 - [  

K = Q([) = cyclotomic field, of degree p - 1. 
A = Z[[] = ring of cyclotomic integers 
g = primitive root modulo p 
G = Gal(K I Q) = Galois group of the cyclotomic extension 
cr : [ 19 generator of G 

Gauss introduced the periods of the cyclotomic equation. If f ,  r are 
integers, p - 1 = fr, the r periods o f f  terms (relative to the primitive root 
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g modulo p) are the cyclotomic integers qo, ql, . . . , q,- defined by 

qo = [ + p" + p2* + . . . +p(f -'Ir, 

q l  = 5 9 + p 7 r + 1  +p2v+1 + . . . +  jg(f-l)r+l 9 

(1.1) 

Note that 

For convenience, if j r jo (mod r), 0 5 jo I r - 1, I also define qj  = qj,. 
The periods are conjugate to each other: 

In particular, ar(qi) = qi (for i = O,l, . . . ,r - 1). So the fields Q(qo), 
Q(q ,), . . . , Q(qr- ,) are conjugate over Q. But K 1 Q is a cyclic extension, so 
Q(qo) = . . . = Q(a- 

This field will be denoted by K'. It is the subfield left invariant by the 
subgroup of G generated by or, and [K :Kt] = f ,  [K' : Q] = r. 

Let A' be the ring of integers of K'. 
In his papers of 1846,1847, and 1857, Kummer proved the following facts: 

(1A) (qo,ql, . . . ,qr- is an integral basis of A'; in particular A' = 

z [ ~ o , ~ l ,  . .  .?qr-ll .  

However, it is not true, in general, that Z[qo] = . . . = Z[qr- ,] = A' 
Secondly, he showed also: 

(1B) A is a free A'-module with basis {l,[, . . . ,rf -I}. That is, every algebraic 
integer a E A is, in unique waj, of the form 

where cr; E A' ( j  = O,l, . . . , f - 1). 

Let 
r - 1  

F(X) = n ( X  - ~ J E  Z[X]. 
i =  0 

Kummer studied the congruence 

F(X) = 0 (mod q), (1.5) 

where q is any prime. 
I should say, at this time, that in his paper of 1846, Kummer made a 

mistake in his study; however, in 1857, he gave a correct proof the theorem 

which follows (see comments by Weil, in volume I of Kummer's Collected 
Works). In 1975, Maury presented a corrected proof of Kummer's result in 
today's language. 

(1C) Let q be any prime, let fr = p - 1. If Q is any prime ideal of A dividing 
Aq, then for every period qk (0 I k 5 r - 1) there exists a unique integer u,, 
0 I uk I q - 1, such that qk -- uk (mod Q). In particular 

r - 1  

F(X) s k = ~  n (X - uk) (mod 9). (1.6) 

I wish to stress that the numbers uo, u,, . . . , ur-, need not be distinct, for 
example, they are certainly not when q < r. 

If q is a prime different from p, then it is unramified in K, that is, Aq is the 
product of distinct prime ideals: 

Let fr = p - 1, let qo, ql, . . . , ql- be the r periods off terms and K' = 

Q(qo) = . . . = Q(qr- A' = Z[qo, . . . ,qr- Then A'q is also the product 
of r distinct prime ideals in A', each having degree 1 : 

A'q = QbQ;. . SQi-1, 

A'/Qi = F, ( i  = OJ, . . . ,r - 1). 
(1.8) 

The numbering is such that 

AQI = Qi (for i = O,l,. . . ,r - 1). 

2. The Jacobi Cyclotomic Function 

Another tool in Kummer's research was the generalization by Jacobi of 
Gauss's and Lagrange's resolvents. These were quite essential in studying 
the question of solution by radicals. 

Besides the notation already introduced, 1 shall fix the following: 
Let q be an odd prime, q # p, and 

h = primitive root modulo q, 
p = primitive qth root of 1, 
0 = primitive (q - 1)th root of 1. 

If t is not a multiple of q, there exists a unique integer s, 0 I s I q - 2, 
such that t - hs (modq). s is called the index of t, relative to h, and denoted 
s = ind,(t), or simply, s = ind(t). Thus ind(1) = 0, ind(- 1) = (q - 1)/2. 
Clearly, if t r tt(mod q), then ind(t) = ind(t'). Also 

ind(ttl) r ind(t) + ind(tf)(mod q - 1) when q 4 tt' 
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The Lagrange resolvents are sums of the form: 

Jacobi considered in 1837 (in a paper reprinted in 1846) the analogous 
sums when q r 1 (mod p). Let q = pk + 1, so k is an even integer. If m, n are 
integers, p$ n, q $ m, the Jacobi resolvents are 

Clearly (P ,pm)  belongs to the ring of integers of Q([,p). 
The Jacobi cyclotomic functions are defined as follows: If 1, n are integers, 

P A' n, let 
q - 2  *l(gn)  = C i"[indh(t) - ( 1  + l ) indh( t  + l ) l  

i = 1  
(2.3) 

Then ll/,(r) is an integer of Q([) .  
Note that Q([,p) is a Galois extension of Q([).  Let 8 be the automorphism 

of Q([,p) such that 8( [ )  = cg, 5 (p)  = p. 
I'll now list various properties of these sums and of the Jacobi cyclotomic 

functions. 

a. ([",pm) = (Pp ) [ - "  ind(m). 

b. ( i , ~ ) ~  and 8 ( i , ~ ) l ( i , p ) ~  belong to Q ( 0 .  
c. ( [ , p )  ([- ' , p )  = q. In particular ( i , p )  # 0. 
d. If 1 is any integer such that p $ 1 + 1, then 

The proof of these properties is of course somewhat laborious, but involves 
no essential difficulties. Most useful is the expression of ( [ , P ) ~  given in (e). 

The main result of Kummer concerns the decomposition into prime ideals 
of the ideal of A = Z [ [ ]  generated by ( [ , P ) ~ .  A preliminary result is the 
following: 

(2B) If q = kp + 1 and if Q = Aq + ~ ( h ~  - [), then Q is a prime ideal with 
norm q and Aq = nf'~; oi(Q). 

Now let 7~ = ( p  - 1)/2 and for every integer k let gk be the unique integer 
such that 1 I gk < p - 1 and gk = gk (mod p). If k < 0 this is to be understood 
as g k g - k  = 1 (mod p). 

In 1857, Kummer proved: 

(2C) If 1 I d I p - 2, let 

This was the main basic result of Kummer concerning the Jacobi re- 
solvents. It was generalized by Stickelberger in 1890, who allowed any 
natural number m 2 3 in place of p, with q prime, q r 1 (mod m). 

As an immediate corollary: 

(2D) If Q ,  is a prime ideal of degree 1 of K = Q([),  then 

is a principal ideal. 

The virtue of the above result is to produce a principal ideal. 

. On the Generation of the Class Group of 
the Cyclotomic Field 

In 1847, Kummer proved a theorem about the generation of the class group 
of the cyclotomic field. Later, with analytic methods, Dirichlet strengthened 
Kummer's result in a very substantial way, by proving the density theorem. 
From this result, he was able to prove the celebrated theorem on primes in 
arithmetic progressions. 

Kummer's results were: 

(3A) The group of ideal classes of the cyclotomicfield is generated by the 
classes of prime ideals of degree 1. 

As I said above, much more is true, but I'll comment later about it. 
With this result and all those indicated before, Kummer proved the 

following result, which enabled him to produce principal ideals from any 
given ideal J :  

(3B) If f I d I p - 2, for every ideal J of A, the product ni,,, oi(J)  is a 
principal ideal. 
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To convey an idea how the preceding results unite to establish this one, 
I will briefly sketch the proof. 

PROOF. By (3A), J is in the same ideal class as a product of prime ideals Qj 
of degree 1 : 

Let N(Qj) = qj, so qj - 1 (modp) because the inertial degree of Qj is the 
order of qj modulo p. Let qj = kip + 1 and let QT = Aq, + A(hF - [), where 
hj is a primitive root modulo q j  By (2B) 

so Q j  is conjugate to QT, say QT = ojy(Qj), where 0 5 j* i p - 2. 
BY (2.5) 

/ \ 

is a principal ideal of A. Hence 

is also a principal ideal of A. 0 

The strengthening of (3A) done by Dirichlet asserts that in every ideal 
class there is, not only one prime ideal of degree 1, but in fact, infinitely many 
such. Even more, these ideals have a positive density. But I'll not elaborate 
on this point. 

4. Kummer 's Congruences 

Having proved Fermat's theorem for regular exponents, Kummer next 
considered arbitrary exponents. Initially, he dealt only with the first case. 

A preliminary result in the line of Kummer's research was obtained by 
Cauchy in 1847. Let p be an odd prime. 

(4A) If p does not divide the sum: 

then thejirst case of Fermat's theorem holds for the exponent p. 

As Genocchi pointed out in 1852 (and again in 1866), the above sum is 
related to a Bernoulli number: 

and Cauchy's result may be rephrased: 

(4B) If the jirst case of Fermat's theorem fails for the exponent p then p 
divides B,-,. 

Kummer extended this criterion, as a consequence of his congruences. 
This is what I shall now explain. 

Assume that x, y, z are relatively prime integers such that pI f  z and 

Then 

As I have indicated in my fifth lecture, prior to proving Kummer's main 
theorem, there exist pairwise relatively prime ideals L, J of A such that 

Then 
A(x + cgky) = ( O ~ ( J ) ) ~  for k = 0, 1, . . . , p - 2. (4.4) 

Taking norms in the extension Q(()l Q, (x + ylP-l = lP, where N(L) = 1. 
Then x + y has to be the pth power of an integer, x + y = tP, and L = At. 

By (3B), for each d, 1 5 d I p - 2, the ideal niCI, c i ( J )  is principal, say 

Hence 

so there is a unit E of A such that 

&a$ = n (x + ply). 
i s I d  

(4.5) 

Let I:, = (i10 5 i i p - 2, i$ I,}. It is easy to see that if E I $  if and only if 
i' = i + 7c (modp), where i E I ,  and 7c = (p - 1)/2. Hence taking complex- 
conjugates - &a+ = (x + piy). 

i e I h  
(4.6) 

Multiplying (4.5) and (4.6): 

Hence EX is the pth power of a unit w:& = up. 
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Since E = im6, where 6 is a real unit, 2 = [-m6 so wP = d2 and therefore 
6 = (or6Yp, where sp + 2r = 1. 

In conclusion, n (X + ig"y) = imaP 
i € I d  

(4.7) 

with a = or6"ao E A. 
Since LY E A there exists a polynomial F(X) E Z[X], of degree at most 

p - 2, such that a = F([). Hence the polynomial 

vanishes at i .  So it is a multiple of the cyclotomic polynomial cPp(X) and I 
may write 

fl (x + xgiy) = Xm(F(X))P + cPp(X)M(X), (4.8) 
i € I d  

where M(X) E Z[X]. 
Look at the corresponding polynomial functions of the positive real I 

I 

variable t. Then 

Since t > 0, it may be written as t = e", where v an arbitrary real number. I a 

Hence n (x + eVgiy) = P"(F(e"))P + cPp(eu)M(e") 
i s l d  

Note that x, y and the coefficients of M(X), F(X) may well be negative 
integers. So, taking the logarithms of both sides of (4.9) it is necessary to 
consider the complex logarithmic function; this leads to an equality up to 
some multiple of 2ni, which will be irrelevant, after taking derivatives: 

x log(x + eugiy) = mu + p log F(eu) 
i c  I d  

[ 3g;:?] + Zkni (where k E Z). (4.10) + log 1 + 

The following notation will be used. If G(v) is a differentiable function of 
v, let DnG(v) be the value of dnG(v)/dvn at  v = 0. 

One might wonder, at this point, how Kummer could untangle himself 
and still reach some worthwhile conclusion from (4.10). But, with his mastery, 
nothing should astonish us anymore. What he succeeded in proving (1857) is: 

(4C) Assume that p is an odd prime, x, y, z are relatively prime integers, p 
does not divide z and xP + yP + zP = 0. Then the following congruences are 

4. Kummer's Congruences 

satisfied: 
[ D P - ~ ~  log(x + euy)]B2, = 0 (mod p) 

f o r 2 s = 2 , 4  ,..., p - 3 .  
Similar congruences hold when x and y are interchanged. 

PROOF. Since the proof of this theorem is quite long, I have to restrict myself 
and only provide a sketch of its main points. 

(a) If n = 2, . . . , p - 2, then 

1 Dn log(x + eVgiy) - 0 (modp). (4.1 1) 
i e Id  

For this purpose, one computes the value at v = 0 of the nth derivative 
of the right-hand side of (4.10). For example 

where H is a polynomial with coefficients in Z and p does not divide F(1), 
as may be seen without difficulty. 

For the last term one proceeds in a somewhat similar manner. 
(b) [D"og(x + e"y)](Ci,Id gni) - 0 (modp). This follows at once from (a). 
Let S = xis,, g(P-2S)i. In order to evaluate the residue of S modp, various 

facts have to be proved. 
( 4  

1 1 when i E Id, 
-[gn-i + gn+indg(d)-i - gz+indg(d+ 1)-il = { 
P 0 when i $1,. 

Indeed, the number in brackets is congruent to gn-'(1 + d - (d + 1)) - 
0 (mod p). From this, it is easy to establish the assertion. Hence 

= 1 (p- 2s)i 
n - i + ind,(d) - gn - i + indg(d+ I)& . 

i = O  P 

Since gP E g (mod p), 

where 

This is easy tp prove. It follows from (4.12) that 
P-2 

pS = - [I + dp@- ") - (d + 1)p(p-2s)1 [ g- 2s)i (mod (4.14) 
i = o  I 
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Writing g P i  = k, the above congruence, becomes 
P-  1 

pS - 1 + 2 - ( +  ) P P ~ ' ) ] [ ~  kl'P'2'1) 
k =  1 

1. (4.15) 

Let 1 + p(2s - 1) = 2m. Then, as I have indicated in Lecture VI, 

From the theorem of von Staudt and Clausen, the denominator of a 
Bernoulli number is square-free. Hence 

Szrn(p - 1) E B2,p (modp2) (4.17) 
and 

S = - [l + dP- 2s - (d + 1 ) ~ -  2S]B2m (mod p). (4.18) 

But 2m = 2s + (p - 1)(2s - 1). By Kummer's congruence (explained in 
Lecture VI, Formula (3.7)) 

Hence 
B2s B2s B2, = [I + p(2s - I)] - = - (mod p). (4.19) 
2s 2s 

From (b), written for n = p - 2s (2s = 2,4,. . . ,p - 3) and (4.18), (4.19), 
it follows that 

[Dp- " log(x + evy)] [1 + dp-2s - (d + I ) ~ - ~ ' ]  5 0 (mod p). (4.20) 
2s 

(e) Conclusion. The polynomial 1 + XP-2S - (X + 1)P-2s is not identically 
zero and has degree p - 2s - 1 < p - 2. So there exists d, 1 I d I p - 2, 
not satisfying 

1 + XP-2s - (X + l)p-2s = 0 (modp). 

From (4.20), it follows that I may divide by 1 + dp-2" (d + l)p-2S (for 
this choice of d), hence: 

From this, the congruences of Kummer follow immediately. 

If XP + yP + zP = 0 and p does not divide x, y, z, then the congruences of 
Kummer hold also for the pairs (x,z), (z,x), (y,z), (z,y). 

By computing the derivative explicitly, it is easily seen that 

where Rj(X,Y) is a homogeneous polynomial, with coefficients in Z, of 
total degree j, which is a multiple of Y. 

Moreover, it has the following properties. If j > 1, then Rj(Y,X) = 

(-  l)jRj(X,Y) and if j is odd, j > 1, then XY(X - Y) divides Rj(X,Y). 
Writing Y = X T  and Pj(T) = Rj(l,T) gives Rj(X,Y) = XjPj(T). 
With these notations, Kummer's congruence may be easily rewritten as 

follows : 

{ 
x y x z y z  tE  - - - - - -  
y' x'  z' x' z' y I 

then 
Pp- ,,(t)B2, = 0 (mod p). 

This is a more useful form of Kummer's criterion; instead of derivatives, 
it makes use of the values of certain polynomials. 

In order to apply this criterion, it is important to compute these poly- 
nomials. For example, for small indices: 

Pl(T) = T, 
PATI = T, 
P3(T) = T(l - T), 
P,+(T) = T(l - 4T + T2), 
P5(T) = T(l - T)(1 - 10T + T2), 
P6(T) = T(l - 26T + 66T2 - 26T3 + T4). 

The first application by Kummer of his criterion was the extension of the 
results of Cauchy and Genocchi: 

(4E) I f  xP + yP + zP = 0, with p$ xyz, then p divides both Bp-, and Bp- ,. 
PROOF. Assume that R,(a,b) = 0 (modp) where a, b are distinct, and a, b E 

{x,y,z). Then P,(t) = 0 (modp), where t = a/b (note that p$xyz). Hence 
p ( a  - b, that is, a = b (mod p). For the various choices of a, b, this yields 
x - y = z (mod p). Hence 

and because p # 3, it follows that p 1 x, against the hypothesis. Thus, for some 
a, b necessarily P,(t) f 0 (mod p). So, taking 2s = p - 3, it follows from (4D) 
that Bp - , = 0 (mod p). 

The proof that Bp- = 0 (mod p) follows similar lines, and is just a little 
bit more involved. 0 
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There have been various proofs of other criteria, analogous to those of 
Kummer's. See, for example, Vandiver (1919). In 1922, Fueter was able 
to again prove Kummer's congruences using only methods developed in 
Hilbert's Zahlbericht. Let me add that this didn't make matters any easier! 

5. Kummer's Theorem for a Class of 
Irregular Primes 

In his memoir of 1857, Kummer proved a theorem which establishes the 
truth of Fermat's last theorem for certain irregular exponents. To arrive at 
this theorem, Kummer investigated thoroughly the structure of the group 
of units of the cyclotomic field. He also used i-adic logarithms. However, 
while Kummer's results were ultimately correct, there were several important 
gaps and mistakes in his proof. These were pointed out initially by Mertens 
in 1917. Vandiver clarified the doubtful points and provided rigorous proofs 
(1920, 1922, 1926, 1926). 

I keep the same notation as before. If a E A, then a = a, + a,[ + . . . + 
ap-2[P-2 with ai E 27. 

Associated with a, let a(x) be the function of the real variable x, defined by 

Thus a( [ )=a ,  a ( l ) = a o + a ,  + . . . +  a,-,. Since i . = l - [ ,  a r  
a(1) (mod A;,). If a $ Ai., then a(1) is not a multiple of p. 

Let v, be the A-adic valuation of K ;  it is the one associated to the prime 
ideal Ai. Then 

Extending v, to the completion K of K (with respect to the topology 
defined by v,) Kummer considered the i-adic logarithmic function (1852): 

Eisenstein also had considered the i-adic logarithmic function in 1850. 
In 1851, Kummer also considered the function 1'" (for s = 1,2, . . . ,p - I) 

defined as follows. If t is a real variable, a E A\Ai, then: 

d" log a(et) 

t = o  

P ( a )  is a p-integral rational number. 

The generalized concept of index was introduced by Kummer in 1852. 
Let q be a prime, q # p, let Q be a prime ideal of A dividing Aq, with norm 

N(Q) = qf. Let cc E A\Q. Then it is clear that ccqf-' s 1 (mod Q). Moreover, 
there exists a unique integer c, 0 I c 5 p - 1, such that 

c is called the index of a and denoted indQ(a) = c. 
The pth residue power character modulo Q is defined (for cc E A\Q) by: 

Among the properties, I note: 

Moreover {a/Q) = 1 if and only if there exists P E A\Q such that a r 
PP (mod Q). 

In 1852 Kummer generalized the Jacobian cyclotomic functions. First, he 
noted that if i is a given primitive pth root of 1, there exists p, a primitive 
root modulo Q (that is, the residue class of p modulo Q is a generator of the 
multiplicative group of the residue class field AIQ) such that 

Let q be an odd prime, q + p. For every k = 1, 2, . . . , p - 1 and every 
integer j, let 

q f - 2  

$j(ik) = 1 i k[indQ(pt + 1) -(j+ 1)tl 

t = O  
(5.5) 

t + (qf - 1)/2 

If q = 1 (mod p), that is, iff = 1, these functions are essentially the Jacobi 
cyclotomic functions, as defined in this lecture. 

Mitchell extended this definition in 1916 to also include the case where 
q = 2. 

Among the properties of the Kummer cyclotomic functions, I mention: 

If, j + 0, - 1 (mod p), then 

Iff is even, then 

Iff is odd, then 
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where rf = p - 1, a is the automorphism of K such that o(i) = ig, g a primi- 
tive root modulo p, 

and 

be one of the Kummer circular units (= Kreiseinheiten). Let 

for s = 1,2, . . . , ( p  - 3)/2. 
In 1852, Kummer computed the index of 0, in terms of the cyclotomic 

functions: 

g2, - 1 1 
indQ(8,) = --- 2 1 + j ~ - 2 s - ( j  + I ) P - ~ S  P" 2s)$j([) (mod p). 

Also, i f f  does not divide p - 2s, then indQ(B,) r 0 (mod p). 
Using this arsenal, Kummer studied Fermat's equation under certain 

working hypotheses. 
Assume: 

I*. The first factor h* of the class number of K is divisible by p but not by p2. 

The following result was assumed tacitly by Kummer; its first complete 
proof is due to Vandiver (1922): 

(5B) If Hypothesis (I*) is satisfied, then: 

1'. There exists a unique index 2s, 2 < 2s I p - 3, such that plB,,; more- 
over p2 ,/' B,,. 

Next, Kummer assumed : 

11. There exists an ideal J of A such that the unit 8, [corresponding to the 
index s of (If)] is not congruent modulo J to the pth power of any element 
of A. 

He proved : 

(5C) Let q be an odd prime, q # p, let Q be a prime ideal dividing Aq, and 
assume that Qh = Aa (h  is the class number of K). Under Hypothesis (1') and (11): 

where s is defined in Hypothesis (1'). 

If J = ny= Qi (where each Qi is a prime ideal not dividing Ap), let ind,(a) = 

zy= indQi(a). 
With this definition: 

(5D) If (1') and (11) are satisjed and if J is any ideal whose ideal class has 
order (in the ideal class group) not a multiple of p, then ind,(B,) - 0 (mod p). 

(5E) If (1') and (11) are satisjied and if J is any ideal such that JP = AN, 
a principal ideal, then J itself is a principal ideal if and only i f  

2S)(a) = 0 (mod p), 

[where s is dejinerl in ( I 1 ) ] .  

From all these results, Kummer concluded: 

(9) If (1') and (11) are satisjied, then p does not divide the second factor h+ 
of the class number. 

(5G) If (1') is satisjed and if p divides h', then the unit 8, [ for  the index s 
defined in (I1)] is the pth power of a unit of K .  

Kummer's proof of the next theorem was incorrect. But, thanks to 
Vandiver's work, (1926), it is now rigorously established: 

(5H) If (1') is satisfied, i f  a E A\AA and a is real, and i f  l("(a) E 0 (modp), 
then there exists a unit E such that EX 3 m (mod p), where m E Z. 

Let 

111. If s is given by (I1), then B,,, is not a multiple of p3. 

The following result was again put on firm ground by Vandiver: 

(51) If (1') and (111) are satisjed, i f  p does not divide h', and if E is any unit 
of K congruent modulo ~p~ to an integer m E Z, then there exists a unit E~ 

such that 6 = 4. 
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With these preliminary results, Kummer finally proved: 

(5J) If' the conditions (I*), (11), and (111) are satisjed, then Fermat's theorem 
holds for the exponent p. 

This theorem applied to the irregular prime exponents p = 37, 59 and 67. 
He verified by actual computation that the conditions (I*), (11) and (111) were 
satisfied. 

I should add that in 1893, Mirimanoff gave an independent proof of 
Fermat's theorem for p = 37. So, even discounting the inaccuracies of 
Kummer, Fermat's theorem was established without any doubt for the 
smallest irregular prime. 

6. Computations of the Class Number 

Kummer had made, all through his life, extensive computations of the class 
number of cyclotomic fields. In my sixth lecture, 1 have already briefly 
mentioned his findings about the irregular primes less than 164. As a matter 
of fact, not only did he determine whether a given prime p would or would 
not divide some Bernoulli number B2, (2 < 2s p - 3), but he actually 
determined the first factor of the class number, its factorization into primes 
(for all p < 164). All this was done without the help of any machine. And 
amazingly, a recent check by Newmann (who extended Kummer's table) 
in 1970, uncovered only three mistakes: p = 103, 139, 163. 

I think that it is instructive to reproduce Kummer's table (as amended by 
Newman), to give a better feel of the growth of the first factor. 

Prime p h*(p)  into prime factors 

6. Computation of the Class Number 

Prime p h*(p) into prime factors 

Other recent tables of h*(p) and their factors were compiled by Schnuttka 
von Rechtenstamm (up to 257) and by Lehmer and Masley (up to 521). 

I mentioned in Lecture VI the formula for the first factor of the class 
number, namely 

where q is a primitive (p - 1)th root of 1, G ( X )  = g j ~ j ,  g is a primitive 

root modulo p, 1 5 g j  I p - 1, and g j  r gj (mod p). Kummer has used this 
formula for his computations. However, for larger values of p, it is rather 
inefficient. Lehmer and Masley based the computations on the evaluation 
of the Maillet determinant. 

If p is an odd prime, and r is not a multiple of p, let R(r) denote the least 
positive residue of r modulo p. For every integer r, 1 5 r 5 p - 1, let r' be 
the unique integer such that 1 5 r' < p - 1 and rr' = 1 (modp). The Maillet 
matrix for p is 

MP = (R(rs') ),,, = 1, . . . , ( p  - 1 )/2. (6.2) 

Its determinant will be denoted by Dp.  
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The following formula was discovered by Weil, who did not publish it. 
Carlitz and Olson discovered it independently (1955): 

With this formula, h*(p) was evaluated by Masley, in the range indicated. 
Concerning the growth of h*(p), Kummer stated a very interesting con- 

jecture which is as yet unproved: 

(asymptotically as p tends to infinity). This conjecture has stimulated a 
number of deep recent investigations. I would like to mention some of the 
outstanding results obtained thus far, in this vein. 

In 1951, Ankeny and Chowla proved 

or equivalently 

log h*(p) = $(P + 3) log p - i p  log 27t + o(1og p). 

In 1964, Siege1 proved a weaker result: log h*(p) = log y(p) + o(p log log p). 
It follows that 

log h*(p) - f log p. 
4 

Computations by Pajunen in 1976 showed that for 5 < p s 641 : 

At the present, the best result is due to Montgomery and Masley (1976): 
If p > 200, then 

Despite the growth of h*(p), it is nevertheless bounded by some quite nice 
functions. In Lepisto (1974) and Metsankyla (1974) it is proved that 

In 1961, Carlitz gave the following other upper bound (which is ultimately 
weaker) : 

Ankeny and Chowla also proved in 1951 that there exists p, such that 
h*(p) is strictly increasing with p, for p 2 p,. It has been conjectured by 
Lepisto that p, = 19. The latest computations of Lehmer and Masley con- 
firm this conjecture up to 521. 

A fact that was long suspected and has now been established, is the 
following theorem, obtained independently by Uchida and Montgomery in 
1971. 

If the class number h(p) of Q([,) is 1, then p 5 19. 

Even better, if h*(p) = 1, then h+(p) = 1, so that h*(p) = 1 already implies 
p 1 19. 

I should say also that in his thesis (1972), Masley determined all the 
cyclotomic fields Q([,) (where m $ 2 (mod 4), without loss of generality) 
having class number 1 (see Masley and Montgomery, 1976). There are 29 
distinct such fields, namely, for m = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 
20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84. 

The little that is known about the first factor of the class number of 
cyclotomic fields seems immense when compared to what has been estab- 
lished about the second factor. 

It is again Kummer who proved, as I have stated in my sixth lecture: 
An odd prime p divides h(p) = h*(p)h+(p) if and only if p divides h*(p). In 
other words, if p 1 h+(p), then p 1 h*(p). 

As for the parity of the class-number factors, Kummer proved in 1870 
that if h*(p) is odd, then so is h+(p). 

In his computations up to 163, only h*(29), h*(113), h*(163) are even. 
However, he proved that hi(29) = 1, h'(113) is also odd, while h'(163) is 
even. He also established that h'(257) is divisible by 3, and that h'(937) is 
even. 

A method to produce cyclotomic fields with second factor greater than 1 
was invented by Ankeny, Chowla, and Hasse in 1965. It was based on a 
lemma by Davenport and uses class field theory. This is the lemma: 

If 1, m are positive integers, if m is not a square, and if the equation 

has solution in integers, then m 2 21. 

Next, it is shown that the class number H(p) of the quadratic field Q(&), 
where p = ( 2 q t ~ ) ~  + 1, q a prime, n > 1, is greater than 1. 

A comparison by means of class field theory of the field ~ ( 6 )  and the 
real cyclotornic field Q([, + [, ') yields the following result: 

If q is a prime, n > 1, and if p = (2qr1)~ + 1 is also a prime, then h+(p) > 2. 
In particular, for p = 257, 401, 577, 1297, 1601, 2917, 3137, 4357, 7057, 8101, 
h+(p) > 2. 
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A variant of the above result was presented by S.-D. Lang in 1977. He 
proved that if q is a prime, n 2 1, and if p = [(2n + l)qI2 + 4 is also a prime, 
then h+(p) > 2. This gives h+(229) > 2 and many more examples. 

Does this method provide infinitely many examples? This question is at 
least of the level of difficulty of the problem of Sophie Germain on the 
problem of twin primes. 
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LECTURE VIII 

After Kummer, a New Light 

I'll report on the work of Mirimanoff, inspired by the last of Kummer's 
papers. With his great ability, he refined Kummer's treatment for the first 
case and obtained new congruences. On the other hand, due to the difficulty 
in achieving these comparatively meager improvements, it was obvious that 
no further progress would be forthcoming along these lines. 

Then in 1909 came Wieferich. He discovered a criterion for the first case 
of an entirely different nature. 

His first proof was an enigma. Few people were able to understand how 
Wieferich succeeded, like a magician, in unravelling from very complicated 
formulas, so simple and beautiful a criterion as: 

If thefirst case fails for the exponent p, then p must satisfy the congruence 

2 P - '  = 1 (mod p2). 

Note that this condition is the first, in the history of Fermat's problem, 
which does not involve the would-be solutions x, y, z of X P  + YP + ZP = 0. 
Just the exponent, and as I'll show, it is a very stringent condition indeed. 

With every breakthrough, come the followers. In this case a distinguished 
group including Mirimanoff, Frobenius, Vandiver, Pollaczek, and 
Morishima. 

1. The Congruences of Mirimanoff 

In 1905, Mirimanoff transformed Kummer's congruences. I recall that 
Kummer showed: 

I f  x, y, z are relatively prime integers, not multiples of p, such that 
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XP + yP + ZP = 0, then 

[DP-2s log(x + eUy)]B2, E 0 (modp) (1.1) 

for 2s = 2,4, . . . , p - 3. Similar congruences hold by permuting x, y, z. 

Here D"f(v) denotes the nth derivative of f ( v )  computed at v = 0. 
As I pointed out, 

where Rj(X,Y) is a homogeneous polynomial with coefficients in Z and total 
degree j. 

I recall the properties of these polynomials. Putting Y = XT,  then 
Rj(X,Y) = XjPj(T), where Pj(T) has coefficients in Z and degree j - 1. For 
j > 1 and odd, T(l - T) divides Pj(T), so Pj(T) = T(l - T)Lj(T), and 
Lj(T) has degree j - 3. 

The congruences of Kummer become 

where 2s = 2,4, . . . , p - 3 and 

i x y x z y z  
- - - - - - 1. y' x'  z' x' z '  y 

Since xP + yP + ZP = 0 , x + y +  z r 0 (modp). 
If t = xly, then the elements of G are congruent modulo p, to those of the 

set 

In some special cases, H degenerates: If t = 1, or - 2, or - ) (mod p), then 
H = (1,-2,-)). If t2 + t + 1 = 0 (modp), then p = 1 (mod6) and H has 
only 2 distinct elements, In all other cases, H has 6 distinct elements. 

I note also that none of the elements in G may be congruent to 0 or to - 1 
modulo p. 

Mirimanoff's first result extended an earlier criterion of Kummer: 

(1A) I f  xP + yP + zP = 0 and p txyz ,  then Bp-, and B,-, are multiples 
of P. 

SKETCH OF THE PROOF. Since [D7 log(x + eUy)]Bp-, - 0 (mod p) (and sim- 
ilarly, for any permutation of {x,y,z)), it suffices to show that D7 log(x + eVy) 
(or that any of the derivatives obtained by such a permutation) is not con- 
gruent to 0 modulo p. 

Assume that this is false, so P,(t) = 0 (modp) for every t E G. As I men- 
tioned in my last lecture, P,(T) = T(l  - T)L,(T), where L,(T) has co- 
efficients in Z and degree 4. 

1 .  The Congruences of Mirimanoff 141 

If the elements of G are pairwise incongruent, they cannot all be roots of 
the congruence P7(T) = 0 (modp) (note that the elements of G are not 
congruent to 0 (mod p)). 

If the elements of G are congruent to those of (1, - 2, -31, then L,( - 2) - 0 
(mod PI. 

But 
L7(T) = 1 - 56T + 246T2 - 56T3 + T4. 

Hence p divides 7 x 223, so p = 223 (since 7 is excluded). 
Also, from the nahe approach mentioned in Lecture IV, 

(t + - tP + 1 (modp2) 
for any t E G. 

Hence, with t - 1 (mod p), it follows that 

2P = 2 (mod p2), 

where p = 223. This is not true, however: the order of 2 modulo 223 divides 
222 = 2 x 3 x 37, so it may be 2,3,6,37,74,111, or 222. All these cases do 
not lead to 2222 = 1 (m0d223~). 

There remains the case where t2 + t + 1 - 0 (mod p). Then p = 1 (mod 6) 
and also t $ 1 (modp), hence t is a root of L7(T) = 0 (mod p). But 

hence - 301t - 301 - 0 (mod p) and p divides 7 x 43 since t $ - 1 (mod p). 
Thus p = 43. But, 4p + 1 = 173 is also a prime. Hence from the Legendre 
and Sophie Germain criterion, the first case holds for p = 43, and p = 43 
is also excluded. 

A similar proof may be repeated for the 9th derivatives D9 log(x + eVy) 
and those obtained by permutation of x, y, z. It still works, but requires a 
more careful analysis. 0 

This method cannot be pushed further, without great pain since it leads 
to polynomials Lj(T) of degree greater than 6, when j 2 11. 

However, Morishima extended this result in 1932 to guarantee that if the 
first case fails for the exponent p, then Bp- , , and Bp- ,, must also be divisible 
by p- 

Later I shall describe a very powerful theorem of Krasner, along the same 
lines, but obtained through a totally different method. 

To derive Mirimanoff's congruences, it is necessary to study in more 
detail the polynomials Pj(T). The first property to note is 

(1.4) 

So, writing 
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it follows that 

aj,k = aj ,  j - k  for 1 < j, 1 I k I j - 1. (1.6) 

The computation of the coefficients aj,k (1 < k I j - 1) is done recursively. 
The following lemma, due to Euler, is needed: 

Lemma 1.1. Let t # 1 be any real number, let g(v) = 1/(1 + eut). Then the 
Taylor development of g around v = 0 is 

where 

cnvlt - cng2t2 + . . . + ( - l ) " - l~" , " tn  
C,(t) = - 

(1  + t)"+' 
and 

f o r h = 1 , 2  , . . . ,  n. 

With this lemma, the following may be shown, without much difficulty: 

T h e  coeficients of P j ( T )  are given by the formula: 

a .  = kJ-1 - 
~ . k  ( i l ) ( k -  l ) j l  ( k  2 ) '  + .  . . + - 1 - (  k - 1  j ) 

So the coefficients aj,, are the sums of the first k summands, computed 
for X = k, of 

d 
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Another fact about these polynomials is that GY-"(X) = 0. This is not 
difficult to show; the easiest proof makes use ofthe theory of finite differences. 

A somewhat involved algebraic manipulation leads to the following: 

Rewriting this as 

(1.10) 
the Mirimanoff polynomials are brought to light: 

So (1.10) can be rewritten as 

c p j ( ~ )  - ( I  - T ) ~ - ~ P ~ ( -  T )  (modp) (1.12) 

f o r j = 2 ,  . . . , p -  1. 
Due to their nice form, the Mirimanoff polynomials display many in- 

teresting properties. First, some obvious facts: 

cpl(T) = - Pp( - T )  (mod p). (1.15) 

Let r  be the following operator on polynomials of Q [ T ]  : 

Let T k  be the kth iterated operator of T (for k 2 1). Then: 

T(cpj) = c p j + l  (for j = 1, . . . ,p - I), (1.17) 

r((~p - 1 )  -- (P 1 (mod PI .  (1.18) 
Therefore 

r ~ ~ ( ( ~ ~ ) - ( ~ ~ ( m o d p )  f o r j =  1,2 , .  . . , p -  1. 



1 44 VIII After Kummer, a New Light 

Mirimanoff also considered the polynomials 

I)~(T) = pj(l - T)  for j = 1, 2, . . . , p. (1.19) 

I)~(T) has degree p - 1 and is a multiple of 1 - T. Moreover: Tp.-j divides 
t+bj(T) modulo p (for j = 2,. . . , p - 1) and $,(T) - TP-' - 1 (modp). 

Let A be the following operator on polynomials of Q[T] : 

dG 
A(G) = ( T  - I)-. 

dT 
(1.20) 

It follows at once that 

A($j) = $j+ (for j = 1, .  . . ,p - 21, (1.21) 

A(*,- 1) -- *l(T) (modp). (1.22) 

Further relations between the polynomials cpj(T) and $j(T) are the 
following : 

Taking T = - 1, then 

- 1  ( 1 ) -  P-1 2P - 2 1 ( -  l)J-ljp-2 - cpp- 1) - I-- (mod p). (1.24) 
j=1 j j= 1 P 

The explicit computation of $,- ,(T) gives: 

1. The Congruences of Mirimanoff 

As a corollary 

With this groundwork, Mirimanoff was ready to prove: 

(1B) If x, y, z are pairwise relatively prime integers, not divisible by the 
prime p > 2, and such that xP + yP + zP = 0, and if - t E G = {xly, y/x, xlz, 
z/x, ylz, zly), then the following congruences are satisjied: 

V(p+ 1)/2(t)(~(~- 1)/2(t) = 0 (mod PI. 

PROOF. Despite all the preparation, the proof is still long. So, I'll sketch its 
main points, trying to bring the main idea into view. To begin, the Kummer 
congruences 

Pp-,,(- t)B2, -- 0 (mod p) 

are satisfied for 2s = 2,4, . . . , p - 3. 
Since cpp - ,,(t) -- - (1 - t)P- ',Pp - 2s( - t) (mod p), 

cpp- z s ( W 2 ,  = 0 (mod PI. 

Setting j = 3, 5, . . . , p - 2 yields 

cpj(t)Bp- - 0 (mod p). (1.30) 

(a) cpp- '(t) = 0 (modp). For this, use (1.29): 

This leads, with some further work, to the congruence 

At this point, Mirimanoff introduced logarithms. He made the happy 
observation, which may be established by induction on j :  I f j  = 1,2,. . . , p - 2, 
then 

[log(l - T)]j r (- l)jj !+,- j(T) (mod TP, p), (1.27) 

where the congruence means that the coefficients of Tk (for k I p - 1) in 
both sides are congruent modulo p. This served as starting point to prove 
the following congruences: 

Next, cpp- ,(t) = 0 (mod p) and t/(l - t) E G so qp- 2(- t/(l - t)) -- 0 (mod p). 
This establishes (a). 

( b ) F o r j =  1 ,2  , . . . ,  p - 2 ,  

+ . . . + (p - 1)~-2- j ( l j  + 2j + . . . 

+ (p - l)j)TP-' (modp). 

Start with the defining expression for c p j +  ,(T), which is rewritten as 

cpj+ l(.T) = (1 - T)[T + (1' + 2')T2 + ( l j  + 2j + 3')T3 

+ . . .  + (1'+ 2'+ . . .  + (p - 1)j)TP-'1 

+ (1' + 2j + . . . + (p - 1 ) j ) ~ p .  (1.3 1) 
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(as seen in Lecture VI). Since j 5 p - 2, by von Staudt and Clausen's theorem 
p does not divide the denominator of each Bi (1 5 i I j), so the above sum is 
congruent to 0 modulo p and (1.31) becomes the congruence 

cpj+,(T) - (1 - T)[T + (1' + 2j)T2 

+ . . . + (1' + 2' + . . . + (p - l)j)TP-'1 (modp). (1.32) 

Applying r to (pj+,(T)/(1 - T) and iterating this process leads to the 
congruence (b). 

( c ) F o r j = 1 , 2  , . . . ,  p - 2 ,  

To arrive at this congruence it is enough to recall that 

(d) For j = 1, . . . , p - 2, 

r p - 2 - j  [ ~ j +  i(T)(l - TIP-'] qp- 1(T) + rp-'-j[qj+ l(T)cpl(T)] (mod p). 
(1.34) 

Indeed, by repeated application of T : 

because r[(1 - T)P = 0 (mod p) and (1 - T)P- = 1 + cpl(T) (mod p). From 
(1.17), TP-2-j(cpj+l(T)) = cpp- , (T) (modp), showing that (d) is true. 

(e) Conclusion : 

Let - t  E G, and compute the residue of Tp-'-j(cpj+ ,(t)/(l - t)). Since 
t + 1 (modp), by (1.13) cpl(t) r 0 (mod p). By (a), (1.30) and (1.33): 

So, by (1.35) and (1.37) 

rP-2-j[cpj+ ,(t)(l - t)P- '1 = 0 (mod p). (1.38) 

On the other hand, by (1.34), (a), and (1.36), 

By (1.38) the last sum is congruent to 0 modulo p, for j = 1,2, . . . , p - 2. 
Letting j = p - 3, p - 4, . . . , successively, gives 

cpp- 2(t)cpz(t) = 0 (mod PI, 

cpp- 3(t)cp3(t) = 0 (mod P), 

In 1967, LeLidec gave another form to Mirimanoff congruences, using 
other polynomials. I use the following notation: If p t s ,  let 3 be the unique 
integer such that s = 3 (mod p) and 1 5 3 I p - 1. Let s' be any integer such 
that s's - 1 (modp). For each n = 1, 2,.  . . , p - 2, let En be the set of all 
integers s, 1 < s 5 p - 2, such that (n + 1)'ns < s. 
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LeLidec considered the following polynomials: 

A,(T) = C ?TP-S. (1.40) 
S E E ,  

The basic relationship with Mirimanoff polynomials is the following: 

(1C) If x + 0, 1 (mod p), then x is a common zero of the congruences 

Vp- 1 (T)= 0 (modp) 
A2(T) - 0 (mod p) 

A, - ,(T) = 0 (mod p) 

if and only if it is a common zero of the congruences 

'Pp- 1(T) = 0 (modp) 

'P,-2(T)'P2(T) = 0 (modp) 

'P(p+ 1)/2(T)cp(p- 1),2(T) = 0 (mod 

From this result, LeLidec proved: 

(ID) If x, y, z are pairwise relatively prime integers, not multiples of the 
odd prime p, ifxP + yP + zP = 0, and if - t E G = {xly, ylx, x/z, z/x, y/z, z/y), 
then t is a root of the congruences (1.41). 

2. The Theorem of Krasner 

As I have said, the theorems of Cauchy and Genocchi, of Kummer, Miri- 
manoff, and Morishima established that if the first case fails for the exponent 
p, then the Bernoulli numbers Bp-,, B ,-,, B ,-,, Bp-,, Bp-,,, Bp-,, are 
congruent to 0 modulo p. 

The idea behind these theorems is that this is an unlikely event. At any 
rate it can be checked in a finite number of steps. 

So it is desirable to obtain stronger restrictions, say, that a longer sequence 
of successive Bernoulli numbers be congruent to 0 modulo p. 

In 1934, Krasner proved a most striking result along this line. Yet, in its 
formulation there is a condition which makes the theorem unfit for any 
practical application: it holds for primes p larger than no = (45!)88 E 
7.0379 x 

Krasner's theorem again relies on Kummer's congruences. So it is neces- 
sary to investigate carefully the quantities D' log(x + eUy). 

I begin with an expression already known since Herschel (1816). An 
analogous formula is found in Hilbert's Zahlbericht in $132. Let dkO' denote 

the first term of the sequence of kth iterated differences obtained from 

{0,1i,2i,3i, . . .}. 

As easily seen 

Herschel's lemma is the following: 

Lemma 2.1. If x, y are real numbers, x # - y, if t > 0 is a real variable 
and t = e", then for every i 2 1 

AkOi dklog(x + ty) 
].;o=;l"[ dtk (2.2) 

Putting 8 = y/(x + y) yields 

so (2.2) may be rewritten as 

Let T be an indeterminate and consider the polynomials 

Among the relevant properties of these polynomials, I mention: 

and M!+,(T) = T(l - T)M:(T) for i 2 1. The leading coefficient of Mi(T) 
is ( -  l)'(i - I)! and the coefficient of T is - 1. The roots of Mi(T) (for i 2 2) 
are real, simple, and belong to the closed unit interval [0,1]. 

Let Ni(T) = Mi(T)/T(l - T )  = Mi- ,(T) and Pi(T) = TiMi(l/T)/l - T) 
(for i 2 2). These polynomials have degree i - 2, no roots in common. Their 
resultant Ri is not zero and satisfies the inequality 

lRil < [(i - 1)!]2(i-2). (2.4) 

With these preparations, Krasner proved: 

(2A) Let no = (45!)88. If p is a prime, p > no, if 

and if the jirst case of Fermat's theorem fails for the exponent p, then the k(p) 
Bernoulli numbers Bp- - 2i [for i = 1, . . . ,k(p)] are congruent to 0 modulo p. 
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PROOF. I'll omit the details of the proof and only give the main idea. Consider 
the sequence of polynomials Ml(T), M2(T), . . . . Let j, > 0 be the smallest 
integer such that j > j, implies 

It may be seen that j, = 46. 
For every j = 1,2, . . . , j,, let Rj be the resultant of Nj(T) and Pj(T). By 

(2.4) maxlRj( I (45!)88 = no. 
If p > no and there exist x, y, z, pairwise relatively prime integers, not 

multiples of p, such that xP + yP + zP = 0, it must be shown that Bp-i = 0 
(mod p) for i = 3,5, . . . ,2k(p) + 1. Assume the contrary for some odd index 
j, 3 I j < 2k(p) + 1. By Kummer's congruence, 

r 0 (mod p). 

By (2.3) Mj(0) = 0 (mod p), where 0 = y/(x + y). Since 0 f 0, 1 (mod p), 
Nj(@ = 0 (modp). Again, by Kummer's criterion 

(d' log(xj+ eVz) 
r 0 (mod p) 

and similarly Mj(l/O) - 0 (mod p). Therefore Pj(@ = 0 (mod p), so Rj = 0 
(mod p). But Rj # 0, hence p < (Rj(. 

If j I j,, then lRjl I no < p. If j, < j, then 

1 ~ ~ 1  < [(j - 1)!]2(j-2) < e(W-l))3 < e k ( ~ ) 3  < e k P  = - - P. 

In both cases, there is a contradiction. 

Because of his various results, Vandiver in his papers of 1946, 1953 stated 
his belief that the first case is true. Krasner wrote in 1953 to Vandiver about 
this : 

Concerning your discussion of the truth of Fermat's theorem, I think as 
you do, that in Case I it is certainly true. Your argument is in order. Even the 
numbers p  not satisfying my criterion given in Theorem VIII of your article 
must be very exceptional. But I think that my preceding result given in the 
Comptes Rendus of 1934 furnishes even much stronger arguments in this sense. 
It seems quite unlike1 that all the [Ep] consecutive Bernoullian numbers 
B p - ,  - 2i, 1 I i < [ ? ' logp], are divisible by p, if p is not too small. If you admit 
that the probability for an unknown Bernoullian number to be divisible by 
p is I/p such a divisibility has only the probability 

and a simple calculation shows that the mathematical expectation of the 
number of primes p  2 n satisfying this condition does not exceed 2 / n G .  

When we use a little different and very likely hypothesis that, if fp  is the 
frequency of the Bernoullian numbers divisible by p, 

E P S X  P ~ P  , 1, 
4x1 

the result is not very different, with only maybe, a greater dispersion. 

3. The Theorems of Wieferich and Mirimanoff 

As I mentioned already, Wieferich's proof of his famous theorem is quite 
difficult. Mirimanoff gave a simpler proof in 1909, soon after the original. 
He made use of his polynomials. His manipulations required a formula due 
to Euler, for the alternate sum of odd powers of consecutive integers: 

With this formula, Mirimanoff proved (p > 3 and T is an indeterminate): 

I restate the theorem of Wieferich (1909) and give Mirimanoff's proof: 

(3A) If thejrst case of Fermat's last theorem fails for the exponent p, then 

2P- ' = 1 (mod p2). 

PROOF. Assume there exist integers x, y, z, not multiples of p, such that 
xP + yP + zP = 0. Let G = {xly, ylx, xlz, zlx, ylz, zly). By Mirimanoff 
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congruences, if t E G, then 

'Pp - 2 A  - t P 2 s  - 0 (mod P) 

for s = 1,2, . . . , (p - 3)/2, and also 

qp-'(-t) = 0 (modp). 

From the theorem of von Staudt and Clausen, it follows that (2P - 2)Bp-, 
is p-integral. Hence, by (3.2), 

l p - 2  - 2 ~ - 2  + 3 ~ - 2  - . . .  - (p - l)p-2 = 0 (mod p). (3.3) 

Hence 2P- ' = 1 (mod p2). 0 

The quantity qp(2) = (2P-' - l)/p is an integer, by Fermat's little theorem. 
It is called the Fermat quotient of p, with base 2. To say that 2P- - 1 (mod p2) 
is equivalent to saying qp(2) = 0 (mod p). 

From the time of its discovery, it was quite apparent that Wieferich's 
theorem represented a noteworthy advance over all previous results. 

The search for primes p satisfying the condition began immediately. It 
was not until 1913 that Meissner discovered after long calculations the first 
example: 

21092 = 1 (mod 10932). 

A second example was later encountered by Beeger (1922): 

These congruences may also be proved in a rather short, but perhaps 
artificial way (see Landau, 1927, Guy 1967). 

As I said in my first lecture, no other example exists with p < 3 x lo9. 
Calculations have been performed by various researchers recently with 
computers, and brought to the above limit by Brillhart, Tonascia, and Wein- 
berger in 1971. So, for every prime p # 1093,3511, p < 3 x lo9, the theorem 
of Wieferich and the computations above, guarantee that the first case holds 
for p. 

Having understood the reasons behind Wieferich's theorem, Mirimanoff 
proved an analogous criterion, this time for the base 3 : 

(3B) If thejrst case of Fermat's last theorem fails for the exponent p, then 

3P-' = 1 (modp2). 

In other notation, the Fermat quotient with base 3, qp(3) = (3P-' - l)/p = 
0 (mod p). 

The proof of this theorem is substantially more difficult. Let it be only 
said that it makes much use of properties of the Mirimanoff polynomials 
and also of logarithms. 

A computation showed that for p = 1093 and 3511 the Fermat quotient 
qp(3) $ 0 (mod p). This guarantees that the first case also holds for these two 
exponents, which were not covered by Wieferich's theorem. 

In 1910, Frobenius gave a proof of the theorems of Wieferich and Miri- 
manoff. His proof was algebraic, without the use of Kummer's congruences. 

Soon after, in 1912, Furtwangler proved a very general theorem, using 
class field theory, or more precisely, Eisenstein's reciprocity law. As a 
corollary, he derived both theorems of Wieferich and Mirimanoff. These 
theorems will be considered in my next lecture. 

In the literature there is a paper by Linkovski (1968), in which he claims: 
If the first case of Fermat's theorems fails for p, then 2P-' = 1 (modp3). 
This would represent an outstanding strengthening of Wieferich's theorem. 
However, Linkovski's proof is not correct, since it is based on the following 
assertion published by Grebeniuk in 1956: 

If x, y, z are integers, not multiples of p, such that xP + yP + zP = 0, if 
1 divides x + y + z, and gcd(1,xyz) = 1, then 1 divides 2P-' - 1. In 1975, 
Gandhi and Stuff analyzed Grebeniuk's proof and found a mistaken de- 
duction, so the statements of Grebeniuk and Linkovski are now questionable. 

Of course, this is only one of so many mistakes made about Fermat's 
theorem, by outstanding mathematicians (like Kummer himself), as well as 
by good and not-so-good mathematicians. 

I'm only giving these facts, in order to tell a story. Terjanian doubted the 
veracity of the congruence obtained by Linkovski. He wrote to Peschl, since 
that congruence is quoted in Klosgen's monograph-but not used in it-and 
Klosgen was Peschl's student. Peschl asked Hasse, during his visit to Bonn, 
for the Colloquium in Krull's memory. Hasse then wrote to Dr. Kotov, of 
Minsk, with whom he exchanges stamps, asking to translate Linkovski's 
paper. In reply, Kotov wrote: 

In the paper of Grebeniuk, which is quoted by Linkovski, there is a mistake. 
This was established by my colleague V. I. Bernik (also a student of Sprindiuk). 
The following happened. A mathematician Jepimaschko of Vitebsk produced 
in 1970 a proof of Fermat's last theorem. This proof was based on the paper 
of Grebeniuk, quoted by Linkovski. Bernik and I (Kotov) have checked all 
the arguments of Jepimaschko without finding any mistake. Later, Bernik 
checked the paper of Grebeniuk, on which Jepimaschko was based, and there 
he found the mistake. We knew the work of Linkovski, but we have not called 
his attention to the mistake of Grebeniuk. We had already had so much 
trouble to understand Jepimaschko's that we didn't wish to enter again into 
unhealthy discussions about Ferrnat's problem. 

Despite the best of intentions, and the cleverest of our manipulations, 
beware of a proof of Fermat's theorem. A mistake may be carefully hidden. 
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4. Fermat's Theorem and the Mersenne Primes 

There are various nice consequences of the theorems of Wieferich and 
Mirimanoff. I show how it is possible to deduce that the first case of Fermat's 
theorem holds for a class of primes which includes the Mersenne primes. 

I begin with this easy lemma: 

Lemma 4.1. Let p be an odd prime, k  not a multiple of p. Then kp cannot 
be written in the form 

k p =  + m + n ,  

where mP-' -= 1 (mod p2) and nP- ' s 1 (modp2). 

Mirimanoff (lglO), Landau (l913), and Vandiver (1914) proved repeatedly: 

(4A) If p  = 2"3b + 1 or p  = + 2" + 3b, where a 2 0, b 2 0, then the first 
case of Fermat's last theorem holds for the exponent p. 

PROOF. If the theorem fails for p, then 2P-1 = 1 (modp2) and 3P-1 - 1 
(modp2). By the lemma (with k = I), p cannot be of the form indicated. 

In particular, if p = 2" + 1 is a prime, the first case holds for p. 
It is quite easy to see that if p = 2" + 1 is a prime, then a itself is a power 

of 2, and so p = 22" + 1. The number F, = 22n + 1 is called a Fermat number. 
The only known prime Fermat numbers are F,, F,, F,, F,, F,. Euler dis- 
covered that F, is a multiple of 641. It has been conjectured that there are 
only finitely many prime Fermat numbers, and perhaps only the ones 
already known. This is a very difficult question. 

On the other hand, if p  = 2" - 1 is a prime, then a is necessarily equal to 
a prime, a = q. Then p = 2, - 1 = M, is a Mersenne number. At the present 
there are 24 known Mersenne numbers which are primes. The largest ones 
are with 6002 digits, discovered by Tuckermann in 1971, M217,1 
with 6533 digits, discovered by Nickel and No11 in 1978 and M,,,,,, M,,,,, 
discovered by Nelson and Slavinsky.' 

In view of (4A) and the likelihood that at any given moment the largest 
known prime will be a Mersenne prime, I may state: 

Thefirst case of Fermat's last theorem holds for the largest prime known 
today and this is likely to be true at any future time! 

Let me add that Schinzel has conjectured that there exist infinitely many 
square-free Mersenne numbers. Rotkiewicz proved in 1965 that if this 
conjecture is true, then there exist an infinite number of primes p such that 
2p-1 f 1 (modpZ). And therefore, by Wieferich's theorem, there are an 
infinite number of primes p for which the first case of Fermat's theorem holds. 

5. Summation Criteria 

The earliest criterion for the first case involving summations was discovered 
by Cauchy in 1847: 

If the first case fails for p, then 

In view of the expression of summations, like the above, in terms of 
Bernoulli numbers, it was not unexpected to arrive at criteria for the first 
case involving summations. This idea was exploited by E. Lehmer and 
Vandiver, among others. Quite recently, I have also contributed some new 
criteria of the same kind. 

The first group of quotients involves sums of powers p - 2 of terms in 
arithmetic progression, Fermat quotients qp(2), qp(3) and the Wilson quotient 
W(p), which I now define. 

Wilson's theorem says that 

(p - I)! 5 - 1 (modp) 
SO 

( p -  I)! + 1 
WP)  = 

is an integer, called Wilson quotient of p. 
In 1938, Emma Lehmer proved the following congruences: 

[PI31 

1 (p - 3j)p-2 = q,(3) ' - Y ( P )  (mod pi) when p > 3, 

when p > 5, (5.6) 

(P- 1)12 1 j p - 2  

j = 1 ,  
-2qP(2)[1 - PW(P)] + 2p[qP(2)l2 (mod p2). (5.7) 

From these congruences, Emma Lehmer derived the ones below: (Let me 
add that already in 1901, CJlaisher had established (5.8) and (5.10), while in 

See Footnote 1 of Lecture 11. 
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1905, Lerch proved (5.8) and (5.9) for the modulus p.) 

when p > 5, (5.11) 

(P- l Y 2  1 
C T - 2qp(2) + p[qp(2)I2 (mod p2). (5.12) 

j = ~  J 

Detailed proofs of these congruences will appear in my book quoted above. 
Combining the above congruences with the theorems of Wieferich and 

Mirimanoff, Emma Lehmer obtained various criteria given in (5A) below. 
As a matter of fact, the case n = 2 had been proved by Sylvester in 1861, 
while for n = 3 it was discovered by Lerch in 1905. Subsequently, Yamada 
proved the result for n = 3, 6 (see his second paper of 1941, correcting errors 
in the one of 1939). 

(5A) If theJirst case of Fermat's theorem fails for the exponent p and if 
n = 2,3,4,6, then 

PROOF. Just use the theorems of Wieferich, Mirimanoff and the congruences, 
modulo p, (5.8), (5.9), (5.10), (5.1 1). 0 

The next result, due to Vandiver, is much more difficult to derive. It is 
based on a formula due to Frobenius (1914) connecting Bernoulli numbers 
and the Mirimanoff polynomials. 

Let p > 2 be a prime, let m 2 2 and let 5 ,  = I ,&,  . . . , 5m-t be the mth 
roots of 1. Let cpn(X) denote the nth Mirimanoff polynomial. 

Lemma 5.1. Let n 2 1 and 0 5 15 m - 1. Then 

I have used in the left-hand side the symbolic notation: B is an indeter- 

minate, the left-hand side is computed as a polynomial in B and each power 
I Bk is to be interpreted as being the Bernoulli number B,. 

A special case is 

Setting 1 = 0 yields a congruence obtained explicitly by 

Moreover, if n = p - 1 and p X m, then 

(5.13) 

Vandiver (1 9 17) : 

(5.1 4) 

With these formulas, Vandiver proved in 1925 : 

(5B) If thejirst case of Fermat's theorem fails for the exponent p, then 

[PI31 1 
C -2 - 0 (modp). 

j=1 J 

I totally omit his ingenious but long proof. 
In 1933, Schwindt was able to transform Vandiver's criterion. He proved: 

Lemma 5.2. If p > 3, then 

1~131 1 [ P I ~ I  1 
5 1 3 = 1 -2(modp). 

j = l J  j = l J  

From this lemma, it follows: 

(5C) If thefirst case of Fermat's theorem fails for the exponent p, then 

I will conclude the report on summation criteria for the first case. bv . . 
2 ,  giving my own results. The statements of these make use of the Bernoulli 

polynomials 

Their constant term is Bn, the corresponding Bernoulli number. It is not 
my intention here to say more than strictly necessary about these polynomials. 
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One striking fact is that for a = *, 5, $, $,%, $, 2, there are formulas giving X 
B2,(a), in terms of n and the Bernoulli numbers. Explicitly: 

2') = ( 1  - &)~2n, (5.1 7) 

1 
~ 2 .  (3 = ~ 2 .  (i) = - f (1 - F) ~ 2 n 9  

(5.18) 

~2.(:) = B;.(:) = -& (1 - & ) ~ 2 ~ ,  (5.19) 

2 n ( ) = 2 n ( ) = ( - ) ( - & ) ~ 2 n .  (5.20) 

However, no corresponding formulas are known for the values of B2,+ l(X), 
say at a = j ,  $, $, a, 2, only in terms of Bernoulli numbers. 

I also need to use certain other congruences proved by Emma Lehmer 
(with p > 3): 

[PI31 3p-3 
1 (p - 3jy-3 z - rp 3 PB,-, - Bp-2 
j= 1 

(31 (mod p2), (5.21) 

where p = s (mod 3) so s = 1 or 2, and 

[ P I ~ I  6 ~ - 3  x (p - 6j)p- -- r$ pBp- - Bp- 2 (mod (522) 
J =  1 P - ~  

where p - t (mod 6), so t = 1 or 5. 
Using these congruences, I establish: 

Lemma 5.3. If p > 3, then 

5Bp - 2(j) 3 Bp - 2($) (mod p). 
E f ~ t  (- l)j(j  + 1)3j(2j+ - 5)Bj = 0 (mod p). 

Lemma 5.4. If BP-(,,,+ ,, = 0 (mod p), with 1 $ n $ (p - 3)/2, then 

and 

And from these lemmas, I conclude: 

(5D) If thefirst case of Fermat's theorem fails for the exponent p, then 
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1. B, - ,($) = 0 (mod p), B, - ,(+) = 0 (mod p). 
2. 2 X$: jp-3 = Bp- 2(~/3) (mod p2) and 2 xjel jp- = Bp- 2(t/6) (mod p2), 

wheres= 1 o r 2 , t =  1 0 r 5 , ~ ~ s ( r n o d 3 ) , p = t ( m o d 6 ) .  

Using the same method, I proved: 

(5E) If thejrst case of Fermat's theorem fails for the exponent p, then 

and 

Note that the case r = 1 was already stated in (5A). Note also that using 
Krasner's theorem (2A), if p is sufficiently large the last congruences must 
also hold for r odd, 1 I r < 2 G .  

6. Fermat Quotient Criteria 

The important theorems of Wieferich and Mirimanoff were extended by 
various authors to Fermat quotients with other bases: qp(m) = (mP-' - l)/p. 

In 1914, Vandiver proved: 

(6A) If thejirst case of Fermat's theorem fails for the exponent p, then 

In the same year, Frobenius proved: 

(6B) If thejirst case of Fermat's theorem fails for the exponent p, then 

qp(l 1) = 0 (mod p) and qp(l 7) = 0 (mod P). 

Also, if p - - 1 (mod 6), then qp(7) = 0 (mod p), qp(13) r 0 (mod p), and 
qp(19) = 0 (modp). 

New advances were made by Pollaczek in 1917 when he proved: 

(6C) If thejirst case of Fermat's theorem fails for the exponent p and if m 
is any prime, m I 31, then with the exception of at mostfinitely many primes p, 

qp(m) = 0 (mod p). 
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(6D) If x, y, z are integers, not multiples of p, such that xP + yP + zP = 0, 
then x2 + xy + y2 $ 0  (modp). 

These theorems are difficult to prove. 
In 1931, Morishima completed Pollaczek's result (6C), showing: 

(6E) If the first case of Fermat's theorem fails for the exponent p, then, 
without any exception, qp(m) r 0 (mod p) for all primes m I 31. 

As a matter of fact, Morishima proved also that qp(m) = 0 (mod p) for 
m = 37, 41, 43, with finitely many exceptional primes p. Rosser wrote two 
papers in 1940 and 1941, in which he eliminated the exceptional primes in 
Morishima's result. However, in his doctoral thesis in 1948, at Rosser's 
suggestion, Gunderson thoroughly examined the paper of Morishima and 
found large gaps in the proofs. He proceeded to correct whatever he could 
and so he succeeded in establishing on firm ground (6E) above. But Agoh and 
Yamaguchi, who are presently visiting Queen's University, and have worked 
with Morishima, assured me that Morishima's proof really has no gaps. 

Later, in my eleventh lecture, I'll indicate how the Lehmers, Rosser, and 
Gunderson used these criteria involving Fermat's quotient to assure the 
validity of the first case of Fermat's theorem for quite an extended range of 
the exponent p. 

Now I want to indicate some other applications of these criteria involving 
Fermat's quotients. In a way analogous to the proof of (4A), Spunar proved 
the following result in 1931 ; it was rediscovered twice, by Gottschalk in 1938 
and Ferentinou-Nicolacopoulou in 1963. 

(6F) Let p be an odd prime, and assume that there exists k, not a multiple of 
p, such that kp = +m +_ n, where each prime factor of m and of n is at most 
equal to 43. Then the first case of Fermat's theorem holds for p. 

PROOF. Otherwise, by the above criteria mP-' - 1 (modp2), nP-' - 1 
(modp2) and this contradicts Lemma 4.1. 0 

For example, this gives a direct way of seeing that the first case holds for 
p = 1093 and p = 3511 since 

and 

In fact many numbers may be written in the form indicated in (6F). But, 
is this set infinite? This is an open question. Just to comment on this problem, 
I want to compare it with a very useful classical theorem of Bang (1886), 
Zsigmondy (1892), Birkhoff and Vandiver (1904). This theorem says the 
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following : 

(6G) If a > b 2 1 and gcd(a,b) = 1, then for every n 2 2, an + nn has a 
prime factor p, which does not divide any of the numbers am + bm (with corre- 
sponding signs) and 1 5 m < n. The only exceptions to this statement are 
trivial, namely z3 + 1, 26 - 1, (2'- ' + h)' - (2'- ' - h)' for h odd, 2'- > h. 

So, taking a I 43, there are an infinite number of distinct primes p,, with 
some kn such that knp, = an - b" (for example). However, there is no guar- 
antee that p, does not divide k,. So these primes are not necessarily of the 
kind indicated in (6F). 

In 1968, Puccioni examined what would follow if the set P43 of all primes 
of the form in (6F), is assumed to be finite. 

For each prime p let 

Ap = {I  prime 1 = 1 (mod 1 3 ) ) ,  

Numerical computations show that the sets A?, are quite small. In fact 
very few examples of such numbers are known. 

Puccioni's theorem says : 

(6H) If P,, is a finite set, then for every prime p I 43, such that p f. 
) 1 (mod 8) (i.e., p = 2, 3, 5, 11, 13, 19,29, 37,43) the set A, is infinite. 

This seems quite unlikely, however nothing has as yet been proved to 
the contrary. The offshoot of this discussion is, once more, that it is not yet 
known, even for the first case, whether Fermat's theorem holds for infinitely 
many prime exponents. 

To conclude this section, I should mention that there are interesting 
papers of Lerch (1905) and Johnson (1977) about the properties of the Fermat 
quotient and the vanishing of these quotients modulo p. 
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The Power of Class Field Theory 

In 1912, Furtwangler used class field theory to derive two important criteria 
about the first case of Fermat's last theorem. As corollaries, he then gave 
new proofs of the theorems of Wieferich and Mirimanoff. In this way, the 
methods of class field theory entered into the game. 

It is my intention in this lecture to give a succinct overview of those parts 
of the theory which are relevant to Fermat's problem. In no way will I 
attempt a systematic treatment of the theory. The advantage of this approach 
is that it brings directly into focus the tools that are most useful. Usually 
these lie hidden behind more refined statements. 

1. The Power Residue Symbol 

Let p be an odd prime, let [ be a primitive pth root of 1, K = Q([), A the ring 
of integers of K, and 2 = 1 - [. 

The first fact, which is the cornerstone of the theory, is quite simple and 
I have already mentioned it in Lecture VII, 55. 

(1A) I f  Q is a prime ideal of A,  Q # AA, and i fc r  E A\Q, then there exists a 
unique integer a,  O I a I p - 1, such that 

N(Q) denotes the absolute norm of Q, and I already noted before that 
N(Q) = q f ,  where f is the order of q modulo p (q being the only prime such 
that Q divides Aq). 
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In view of the above result, the following definition makes sense: 

The symbol {-) has the following properties: 

a. a = P (mod Q) implies {a/Q) = {P/Q). 
b. {1/Q) = 1. 
c. {alQf {PIQ) = {aP/Q1 
d. (ap/Q) = 1. 

This justifies calling the mapping a E A\Q + {a/Q), the pth power residue 
character or symbol defined by the prime ideal Q # AA. 

By multiplicativity, the symbol may be defined for all ideals J of A such 
that A),,/' J .  If J = ny= QQ;~, and if a E A, a # u;= Qi (or in other words, if 
gcd(Aa,J) = A), define 

In particular 

For the extended symbol, the properties are analogous: 

(1C) If the symbols below make sense, then 

a = fl (mod J )  implies {a/J} = {P/J). 
{ l / J )  = 1. 
{./J>{P/J} = { N J ) .  
{a"/J} = 1. 
{a/JJ1) = {a/J) {a/J1). 

If a, f i  E A\A3,, and if gcd(Aa,AP) = A, then the following notation is used: 

I recall the notion of a semi-primary element from Lecture V : Any element 
a $ A), such that there exists m E 27 for which a - m (mod AA2). I now list 
in a lemma the main properties of semi-primary integers, of which the first 
two were quoted before: 

Lemma 1.1. 

1. If a E A\A?,, there exists a root of unity ('j such that ('ja is semi-primary. 
2. If a, p E A\AA are semi-primary, then so are ap and alp. 

If a E A\AA, then aP is semi-primary. 
If a E A\AA and a is a real number, then a is semi-primary. 
If a is a unit and a is semi-primary, then a is a real number. 

The main theorem for the Legendre and Jacobi symbol is Gauss's qua- 
dratic reciprocity law. This is because it allows the computation of the 
symbol. Gauss also proved the reciprocity law for the biquadratic symbol 
and later (1844) Eisenstein discovered the reciprocity law for the cubic 
residue symbol. A more elementary proof was published recently by Kaplan 
(1969) for the biquadratic case and by Bayashi (1974) for the cubic case. 

The more general reciprocity law for the power residue symbol was the 
object of deep studies by Eisenstein (1850) and later by Kummer (from 1850 
to 1887). 

Using the Jacobi cyclotomic functions, Eisenstein proved the following 
special reciprocity law for the power-residue symbol: 

(ID) If m is an integer, p ,/' m, ifa E A is semi-primary, and gcd(Aa,Am) = A, 
then 

A proof, in modern notation, may be found in volume I11 of Landau's 
book (1927). 

The following corollaries are required in the applications to Fermat's 
theorem : 

(1E) Let m be an integer, p ,/' m, let a E A be semi-primary, gcd(Aa,Am) = A. 
If Aa is the pth power of some ideal of A, Aa = JP, then {alm) = 1. 

Similarly, 

(IF) Let m be an integer, p t m ,  let a E A\AA, and gcd(Aa,Am) = A. If a 
is  a real number, then (alm) = 1. 

The last result is used directly in studying Fermat's theorem. The proofs 
of these corollaries are also in Landau's book. 

2. Kummer Extensions 

In the study df the cyclotomic field K = Q([) ([ a primitive pth root of 1, 
p an odd prime) there comes a time when it is necessary to study the cyclic 
extensions of K having degree p. Kummer considered such extensions and 
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he showed that they are of the form L  = ~ ( f i ) ,  where a E A is not the pth 
power of any element of K. 

Let B be the ring of integers of L. Let a be the generator of the Galois 
group of L  ( K  such that a(&) = [fi. 

The problem to investigate was the decomposition of (nonzero) prime 
ideals P of A in the extension L  I K. Writing BP = P',P", . . . P",, where - 
PI ,  . . . , P, are distinct prime ideals of B and the exponents are equal, e 2 1, 
the problem is the determination of e, g and f ,  where the relative norm of 
Pi is NLIK(Pi) = Pf. Since efg = [ L :  K] = p, the only possibilities are as 
follows : 

e = p, f  = g = 1 P is ramified, 

f  = p, e = g = 1 P is inert, 

g = p, e = f = 1 P is split. 

(3A) I f  p is an odd prime and x, y, z are relatively prime integers such that 
xP + yP + zP = 0, ifr is any natural number, p lf r, p $ z, gcd(r,z) = 1, then 

His first main theorem is the following: 

(3B) I f  p is an odd prime, x, y, z are relatively prime integers such that 
xP + yP + zP = 0, and r is a natural number such that r 1 x, p y x, then rP- = 1 
(mod p2). 

PROOF. It may be assumed, 
latively prime to y and to z, 

for example, that p $ z. Since p lf r and r is re- 
then by (3A) 

The situation is completely known. 

Case I .  P 1 AM. 
Writing Acc = P'J, where PY J ,  then: But IYx + [-Xy E c-Xy (mod Ar), hence by (1C) 

a. If p lf t, then BP = Pp, where P is a prime ideal of B, so P is ramified. 
b. If p (  t, then there exists a' E A such that L  = K(@) and P$Aal. 

By (IF), {ylr) = 1, hence {[/r)-" = 1. Since p k x ,  
rP- ' = 1 (modp2). 

{ilr) = 1, hence by (1G) 
0 

Case I I .  P y Aa and P # Ai. 

a. If there exists fl E A such that a r PP (mod P), then P is split. 
b. Otherwise, P is inert. The proof of the second main theorem of Furtwangler is not much more 

difficult : 
Case I l l .  P = ALk Acr. 

a. If there exists p E A such that a - PP (mod ALP+'), then A2 splits. 
b. If there exists fl E A such that a r PP (mod ALP), but there does not exist 

y E A such that a - y P  (mod Alp+ I), then A i  is inert. 
c. If for every p E A, a $ p (mod ALP), then A i  is ramified. 

(3C) If p is an odd prime, x, y, z are relatively prime integers such that 
xP + yP + zP = 0, and r is a natural number, such that rlx - y, p y x 2  - y2, 
then rP-' = 1 (mod p2). 

With these theorems, Furtwangler obtained both theorems of Wieferich 
and Mirimanoff in a very natural way. Here is the shortest proof of Wieferich 
criterion (backed however by considerable theory): 

The above results may easily be rephrased in terms of the power residue 
symbol. Assume that P $ AL is a prime ideal unramified in Ll K, where 
a $ P. Then {alp) = 1 exactly when P splits in LI K, and, more generally, 
the order of {cr/P) in the cyclic group of roots of 1 is equal to the inertial 
degree f  of P in the extension L  I K. 

PROOF. If p # 2 and xP + yp + zP = 0, p lf xyz, gcd(x, y,z) = 1, then at least 
one of the integers is even, say 2 1 x. By (3B), 2P-1 = 1 (mod p2). 0 

And now, a very short proof of Mirimanoff's theorem. 

PROOF. If 3 1 xyz, then by the first theorem of Furtwangler 3P- - 1 (modp2). 
If 3 lf xyz, then xP -- x (mod 3), yp 3 y (mod 3), and zP = z (mod 3). So 

O = x P + y P + , z P = x + y + z -  f l f  1 + 1  (mod3). Therefore x r y = z  
(mod 3). 

Note that p does not divide all three numbers x - y, y - z, z - x, otherwise 
0 = XP + yP + zP = x + y + z - 3x (modp). Since p # 3, PIX, against the 

3. The Main Theorems of Furtwangler 

These are just two theorems which brought class field theory as a method of 
studying Fermat's theorem. 

Furtwangler first showed (1912): 
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hypothesis. Without loss of generality p t x - y. Since - z E x + y (mod p) 
and p & z, then p $x + y. But 3 ( x  - y, so by the second theorem of 
Furtwangler, 3P- ' z 1 (mod p2). 0 

In view of their importance, the theorems of Furtwangler were proved 
again, extended and generalized. 

Noteworthy are the two theorems proved by McDonnell in 1930: 

(3D) Let p be an odd prime, let x, y, z be relatively prime integers such that 
xp + yP + zP = 0. 

1. If p y x y  + yz + zx and rIx2 - yz, then rP-' -- 1 (modp2). 
2. If p$x(y - z)(x2 + yz) and rIx2 + yz, then rP-I E 1 (modp2). 

These theorems are not easily applicable, because the assumptions cannot 
be verified in practice. 

In 1919 Vandiver gave the following application of Furtwangler's theorem. 
The same result, assuming that the first case fails, was indicated in Lecture IV, 
( 3 4  

(3E) If p # 2 and if x, y, z are relatively prime integers such that 
xP + yP + zP = 0, then 

xP = x (mod p3) 

yP z y (modp3) 

zP = z (mod p3) 

and x + y + z = 0 (mod p3). Moreover, if 1 z, then P3 1 Z. 

Furtwangler also proved the following result which parallels the theorem 
of Sophie Germain : 

(3F) Let p # 2 and q = kp + 1 be primes. Assume: 

1. The jirst case of Fermat's theorem holds for every prime exponent dividing k. 
2. The congruence XP + YP + ZP z 0 (mod q) has only the trivial solution. 

Then the jirst case of Fermat's theorem holds for p. 

4. The Method of Singular Integers 

While writing his important papers in class field theory, Furtwangler in- 
troduced the singular integers. These were later used by Takagi, Fueter, and 
Inkeri to give new proofs of the two main theorems of Furtwangler. These 
proofs ironically avoided class field theory, or more precisely, the use of 
Eisenstein's reciprocity law. 
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1 keep the same notations: p # 2, i ,  K, A, A. An element a E A is a singular 
integer if there exists an ideal J such that Aa = JP (it is possible that J be a 
principal ideal). More generally, I shall consider elements a such that Aa = Ja, 
where J is some ideal and a is odd, a 2 1. 

Let g be a primitive root modulo p, a:[ H cg the generator of the Galois 
group of K I Q. For every i 2 0 let gi be the unique integer such that 1 5 
gi I p - 1 and gi - gi (mod p). Similarly, for every i < 0 let gi, 1 I gi I p - 1, 
be defined by gig-' - 1 (modp). Let hi = (gg, - gi+ ,)/p for every i E Z. SO 
hi E: Z. 

Consider the polynomials in a :  

Following Inkeri (1948), I will describe the action of these polynomials 
on the generalized singular integers: 

(4A) Let cc E A and assume that Aa = Ja, where J is some ideal and a 2 1 
is odd. Then: 

1. aG(") = CUP, where 0 I u I p - 1, B E  A. 
2. aH(") = ivya, where 0 I v I p - 1, y E A. 

Actually, these results had been obtained for a = p by Fueter (1922) and 
Takagi (1922), but their proofs, contrary to Inkeri's, used some facts from 
class field theory. 

Inkeri (1946) also proved a more precise result, under stronger conditions: 

(4B) If a E A is semi-primary, and Aa = Ja, where a is odd and pl a, then: 

1. aG(") = pa with p E A. 
2. aH("' = ya with y E A. 

With this method, Fueter in 1922 gave a proof of Kummer's congruences 
(explained in Lecture VII). As he stated in his paper, he wanted to show: 
". . . how all the necessary theorems to derive Kummer's congruences are 
found already in the Zahlbericht [of Hilbert] and how, with a few strokes, 
Kummer's criterion arises. Yes, and still more! Also Mirimanoff's form and 
the criterion of Wieferich-Furtwangler may be immediately obtained, and 
therefore for the latter, it is required much less than Eisenstein's reciprocity 
law". 

Inkeri also gave in 1948 another similar proof of Kummer's congruences 
for the first case. 

In 1857, Kummer obtained a formula, which was extended by Fueter 
(1922). 
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(4C) Let a E A be such that Aa = JP (a is a singular integer). Then for every 
a = 1,2,. . . , p - 2, aIa(") = yay: where 0 5 u, I p - 1, y, E A and 

In 1948, Inkeri gave new proofs of Furtwangler's theorems, using the 
method of singular integers. 

In 1933, Moriya extended the theorems of Furtwangler for Fermat's 
equation with exponents pn, n 2 1. In 1946, using the method of singular 
integers, Inkeri gave a new proof of Moriya's theorem, and extended the 
theorems of McDonnell for the prime-power exponents. 

These are Moriya's theorems: 

(4D) Let n 2 1, let p # 2 be a prime, and assume that there exist relatively 
prime integers x, y, z such that xPn + yPn + zPn = 0. Let r be a natural number, 
satisfying any one of the following conditions: 

Then rP- ' r 1 (mod pn+ I). 

Again, with the same method, Inkeri (1946) gave the following generaliza- 
tion of Vandiver's theorem (3E): 

(4E) If p # 2, n 2 1, if x, y, z are relatively prime nonzero integers, such 
that xP* + yPn + zPn = 0, then 

xP z x (mod p2n+ I), 

yP = y (mod pZn+ I), 

zP - z (mod pZn+ '). 

5 .  Hasse 

I have already described the success of Furtwangler using Eisenstein's 
reciprocity law for the power residue symbol. This is nothing more than a 
very special case of the general reciprocity law for this symbol, as it was 
developed by Kummer (1 850, 1852, 1858, 1859, 1859, 1887), Furtwangler 
(1909, 1912), and later subsumed under Takagi's (1922) and Artin's (1927) 
reciprocity laws for arbitrary abelian extensions. These matters are explained 
with great care by Hasse in his Bericht (1927, 1930). 

As often happens, it is not obvious how to deduce explicit consequences 
from a theorem which is very general. Hasse's great contribution was to give 
a very convenient form to the general reciprocity law for the power residue 
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symbol. And from this, he could prove, in a more systematic manner, many 
of the theorems previously discovered by Kummer, Furtwangler and others. 

I will not state here the general forms of any of the reciprocity laws. 
Instead, I'll select and present only those explicit reciprocity formulas used 
by Hasse. 

(5A) Let a, P E K = Q([), a # 0, P # 0. Let F, and Fl, be the conductors 
of the extensions K( f i ) (K  and K(@) IK. If gcd(Aa,F,J = gcd(AP,F,) = 

gcd(F,,FB) = A, then {alp) = {Piah 

(5B) Let a, P E K ,  a # 0, /? # 0. If gcd(Aa,AP) = A, and if A i  is unramijied 
and each real place of K splits completely in K ( G )  I K (or in K($) 1 K), then 
(alD) = (/J/a). 

Another form of the reciprocity law proved by Hasse, in volume 11, 
page 77, is the following: 

(5C) Let a, P E A  be such that gcd(Aa,AP) = A. Assume also that a r 
1 (mod AAP-I), /3 = 1 (mod Ail) and that a is totally positive. Then 

If p = 2, and the symbol is the Jacobi symbol (-), the above becomes 
Jacobi's reciprocity law: 

If a > 0, if a, b are odd, relatively prime integers, then 

As a corollary of (5C), it is easy to show: 

(5D) Let a E Z, P E A, and assume that gcd(Aa,AP) = A. Assume also that 
p does not divide a and P z 1 (mod AA). Then: 

As the conditions become more restrictive, the formulas are more special: 

(5E) Let a E Z, P E A\AA, and gcd(Aa,AP) = A. Assume that plf a and let 
b E Z be such that tbP = 1 (mod AL2) (see Lemma 1.1). Then 

I note that Eisenstein's reciprocity law is nothing but a particular case of 
the above result. Indeed, if P is semi-primary, say 5 m (mod AA~), with 
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m E Z, then PP- '  = mp-' E 1 (mod Ail2). Applying (5E) to a and PP-' yields I note that c is a A-adic integer, hence it is of the form c = co + clA + 
c2i12 + . . . with ci E Z. The power p is defined to be equal to 1'0. 

Another way of expressing the product in (51) was discovered by Takagi 
in 1927. It generalizes a previous formula by Kummer (1852) for the case of 
a regular prime p. To explain Takagi's formula, let g be a primitive root 
modulo p, let a: i H rg be the corresponding generator of the Galois group 
of KIQ.  For every j = 1, .  . . , p, let 

o P - l  - , 
@- Kj=( l  - P I -  a - g 1  . 

-' = (' where c(p - 1) 0 (mod p) {;I {d 
hence c = 0 and {a/P} = {P/a}. 

With the above reciprocity laws, Hasse computed the values of various 
symbols. 

In particular, K, = (. Then, it may be observed that 

q g J  1 (mod Alp+ ') 

icj - 1 - li (mod AIj+ ') (5F) I f  a E A is totally positive and a = 1 (mod AIP-'), then 

f o r j =  1, . . . , p .  
Moreover, every cr E A, a r 1 (mod Ail) may be written in a unique way in 

the form 
a k y ( 4  . . . - l ( a )  f p W  (mod A ~ P +  I), 

P-1 KP 
(5G) I f  a E A, a - 1 (mod ALP), then 

where each tj(a) is an integer. Takagi's formula is the following: 

(5J)  I f  a, P E A, gcd(Aa,AP) = A, and a r 1 (mod Al), P - 1, (mod Ail), then 

The next expressions involve the kadic logarithms of Kummer, which 
I have already considered in Lecture VII, 95. As a reminder, if a E A and 
a = 1 (mod AA), then the A-adic logarithm is defined by 

where 
P-  1 

u = 1 jtj(a)tp-j(P). 
j= 1 

Kummer's formula is in terms of the logarithmic differential quotient, 
which I have introduced in Lecture VII, 95. Namely, if u is a real variable, 
a~ A\AAandj= 1,2,.  . . , p  - 1, then 

(- I)"-' 
log,a = C ---- (a - I)", 

n = l  n 

the series being convergent in the il-adic topology; so log, a is an element of 
the completion fZ of K ,  relative to the valuation v, belonging to the prime 
ideal Ail. 

Artin and Hasse proved in 1925: 
d' log a(eu) 

u = o  (5H) I f  a E A and a = 1 (mod AA), then 
These are p-integral rational numbers and they are related as follows to the 
above exponents tj(a): 

where Tr, denotes the trace in the extension fZ 16,. 

Also in 1925, Hasse proved: This gives Kummer's formula: 

(51) I f  a E A is totally positive, gcd(Aa,AP) = A, and a = j3 (mod A12), 
then {a/P) {Pla) - ' = c, where 

(5K) I f  a, P E A, gcd(Aa,AP) = A, and a 5 1 (mod AA), P - 1 (mod AA) 
then 

P-  ' Tr,(c-i log, a) Tr,(Ci log, a) 
c =  i x 

i =  1 P P 
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5 .  Hasse 

Taking P = [ leads to the criterion: 

As a corollary: 

(5L) I f  a E A, a = 1 (mod Ai), then 

It follows from the definition 

Similarly, the following formula is due to Kummer (1858) and Takagi 
(1 922) : 

(5M)  I f  a E A, a = 1 (mod Al), then 

and moreover tp(a) = Tr,(A - P  log, a) (mod p). 

Also : 
(5N) If  a E A, a - 1 (mod AA), then {Aja) = ['P'")'~, where 

P - 2  ( -  1 ) j ~ ~  P - 3  (- l ) j ~ .  
b = I ---- tp- j(a) = 1 ---- l'P-j)(a) (mod p). 

j = l  j! j = 1  j 

In particular, if E = - 3.P-1jp, then {&/a) = rpb  
After this review of the main formulas for the power residue symbol, as 

they may be found in volume I1 of Hasse's Bericht, I will now describe their 
applications, which may be obtained by computing the power residue symbol 
for appropriate elements. 

Assume that x, y, z are nonzero integers such that xP + yP + zP = 0. SO 

i = O  
Let a = (x + [y)/(x + y), so 

a = 1 - (yj(x + y))i  - I (mod Ai). 

I write t = y/(x + y) - ylz (mod p). Since Aa = JP for some ideal J of A, 
then for every p E A, p # 0, it follows that {Pla) = 1. By considering various 
elements p, different conditions may be obtained. 

(50) With above notations, 

Taking fi = p gives the following: 

(5P) With above notations, 

From p = A, it follows: 

(5Q) With above notations, 

tP- = 1 (mod p2). 

From p = E = - AP-'/p, the following may be deduced: 

(5R) With above notations, 

For the first case, the logarithmic differential quotients are expressible in 
terms of Mirimanoff polynomials: 

for j = 2, .  . . , p - 2, where u = t/(t - 1) = -y/x and 

The above criterion takes a form similar to Kummer's congruences (for 
the first case) : 

(P - 3)/2 B 
'j qp - j ( ~ )  = 0 (mod p). 1 7  j= 1 

To  obtain Kummer's congruences, put p = j(1 - [)/(I - [j) (for 
j = 1, .  . . ,p - 1). This gives, after some calculations, Kummer's congruences 
for the first case: 

~ ~ ~ l ( ~ - ~ j ) ( c r )  = 0 (mod p) 

or equivalently, BZjqp- 2 j ( ~ )  3 0 (modp) (for j = 1,2, . . . ,(p - 3)/2). 
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Taking p = a"' (for i = O,l, . . . ,p - 2), gives Mirimanoff's congruences 
for the first case: 

P(a)P-"(a)  r 0 (mod p) 

or equivalently, 

vj(u)vp- j(u) = 0 (mod P) 

(for j = 1,2,. . . ,(p - 1)/2). 
The first theorem of Furtwangler is obtained by considering P = 1, where 

1 is a prime, 1 # p, and 1 I xyz. Then lP- ' - 1 (mod p2). 
The second theorem of Furtwangler is obtained similarly, taking = I, 

where 1 # 2, llx - y, 1 #p .  
As I have already stated, the theorems of Wieferich and Mirimanoff follow 

at once from the above theorems of Furtwangler and therefore may be 
deduced by means of Hasse's theory. 

In 1971, Gandhi performed some computations along the same lines; 
he proved : 

(5s) If x, y, z are relatively prime integers, p$ xyz, xP + yP + zP = 0, if 
1 is any prime such that 1 $ xyz, 1 $ 1  (modp), and if t = ylx (mod l), u - zly 
(mod l), v = ylz (mod l), then 

for i = 1,2, . . . , p - 1, where qp(l) = (lP-' - 1)/p is the Fermat quotient. 

Gandhi also found some analogous expressions if the second case fails 
for the exponent p. However, he gives an erroneous deduction of Vandiver's 
condition that if the first case fails for p, then 5P-1 = 1 (mod p2). 

6. The p-Rank of the Class Group of 
the Cyclotomic Field 

In these lectures, I have often arrived at important conclusions from the 
study of the class number of the cyclotomic field. A more refined approach 
consists of studying the class group and examining its structure. More 
specifically, considering the p-primary component of the class group. 

6. Thep-Rank of the Class Group of the Cyclotomic Field 179 

I introduce or recall some notation. Let h = pbt, b 2 0, p$ t, be the class 
number of K. If J # 0 is any fractional ideal of K, let [J] denote the class of 
J ,  that is, the set of all fractional ideals of the form Aa. J ,  for some cr # 0. I 
write J - J' when [J] = [J']. Let Wp = WLp(K) be the maximal p-subgroup 
of W = V/(K); it has order pb and it is equal to {[JIrI [J] E W}. 

Since Wp is abelian and finite, Wp E 3, x . . . x 2,,  this is the unique 
decomposition as a product of cyclic p-groups. Let Si have order pbi, so 
b, + . . . + b, = b. The integer m is called the p-rank of W. 

I choose an integral ideal Ji such that [Ji] is a generator of s i .  Thus 
[JP"] = [A], but [JP"'~] # [A]. Hence, every ideal class [J] E Wp may be 
written in unique way in the form 

[J] = [J,]"' . . . [JmlXm (6.1) 

with 0 I xi I pb' - 1. The set { [J,], . . . ,[J,] ) is a basis of W,. 
Then there exists I such that [J] = [ZIP if and only if p I x,, . . . , I x,. 
I denote by W$ the subgroup of W, generated by [JT], . . . , [Ji]. Then 

V,/W; is a vector space over the field [Fp having dimension m. 
For each i = 1, . . . , m, let 9Yi be the subgroup of all [J] E Wp such that in 

the representation (6.1), p lxi. Then # (gi) = pb-l. 
If Kt is a subfield of K, I use similar notations: h' = pat', a 2 0, p$ t'; W', 

Vb stand for the ideal class group and its p-primary subgroup. 
The following group homomorphisms arise naturally: 

1. z:W' -r W defined by i([J1]) = [AJ']; observe that z(Wb) c W,. 
2. NKIK,:W -+ W' defined by NKIK,([J]) = [NKIK,(J)], where J # 0 is a 

fractional ideal of K and NKIK, is the relative norm; I note that 
N K ~ K ~ W ~ )  c gb. 

Let Jlr = {[J] E %',I N,~,.[J] = [A']). Thus Jlr = Ker(NKIK.). Jlr is also 
a finite p-group and has a basis. - -  - 

I assemble in a lemma the following almost obvious facts 

Lemma 6.1. If p J [K: K'], then 

z is injective. 
NKIK,:Wp -+ Wb is surjective. 
V, E N x W; (direct product of groups). 
rank@?,) = rank(N) + rank(%;). 
If {[J'J, . . . ,[Jk,]) is a basis of W;, then there exist ideal classes 
[J,. + ,I, . . . , [J,] in N such that { [AJ;], . . . ,[AJk,],[J,. + ,I, . . . ,[J,] } 
is a basis of W,. 

After these generalities, let K = Q(C), where C is a primitive pth root of 1, 
p > 2. Let K t  = Q(i  + i-') be the real cyclotomic field. The notations are 
the following, and they are self-explanatory: V, V+, h = h*h+, h* = paltl, 
a, 2 0, pJ t l ;  h+ = pat, a 2 0, p$t; V, has order pa+"l, %',+ has order pa. 
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N is the subgroup of all [J] E %, such that NKIK+([J]) = [A+]; it has order 
pal, %, E %pi x N .  Let e = rank(%;), el = rank(N), so rank(%,) = e + el. 

Hecke proved a very interesting relation between these ranks e, el. His 
proof was based on the fundamental work of Furtwangler in class field 
theory, more specifically its connection with the general existence theorem 
for class fields. Whereas the full results of Furtwangler were not required 
by Hecke, nevertheless he needed the explicit description of the unramified 
cyclic extensions of degree p of K. Of course this in turn may be easily 
obtained from the existence theorem of class field theory. 

I describe the results obtained by Furtwangler in his papers of 1904 and 
1907. Let a,, . . . , a, E A. They are p-independent when the following 
condition is satisfied: if a;'. . . a;- = PP, with P E A and 0 I ri < p - 1 (for 
i = 1, .  . . ,m), then rl  = . . .  = r, = 0. 

In 1859, while studying the reciprocity law for the power residue symbol, 
Kummer proved the following important theorem, which may be also found 
in Hilbert's Zahlbericht $135, Theorem 152: 

(6A) Let a,, . . . , a, E A be p-independent. Let j,, . . . , j, be integers, 
0 5 jl, . . . , j, I p - 1. For every n = 1, . . . , p - 1 let 9, be the set of all 
prime ideals Q, Q $ Aai (i = 1, . . . ,m), Q # AL, such that 

Then 

1. If s > 1 is a real variable, then 

where f(s) remains bounded in the neighborhood of s = 1, and N(Q) is the 
absolute norm of Q. 

2. The set 0:~: 2, is injinite. 

Actually, eebotarev proved in 1923 the density theorem that asserts that 
each set 22. is infinite. This was further extended by Schinzel in 1977 (see his 
Theorem 4). 

Now, let f = e + el = rank(%,), let {[J,], . . . ,[Jf]) be a basis of %,. 
Without loss of generality, each Ji may be taken to be an integral ideal and 
AA$ J i .  

Let pbi be the order of [Ji], and let pi E A be such that 

I write n = $(p - 1). Let {el, . . . ,en- be a fundamental system of units, let 
E, = c and en+ = pi (for i = 1, . . . , f ). Then {el, . . . are p-independent. 
By Kummer's theorem, there exist prime ideals Q,, . . . ,Q,+ ,-, distinct from 
AL, such that Qi does not divide any of the ideals J , ,  . . . , Jf and for every 
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i = 1, . . . , n + f ,  {ei/Qi) # 1, {ei/Qj} = 1 (for j # i). SO the ideals Qi are all 
distinct. 

I write 

[Q,] = [JJ . . . [J,]~; 
with 1 5 ulj) 5 phi. Let wp) = - up), so Q,J;; . . JY;= Ah; where K, E 

A\AL, 0 I wy I pbi - 1. 
Let S be the set of all algebraic integers a of the form 

0 I ui 5 p - 1, 0 5 vi I p - 1 and such that the following f congruences 
modulo p are satisfied: 

- Then S c A\AA, and #(S) 2 P " + ~ + "  - pp-'+/. Also, if a E S, then Aa = 
J I 1 J ? . . .  JwQ", ' . . .QZi ,  wherepln,, . . . , p ( n f .  

In 1902, Hilbert defined a, P E A\Ai to be of the same kind if there exists 
y E A such that a - ByP (mod Alp). This implies that y $ Al. The above 
relation is an equivalence. 

Furtwangler then defined a E A\AL to be a primary integer if there exists 
E A such that a - PP (mod ALP). It follows that there exists b E Z such that 

a = bP (mod ALP). 
It is not difficult to show: 

Lemma 6.2. 

1. All primary integers are of the same kind. 
2. If P E A\AA is of the same kind as the primary integer a, then P is also primary. 
3. There are pp-' distinct kinds of integers in A\Al. 

Since S c A\Al has at least pP-'+f elements, there exist w,, w, E S, 
distinct but of the same kind. Let o = w,w$-'. Then o is a primary integer 
and it may be written in the form: 

with a E A, 0 I ui, v j  I p - 1 and at least one of the integers ui, vj is different 
from 0. In particular, o is not the pth power of an element of K. 

The determination of o depends on the choice of the prime ideals 
Q1,. . . , Q,+/. With another choice Q;, . . . , Qb+f, another element o' is 
obtained. It may be shown that o, o' are p-independent. 

Since w is not a pth power in K ,  K ( G )  I K is a cyclic extension of degree p, 
that is, a Kurnmer extension with Galois group generated by a:& H [fi. 

With every unramified cyclic extension of degree p of K, Kl, = K(@) 
(where p E A, p not a pth power in K )  Furtwangler associated a subgroup 
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gp of the p-class group WP as follows: Yp is generated by all ideal classes [PI, 
where P is a prime ideal, P # Al, PY AP and {PIP} = 1; that is, P splits in 
K ~ I K .  T ~ U S  #(gp) 5 pa+al-l .  

In fact, it will be shown ultimately that YB has order pa+"' -'. Pending this 
result, let Xp be a subgroup of '8, such that Yo c Xp and Xp has order 
~ ~ + ~ ' - l .  

To study the correspondence Kg I-+ ;X;1, Furtwangler used the following 
general lemma : 

Lemma 6.3. Let L be any algebraic number field with class group '8L(L) 
and class number h, = pmr, m 2 0, p$ r. Let X be a subgroup of order pm-' 
of Wt(L). Then 

1 1  1 C -- < -log ---- + f (s), 
[Pl€xN(P)S-P s - 1  

where f(s) remains bounded in a neighborhood of s = 1. 

Applying this to K, as well as to K + ,  Furtwangler showed that if KD, Kg, 
are distinct unramified cyclic extensions of degree p of K, then Xa # XB,. 

Before stating the main theorem, 1 recall that K, IK, . . . , KmIK are 
called independent extensions if none is contained in the composite of the 
others. Furtwangler's main theorem is the following: 

1. K has f independent unramijed cyclic extensions of degree p. 
2. Any f + 1 unramijed cyclic extensions of degree p must be dependent. 

It follows from this theorem that Xp = Yp. More specifically: 

(6C) K has e independent unramijed cyclic extensions of degree p, say 
Ki = K(&), with mioi = pp, where pi E A'. 

Based on this theory, Hecke could prove (1910)-and this was certainly 
easier than what Furtwangler did-the following: 

1. There exist ideal classes [HI], . . . , [He] E Wp such that 
a. NKIK+ ([Hi]) = [A'] for i = 1, . . . , e. 
b. HP = Ami, where mi is a primary integer. 
C. If [HlIm1. . . [Helm2 = [A], then plm,, . . . , plm,. 

2. e s e , .  

I observe that this generalizes Kummer's theorem that if p divides h', 
then p divides h*. 
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It is interesting to see the implications of this theorem to Fermat's problem. 
Assume that there exists a, p, y E A\AA such that aP + PP + yP = 0. Hecke 
showed that the above implies that el - e 2 1. Previously, in 1857, Kummer 
had shown that p2 divides h = h*h+. It follows that p2 I h*. Indeed, if p 1 h', 
then rank@?;) = e 2 1 and el 2 e + 1 2 2, thus p2 I h*; while, if p,j' h', then 
p2 1 h*. 

Furtwangler proved that under the above hypothesis (failure of the first 
case in the ring A for the exponent p) then el - e 2 4 and therefore p41 h*. 

These results have been much improved by a totally different method 
invented by Vandiver. I will discuss this later in this lecture. 

To conclude this section, I shouldn't pass over the beautiful reflection 
theorem of Leopoldt (1958). It is in fact a generalization of Scholz's theorem 
of 1932. In Lecture XIII, I'll specifically need this theorem. I think it worth- 
while to describe, even though succinctly, Leopoldt's theorem. In this, I 
follow the "expose" by F. Bertrandias (1969). 

Let Y be the Galois group of K (Q, let 9 be the group of characters with 
values in the group of (nonzero) p-adic numbers, namely, all the homo- 
morphisms x : Y + Q,. The group ring Qp[Y] contains a system oforthogonal 
idempotents : 

(for all x E 3) and moreover 

This induces a decomposition 

Qp[gl = ~ € 9  @ Qpl,, 

and similarly 

Suppose now that V  is any abelian p-group, say of order pn, on which Y 
operates; I write v" for the image of v by o. This may be extended to an 
operation of Z,[Y] in the following way: if a = CUE, a,o, with a, E Z,, let 
a, E Z, 0 I a, 5 pn - 1 be such that a, E a,, (modpn). Then, the action of a 
on v is defined by 

va = II ( u " ) ~ ~ .  
"€9 

Letting 5 = {v+I v E U ) ,  then I/, is a subgroup of U ;  v E V' if and only 
if V'X = V, and in this case, v" = vX'"'. It follows also that V =  nX,+ Vx. 

Let T E 9 complex conjugation. A character x such that ~ ( z )  = 9 is 
even, while if x(.r) = - 1, it is odd. I note that if is even, v' = u, while if x is 
odd, then vr = v -  ' for all o E V'. An element v E V  is invariant by .r exactly if 
v E I/+ = nxeven 5, while v' = v- '  if and only if v E V* = n ,,,,, V'. 
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The group 9 operates on various interesting abelian p-groups. First, it 
operates on the group W of all pth roots of 1. This is a cyclic group of order 
p, so there is a character X* of 9 such that W = W,,. Namely, x*(o) = 

lim,,, gPn (limit in the p-adic sense) where i" = Cg, 1 I g I p - 1, C being a 
primitive pth root of 1. I note, therefore, that i" = CX*("). 

Given any character x of 9 ,  the character = x-'x* is called the rejected 
character of 1. The reflection x H X in the group @ is an involution, that is, 
- - x = X. Since x*(T) = - 1, X* is an odd character and 2, X have different parity. 

Another abelian p-group on which 9 operates is W,. So, for every character 
x of 8, I may consider the subgroup (W,),, whose rank is denoted by r,. 

Leopoldt's theorem relates the ranks r, and rz, for reflected characters 
x and X. To bound the difference rz - r,, Leopoldt considered the action of 
9 on the [Fp-vector space 42 = U/Up, where U is the group of units of A (the 
ring of integers of K). The rank of 42 is (p - 1)/2. Consider now all units E, 
such that the extension K(&)IK is unramified. Their cosets ~ 4 2 ~  form a I 

subgroup 42, of 42. For each character x of 9 let s,,, = rank(@",,). I 
! 

Leopoldt's theorem may now be stated: 

1. For every character x of 9 :  -s,,,- I rz - r, i s ,,,. 
2. If x is an even character, then r, I r, i r, + 1 and 
3. e i el i e + (p - 3)/2. 

Of course the inequality e i el is Hecke's theorem. 

7. Criteria for p-Divisibility of the Class Number 

The general idea is quite simple: If the first case is false for the exponent p, 
to deduce that a very high power of p divides the first (or second) factor of 
the class number. Then by some means, like explicit computation, rule out 
this possibility, thereby assuring that the first case actually holds for the 
exponent in question. 

There are various papers of this kind in the literature. To begin with, I 
consider statements involving the first factor of the class number. For 
example, as I mentioned earlier, if the first case fails for p, then p2 I h* (Hecke) 
and, better, p4 I h* (Furtwangler). 

The next results in the same line depend on a congruence for the first 
factor which was discovered in 1919 by Vandiver: 

i odd 
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In 1925, using the above congruence in appropriate ways, Vandiver 
showed that if the first case fails for the exponent p, then pa divides h*. 
Morishima (1932) sharpened this to I h* (with two undecided primes) and 
Lehmer (1932) ruled out the exceptions. 

Whatever the virtue of these results, it would be much better to have some 
power p"(P) dividing h* = h,*, where n(p) increases with p. 

In 1965, Eichler proved the following result: 

(7A) If thejrst case fails for p, then p[jT1-' divides thefirst factor h*. 

The proof is one that relies only on basic principles and may be explained 
without much effort. In spite of the danger of making this lecture too long, 
I will now give Eichler's clever proof. 

PROOF. If X, y, z are relatively prime integers, not multiples of p, and such 
that xP + yP + zP = 0 then, as said many times, there are ideals Ji of A such 
that A(x + Ciy) = Jf (for i = O,l, . . . ,p - 1). Let r = [&I - 1 and h* = pY, 
s 2 0, p$t. Assume that s < r. We will show this leads to a contradiction. 
By the pigeon-hole principle and the fact that p q s  the order of the group 
,V r WP/%?i, there exist a,, . . . , a,, 0 I a, I p - 1, but not all ai equal to 
zero, such that J", . . . J: - AJ+, where J f  is some ideal of A+ (the ring of 
integers of K +  = Q([ + i- I)). Then 

where p E A; it follows that A(J+)P is principal, say A(J+)P = Aa with 
cr E A+. Then 

r n (x + jiy)Oi = ppajjs, 
i =  1 

where E is a real unit (from the nature of units of the cyclotomic field). Since 
Ap = (AA)P-' and AIAA g FP, there exists b E Z such that p = b (mod A). 
Then pP r bP (mod p). Therefore n;=, (x + Ciy)Oi = bpaijs (mod p). Taking 
the complex conjugates and dividing, 

= i2j (mod p) 

therefore 

with n = 2j - I!=, ia,. Let 

x when a, r 0 
y when a, < 0 

for n 2 1. This congruence was proved again in 1966 by Hasse, using p-adic 
methods. A still simpler proof was given by Slavutskii in 1968. 

y when a; 2 0 
Yi = { x when a, < 0. 
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and 

If Z is an indeterminate, let 

Then F(r) - pG(c) (modp) so there exists a polynomial P(Z) with 
coefficients in H, degree at most p - 2, such that 

This means that 

where @,(Z) is the pth cyclotomic polynomial and Q(Z) has coefficients in 
Z, because of Gauss's lemma on factorization of polynomials. 

Multiplying by 1 - Z, taking the derivatives, and setting Z equal to 5 
leads to the congruence 

(1 - ()F'(c) - F([)  = -pG(r) + n(1 - OF- lG(0 + (1 - C)FG1([) (mod A). 

Dividing by the preceding congruence and computing explicitly the 
logarithmic derivatives yield: 

From here, it follows that 

Y X (1 - () iiuii(- -- -) = n(1 - 4') (modp). 
i = 1  x + c y  y + r x  

Let k 2 1 be the smallest index such that a, F 0. Upon multiplication 
with the product 

a congruence is obtained between polynomial expressions in 5, where the 
highest term is of the form 

(m being a positive integer). Since r(r + 1) 1 p - 2, by the assumption 
r = [&I - 1 and since (l,[, . . . ,ip-') is an integral basis, the congruence 
in question gives x2 = y2 (modp), i.e., x =_ + y  (modp). By symmetry, 
y = _+z (modp). 

Hence from x + y + z = xp + yp + zp = 0 (mod p) it follows that p 1 x, 
against the hypothesis. 0 

With a slight modification in the proof, the following is also true (but has 
not been explicitly published in this form): 

(7B) If theJirst case fails for p, then thep-rank of the class group V = W t ( K )  
is greater than & - 2. 

Despite the interest of the above results, it is, in practice, not easy to 
determine the p-part of the first factor h*, or of the p-rank of the class group. 

Briickner obtained in 1975 the following more amenable result: 

(7C) If the Jirst case of Fermat's theorem fails for p, then the irregularity 
index of p, ii(p) = (2j = 2,4, . . . ,p - 3 1p divides B 2 j ) ,  is greater than & - 2. 

Unaware of the variant of Eichler's theorem, Skula proved in 1972 that 
if the p-rank of the class group of K is 1, then the first case holds for p. A 
substantial simplification of Skula's proof was published by Briickner (1972). 
But, in any case, this result is no more than a special case of the variant of the 
beautiful theorem of Eichler. 

Now, I would like to turn my attention to similar statements for the second 
factor of the class number. 

Carlitz established in 1968 a congruence between the first and second 
factors of the class number. Let m = (p - 1)/2, let g be a primitive root 
modulo p and Go = det(g2"j)., J ." for 0 5 j I m - 2, 1 5 n 5 m - 1. Let 
E~(Z) ,  . . . ,E,- l(Z) be polynomials of degree at most p - 2, coefficients in 
Z, such that ( ~ ~ ( i ) ,  . . . , E,- is a fundamental system of units of K. Then, 

where c,, E Z. Put 

and let C = det(Ckn),,,. Finally, define G = 2m'2(C/Go). 
Carlitz showed that G is independent of the choice of the fundamental 

system of units and moreover: 

(7D) h+ G - 1 h* (mod p). 

Note that this says that if plh', then plh* (as Kummer showed), and 
conversely, if p 1 h*, but p ,j' h+, then p 1 G. 

In 1973, using p-adic methods, Metsankyla proved a congruence for h', 
which is actually equivalent to the one by Carlitz. 

In 1934, Vandiver stated and gave an abbreviated proof of the following 
theorem : 

If p does not divide h', then the first case holds for the exponent p. 



188 IX The Power of Class Field Theory 

Referring to this theorem, Vandiver wrote: "I now give a sketch of a proof 
of a theorem which appears to be the principal result I have so far found 
concerning the first case of [Fermat's] theorem." 

Indeed, if this theorem is true, it is quite remarkable. However, L. C. 
Washington communicated to me in a letter that "Iwasawa has told me that 
there is an error in Vandiver's proof which he has not been able to fix. 
R. Greenberg has also looked at it and arrived at the same conclusion. . . . 
Anyway, the theorem should be regarded as questionable". 

Therefore some of the results of Morishima's papers XI and XI1 of 1934 
and 1935 are also unreliable (I have also discussed Gunderson's criticisms in 
another lecture). 

If it can be established one day that, after all, Vandiver's theorem is true, 
then the following simple proof of Skula's result, as communicated to me by 
Hasse, will be justified : 

Suppose that the p-rank of the class group is 1, that is, Vp is cyclic. Since 
gp V; x Jlr, then either V; or Jlr is ,trivial. Recall that if p divides h', 
then p divides h*, as Kummer proved. Therefore, p cannot divide h', other- 
wise both groups %'; and Jlr are nontrivial. By Vandiver's theorem (if it is 
true) the first case holds for p. 

I note that in the same year as Vandiver, 1934, Griin proved the following 
result, which though not as strong as what Vandiver claimed, at least is 
correct. 

(7E) If p > 3 is a prime not dividing the second factor h', and if B,,, + 0 
(mod p3) for k = 1,2, . . . , (p - 3)/2, then thejirst case holds for the exponent p. 

8. Properly and Improperly Irregular 
Cyclotomic Fields 

Vandiver, following in the footsteps of Kummer, recognized the importance, 
for Fermat's theorem, of the condition that p divides the second factor of the 
class number. 

In 1929, he introduced the following definition. A prime p is called properly 
irregular if p 1 h,*, but pi( h; . It is improperly irregular if p 1 h; , hence also 
pl h,* by Kummer's theorem. 

Already in 1870, Kummer established that 2 divides h:,, and h;,,, and 
3 divides hA, and h;5,. However, Kummer found no example where h;. 
In fact, no such example has yet been found, however there is no evidence 
to support a conjecture that p never divides h i  (see Herbrand, 1932). 

The conjecture that p does not divide h; is commonly called Vandiver's 
conjecture. Yet, it appears already in Kummer's early work. Indeed, in a 
letter to Kronecker, dated December 28,1849, Kummer stated that he thinks 
to base his proof of Fermat's theorem for the exponent p on two properties. 
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The first one, "still to be established" amounts to the fact that p does not 
divide the second factor of the class number. In another letter to Kronecker 
(April 24,1853), Kummer recognized the failure of his attempts to prove that 
p does not divide h i .  

In 1929 and 1930, Vandiver gave a necessary and sufficient condition for 
h i  to be a multiple of p. This is expressed, as one would expect, in terms of 
the units of K. I recall my previous notations. 

Let g be a primitive root modulo p, let o:[ H Cg be the corresponding 
generator of the Galois group of K I Q. For every j E Z, let g j  be the unique 
integer such that 1 < gj I p - 1 and gj = gi (mod p) (with the obvious con- 
vention when j < 0). Let 

(D- 3)12 

(for i = 1,2, . . . ,(p - 3)/2). Let 

and finally, let ci = 6fi("), for i = 1, 2, . . . ,(p - 3)/2. Then: 

(8A) p divides h; if and only if one of the units E~ (1 I i I (p - 3)/2) is the 
pth power of a unit in K. 

Vandiver also proved that the units E,, . . . , E(,- 3),2 form an independent 
system of units in K. 

A simpler proof of the above result was given by Inkeri in 1955. 
The following theorem of Vandiver, was first announced in a special case 

in 1930. The proof was published later in 1939. It is quite interesting, since 
it relates the irregularity index of p with the invariants of the p-class group 
of K. 

Morishima had essentially claimed this result already in 1933, but as 
Vandiver points out, Morishima's proof is incomplete. 

(8B) Let p be a properly irregular prime number, let the p-class group of K 
be Vp = 3, x . . . x T f ,  where each Ti is a cyclic group, of order pbl (i = 
I , .  . . ,f), bi 2 1. Let m,, m2, . . . , m,- be the indices such that 1 I mi 5 
( p  - 3)/2 and p divides B,,,. Then: 

1. f '  = f and pbiJJBZmi (for i = 1, .  . . ,f). 
I - 2. Vp has a basis {[J,], . . . ,[Jf]) such that [Ji] has order pbi and 

A( fo r i=  1, . . . , f ) .  

These results are deep, the proofs quite involved. 
In 1976, using the theory of modular forms, Ribet proved a result which 

is intimately related with (1) of (8B) above. However, he did not assume that p 
divides h+ . 
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Let r = '3p/'3i, where Vp is the p-primary component of the class group 
of K. Let X:Gal(K) Q) + iFp be the character, with modulus p - 1, defined 
as follows. If g is a primitive root modulo p, o:[ t+ rg the corresponding 
generator of Gal(K1 Q), then X(oi) = gi for i = 0, 1, . . . , p - 2. Let T ( x ~ )  = 
(y E ~ I O ' ( ~ )  = Xj(oi)y for i = O,l, . . . ,p - 2). Then T(Xj) is a subspace of the 
Ifp-vector space r ,  and if j - j' (mod p - I), then r ( ~ j )  = Q j ' ) .  Moreover 
r = qXj) .  

Ribet proved : 

(8C) If 1 I k I (p - 3)/2, then p divides B,, ij and only ij # 0. 

A better understanding of the structure of the class group and units of the 
cyclotomic fields is now being reached by means of the theory of p-adic 
L-functions, as illustrated in the recent work of Washington. I 

I will now describe the method used by Washington to give a more 
systematic and transparent proof of various results by Pollaczek and Denes. 

Borrowing from Iwasawa's beautiful book (1972), I present the p-adic 
L-functions. Let x be a primitive modular character, with conductor f (see i 

Lecture VI, 81). So x:Z 4 C, ~ ( a )  = 0 if and only if gcd(a, f )  = 1, ~ ( a b )  = 

~ ( a ) ~ ( b ) ,  and a r b (mod f )  implies ~ ( a )  = ~ ( b ) .  
The generalized Bernoulli numbers B,,, are defined as follows. If I 

the formal power series development of F,(T) is written as: I 

In particular, if x = x,, the principal character (with conductor f = I), 
then B,,,, = Bn (for n # I), B ,,,, = - B, = 3. 

If L(s,x) = I,"= (x(n)/ns) (for s > 1) and if x # xo, the above L-series may 
be extended to a meromorphic function on the whole plane. For n = 1, 2, 
3, . . . it may be shown that L(l - n, X) = - Bn,,/n. This is similar to a formula 
connecting the Bernoulli numbers B,, and the values of the Riemann zeta- 
function ( ( 2 ~ ) ~  once the functional equation for the Riemann zeta-function 
is taken into account. 

The aim in defining the p-adic L-functions is to have at our disposal, 
in the p-adic number field, a function which behaves like the ordinary 
L-function. Kubota and Leopoldt (1964) were able to construct such p-adic 
L-functions. 

I assume p > 2, but everything holds with slight modification when p = 2. 
The group U  of units of the ring Zp of p-adic integers has the following 

structure: U  r W x U l  (group isomorphism and homeomorphism), where 
U ,  is the subgroup of all units a such that a - 1 (mod p) and W is the group 
of order p - 1 of all (p - 1)th roots of 1 in Q,. 

Let @(a) = limn,, aPn for every a E U. Then o(a) E W and a"' = 
a/o(a) E U 1 .  

In particular, if a E Z c ZpI p$ a, then a E U ,  so w(a) is well defined; for 
the integers a, such that pl a, just put o(a) = 0. Since the values of o(a) are 
algebraic numbers, hence complex numbers, the mapping &:Z + 02. is a 
primitive modular character with conductor p. 

If x is a primitive modular character with conductor f ,  for every n 2 1 
let xn = XW-". This is the product modular character, which is the unique 
primitive modular character with conductor dividing fp such that ~ , ( a )  = 

~(a)o(a)-" for every integer a with gcd(a, fp) = 1. 
The theorem of Kubota and Leopoldt asserts the existence of a unique 

p-adic meromorphic function Lp(s,~) such that the following two conditions 
are satisfied: 

where each ci E Q,(x) (the field generated over Qp by the values ~ ( a ) ,  for 
a = 1,2, . . . ,p - I), 

and the series converges in the domain 

s E 0, = algebraic closure of QpJ  1s - 11, < p 

(I 1, denotes the p-adic absolute value, normalized by /p(, = l/p). 
ii. For n = 1, 2, 3, . . . 

The functions Lp(s,~) defined above are the p-adic L-functions. Thus, if 
x f xo, L,(s,x) is regular at s = 1, while Lp(s,x0) has a pole of order 1, with 
residue I - (lip) at s = 1. 

Now I shall require the p-adic regulator of an algebraic number field, which 
is defined in a way similar to the ordinary regulator. For this purpose, I first 
consider the p-adic logarithm. Let a E 0, (algebraic closure of Q,) be such 
that la - 11, < 1. Then the series 

is convergent and its sum is an element of Q, which is defined to be log,(a), 
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the p-adic logarithm of a (I have defined in Lecture VII, 95, the kadic loga- 
rithm in similar way). The mapping log, may be extended in a unique way to 
the whole multiplicative group Q,, so as to be continuous and satisfies 
log,(z(a)) = z(log,(a)) for every z E Gal(0,l Q,) and log,p = 0. Note that 
0 is algebraic over Q,, hence it may be imbedded into 0,; I fix one such 
imbedding. 

Let L be a totally real number field of degree n, let cp,, . . . , cp, be the 
imbeddings of L into 0 c 0,. Let { E , ,  . . . ,E , )  be a fundamental system of 
units of L, where r = n - 1. 

The determinant of the matrix ( l ~ g , c p ~ ( & ~ ) ) ~ , ~ =  ,, . . . ,r belongs to Q, and, 
up to a factor & 1, is independent of the choice of the fundamental system of 
units. It is, by definition, the p-adic regulator of L, denoted by R,. 

Leopoldt conjectured that R, is always nonzero. This has been proved by 
Brumer (1967) when L I Q is a totally real abelian extension, and it is quite 
a deep theorem. In particular, if L = K', its p-adic regulator is not equal to 0. 

Leopoldt's p-adic class number formula puts together the various values 
of the p-adic L-functions at 1, the p-adic regulator and the class number h 
of K = Q([): 

p ( ~ -  3)/4 (P- 3)/2 

= 2 ' ~ -  3 1 1 2 ~  n ~ ~ ( 1 , ~ ~ ~ ) .  
p i = l  

In particular, LP(l,o2') # 0 for each i = 1, . . . , (p - 3)/2. 
DCnes defined in 1954 the p-characters of the Bernoulli numbers as 

follows. If 1 I i I (p - 3)/2, the p-character of BZi is the smallest integer 
ui 2 0 such that BZipU, $ 0 (mod pZu1+ I). In particular, p is regular if and only 
if the p-character of every Bernoulli number BZi(1 I i 5 (p - 3)/2) is equal 
to 0. 

Denes raised the question whether such an integer ui, as above, necessarily 
exists. He promised a proof, but this promise remained unfulfilled. It was 
only in 1977 that Washington succeeded in showing that the p-character 
is always defined (as a finite integer). Precisely 

U' = v,(Lp(l,w2')) < co, 

where v, is the p-adic valuation. The inequality reflects the fact that 
Lp(l,02') # 0. 

The p-adic method of Washington was sufficient to obtain new proofs of 
results of Pollaczek (1924) and Denes (1954) concerning fundamental systems 
of units for the real cyclotomic field. Because of its interest, I wish to mention 
the following result of Denes (1954, 1956). 

(8D) There exists a fundamental system of units {q2,q4, . . . ,qp- 3) for K +  
of the form: 

qZi = azi + bZiACZ1 (modAc2*+') 

with azi, bzi E Z, and 
cZi = 2i + (p - I)&, 

Bibliography 

where 
0 I u;i I uzi = vp(~,(l,w2')) 

(8E) If pa is the exact power of p dividing h+, then 

In particular 

(8F) If p is properly irregular, then uii = uZi for i = 1, . . . , (p - 3)/2. 
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LECTURE X 

Fresh Efforts 

In this lecture, I'll present results obtained by various new methods. My 
choice is rather encompassing. There are some attempts, which belong among 
those described in my Lecture IV, on the natve approach. Others involve 
penetrating studies of the class group. And entirely new avenues are opening 
with ideas from the theory of algebraic functions. 

Whether or not these methods will solve the problem, they at any rate 
stimulate interesting investigations. 

1. Fermat's Last Theorem Is True for Every Prime 
Exponent Less than 125000 

I announced in my first lecture that Fermat's last theorem is true for every 
prime exponent p < 125000. Though, as I said earlier in Lecture VIII, the 
first case holds for p < 3 x lo9. 

Of course, the above verification has been made using modern computers. 
This is the result of the patient work of Wagstaff, but-as he assured me-not 
using the most modern computers available today. Instead, the majority 
of the programs were run on a ten-year-old IBM 360165. He also used an 
IBM 370 computer, which is between three and five years old, in doing this 
work. These computers do not have either the speed or the features of the 
most advanced machines available today. But such advanced machines were 
not made available for this kind of work. Whatever computers used, the 
methods applied are quite reliable, so the outcome is not in question. 

Before I start explaining the method, it is perhaps a good idea to review 
what was already done. 
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When Kummer proved his main theorem in 1847, and subsequently 
recognized that 37 is the smallest irregular prime, FLT was proved for 
p < 37. In his 1857 paper, Kummer proved a theorem which assured that 
FLT holds for a certain class of irregular primes (see Lecture VII). Applying 
his criterion to the irregular primes p = 37,59,67 less than 100, he concluded 
that FLT holds for all p < 100. However, in 1920 Vandiver noted that 
Kummer's proofs of 1857 contained various gaps. Vandiver succeeded in 
1922, 1926 in repairing these imperfections guaranteeing already by 1926 
that FLT holds for p < 157. 

The prime 157, the smallest prime p with p2 dividing the first factor of the 
class number h,*, was not covered by Kummer's criterion. 

In 1929, Vandiver published a long paper where he gave various new 
criteria. Let 5 be a primitive pth root of 1, K = Q(0,  and let A be the ring of 
integers of K. 

(1A) Assume: 

I. The second factor h+ of the class number of K is not a multiple of p. 
11. None of the Bernoulli numbers B,,, (n  = 1,2, . . . ,(p - 3)/2) is a multiple 

of p3.  

Then the second case of FLT is true for the exponent p. 

The above criterion is not easily applicable because the computation of 
the second factor h+ is so tricky. 

The next criterion is more practical: 

(1B) Assume : 

111. There exists one and only one index 2s, 2 I 2s < p - 3, such that p 
divides B2, 

IV. With the above index 2s, P 3  does not divide B,,,. Then FLT holds for 

Then FLT holds for the exponent p. 

All irregular primes p < 21 1, except 157, are covered by the above criterion. 
The third of Vandiver's theorems was: 

(1C) If p = 1 (mod 4) and if p ,/' B,, for every odd index s, 2 I 2s < p - 3, 
then FLT holds for the exponent p. 

This criterion is not satisfied by 157, because 157 divides B62 and B,,,. 
It is only his fourth theorem which applies to the prime 157. I introduce the 
following notation. Let a,, a2, . . . , a, be the indices such 1 5 ai < ( p  - 3)/2 
and p/ B,,, As in Lecture VII, let g be a primitive root modulo p and let 
a be the automorphism of K = Q(c) such that a(() = cg. Let 

1 - cg 1 - [-g 6 = J= 1 - c  I - ( - '  
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and 
( P -  3)12 ea = n ay6g-2ia) 

i = O  

for a = 1, 2, . . . , ( p  - 3)/2. 

(ID) Assume: 

V. There exists a prime I, I - 1 (modp), 1 < p2 - p, such that if 1 I a. < 
I -  

( p  - 3)/2, p 1 B,,,, then the unit On, is not congruent to the pth power of 
an integer of K = Q(0, modulo L, where L is a prime ideal dividing Al. 

Then FLT holds for the exponent p. 

Using this theorem, Vandiver proved, in the same article, the more 
practical criterion: 

(1E) Assume: 

VI. 

VII. 

There exists a prime 1, 1 = 1 (modp), 1 $ 1 (modp2) such that the 
congruence 

has only the trivial solution. 

With the above prime 1, if 1 i ai I ( p  - 3)/2, p 1 BZaz,  then 

where L is a prime ideal of K = Q(() dividing A1 and ( - )  denotes the 
pth power residue symbol. 

Then FLT holds for the exponent p. 

Finally this is the first of the criteria which may be applied to p = 157. 
Vandiver chose 1 = 1571, the primitive root g = 139 modulo 157, a,  = 31, 
a, = 55 and ind(O,,) = 150 (mod 157), ind(O,,) = 39 (mod 157). 

Vandiver also concluded that h i  is not a multiple of p for every p < 21 1. 
In 1930, with the same methods, Vandiver proved FLT for every prime 

p, 211 5 p < 269. This was extended in 1931 up to 307 and again in 1937, 
up to 617 by Vandiver and his assistants. At this point the computations 
became much too laborious for desk calculators. 

In an important paper of 1954, Lehmer, Lehmer, and Vandiver intro- 
duced a new criterion more appropriate for computations. 

I have already mentioned, in Lecture VI, how Stafford and Vandiver gave 
practical computational methods to decide whether a given prime is irregular; 
this remains after Kummer the only case which requires further work. 
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The following lemma is basic: 

Lemma 1.1. Let 1 be a prime, 1 = kp + 1 < p2 - p. Let t be a natural 
number such that tk $ 1 (mod 1). For a 2 1, let 

( P -  1 ) / 2  1 ' p - ' " 2  i p - 1 - 2 a  

d = P a  and Q = n (tki - 1) 
i- 1 i =  1 

With the notation already introduced, the unit 8, is congruent to the pth 
power of an integer in K = a([), modulo a prime ideal L dividing Al, i f  and 
only i f  Q1; - 1 (mod 1 ) .  

Using this lemma, Lehmer, Lehmer, and Vandiver proved the following 
criterion: 

(IF) Assume that p is an irregular prime, let a,, 1 5 ai < ( p  - 3)/2, be the 
indices such that p / BZa,. With above notations, i f  2* + 1 (mod 1 )  and Q:, + 1 
(mod I )  for all above indices a,, then FLT holds for the exponent p. 

Using the SWAC calculating machine, the above authors proved that 
FLT holds for every prime exponent p < 2003. Soon after, Vandiver (1954) 
extended this to 2521. 

This only began a long series ofcomputations by various mathematicians: 

Selfridge, Nicol, and Vandiver, in 1955-up to 4001, 
Selfridge and Pollack, in 1967-up to 25000, 
Kobelev, in 1970-up to 5500, 
Johnson, in 1975-up to 30000, 
Wagstaff, in 1975-up to 58150, 
Wagstaff, in 1976-up to 100000, 
Wagstaff, in 1977-up to 125000. 

Much valuable experimental information about irregular primes has 
been obtained along with these computations. This I have described in 
Lecture VI. 

In 1956, Inkeri extended the above criterion so as to guarantee that no 
solutions exist in integers of the real cyclotomic field. However, the proof 
is based on a result of Morishima (1935), which was criticized in Gunderson's 
thesis (1948). 

2. Euler Numbers and Fermat's Theorem 

The Bernoulli numbers seem like cousins to other numbers, considered 
first by Euler in the series development of the secant function: 

El 2 E 6 X 6 + . . .  secx= 1 - - x  + G x 4 - -  convergent for 1x1 < 
2 !  4! 6 !  
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The secant coefficients were later called Euler numbers by Scherk (1825). 
They have been extensively studied, just like the Bernoulli numbers. 

For example, they satisfy the basic recurrence relation: 

Thus, 

It is also customary to write 

It is easily seen that the Euler numbers are integers. Moreover it may be 
proved that they are, in fact, odd integers, with alternating signs, and their 
last digit is alternately 1, 5 (a fact which is irrelevant here). 

More useful is to establish their relationship with the Bernoulli numbers. 
This was indicated by Scherk (1825): 

On the other hand, 

If I have to say only a few more words about Euler numbers, then I choose 
to give the formula which is analogous to the relation between the Bernoulli 
numbers and the values l'(2k) of the Riemann zeta-function. This formula, 
also discovered by Euler, is the following: 

I will pass in silence over all the numerous identities, congruences and 
other properties of Euler numbers and I will just say a word about Euler 
polynomials:,they are defined and studied in a way analogous to Bernoulli 
polynomials. The classical books by Saalschiitz (1893), Nielsen (1923) and 
Norlund (1923) contain much interesting information. 

It is not all surprizing that the connection, via Kummer's theorem, 
between the'~rimes dividing certain Bernoulli numbers and the truth of 
Fermat's theorem, would suggest a similar theorem using the Euler numbers. 

A prime p is caIled E-regular if P does not divide the Euler numbers 
E2, E4,. . . ,Ep-3. 
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He showed: In 1940, Vandiver proved: 

(2A) If p does not divide Ep-,, then the first case of Fermat's theorem 
holds for the exponent p. 

(2D) If there exist x, y, z such that p t x y z  and xZP + yZP = z2P , th en P 
divides Ep- ,, Ep-, , Ep- ,, Ep - ,, Ep- , , . 

Thus, if p is E-regular, the above conclusion is still true. 
The basic fact used in the proof was a congruence obtained by E. Lehmer 

in 1938: 

These results, involving Euler numbers, should only be viewed as an 
alternate way of expressing equivalent facts involving Bernoulli numbers. 
But joined together with other available information, they might turn out 
to be of some help. 

3. The First Case Is True for Infinitely Many 
Pairwise Relatively Prime Exponents 

In his paper of 1954 about irregular primes, Carlitz also showed: 

(2B) There exist infinitely many E-irregular primes p, i.e., pI E2E4 . . . Ep- ,. 
Up to now, it has not been possible to show that the first case of Fermat's 
theorem is true for infinitely many distinct prime exponents. The situation, 
however, is different for pairwise relatively prime exponents. Indeed, this 
was established by Maillet in 1897: 

As in the case of regular primes, it is not known whether there are in- 
finitely many E-regular primes. 

The distribution of E-irregular primes was the object of two recent papers, 
by Ernvall(1975) and Ernvall and Metsankyla (1978). I quote the following 
results. The first one sharpens Carlitz's theorem. (3A) Let p > 3, let h = puk, with u 2 0, p$ k, be the class number of the 

cyclotomic field K = Q([) (cP = 1, [ # 1). Then if n 2 u + 1 and a, fi, y are 
nonzero integers in K satisfying up" + fiP" + yPn = 0, it follows that 1 = 1 - [ 
divides cr, /? or y. 

(2C) There exist infinitely many E-irregular primes p such that p f f 1 
(mod 8). 

Let ii,(p) denote the E-irregularity index of the prime p; that is, the 
number of integers 2n, 2 I 2n I p - 3, such that p divides E,,. Ernvall and 
Metsankyla computed all E-irregular primes p < lo4 and found examples 
of primes p with iiE(p) = 1,2, 3,4, 5 in the range in question. 

Let x be a positive real number, let 

In particular, for n 2 u + 1 the first case of Fermat's theorem holds for 
the exponent pn. In 1972, Hellegouarch gave a shorter proof for this theorem. 
In fact, his result applies for n 2 t + 1, where pt is the exponent of the p- 
primary component of the class group of K (note that u 2 t ,  so this is an 
improvement over Maillet's result). 

As a consequence, for every prime p the first case holds for some exponent 
of the form p" and therefore, the first case is true for infinitely many pair- 
wise relatively prime exponents. 

It is worthwhile saying more about the smallest exponent M(p) such that 
the first case is true for every p", n 2 M(p). Hellegouarch treated this question 
by generalizing the theorems of Furtwangler (see Lecture IX) for prime- 
Power exponents. As I have previously said, this had been achieved earlier 
by Moriya. With this method Hellegouarch proved, among other things, 
the following generalizations of the theorems of Wieferich and Mirimanoff: 

n(x) = number of primes p, p I x 
nE(x) = number of E-irregular primes p, p I x 
nBE(x) = number of primes p, p < x, which are both irregular and E- 

irregular. 
Under the heuristic assumption that the Euler numbers are randomly 

distributed modulo p, it follows that 

(3B) If p > 3, n 2 1 and the order of 2 modulo p is smaller than the order 
of 2 modulo p2", or the order of 3 modulo p is smaller than the order of 3 modulo 
p2", then the-first case holds for the exponent pn. 

The observed and predicted values of these ratios agree pretty well. 
Gut derived, in 1950, Euler number criteria, analogous to those of 

Kummer for the first case, when the exponent is equal to 2p, p an odd prime. 

In other words, if the first case fails for the exponent pn then 2p-' = 1 
(mod p2n) and also 3P-1 = 1 (mod pZn). 
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These congruences are stronger than the congruence ZP-' = 1 (modp"' l) 

obtained by Inkeri as indicated in Lecture IX. 
Thus the constant M(p) is at most equal to the smallest integer n such 

that o(2 mod p) < o(2 mod p2") or o(3 mod p) < o(3 mod p2"). 
Another result on the value of M(p) has been published recently by 

Washington (1977). Following the method of Eichler and writing the first 
factor of the class number as h* = pu* k*,where p Y k and u* 2 0, then: 

(3C) Let p 2 3; if n 2 max{l, u* - & + 3) and x, y, z are nonzero in- 
tegers such that xPn + yPn + zPn = 0, then p divides xyz. 

In some instances this result of Washington is better than Maillet's and 
Hellegouarch's. If p = 3511, then by Maillet's theorem M(p) 5 3, Hellegou- 
arch's theorem gives M(p) 5 2, while Washington's theorem gives M(p) = 1. 

For the exponents of the form 2", BohniEek proved the following theorem 
in 1912: 

(3D) If n > 3, then there do not exist integers a, P, y ,  dflerent from 0, in 
the cyclotomic jield Q(12") (where [:> 1, ($-' # I), such that 

@2"-' + ~ 2 " - '  + Y2n- '  = 0. 

For example, if n = 3, this theorem says more than Theorem 169 of 
Hilbert's Zahlbericht. Indeed it asserts that X4 + Y4 + Z4 = 0 has only the 
trivial solution in Q(18), and not merely in Q(i). 

More recently, in 1964, Kapferer, quite unaware of Maillet's theorem, 
proved in a rather cumbersome way the existence of infinitely many pairwise 
relatively prime exponents for which the first case holds. His basic result is 
the following: 

( 3 E ) L e t a > 2 , n >  l , e > 2 b e i n t e g e r s s u c h t h a t 2 X e ;  3$eandan - 1 = 

ef, where gcd(e, f )  = 1. If x, y, z are nonzero pairwise relatively prime integers 
such that xe + ye + ze = 0 and alx, then e lx. 

The above result may be applied with a = 2. According to a theorem of 
Bang-Zsigmondy-Birkhoff and Vandiver (1886, 1892, 1904), each integer 
2" - I (when n > 6) has a prime factor pn such that pn does not divide 2" - 1 
for every m < n. Let 2" - I = p:fn, where pn $ f and en = p:. Then, by 
Kapferer's theorem, the first case holds for all exponents en. 

If it can be shown that there are infinitely many indices n such that r, = 1, 
then the first case would hold for infinitely many prime exponents p,. 

Odlyzko called my attention to a recent paper by Powell, where there is 
a very elementary proof of the following result: 

(3F) There exist infinitely many relatively prime exponents n such that the 
equation X" + Y" = Z" has no solution in nonzero integers x, y, z such that 
gcd(n,xyz) = 1, that is, the first case holds for n. 
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As a matter of fact, if p is any prime and n = p(p - 1)/2, then the first 
case holds for n. 

The result (3F) is weaker than what was proved earlier, by analytic 
means by Ankeny (1952) and Ankeny and Erdos (1954). Namely: 

(36) The density of the set of exponents for which the first case is false 
is necessarily zero. 

4. Connections between Elliptic Curves and 
Fermat's Theorem 

Let K be an algebraic number field (of finite degree over Q). Let V be a 
(nonsingular) elliptic curve, with a fixed point 0, both defined over K. Let 
Q be the abelian group of K-rational points of W. The celebrated theorem 
of Mordell (1922) later generalized by Weil (1928), states that the group 9 
is finitely generated. So the subgroup 9, consisting of the points of finite 
order, is finite. 

More precisely, if K = Q and P = (x,y) with x, y E Q is a point of finite 
order of the curve Y2 = X3 + a x  + b, now in Weierstrass form (a, b E Z, 
4a3 + 27b2 # 0), then x, y E L and y = 0 or y2 divides 4a3 + 27b2. 

Much more is known and may be found in Cassels's excellent survey 
article (1966). 1 single out the following fact: 9 is either cyclic or the product 
of a cyclic group with the group of two elements. 

Cassels also mentions the "folklore" conjecture, that there is a uniform 
bound for the orders of all points in 9, which depends only on the field of 
definition K of W, and not on W. 

In 1969, Manin proved the local analogue of the folklore conjecture: 

(4A) For every algebraic number jield K and every prime p, there exists a 
constant M = M(p,K) > 0 such that for every (nonsingular) elliptic curve V, 
dejned over K, the orders of points in V, of order a power of p, are bounded 
by M. 

However, no upper bound for M is effectively determined. 
In 1971, Demjanenko published a "proof'' of the following result: 

(4B) For every algebraic number field K there exists a positive constant 
M = M(K) such that for any elliptic curve V, defined over K, the order of 
every point of finite order is at most M. 

However, Cassels' review in 1972 should be taken into account: 

The author purports to prove the long-standing conjecture that the 
Mordell-Weil rank of an elliptic curve (=abelian variety of dimension one) 
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over an algebraic number field is bounded by a constant depending only on 
the field. Unfortunately, the exposition is so obscure that the reviewer has 
yet to meet someone who would vouch for the validity of the proof; on the 
other hand, he has yet to be shown a mistake that unambiguously and ir- 
retrievably vitiates the argument. . . . 

So, whether or not the above statement of Demjanenko is true, since 
M ( K )  is not effective, the question still remains open: Which are the possible 
orders of the points of finite order of an elliptic curve over K? 

At this point, I would like to mention the work of Ogg (1971) and his 
conjecture. Ogg associated with every n 2 1 a curve X,, defined over Q, 
with the following property: For each couple (V,P), where 5~7 is an elliptic 
curve defined over K, and P is a K-rational point of V of order n, there 
corresponds a K-rational point of X,. Moreover, "almost" all points of 
X, are so obtained. 

The genus g, of 3, is computed to be: 

where cp denotes Euler's totient function and t ( d )  = gcd(d,n/d). Thus g, = 0 
if and only if n I 10, n = 12. Also g, = 1 if and only if n = 11, 14, 15. 

Ogg's conjecture was the following: If g, 2 1, no elliptic curve V defined 
over K has a rational point of order n. 

A recent paper by Mazur (1978) settles the problem, confirming 
Demjanenko's theorem, over the field Q (see Serre, 1977, 1978): 

(4C) The possible orders of points of jnite order of an elliptic curve over 
Q are n = 1 , .  . . , 10 and n = 12. 

This confirms Ogg's conjecture. The question remains open over general 
algebraic number fields. 

Since these lectures focus on Fermat's theorem, I wish to report on 
Hellegouarch's work, and its surprising connection with Fermat's equation. 
Among his theorems, I mention: 

(4D) There exists an integer N o  2 17 and an integer N 2 4 (efectively 
computable) such that if p is a prime, p 2 No,  i f  h 2 2 and i f  V is any (non- 
singular) elliptic curve over Q with a rational point P of order p', then for 
every u = 1,2, .  . . , t the equation 

has at least (pU - 1)/2 distinct solutions in Q (not counting the trivial solution 
(O,O, . . . 

For elliptic curves having a rational point of order 2, the above results 
may be sharpened as follows: 

(4E) If p > 3 (respectively p = 3), and if the elliptic curve %? over Q has a 
rational point of order 2pt with t 2 1 (respectively t 2 2), then for u = 1,2, . . . , t 
(respectively u = 2, . . . ,t) the equations 

q-" + Tqt-" + q-" = 0 
and 

T f t - "  + Tqt-" + 2Tgt-" = 0 

have at least (p" - 1)/2 distinct solutions in Z [not counting the trivial solution 
(O,O,O)l. 

The above results, which were obtained before Mazur's, may be viewed 
as giving information about the solutions of Fermat's equation and analo- 
gous equations. 

On the other hand, without the newer results, they imply already the 
nonexistence of a rational point of order 2 x 33 = 54, as well as one of order 
2' x 3' = 36. But they wouldn't be strong enough to rule out the existence 
of a point of order 18. 

Hellegouarch also showed, with similar methods, that if p > 3, there are 
no points of %? (defined over Q )  of order 2p2. But again, this has been super- 
seded by the recent more powerful result of Mazur. 

5. Iwasawa's Theory 

At this point, I'm tempted to present some material which is very attractive 
and goes deep into the study of cyclotomy. I don't know whether this theory 
will have any direct connection with Fermat's theorem. I consulted Iwasawa 
on this matter, but he wasn't sure either. 

The idea is simply to take, for a given prime p, the tower of cyclotomic 
extensions K, = Q(Cpn+ 1), where Cp,  + is a primitive pn+ 'th root of 1 and to 
examine these fields, together with some associated Galois groups and their 
ideal class groups. Since p is prominent, the p-adic valuation plays an 
important role. Moreover, it is only natural to consider the p-primary 
components of the ideal class groups. Passing to the limit, the description 
becomes smoother and more natural. There will be certain numerical 
invariants attached to the whole system, which ultimately depend only on 
the given prime and reflect its special properties. 

I may trace two classical theorems as roots of this theory. First, let p = 2. 
In 1886, Weber proved (see also his Algebra, volume 11, 1899): 

(5A) For p = 2, and every n 2 1, the class number of Q([,,) divides the 
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class number of Q(Czn+I) and the quotient is odd. In particular, for every 
n 2 1, the class number of is odd. 

In 1911, Furtwangler extended Weber's theorem for the case of odd 
primes : 

(5B) Let p be an odd prime, let n 2 1. The class number of K, is a multiple 
of p if and only if the class number of KO is a multiple of p. 

In other words, if p is a regular prime, then p does not divide h(K,) for 
every n 2 1. However, if p is irregular, let en I 1 satisfy pen(lh(K,). How 
does en behave with respect to n? This question is answered by Iwasawa's 
theory, which, also applies to other more general situations. 

Serre's lecture at Bourbaki's Seminar (December 1958) is a very good 
guide to this theory. As usual, he is crystal clear, and I can't do better than 
to follow his lead. However, due to lack of space, I'll not enter into too many 
details. 

Let Q c KO c K, c . . . c K, c . . . be the tower of cyclotomic fields, 
with Kn = Q(lpn+ ,), and K, = U ,"=o K,. 

Let G, = Gal(K,l Q), so G, z (Z/pn+')", the multiplicative group of 
invertible residue classes modulo pn+l. Since p # 2, G, is a cyclic group; 
it has order pn(p - 1). Let T, = Gal(Kn ( KO), so T, is a cyclic group of order 
pn. The Galois group T, = Gal(K, I KO) is the inverse limit of the groups 
T, (relative to the natural restriction of automorphisms). T, is a compact 
totally disconnected group, which is in fact isomorphic (both algebraically 
and topologically) to the additive group of p-adic integers: T, z 2,. As 
such, T, is a (topologically) cyclic group. 

Another aspect of the situation concerns the class group. Let W(K,) 
denote the class group of K,; this is an abelian group of order h(Kn). Let 
Vp(Kn) be its p-primary component. If h(K,) = penkn, with pyk,,, then 
V,(K,) has order pen. The group Tn acts on the class group M(K,) and also 
on v,(K,,). 

For every n 2 1, taking norms of ideals, gives a homomorphism from 
V,(K,+ ,) into M,(K,), which is obviously compatible with the operations 
of the Galois groups T,+,, T,. Let Vp be the inverse limit of the abelian 
p-groups V,(K,), with respect to the norm homomorphisms. 

Since T, operates on %,(K,), the group algebra over the ring of p-adic 
integers, A, = f,[T,] also operates on W,(K,), that is, W,(K,) is a module 
over An. If A = I@ A, then M, = I@Vp(Kn) is also an A-module. The first 
structure theorem asserts: 

(5C) For every odd prime p, there exist integers A, p, v and no 2 0 such 
that if n 2 no, then 

en = An f ppn + V. 

The integers A, p, v depend only on the prime p. 

The proofs of the above theorems of Iwasawa (1959) essentially use class 
field theory and I refer to Serre's "expose". 

If p # 0, the growth of en is very rapid, so it is interesting to know whether 
this may happen. Iwasawa has conjectured that for every p 2 3, the cor- 
responding pp = 0. 

In successive papers, Iwasawa and Sims (1966) showed that pp = 0 for 
all primes p 4001. In 1973, Johnson established the same for p < 8000, 
in 1976, he went to 30000 and in 1977, Wagstaff pushed it further to 
p < 125000. Some theoretical work by Metsankyla (1974) gave the estimate 
p, < (p - 1)/2, improving a previous bound of Iwasawa. Finally, in a 
1978 paper, Ferrero and Washington proved that pp = 0. Actually, 
the same result holds also when the ground field is any abelian extension 
of finite degree of the rational field. 

There is a similar theory concerning the growth of the p-primary part 
of the first factor of the class number of K, = Q([,,+,), which was also 
developed by Iwasawa, using p-adic L-functions (1972). 

The theory may be generalized for certain ground fields different from Q 
and some other types of extensions, called r-extensions. 

There is now a flurry of research in this area. However, as yet, no explicit 
connection has been made with Fermat's last theorem. 

6. The Fermat Function Field 

Fermat's equation X n  + Y n  + Zn = 0 (for n 2 3) defines a curve R,, in the 
projective plane over the field 0 of all algebraic numbers. Hasse was the 
first to investigate the rational points of R,, in the light of the theory of 
algebraic functions. 

If P is a point of R,, let its coordinates be P = (x(P),y(P),z(P)) with 
x(P),  y(P), z(P) E 0 (they are defined up to a proportionality factor). Let 
9; be the affine portion of the curve R,, consisting of all points P such that 
z(P)  # 0. Let 5, q be the functions from 9: to 0 defined by ((P) = x(P)/z(P), 
?(P)  = y(P)/z(P). Let [ be a primitive 2nth root of 1, KO = Q([), and K = 

Ko(5,q). This is the quotient field of the ring Ko[T,U] (where T, U are 
indeterminates) modulo the prime ideal generated by T" + Un + 1. K is 
called the function field of the affine curve 9:. 5 is transcendental over KO 
and q = d m ) ,  so it is algebraic over Ko(5). Thus K is an algebraic 
function field of one variable, having field of constants equal to KO. This 
last statement reflects the fact that Tn + Un + 1 is an absolutely irreducible 
polynomial over KO. 

The arithmetic theory of algebraic function fields of one variable, when 
the constant field is not necessarily the field of complex numbers, was 
developed by Hasse and Chevalley, among others. 

The arithmetic Riemann surface 6 of K is the collection of all prime 
divisors # of KI KO. These may be viewed as symbols which correspond 
bijectivel~ to the valuations of K ,  which are trivial on KO. I write w, for the 
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valuation corresponding to the divisor b. Let O+ be the valuation ring of 
w+, that is, the ring of all elements a E K such that w+(a) 2 0. The ring Lo,, 
has a unique maximal ideal, dl+ = {a E K lw+(a) > 0). The quotient field 
K+ = O+/A+ is an algebraic extension of finite degree of KO. This degree 
ffi = [K+: KO] is called the degree of wb, or of the divisor #. The residue 
class of a E O+ modulo &+ is written a(b), and it is called the value of a at 
the divisor #. 

It may be shown that the prime divisors of KI KO correspond to the 
points P of the affine Fermat curve 9;. Those of degree 1 correspond to 
the points P with coordinates x(P)/z(P), y(P)/z(P) in KO. More generally, 
each prime divisor fi corresponds to a point P with coordinates in K+. 

The free abelian group 9 generated by all the prime divisors is called 
the group of divisors. So the divisors are the formal products a = n+ fia'+) 
with a(#) E Z and a(#) = 0 except for finitely many prime divisors # E 6. 
The degree of a is, by definition, deg(a) = z+ a&) deg(b). 

The unit divisor is e = n+ be(+) with e(b) = 0 for every b .  The divisor 
a is called integral if a@) 2 0 for every fi. The divisor b divides the divisor 
a if there exists an integral divisor c such that bc = a. With obvious notation, 
this amounts to saying b(#) 5 a@) for every #. 

Any divisors a,, . . . , a, have a unique greatest common divisor b = 

gcd(a,, . . . ,a,), with d(fi) = min{a,(#), . . . ,a,(#)) for every #. They also 
have a unique least common multiple. If gcd(a,, . . . ,a,) = e (unit divisor) 
then the (integral) divisors a,, . . . , a, are said to be relatively prime. 

For each element a E K, a # 0, it is true that w+(a) = 0 except for finitely 
many prime divisors b. Then div(a) = n+ +iW+(") is a divisor, called the 
divisor of a. If #,, . . . , #, (m 2 0) are the prime divisors such that w+,(a) > 0 
and if #,+ ,, . . . , fin (n 2 m) are those such that wb,(a) < 0, then div(a) = a/b, 
where a = +,;+I(") . . . #,;fim("), b = #,:trn+ I(") . . . #,-"fn("). Thus a, b are 
integral divisors, gcd(a,b) = e, a is called the divisor of zeroes, b the divisor 
of poles of a. It is true that a, b have the same degree, i.e., deg(div(a)) = 0. 

In particular, considering (, q E K, I may write div(5) = a/c, div(q) = b/c 
with a, b, c integral divisors and gcd(a,b,c) = e. Moreover, deg(c) = n because 
the field extension K I KO(() has degree n. So deg(b) = n and I may write 
b = fil . . . fin, where the hi are prime divisors (a priori not necessarily 
distinct). From the relation 5" + q" + 1 = 0 it follows that div(Y + 1) = 
bn/cn = (fi;/c) x . . . x (+i",/c). 

On the other hand, from 

where il = - 1 for i = 1, 2, . . . , n, writing div(( - ii) = ai/c gives deg(ai) = 
deg(c) = n, and a, . . . a, = . . . b", After renumbering, ai = #l, so 
deg(bi) = 1 and hence #,, . . . , +z, are distinct. 

The prime divisors of degree 1 correspond to the points Pi with coor- 
dinates (ii,O,l) belonging to KO = Q(i). In the same way, other trivial 
solutions Pf, with coordinates (O,ci,l) correspond to the prime divisors 
dividing a. 
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Searching for nontrivial solutions of Fermat's equation in KO corre- 
sponds to discovering other prime divisors of degree 1. The idea behind this 
approach to the problem is to make use of the vast arithmetic theory of 
algebraic functions and see whether some of its powerful theorems would 
imply or exclude nontrivial solutions. This approach has as yet produced 
no conclusive results. I want however to describe what has been achieved, 
without attempting to explain all the terms and facts used. 

The differential d(l/5) = -d5/C2 has the divisor 

The numerator is the different of the extension K I Ko(5). Because q = 
d m r " ) ,  the prime divisors pi,  with b = +Z, . . . fin, are the only ramified 
primes; so diff(K I KO(()) = bn- '. 

The genus g is computed by the formula: 29 - 2 = degree of div(d(l/g)). 
So 29 - 2 = (n - 1) deg(b) - 2 deg(a) = n(n - 3) and therefore 

Thus if n = 2, then g = 0, so the Fermat curve is a rational curve. If n = 3, 
then g = 1 and the associated field K is an elliptic function field. For n 2 4, 
g 2 2. It is known that, for any divisor a, the set [a E K 1 div(a)a is an integral 
divisor) is a vector space of finite dimension over KO. This dimension is, by 
definition, called the dimension of the divisor a. 

Now, I'll discuss the Weierstrass points of the Fermat function field. 
Let b = div(d(ll5)) and let +Z be any prime divisor. I consider the sequence 
of integers 

which is defined as follows. From the Riemann-Roch theorem, dim@) = g. 
Let 

The weight of b is by definition 

Hence w(#) = 0 if and only if ri = i for i = 1, . . . , g. 
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The prime divisor +i is called a Weierstrass point if W(b) > 0. The theory 
tells that W(#) < (g - l)g when g > 1, and that there are only finitely many, 
say N, Weierstrass points. The sum of their weights is W = W(h) = 

(9 - l)g(g + 1). 
If g > 1, then g + 1 < N < (g - l)g(g + 1). In case the exponent in 

Fermat's equation is n > 3, so g > 1, then the 3n trivial solutions of X" + 
Y" + Z" = 0 correspond to Weierstrass points, all with the same weight 

so the sum of these weights is W, = q(g - l)g(n + 4). 
If n = 4, g = 3, then W, = W and the above are therefore all the 

Weierstrass points. 
However, if n > 4 there are many more Weierstrass points, the sum of 

their weights being equal to W ,  = $(g - 1)9(2g - n - 2). The correspond- 
ing points of Fermat's curve have to be distinguished points (with coordi- 
nates algebraic, but not necessarily in Q([)). Therefore, it should be of 
interest to determine the Weierstrass points. 

7. Mordell's Conjecture 

Let K be an algebraic number field and let V be a nonsingular projective 
curve over K, with genus g 2 2. In 1922, Mordell gave his now famous 
conjecture: The set of points of %' which are K-rational (that is, have co- 
ordinates in K) is necessarily finite. 

For example, if this turns out to be true, taking K = Q and the Fermat 
curve F n : X n  + Y" + 2" = 0, with n 2 4, then there would be only finitely 
many solutions of Fermat's equation in rational numbers, or equivalently, 
in integers. This is not as strong as what Fermat's last theorem asserts. 
Still less so, if no bound on the number or size of the solutions is obtained. 
At any rate, for the moment a proof of Mordell's conjecture seems, with 
good reason, very remote. 

I will report here on some work done recently to connect Mordell's 
conjecture and Fermat's equation. 

In 1972, Hellegouarch noted that if f(X,Y) is a polynomial with coeffi- 
cients in K and the equation f(X,Y) = 0 has only finitely many solutions 
(xi,yi), with xi, yi E K then, for any integer m 2 2, there exists an integer 
h, 2 1 such that for every h 2 ho f(xrnh,~"") = 0 has only the trivial solu- 
tion in K. This remark led to the formulation ofthe following weaker Mordell 
conjecture : 

Let K be an algebraic number field, let p 2 2 be a prime, f (X, Y) E K [ X ,  Y]. 
If there exists h 1 such that the curve defined by f(xph,yph) = 0 has genus 

g 2 2, then there exists k 2 h such that ~(xP*,YP") = 0 has only the trivial 
solution in K. 

For example, if this conjecture is true, then it would give at once a weaker 
form of Maillet's theorem of 1897. Namely, let K = Q, let f(X,Y) = X + 
Y - 1 and p 2 5, h = 1. Then the curve of equation XP + YP - 1 = 0 has 
genus g = (p - 1)(p - 2)/2 2 6. So there would exist k 2 1 such that the 
equation xpk + ypk - 1 = 0 has only the trivial solution, as Maillet proved. 
Hellegouarch gave some more support to this weaker conjecture. 

In 1965, Mumford examined the countable set of K-rational points of 
a nonsingular projective curve %' of genus g 2 2. Short of proving that there 
are only finitely many solutions, Mumford wrote the solutions in order, by 
increasing height: PI,  P,, P, . . . and he was able to prove: 

(7A) There are real numbers a, 6, with a > 0, such that the height of Pi 
satisfies: ht(Pi) 2 eai+b. 

The concept of height of a point is explained in Mumford's paper. 
In the special case of Fermat's curve and K = Q, this result becomes: 

(7B) Let n 2 4 and let (xi,yi,zi) be an injinite set of distinct positive integral 
solutions of X" + Y" = Z", such that gcd(xi,yi,zi) = 1 and z, < z ,  < 2 ,  < . . . . 
Then there exist real numbers a, b, a > 0, such that zi 2 exp{exp(ai + b)). 

To conclude this brief excursion into Mordell's conjecture, I would like 
to mention the work initiated by Lang and enhanced by Kubert and Rohrlich 
(1975, 1977). Kubert and Lang have already published three papers, in 
what is announced to be a long series. The papers are very sophisticated 
and I dare not explain their contents. Perhaps, a paragraph which is indica- 
tive of the tenor of the first paper should be quoted here: 

. . . given a projective nonsingular curve V and an affine open subset Vo, 
does there exist an unramified covering W of V, and units u, v in the cor- 
responding affine coordinate ring of W, such that u + v = l ?  Whenever this 
is the case, we get a correspondence 

@3 W 
\, / \ unramified 

v 
which reduces the study of integral points on V to integral points on [the 
Fermat curve] @, . . . . We see that the Fermat curve @, has such a cor- 
respondence with @,. 

~ohr l i ch  considers the group 9" of divisors of the function field of 
Fermat's equation which are on the points at infinity, that is, the trivial 

I solutions of X" + Y" + Zn = 0 (n 2 3). , 
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Let 9" be the subgroup of principal divisors. In his thesis, Rohrlich 
computes the quotient group, arriving at the following result: 

(Zln) 3n - ' if n is odd, 
' x 212 if n is even. 

It is not explicitly stated where these studies will lead, and for this we 
all have to wait and see. 

8. The Logicians 

What do the logicians say about Fermat's last theorem? They are concerned 
about the truth, the possibility of proving the theorem starting from a given 
set of axioms, and about the question of undecidability. I wish to explain 
briefly the meaning of these expressions, avoiding any technicalities. 

Fermat's last theorem concerns a sentence of the universal type, because 
all its variables are preceded by the quantifier "for every": "For every x, 
for every y, for every z, for every n: either xyz = 0 or xn+3 + yn+3 # z"+~." 
It is understood that this sentence is to be interpreted with x, y, z, n as natural 
numbers (including zero). If the sentence is true with this interpretation, 
then Fermat's last theorem is true. 

The negation of this sentence is an existential sentence: "There exists x, 
there exists y, there exists z, there exists n, such that: xyz F 0 and x " + ~  + 
Y " + ~  = z ~ + ~ . "  

The axioms of Peano's arithmetic involve the symbol 0, the unary opera- 
tion o (successor), and the binary operations addition and multiplication. 
They are very well-known, so I need not repeat them here. Let me just 
recall that one of the axioms, the principle of finite induction, is in fact 
an infinite set of axioms, namely one axiom for each formula in the formal 
language. 

The set N of natural numbers, with the symbol 0 interpreted as the 
number "zero," the operations +, ., as addition and multiplication of 
natural numbers, and the successor operation interpreted as the successor 
of a natural number, becomes a model for Peano arithmetic. This means 
that every axiom of Peano arithmetic is true in N, with the above 
interpretation. 

More generally, any set A, with a constant, two binary operations, one 
unary operation, such that Peano's axioms are true in A, with an appro- 
priate interpretation, is also called a model of Peano arithmetic. 

The theory of Peano arithmetic consists of all sentences which may be 
proved (with the usual rules of inference) from the axioms of Peano arith- 
metic. Clearly, every theorem of Peano arithmetic is true in any model of 
Peano arithmetic. In other words, if a sentence may be proved "syntactically" 
(i.e., with the rules of inference) from the axioms, all its interpretations in 
any model are true, so it is "semantically" true. 

In 1934, Skolem provided specific models of Peano's arithmetic which 
are not isomorphic to N, but have exactly the same theorems as N. As one 
says, they are elementary equivalent to N. Such models are called non- 
standard models of N. 

A theory is consistent if, for any sentence S in the language of the theory, 
it is not possible that both S and its negation 1 S  be theorems. If a theory 
has a model then it is necessarily consistent. 

On the other hand, a theory is complete if, for any sentence S in the 
language of the theory, either S is a theorem or its negation 1 S is a theorem. 
Thus, if a theory is complete, any sentence S in the language of the theory 
is either true in every model, or false in every model of the theory. 

One of the most fundamental theorems in logic is Godel's completeness 
theorem: If a theory is consistent, then it has a model. Another way of ex- 
pressing this theorem is the following: Every consistent theory may be 
extended to a consistent and complete theory. Still another way to put it, 
closer to our concern, is the following: A sentence is a theorem in a given 
theory, that is, it may be proved from the axioms i;f (and only i f )  it is true in 
every model of the theory. 

If the theory is not complete, there are sentences S which are true in some 
model and false (that is, 1 S is true) in some other model. Any such sentence 
is called an undecidable sentence. Both S and T S  cannot be proved from 
the axioms. 

Considering specifically the theory of Peano arithmetic, Godel proved 
that this theory is incomplete. And much more. In fact, roughly speaking, 
every formal extension of Peano's arithmetic is still incomplete. So, there 
are sentences in Peano arithmetic which are undecidable. 

Is the statement F (Fermat's last theorem) undecidable in Peano's arith- 
I metic? I show that if F is undecidable, then F is true in the model N. Indeed, 

since F is undecidable, 1 F is not a theorem in Peano arithmetic. Thus, 
1 F  is not true in some model M of Peano arithmetic. So F is true in the 
model M. But the model N has the special feature of being a prime model, 
which means that if a universal sentence S is true in some model M, then it 
is true in N. In particular, F (Fermat's last theorem) is true in N. 

There are other interesting considerations about the logical aspect of 
I Fermat's last theorem. The fact that the sentence F is a theorem depends 

essentially on how rich is the given collection of axioms. In a sense which 
I'll not make precise, Shepherdson (1965) has shown that, with methods 
current at the time of Fermat, and without "auxiliary operations" (like, say, 
Legendre's symbol, and this is explained in Shepherdson's paper) for no 
value of n 2 3 it is possible to prove the sentence 

F,: "For every x,  for every y, for every z either xyz = 0 or xn + yn # zn." 
I 
I The recent solution of Hilbert's tenth problem has also some bearing 
I on Fermat's last theorem. This is explained well in the paper of Davis, 
1 1 " :  MatijaseviE, and Julia Robinson (1976). The new idea is the possibility of 
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transforming the proof of Fermat's last theorem into the verification that 
a polynomial equation has no solution in nonnegative integers. 

The method is based on the following fact. There is a polynomial 
P(X,Y,Z,Wl, . . . ,Wk), with coefficients in Z, such that the equation YZ = X 
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LECTURE XI 

Estimates 

In the preceding lectures, I have always mentioned the efforts of mathe- 
maticians to prove Fermat's last theorem. Their attitude was, in the main, 
the following: 

Fermat's last theorem is true; let's try to find a proof. Any progress 
towards the complete proof will be worthwhile, whether it deals only with 
the first case, or if only covers certain exponents. 

With this rationale, more and more complicated methods have been 
brought into the battle with, I must admit, only relatively minor success. 
This seemingly hopeless struggle prompted some mathematicians to begin 
to doubt the truth of the theorem. But their work might even turn out to 
be useful in proving the theorem. 

I'll begin evaluating, with elementary methods, the size of the smallest 
possible solution, for any given exponent p. Somemore sophisticated estimates 
for the first case are based on the criteria involving the Fermat quotients. 

Recently, the methods of diophantine approximation and linear forms 
of logarithms have provided a new tool to attack the problem. It has still 
to be fully exploited. 

1. Elementary (and Not So Elementary) Estimates 

The approach is the following. Let n be any natural number, n > 2, and let 
x, y, z be real numbers, such that 

and 
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XI Estimates 

In 1856, Griinert proved 

(1A) If 0 < x < y < z are integers and xn + yn = zn, then x > n. 

Hence 

and 

This shows that any counterexample to Fermat's last theorem must 
involve large integers. For example, if n = 101 then x > 102 and the numbers 
involved would be at least like 1021°1. AS a matter of fact, it is rather easy, 
without any powerful methods, to show that any would-be solution must be 
substantially larger. 

From the above proof, it follows that 

Hence z, y are relatively close together and therefore the size of x should 
be much smaller. 

On the other hand, Perisastri showed in 1969 that x cannot be much 
smaller than z: 

z < x2. (1.4) 

To obtain further estimates, it is convenient to introduce the positive real 
numbers r, s, t, r,, s,, tl defined as follows: If n = p is an odd prime, if 0 < 
x < y < z are real numbers and xP + yP = zP, let 

These relations are reminiscent of the ones obtained by Abel, as explained 
in my fourth Lecture. Now, it is not required that these numbers be integers. 
However, if x, y, z are nonzero integers and p does not divide xyz, then all 
the above numbers are integers, as Abel proved. 

1. Elementary (and Not So Elementary) Estimates 

From (IS), it follows that 

and 
rP + sP - tP 

x + y - z = -  
2 ,  

It is also obvious that 
O < r < s < t .  

A better bound for the first case is the following: 

(1B) If x, y, z are integers, not multiples of p and xP + yp = zp, then x > 6p3. 
If p divides xyz, then x > 6 ~ ' .  

PROOF. I will illustrate in this proof how some of the nai've results of Lecture 
IV may be put to use. There it was proved that if pyxyz, then p3rst divides 
x + y - z [see Lecture IV, (3B)l. Since 0 < r < s < t, at worst r = 1, s = 2, 
t = 3 , s o 6 p 3 < x + y - z < x .  

The other case is similar. 0 

The search for improved lower bounds for eventual solutions of Fermat's 
equation was the object of numerous papers. I will not narrate step by step 
all these improvements. Conceptually, these results do not throw any more 
light onto the problem. 

However, as in giving the latest news, I will mention Inkeri's estimate, 
which is at the present time the best one known. His method depends not 
only on inequalities which would be generally true, but also on precise 
arithmetical properties of the numbers r, s, t. Inkeri showed successively 
(1946): 

0 < t, < s, < r,. (1.9) 

If 2 5 y (for example, if x, y are integers) then t < t,. (1.10) 

These two inequalities are quite obvious from the definitions. More work 
is required to show that 

t ~ - l  r 
t, >-- 

2 
and t - s > - .  

2p 

The next inequality is fundamental. It was first shown by James in 1934 
and rediscovered by Inkeri, who based his proof on the following lemma: 

Lemma 1.1. Let a, b be distinct positive real numbers, a + b < 1 and n 2 5. 
Then 



XI Estimates 

From relations (1.2), it follows that 

(rP - sP + tP)I + (- rP + sP + tP)P = (rP + sP + tP)P. (1.12) 

The fundamental inequality is 

r + s > t .  (1.13) 

To prove it, let a = r/t, b = s/t hence 0 < a < b < 1. If r + s I t, then 
a + b I 1 and by Lemma 1.1 this would contradict (1.12). 

If x, y, z are integers, not multiples of p, 0 < x < y < z, xP + yP = zP, then 
r, s, t have the following arithmetical property: each one of these numbers 
has a prime factor q such that q s 1 (mod p2). 

The proof of this statement is not elementary. More precisely, using 
methods described in my Lecture IV (The Nai've Approach) it is only possible 
to show that qP f 1 (mod p2). 

To conclude the proof, Furtwangler's theorem is required: Each prime 
factor q dividing xyz satisfies the congruence qP-' r 1 (modp2). Hence 
q = qP = 1 (modp2). Since class field theory is needed to establish Furt- 
wangler's theorem, the above proof is no longer elementary. 

Finally, Inkeri showed (1953): 

(1C) I f  p is an odd prime, 0 < x < y < z are relatively prime integers, such 
that xP + yP = zP, and p Xxyz, then 

SKETCH OF THE PROOF. By the preceding result r = r'q,, s = s1q2, t = t1q3, 
where r', s', t' are natural numbers, and q,, q,, q ,  are primes and q, = 
1 (mod 2p2), 9, - 1 (mod 2p2), 9, - 1 (mod 2p2). By Lecture IV, (3B), 

r' + s' - t' r r'q, + s1q2 - t1q3 = 0 (modp2). 

First Case. If max (r1,s't') > p2/2, then t > (p2/2)(2p2 + 1) > p4. Since z - y 
2 1 and z > (x + y)/2 = tP/2, 

-- pi < r1 + s1 - tr < p2. 
2 

But p2 divides r' + sf - t' so r' + sf = t'. Hence t - s - t' - sf = r' (mod 2p2) 
so t - s = 2mp2 + r', where m is an integer. Using (1.1 I) it follows that m L 1. 

It may be shown, using (1.12) that 

2. Estimates Based on the Criteria Involving Fermat Quotients 

hence 
t - s  

t > ------ 
1 - 5 '  

Since 
r ~ t ( ~ -  1 )P 

xp > (z - y)zP-l = rPzP-l > --- 
' 

it follows that 

Assuming p > 1190 (otherwise there is no solution) then 

Similarly, Inkeri obtained bounds for the second case: 

(ID) If p is an odd prime, 0 < x < y < z are relatively prime integers, such 

I that xP + yP = zP and p divides xyz, then 

I x > p3P-4 and y > &p3~- ' .  

I Since the first case is true for every prime exponent p < 3 x lo9 then in 

I this case x would have at least 12 x 101° digits. Similarly, in the second case, 
x would have at least 18 x 10' digits. 

Another interesting estimate was obtained by Inkeri and van der Poorten 
(in 1977); it gives the following lower bound for the difference z - x in terms 

I of the exponent p: 
z - x > 2pp2P. (1.16) 

2. Estimates Based on the Criteria Involving 

I Fermat Quotients 

I I have said in Lecture VIII that if the first case fails for the exponent p, then 
the Fermat quotients ofp  with bases q = 2,3,5,7, . . . , 43 (all primes at most 
43) are congruent to zero modulo p. In other words 

qP - 1 = 1 (modp2) (2.1) 
for q prime, q 1 43. 
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In 1940 and 1941, Lehmer and Lehmer devised a very ingenious method 
to considerably extend the truth of the first case. 

In his doctoral thesis (1948), written under the supervision of Rosser, 
Gunderson devised another method, along different lines from Lehmers', 
which actually provided stronger results. I cannot enter into great detail 
about these methods, but I'll expose their general lines. 

Let p, = 2, p2 = 3, p j  = 5, . . . , pl , = 31,. . . , p14 = 43, . . . be the sequence 
of primes. For every n 2 1 let P, be the set of natural numbers whose prime 
factors are at most p,. 

For every x 2 1 let Pn(x) be the number of elements a of P,, such that 
1 I a I x.  Similarly, let P,*(x) be the number of odd integers a, such that 
1 < a l x , a ~ P , .  

For every prime p let W p  be the set of natural numbers a 2 1 such that 
aP-' = 1 (modp2) ,  and for x > 1 let Wp(x) be the number of elements a E W,, 
l l a l x .  

I rephrase the known criteria for the first case as follows: if the first case 
of Fermat's theorem fails for p then P,, c Wp, because W p  is closed under 
multiplication. 

Rosser (1939, 1941) and Lehmer and Lehmer (1941) showed: 

Lemma 2.1. 

1. Wp(p2)  = p - 1, wp(p2/2)  = ( p  - 1112. 
2. If N > 1 and PN c W,, then 

If M is a good approximation to P1 ,(p2/2) from below, the lemma gives 
a lower bound 2M + 1 < p. Hence if p < 2M + 1 then the first case holds 
for p. 

This is what Gunderson worked out. 
Let n 2 1, x 2 1, y 2 1 and let Pn(x,y) be the number of pairs (a,b) with 

gcd(a,b) = 1, a, b E P,, 1 I a 5 x,  1 I b 5 y. 

Lemma 2.2. If PN c W p  and i f 1  5 x I p2/2, then PN(x,p2/2x) I ( p  - 1)/2. 

The function PN(a,b) is not simple to evaluate. Gunderson proposed to 
replace it by a function with smaller values. 

If n = 2, x 2 1, y 2 1, let 

First Gunderson showed: 

Next, he gave the following expression of g,(x, y). Let n 2 2 and 

L 1 L = -  
" n!  (log 2)(log 3) .  . . ( log~ , ) '  (2.5) 

Then 

With this preparation, Gunderson proved 

(2A) If N 2 3, p 3 and P, c W,, then 

From the Fermat quotient criteria up to 43, it follows that the first case 
of Fermat's theorem holds for every prime exponent p < 57 x lo9.  

To illustrate the power of Gunderson's method, we compare with the 
recent computations of Brillhart, Tonascia, and Weinberger. As I have 
already said, they found no primes p < 3 x lo9  (except 1093 and 3511) 
satisfying the Wieferich congruence 2P-1 = 1 (modp2); and the two ex- 
ceptional primes did not satisfy the Mirimanoff congruence 3P-1 = 1 
(modp2) .  Unless the computing techniques are substantially improved, it 
will be very time-consuming to test Wieferich's congruence for primes p up 
to 57 x 109. 

I'll say only a few words about Lehmers' method. If P, c W,, then 

and also 

The idea of Lehmer and Lehmer was to construct recursively, polynomials 
fn(X), f ,*(X), with real coefficients, such that f,(;i) 5 Pn(lO", f,*(;i) P,*(lOA) 
(for n = 1,2,. . . ,N and A 2 0 )  and such that they provide a good approxi- 
mation to ~ ~ ( 1 0 "  and P,*(10"). 

If 1 I a 5 x,  a E P,, then a = nl= p fX  (x i  2 0 )  and to a is associated the 
point (x , ,  . . : ,x,) E Zn, with 0 5 X i ,  Z X ~  log pi < log x.  This is a one-to-one 
mapping. Therefore the determination of P,(x) (and similarly of P,*(x)) is a 
special case of the following problem: 

Given the positive real number 2 and any basis ( w l , .  . . ,wn) of Rn, where 
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oi = (o',, . . . ,oL), determine the number Nn(E, I wl, . . . ,on) ofall lattice points 
(xi), E Zn such that xi 2 0 and x:=, xioi I A. 

The following is the basic recursion formula: 

where s = [A/w:]. 
Since N,(A(wl, . . . ,on) cannot be easily computed, the Lehmers deter- 

mined polynomials fn(X), gn(X), of degree n, such that 

and such that the difference could be easily evaluated. The matter is rather 
technical, so I avoid any further discussion. 

As I already said, the computations were for n = 14 and gave the celebrated 
bound for the first case 

p I 253747889 

3. Thue, Roth, Siegel and Baker 

Short of proving that Fermat's equation has only the trivial solution, a good 
substitute would be to show that (for every exponent p) the equation has at 
most finitely many solutions. 

Better still, would be to determine a number C(p) > 0 such that if 
xP + yP + zP = 0, with nonzero relatively prime integers x, y, z, then 

Finally, the very best possible in this vein, would be to determine a number 
C > 0 such that if p is a prime, and if XP + yP + ZP = 0, then 

Whether C would be very large, or not so large, such a result would mean 
essentially a solution of Fermat's theorem. The remaining task would be the 
investigation of each prime p less than C, and with the estimates already 
known (and others as yet undiscovered) it would appear feasible to solve this 
problem. 

Alas, nothing like this is yet known. 
An early incursion along these lines is due to Turan, and later to Denes 

and Turan. 
In 1951, with the standard methods of analytical number theory (in 

particular using the prime number theorem), Turan proved the following 
result. 

Let N > 1 be an integer, let vp(N) denote the number of triples (x,y,z) of 
integers such that gcd(x,y,z) = 1, xP + yP = zP (where p is an odd prime) and 

1 I x, y, z I N. To prove Fermat's theorem for the exponent p amounts to 
showing that vp(N) = 0 for every N 2 1. Turan's result, is,far from this: 
There exists a constant C > 0 such that for every N 

In their joint paper of 1955, Denes and Turan first gave the following 
estimate, using elementary methods: 

Using deeper analytical estimates, they obtained the better result: 

They also conjectured that 

and perhaps, for every E > 0 

In the above inequalities, C, C(p),  C(E) denote positive real numbers. 
Turan's conjecture follows from a much stronger result of Mumford 

[quoted in Lecture X, (7B)l. Turan's conjecture, however, does not imply 
that Fermat's equation for the exponent p has only finitely many solutions 
in integers. 

The recent methods of diophantine approximation, based on the work 
of Thue, Roth, Siegel and more recently Baker, give some hope that new 
results may be in sight. Anyway, it is worth a try. 

It is not possible, in a short space, to render justice to the beautiful and 
deep theorems which I will quote. Still worse will be my omissions. 

Following an idea of Thue, Roth proved: 

(3A) Let n 2 3, let 

where ai E Z, a0 # 0 and assume that the roots of F(1,X) are distinct. Let 
G(X,Y) # 0 have coeficients in Z, of total degree at most n - 3. Then the 
diophantine equation F(X,Y) = G(X,Y) has at most finitely many solutions 
(x,y) E 7 x Z. 

The proof follows an idea of Thue and requires the famous theorem of 
Roth (1955) of approximation of a nonrational algebraic number by rational 
numbers. 

The special case G(X,Y) = a € Z, a # 0, was proved by Thue (in 1909). 
In particular * 

(3B) If n 2 3, if a,  b, c are integers, a, c not zero, then the equation 
axn + byn = c has at most finitely many solutions in integers. 
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Taking a = 1, b = 1, and c = z", for each z # 0 there are at most finitely 
many integers x, y such that xn + yn = zn, when n is odd. This could also be 
derived using the theorems of Zsigmondy (1892) or Birkhoff and Vandiver 
(1904). 

The next result, due to Siegel (1929) has a geometric flavor. 
Let f(X,Y) be a polynomial with coefficients in Z which is absolutely 

irreducible (that is, cannot be written as a product of polynomials of smaller 
degree and coefficients from any algebraic number field). The set of points 
(x,y), with complex coordinates, such that f (x,y) = 0 is a curve. Siegel's 
theorem states: 

(3C) If the curve defined by f(X,Y) = 0 is not a rational curve (in other 
words it has genus greater than 0), then there exist only finitely many pairs of 
integers (x,y) such that f (x,y) = 0. 

In the case of genus 1, by means of an appropriate birational transfor- 
mation, the above theorem reduces to a similar one for the hyperelliptic 
equation 

aOXn + alXn-' + . . . + a, = aY2, (3.1) 

where a,, a,, . . . , a, E H, a. # 0, a f 0, and n 2 3. This special case had 
been obtained by Siegel in 1926 and in that paper Siegel mentioned the 
generalization to the curve F ( X )  = Ym. An explicit and direct proof was 
given by Inkeri and Hyyro in 1964, and this was extended by Schinzel and 
Tijdeman in 1976. 

(3D) If m 2 2, n 2 2 and max{m,n) 2 3, if f(X) E Z[X] has degree n and 
simple roots, and if a # 0 is an integer, then the equation f(X) = aYm has at 
most finitely many solutions in integers. 

The more recent method of Baker concerns effective positive lower 
bounds for linear forms of logarithms. Baker considered in 1966 the linear 
form 

where n 2 1, a,, . . . , a, are any algebraic integers and b,, . . . , b, are any 
integers, and log denotes the principal determination of the logarithmic 
function. 

Let d be the degree of the field Q(al , .  . . , a,) over Q. For every ai let 
H(ai) be its height defined as follows. Let f(X) = coxm + c,Xm-' + . . . + 
cm be the only polynomial with coefficients in Z such that gcd(co,cl, . . . ,cm) = 
1 and f(ai) = 0, then H(ai) = m a ~ ~ ~ ~ . , { ( c ~ ( ) .  

Let A, = max{4,H(ai)), for i = 1, 2 , .  . . , n, numbered such that A, I 
A ,  < . . . I  A,, andlet B =  ma~,.~,,(lb~l,4}. 
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Assuming that A # 0. Baker showed (1977) that a convenient lower 
bound for \A/ is of the form 

1 ~ 1  > exp{ - 2nn+Y0nY2ndy3niy4(log B)(log A,) - . . (log A,)(log log A, - ,)), 

where yo, y1, y2, y3, y4 are positive real numbers, effectively computable, 
and not depending on n, a,, bi. 

For example, Baker showed: 

Yo = 0, Y l  = 800, y 2  = 200, y3  = 200, y4 = 0, (3.4) 

that is, 

> expi -(16nd)200n(log ex  lo^ A,) . . (log A,)(log log An- ,).) (3.5) 

van der Poorten and Loxton gave in 1977 the following better values for 
the constants: 

Some refinement in the form of the minorant and on the values of the 
constants may be expected. This will have an effect on the bounds obtained 
with the method. 

The main application of Baker's method has been to provide effective 
bounds for solutions of certain types of diophantine equations. For Mordell's 
equation Y' = X3 + k (k # 0), Baker proved in 1968: If x, y are integers 
and y2 = x3 + k, then 

He also considered the hyperelliptic and superelliptic equations in 1969. 
Let f(X) = aoXn + alXn-' + . . . + a, with a, # 0, a, E Z, n 2 3 and let 

A = max{laol,la,l, . . . ,la,/). 

(3E) If f(X) has at least three simple roots and if x,y E Z satisfy 

f (4 = y2, 
then 

max(lxl, lyl} < exp exp e~p(n '~" '~" ' ) .  (3.8) 

(3F) If f(X) has at least two distinct roots, if m 2 3, and if x, y E P satisfy 

f(x)  = ym, 
then 

max{Ixl, lyl} < exp exp{(5m)10n10"3~n2}. 
(3.9) 
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The most striking application of Baker's method was obtained by 
Tijdeman in 1976. It concerns Catalan's equation 

for arbitrary integers m, n 2 2. In 1844, Catalan conjectured that if x, y are 
natural numbers and xm - yn = 1, then x = 3, y = 2, m = 2, n = 3. 

This conjecture has not yet been proved in its full generality, despite the 
efforts of many distinguished mathematicians. In some sense, it is a problem 
reminiscent of Fermat's last theorem. It has been shown to be true in many 
special cases. Euler proved it, assuming that m = 2, n = 3. In 1850, Lebesgue 
disposed of the case n = 2. Nagell (in 1921) disposed of the cases m = 3, 
n 2 2 and m 2 3, n = 3. S. Selberg (1932) disposed of the case m = 4, while 
much later in 1964, Chao KO settled the case m = 2. 

In 1952, LeVeque proved that given the natural numbers a, b > 1, there 
exist at most one pair of natural numbers m, n such that am - b" = 1. This 
may also be seen using the theorems of Zsigmondy or Birkhoff and Vandiver, 
already mentioned. LeVeque proved also (in 1956) that given m, n 2 2 
there exist at most finitely many pairs of natural numbers (x,y) such that 
xm - yn = 1. 

This result was generalized in 1964 by Inkeri and Hyyro for the equation 
Xm - Y" = c (c # 0, m, n 2 2 given). But both results are a simple applica- 
tion of theorem (3D). 

In 1953, Cassels conjectured that there are at most finitely many qua- 
druples of natural numbers (x,y,m,n) such that xm - y" = 1. The preceding 
results don't show quite as much. They illustrate the force of the theorems 
of Thue, Siegel, and Roth-which therefore ought to be useful for Fermat's 
equation. But, the main weakness is also apparent. Even though it might be 
proved that there are at most finitely many solutions, an upper bound for 
the solutions is not given. 

And now Baker's method comes to the rescue. First, he proved, general- 
izing (3.7), that if m, n 2 2 are given, if x, y are natural numbers such that 
xm - yn = 1, then 

10 1om3 max{x,y} < exp exp((5n) m }. (3.10) 

Tijdeman somewhat improved Baker's lower bound for a linear form in 
logarithms and proved: There exists a number C 2 3, which is effectively 
computable, such that if x, y, m, n are natural numbers, m, n 2 2 and xm - y" = 
1, then max{x, y,m,n) < C. 

Tijdeman did not pause to explicitly compute the value, being assured 
that it was possible to do so. In 1975, Langevin proved that 

C I exp exp exp exp 730. 

I should add that this estimate may be-and it is being-substantially 
lowered, as van der Poorten communicated to me. 
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Tijdeman's theorem has essentially solved Catalan's conjecture-anyway 
he settled the one by Cassels. What remains, is the examination of the 
finitely many (albeit large) remaining cases; perhaps they may lead to other 
solutions. But these should be treated as being exceptional, or as some 
mathematicians like to say, sporadic. 

Like a wanderer, I have deviated from my main path, to contemplate 
another landscape. By watching the fate of Catalan's problem, it is reason- 
able to think that a similar method will give new results for Fermat's equation. 

4. Applications of the New Methods 
I 

1 
Yes, there are several applications of these powerful methods. But, somehow 
they fall short of the expectations aroused, no doubt because Fermat's 
equation has four variables. The fact that Catalan's equation had two sets of 
two variables (some in the exponent) made it more vulnerable. 

The first result I want to mention is due to Inkeri, in 1946. By considering 
solutions by integers not too far apart, the problem was reduced to one of 
two variables. Precisely: 

(4A) Let n 2 3, let M be a positive integer. 

a. There exist only jinitely many triples (x,y,z) of integers such that 0 < x < 
y < z , x n + y " = z n a n d y - x < M .  

b. Idem, with z - y < M. 

In both cases 

where 

A = max {( :) Mi). 
l s i s n  

PROOF. Consider the diophantine equation 

where a 2 1 is any given integer. 
Let f(T) = ( T  + a)" + Tn. It has distinct roots, so by (3D), the above 

equation has only finitely many solutions. 
Taking a = 1, 2,. . . , M, there are only finitely many integers x, z such 

that xn + (x + a)" = zn. This proves the first assertion. The other is proved 
by considering ( T  + a)" - T" = U". 

The bound-given follows from Baker's estimate indicated in (3F). 

Let me note now that, for the first case, with purely elementary methods, 
Inkeri himself had obtained a far better bound. Namely, if xp + yP = zp, 
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Applying Baker's lower bound (3.5) to the above linear form in logarithms 
it follows that 

(y - ~ ) p ' b - ~  > Sexp{- c(1og B)(log A,)(log A2)(loglog A , ) ) ,  

where A, = p, A, = max{a,b} = b, and B = p max{q,p}. Thus 

(y - x)prb-P > exp{ - c(1og  log b)(log logp)} > b-"log P'3 

On the other hand, by hypothesis 

But r = 0, 1 so 

Either &J 5 c(1og p)3 or c(1og p)3 < &I, hence 2i3- ' ( 'Og p)3 < bb-'T-d"og P)' < M, 
so f i  - c(10gp)~ < log Mllog2. In both cases there exists a real positive 
number C such that p < C. 0 

A simpler and more suggestive statement is the following earlier version 
of Stewart's result: 

(4E) Let E > 0 be a real number, let p be an odd prime, let 0 < x < y < z 
be relatively prime integers such that xP + yP = zP and y - x < 2(1-"p. Then 
there exists an explicitly computable constant C such that p < C. 

PROOF. It suffices to take M = 2P. Then 

By the preceding result, there exists an explicitly computable real number C 
such that p < C. 

In fact, Stewart proves the results cited above for an exponent which is 
not necessarily prime; this constitutes a nontrivial generalization: 

(4F) Given M > 0, there exists a number C > 0 (which may be explicitly 
computed in terms of M) such that ifn 2 3 is an integer, ifx, y, z are relatively 
prime integers such that xn + yn = zn with 0 < x < y < z, then: if 2 < z - 
y < M or if y - x < M, it follows that x, y, z, n are less than C. 

Inkeri and van der Poorten proved the following rather technical result: 

(4G) Let p be an odd prime, let 11, . . . , 1, (with m 2 0) be distinct primes, 
li < p; let w,, . . . , w, be natural numbers. If x, y, z are relatively prime integers 

such that 0 < x < y < z, xP + yP = zP and ny= 171 divides y - x, then 

where L = B(l + 1, + . . . + l,), with 

z - x = bP, z -  y =pP-'aP whenplx, 

Z - X = ~ - ' ~ P ,  z - y = a P  when P (Y, 

z - x = bP, z - y = a p  when p $ xy. 

With this 1-adic generalization, one cannot only show that y - x < 
M(z  - x) ' -" '~ '  implies that p is bounded in terms of M, as above, but in 
fact that p is bounded in terms of the greatest prime factor of M:  

(4H) Given the prime numbers l,, . . . , 1, and an integer M ,  > 0, there is 
an effectively computable number C > 0 such that if x, y, z are relatively prime 
integers, 0 < x < y < z, xP + yP = zP, and if 

for any nonnegative integers w,, . . . , w,, then p < C. 

The common idea behind these attempts is to find an effectively com- 
putable number which bounds the exponent. If this is done without any 
assumption, it amounts, at least theoretically (as I already said), to the solu- 
tion of Fermat's problem. Up to now the bounds on the exponent could 
only be obtained under various more or less technical hypothesis on the 
nature of the would-be solutions. It may be possible that this kind of infor- 
mation, coupled with results of some other type, will indeed be very important 
for the solution of the problem. 

Who knows? 
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LECTURE XI1 

Fermat's Congruence 

In this lecture, I will turn my attention to an analogue of Fermat's theorem. 
Instead of the equation, it will be a question of a congruence. In addition 
to the intrinsic interest of this modified problem, I mentioned in my fourth 
lecture how Sophie Germain's criterion for the first case involves Fermat's 
congruence modulo some prime. Accordingly, I will begin by studying the 
Fermat equation over prime fields. 

1. Fermat's Theorem over Prime Fields 
Let p, q be primes, and consider the congruence 

XP + YP + ZP = 0 (modq) (1.1) 
or equivalently, Fermat's equation over the field IF, with q elements. 

If p = q, then since aP a (mod p) for every integer a, not a multiple of 
p, (1.1) obviously has solutions (x, y,z) where p ,/' xyz. This case is uninteresting. 
The same thing happens if p or q is equal to 2. 

So, I assume that p, q are distinct odd primes. A nontrivial solution of 
(1.1) is a triple of integers x, y, z, such that they satisfy the congruence (1.1), 
and 1 j x, y, z s q - 1. 

Let N(p,q) be the number of nontrivial solutions. It is equal to the number 
of pairs (x, y) such that 1 5 x, y q - 1 and xP + yP + 1 = 0 (mod q). I will 
state theorems which guarantee that N(p,q) > 0. This is quite important in 
view of the following observation, already known to Libri (1832): 

(1A) Let p > 2 be a prime. If there exist injinitely many primes q such 
that (1.1) has only the trivial solution, i.e., N(p,q) = 0, then Fermat's theorem 
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PROOF. Assume that there exist nonzero integers x, y, z such that 

Let q,, . . . , q, be the prime divisors of xyz. Let q be any prime, q > 
max{q,, . . . ,q,). Then, for each such prime q, (x,y,z) is a nontrivial solution 
of (1.1), that is N(p,q) > 0. Thus, if N(p,q) = 0 then q I max{q,, . . . ,q,). This 
contradicts the hypothesis. 0 

However, the assumption made in (1A) is actually false. For example, 
Libri proved that 

N(3,q) 2 q - 8 - ,/- when q = 1 (mod 3). 

So, if q =- 1 (mod 3), q 2 19, then N(3,q) > 0. 
Pkpin computed in 1880 the exact value of N(3,q) (see also Landau, 1913): 

where 4q = l2  + 27m2 (1, m are integers) and 1 = 1 (mod 3). For example, 
N(3,19) = 4, N(3,31) = 19, N(3,37) = 18, N(3,43) = 27, N(3,61) = 52. 

In 1887, Pellet showed that for every prime exponent p there exists a 
number qo(p) such that if q is a prime, q 2 qo(p), then N(p,q) # 0. However, 
his proof did not provide any indication of the value of qo(p), nor about the 
number N(p,q). In a later paper of 1911, Pellet gave bounds for the number 
N( ~ 4 ) .  

In 1909, Cornacchia gave an upper bound for qo(p). In the same year, 
Dickson indicated a more accurate upper bound, namely 

Dickson also computed a lower bound for the number N(p,q). 
Dickson's proof involves rather lengthy computations in the cyclotomic 

field. A shorter proof, yielding the less accurate upper bound 

is due to Schur (1917). It is reproduced in LeVeque's book (1956). 
Concerning the number of solutions, already in 1837 and 1838 Lebesgue 

used the methods of Gauss and Libri to determine a general formula for the 
number of pairwise incongruent solutions of a congruence modulo a prime. 
He applied this formula to the congruences 

a,X'; + a2X7 + . . . + a,Xr = b (modq), (1.4) 

where q = 1 (mod m), m 2 2. 
Also in 1909, Hurwitz studied the congruence (1.4) for a prime exponent 

m = p, and b = 0, and thereby extended the results of Dickson. 
In connection with Waring's problem, Hardy and Littlewood studied in 

1922 the special case where a ,  = . . . = a, = 1. This congruence is the 

1 .  Fermat's Theorem over Prime Fields 247 

starting point in the theory which led to the Riemann hypothesis for func- 
tion fields over finite fields, the beautiful work of Hasse and Weil. A very 
illuminating paper on this topic is that of Weil (1949). It will be clear, as I 
proceed, that many of the methods used in evaluating the number of solu- 
tions of congruences have evolved from original ideas of Gauss. 

So much for the history of this question. I'll now explain Dickson's 
theorem, and give an outline of the proof. To begin with, I will isolate the 
trivial special case. 

(1B) Let p > 2 be a prime. Let q be a prime such that q = 6mp + 1 (m 
integer) or p does not divide q - 1. Then 

XP + Y P  + ZP = 0 (modq) 

has a nontrivial solution. 

PROOF. If p Xq - 1, if a, b are integers such that up + b(q - 1) = 1, choosing 
integers x, y, z, not multiples of q, such that x + y + z r 0 (modp), then 
xaP z x (mod q), yap E y (mod q), zap - z (mod q). Hence (x",y",za) is a non- 
trivial solution of the congruence. 

Now, if q = 6mp + 1, if h is a primitive root modulo q, then (h"p)3 = 1 
(mod q). Let Ti = h(mod q). So lizmP is a primitive cubic root of 1 in the field 
F,. Thus 

1 + Ti2mp + Ti4mp = 0 (in IF,). 

Hence 

1 + h2mp + h4mp = 0 (modq). 0 

From now on, I may assume that q = kp + 1, where k is even and more- 
over 3 ,j' k. 

The proof of Dickson's theorem involves the Jacobi cyclotomic sums, 
already used by Kummer (see Lecture VII). I recall the main definitions 
and properties. Let 

g = a primitive root modulo p, 
h = a primitive root modulo q, 
( = a primitive pth root of 1, 
p = a primitive 9th root of 1. 

The p periods of k terms in the cyclotomic field Q(p) are: 
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Consider also the Jacobi sums, for every j = 0,1, . . . , p - 1. 

where indh(t) = s, 0 I s I q - 2, when t - hymodq). In particular 

I recall that 

(yj denotes the complex conjugate of zj). Hence 
- 

Tp- j = Zj. 

The periods may also be easily expressed in terms of the Jacobi sums: 
1 P-' 

q i  = - z [-jizj (for i = O,l, . . . ,p - 1). 
p j = O  

With all these concepts, I now indicate an expression for N(p,q) in terms 
of the periods : 

Lemma 1.1. 

PROOF. If X, y, z are integers, 1 I x, y, z I q - 1, then 

q - 1  1 p i ( ~ p + ~ p + ~ p )  = 0 when xP + yP + zP $ 0  (mod q), 
t = o  q when xP + yP + zP = 0 (mod q). 

Now if t = hi and x = h', where 0 5 i, j 5 q - 2, then 

Since i = it  (modp) implies that q i  = qir it follows that 

i = O  

where q = kp + 1. This concludes the proof. 

Based on the above standard lemma, Klosgen in 1970 simplified the 
proof of Dickson's theorem. I'll sketch this, omitting computational details. 

(IC) The number N(p,q) of pairwise incongruent nontrivial solutions of (1.1) 
satisjies: 

(4 - l)[q + 1 - 3p - (P - l)(p - 2)J;fl 

< N ( P ~  < (q - l)[q + 1 - 3p + (P - l)(p - 2)&. 

Hence, if q 2 (p - 1)2(p - 2)2 + 6p - 2, then N(p,q) > 0. 

PROOF. By (1.11) and the lemma: 

This may be brought to the form: 

where 

Since 7, = - 1, 

9 - 1  
N(p,q) = ---- [(q - - 1 - 3q(p - 1) + S], 

4 
where 

0 -  1 
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But lzjl = &. Also, for every j,, 1 I j, I p - 1, there are p - 2 pairs (j,,j3) 
such that 1 I j,, j3 < p - 1 and j, + j, + j3 = p or 2p. Hence 

~sl I (P - I)(P - 2)q312. 
Hence 

This leads at once to the first inequalities. The last assertion is now easily 
deduced. 0 

An application of the general Hasse and Weil theorem (the Riemann 
hypothesis for projective curves over finite fields) yields the same bound 
for qo(p). Indeed, let N*(p,q) be the number of points of the curve XP + YP + 
ZP = 0 in the projective three-dimensional space over the field with q ele- 
ments. Thus N(p,q) = N*(p,q) - 3p, since there are 3p points with one co- 
ordinate equal to zero. The curve is nonsingular, with genus g = (p - l)(p - 2)/ 
2. The general formula is 

IN*(p,q) - (9 + 111 < 2 9 h .  
Hence if q + 1 > (p - l)(p - 2)& + 3p, then N(p,q) > 0. A simple compu- 
tation leads to the same upper bound for qo(p). 

It should be pointed out that the bound for qo(p) is not the best possible. 
For example, by actual computation: 

qo(3) I 20, while N(3,q) = 0 only for q = 7, 13; 
qo(5) I 172, while N(5,q) = 0 only for q = 11,41, 71, 101; 
qo(7) I 940, while N(7,q) = 0 only for q = 29, 71, 113,491. 

The generalization of Dickson's theorem due to Hurwitz is the following: 

(ID) Let p, q be distinct odd primes, q = kp + 1. Let a, b, c be integers 
and let N denote the number of solutions (x,y,z), 1 < x, y, z I q - 1, of the 
congruence 

a x P  + bYP + cZP E 0 (mod q). (1.12) 
Then 

(4 - l)[(q + 1) - (P - l)(p - 2)& - PVI 
< N < (9 - l)[(q + 1) + (p - l)(p - 2)& - pvl, 

where h is a primitive root modulo q, 

a = h* (mod q), b - h" (mod q), c - hi (mod q), 

0 I r, s, t I q - 2, and 

0 when r, s, t are pairwise incongruent modulo p, 
3 when r, s, t are pairwise congruent modulo p, 
1 otherwise. 

If q 2 (p - 1)2(p - 2)' + 2(pv - I), then N > 0. 

2. The Local Fermat's Theorem 

2. The Local Fermat's Theorem 

One of the methods to study diophantine equations consists of searching 
for solutions in q-adic fields (for every prime q). In some cases, if the equation 
has a solution in every q-adic field 0, then it also has a solution in Q. For 
example, this happens for quadratic equations. In such instances, it is said 
that the Hasse principle or the local-global principle holds. 

But, for Fermat's equation, I'll show that the local global principle is not 
satisfied. The basic result to be used is the lemma of Hensel(1908), which I 
will state in its original stronger form. 

Let 0, be the field of q-adic numbers, 2, the ring of q-adic integers, and 
vq the q-adic valuation of 0,. 

Lemma 2.1 (Hensel). Let F(X) be a monic polynomial with coejficients in 
2,. Let Go(X), Ho(X) be monic polynomials with coejficients in Z, and let 

R = Res(Go(X),Ho(X)) E Z 

be the resultant of these polynomials. 
If r = vq(R) 2 0 and if F(X) = Go(X)Ho(X) (modqs), where s > 2r, then 

there exist polynomials G(X), H(X) E Z,[X] such that 

G(X) = G,(X) (mod q" '), 

H(X) r Ho(X) (mod qs-'), 

and F(X) = G(X)H(X). 

For example, if the residue classes of Go(X), Ho(X) modulo q are relatively 
prime polynomials in F,[X], then R = 1, r = 0 and s may be taken to be 
equal to 1. 

The most useful special case is the following: 

Lemma 2.2 (Hensel). If F(X) is a monic polynomial with coeficients in 2, 
and if a E Z is a simple root of the congruence 

F(X) E 0 (mod q), 

then there exists a q-adic integer a E 2, such that a r a (modq) and F(a) = 0. 

I owe the proof of the following result to Brettler (1974): 

(2A) For every prime q and every prime p, Fermat's equation XP + YP + 
ZP = 0 has a nontrivial solution in the jeld of q-adic numbers. 

PROOF. If p = 2 this is trivial, since there are already nontrivial solutions in 
Z. Henceforth I assume p # 2. 

First Case. q '# p. 
Let F(X) = XP + qP - 1. Then 
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Since 1 modq is not a root of XP-I + Xp-2 + . . . + X + 1 modulo q, 
by Lemma 2.2 there exists a q-adic integer a such that a - 1 (modq) and 
aP + qP + (-I)P = 0. 

Second Case. q = p. 
Let 

F(X) = XP + pP + 1, 

Go(X) = X + 1, 
H,(X) = XP-1 - XP-2 + X P - 3  - .  . . + 1. 

The resultant R = Res(G,(X),H,(X)) = H,(- 1) = p, so its p-adic value 
is vp(R) = 1. Since Go(X)Ho(X) = XP + 1, 

F(X) r G,(X)H,(X) (mod pP). 

Noting that p 2 3 > 2vp(R), by Lemma 2.1 there exist monic polynomials 
G(X), H(X) E Z,[X] such that 

G(X) =- Go(X) (mod pP- '), 

H(X) r H,(X) (mod pP- '), 

and F(X) = G(X)H(X). 
Then G(X) = X + a, where a E Zp, a - 1 (modpP-') and -aP + pP + 1 

= 0. 0 

Another problem would be to determine when Fermat's equation has a 
solution in units of the field of q-adic numbers. It is immediate from the 
definitions that the following holds: 

(2B) If p, q are odd primes (not necessarily distinct), the following condi- 
tions are equivalent: 

a. There exist units a, j ,  y E 2, such that aP + jP + yP = 0. 
b. There exist integers x,, yo, z,, not multiples of q, such that 

X{ + y{ + Z{ r 0 (mod q1 +'). 

c. For euery n 2 0 there exist integers x,, y,, z,, not multiples of q, such that 

and x, + - x, (mod qn+ '), y, + = y, (mod qn+ '), z, + - z, (mod qn+ '), 

where 

This leads to the study of Fermat's congruence modulo the powers of 
a prime. 

3. The Problem Modulo a Prime-Power 

3. The Problem Modulo a Prime-Power 

I will consider in this section the congruence 

XPm + ypm + Zpm E 0 (modpn), (3.1) 

where p is an odd prime and n > m 2 1. When does it have a solution in 
integers not divisible by p? 

It is possible to assume that n = m + 1. Indeed, a simple argument shows 
that if x, y, z are integers, not multiples of p, and such that 

1 then for every r 2 0 there exist integers x,, y,, z,, not multiples of p, such that 

and x,+, - x, (modpr+'), yr+, E y, (modpr+'), z r + ,  - z, (modp'+'). 
Thus, from now on, I shall take n = m + 1 in the congruence (3.1). With 

the same methods it is also possible, and in fact quite interesting, to study 
the congruence 

1 As usual, a (nontrivial) solution (x,, . . . ,xk) consists of integers satisfying 
the congruence and such that 1 < xi I pm+' - 1, p$ xi (for all i = 1, . . . ,k). 

Two solutions (x,, . . . ,xk), (y,, . . . ,yd are equivalent if there exists some 
integer a, not a multiple of p, 1 5 a I pm+' - 1, and a permutation .n of 
{1,2, . . . ,k) such that yi = ax,(i, (mod pm+') for i = 1, . . . , k. 

I denote by a the residue class of a mod pm+ ' and by (Z/pm + ')" the multi- 
plicative group of invertible residue classes modulo pm+'. 

Let U be thewbgroup of all pmth powers aPm and let V be the subgroup 
of all 15 such that b r 1 (modp). It is an elementary fact that (Z/pm+')" r 
U x V. Let h 2 1 and 

Then (3.2) has a (nontrivial) solution exactly when 8 E kU.  
Let g be a primitive root modulo p, 1 < g < - p and let r - gPm (modpm+'), 

1 < r < pm+'. Then U = (772;r;3,. . . Fp-' = 1). In other words, given g, 
every element 9'" E U is uniquely equal to some poweri" (with 0 I i I p - 2). 
So every solution of (3.2) corresponds bijectively to a representation of 0 
as sums of powers of r in (Z/pm+ ') " : 

5 

with 0 I i, <'p - 2 (for t = 1,2, . . . ,k). 
Two representations (r",ri2, . . . ,rik) and (rJ1,rJ2, . . . ,rJk) are equivalent 

when they correspond to equivalent solutions of (3.2). In other words, there 
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is a permutation n of (l,2, . . . ,k) and an integer h, 0 I h I p - 2, such that 

i, j,(,, + h (mod p - 1) 
fort = 1, .  . . , k. 

A representation (ril, . . . ,rik) of 0 is normalized when 

It is clear that every representation is equivalent to one which is normalized. 
However, it may be shown that an equivalence class of representations may 
contain more than one which is normalized. 

A cyclic solution of (3.2) is a solution (x,,x,, . . . ,xk) such that there exists 
an integer a, p J' a, for which 

x1 -- 1 (modpm+l), 

x, - a (mod pm+ '), 

xk -- ak- ' (mod pm+ I) .  

The corresponding representation of 0 is 

where a = ri (modpm+'), 0 I i < p - 2. 
It is easily seen that if p r 1 (mod k), then there is a cyclic representation, 

namely taking i = (p - l)/k. In particular, if k = 3, m = 1, taking i = (p - 1)/3, 
then 

1 + ri + rZi = 0 (modp2). (3.4) 

In this case ri is a cubic root of 1 (modp2). 
Klosgen showed (in 1970) the following criterion for Fermat's theorem, 

based on the existence of a noncyclic representation of 0: 

(3A) Let m 2 1, let p be a prime, p = 1 (mod 3). If there exist integers 
x, y, z, not multiples of p, such that 

then 0 has a noncyclic representation modulo p3"+'. 

PROOF. TO begin, Klosgen uses a generalization by Inkeri (1946) of Fleck's 
congruence [see Lecture IV, (3A)J. Namely, xP r x (modp2"+'). Raising 
to the pth power repeatedly, this gives xp3" - xPm (modp3"+'). Similarly, 
yp3m ypm (mod P3"+ ') and zp3" = 2"' (modp3"+'). 

By hypothesis, xp3" + yp3" + zp3" = 0 (modp3"+'). Let w be an integer 
such that wx - y (modp). From x + y + z - 0 (modp) it follows that 
z - x(p - 1 - w) (mod p), so xp3" (1 + wp3'" + (p - 1 - w ) ~ ~ " ' )  - 0 (mod p3"+'). 

It suffices to show that the solution (1, w, p - 1 - w) is not a cyclic solution. 
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Since (xPm-')P + ( y P m - ' ) ~  + ( Z ~ " - ~ ) P  = 0, it follows from Pollaczek's result 
(1917) that x2Pm1 + ( ~ y ) ~ " - '  + yZpm-I f O(modp). Hence x2 + xy t y2 f 0 
(mod p). This implies that the solution is not cyclic, because if 

then (1 + w)P'" + wZp3"' = 0 (modp) hence 1 + w + w2 = 0 (modp), which 
is a contradiction. 0 

For example, let p = 1 (mod 3). If the only representation of 0 modulo 
p4 is the cyclic representation, then the first case of Fermat's theorem holds 
for the exponent p. 

Klosgen described all the normalized representations equivalent to a 
given one. In 1965, Peschl also showed how to obtain new normalized 
solutions from a given one (under certain hypotheses), but I'll refrain from 
entering into more details. 

Instead, I now turn to the study of the number of solutions of (3.2). The 
method is similar to the one already indicated for the congruence modulo p, 
which gave Dickson's theorem. 

Let p > 2 be a prime number, let k 2 3 and m 2 0. I denote by F(p,m,k) 
the number of(xl, . . . ,xk) such that 1 I xi I p - 1 (for i = I , .  . . ,k) and 

xpm + ~4~ + .  . . + xfm = 0 (modp"''). 

Similarly, if a is an integer, 1 I a I p - 1, let F(p,m,k;a) be the number 
of k-tuples as above, such that 

xf" + xqm + - . . + xfm = up" (mod pm+ I). 

Let N(p,m,k) be the number of (x,, . . . ,xk) such that 1 I xi I p - 1 (for 
i = 2,. . . ,k) and 

1 + ~ 5 " '  + . . . + xf" = 0 (modp""). 

For k = 3 and m = 1, I shall simply write: F(p) = F(p,1,3), F(p;a) = 

F(p,l,3 ;a), WP) = N(p,1,3). 
For nz = 0, it is not difficult to see: 

In particular, 
F(p,0,3) = (P - l)(p - 2), 
N(p,0,3) = p - 2. 

More geneially : 

(3B) With above notations: 

1. F(p,m,k) = (p - l)N(p,m,k). 
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2. F(p,m,k;l) = F(p,m,k;2) = . . . = F(p,m,k;p - 1). (This number shall be 
denoted by F*(p,m,k).) . 

3. N(p,m,k) = N(p, m - 1, k) - F*(p,m,k). 

In particular: 

Thus, the determination of the number of solutions of (3.2) depends on 
the determination of F*(pj,k), for j = 1,2, . . . , m. To this extent, the above 
relations play only an auxiliary role. 

To arrive at an explicit formula for N(p,m,k), Klosgen introduced the 
periods of the cyclotomic field Q(i), where ( is a primitive pmth root of 1 
(p an odd prime, m 2 1). 

Let 

h = primitive root modulo pm. 
p = primitive pm+'th root of 1, such that pP = <. 

The Gaussian periods of p terms are qi = qi(p,m,h) defined as follows: 
q i=ph '+phpm+i  + p h 2 p m + ,  + . . . + p h ( ~ - 2 ) ~ m + i  (for i = O,l, . . . ,pm - 1). 

Clearly 
om- 1 

Extend the definition of qj for every index j, by letting qj = qi, where 
j = i ( m o d p m ) , O < i < p m -  1. 

Up to a change of numbering, the Gaussian periods are independent 
of the choice of the primitive root h. 

Each qi turns out to be a real number and 

If p $ t let ind,(t) = s, where 0 I s < (p - l)pm - 1, and t = hymod P""). 
The Jacobi sums are defined as in (1.6): 

p + l - 1  

Z~ = (iJ,p) = 1 jjindh(*)pi (for j = 0,1, . . . ,pm - 1). 
i =  1 
P Y ~  

In particular 
To = (1,p) = 0. 

More generally, 
zj # 0 if and only if p $ j. 

Also 
- zj = zpm-j 

3. The Problem Modulo a Prime-Power 

(Zj denotes the complex conjugate of zj) and 

As a generalization of (1.1 1), the following connection between the periods 
and the Jacobi sums may be shown. 

Consider the matrix Z = (jij),, j= o, l ,  . . . ,pm- and the vectors 

Then ZZ = pml (I the identity matrix), that is, 
nm 

1 iikipkj = pmGik (for i, j = O,l, . . . ,pm - 1). 
k =  1 

(3.13) 

Also, ZT = pn'q, that is, 
pm-1 

C i-'jzj = pmqi (for i = O,l, . . . ,pm - 1) (3.14) 
j = O  

and z = Zq, that is, 

1 iijqj = T, (for i = O,l, . . . ,pm - 1). (3.1 5) 
j = O  

As a corollary, the following special sums of periods vanish: 
pk-  1 

1 qi+jpm-k= 0 (3.16) 
j = O  

for 1 < k < mand i = O,l , .  . . - 1. 
Taking for example, m = 2, k = 1, then 

0-1 

It is also possible to evaluate certain sums of squares of periods: 
0"- 1 

for 11 k < mand i = 0,1, .  . . ,pm-k - 1. 
In particular, taking k = m, then 

For m = 1, the Jacobi sums for i = 0, 1, .  . . , p - 1 may be evaluated as 
follows: ' 

Ti = pp(ai)P, (3.20) 

where a(p - 1) = indh(l + p). 
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In analogy with Lemma 1.1, Klosgen showed the following inductive 
expression for F(p,m,k) and N(p,m,k) : 

(3C) With above notations: 
1. F(p,m,k) = (l /p)F(p, m - 1, k )  + ( ( p  - l ) /pm+')  xf:'=",' y!. 
2. N(p,m,k) = ( l /p)N(p,  m - I ,  k)  + ( l / p r n + ' ) ~ l " , '  y t  

Taking m = 1, k = 3, this gives: 

Let S(p',k) = El",' [y i (p , j ) ]k .  Then, the above recurrence relations 
become : 

The next task is to find an upper bound for the number of solutions 
N(p,1,3) = N(p). In view of (3.22), what is required is to find an upper bound 
for the sum If:: y?. Taking into account the relations (3.8) and (3.19), the 
question is answered by the following: 

Lemma 3.1. Let n 2 3, let 

dejned for all points ( y , ,  . . . ,y,) such that C:=, yi = 0 and I:=, yi2 = n(n - 1). 

1. I f  the function f assumes an extreme value at the point ( y l ,  . . . ,yn), then 
there exists an integer T ,  1 T I n - 1, such that (up to a permutation of 
indices) 

y 1 - . . . = Y , = ( ~ -  - T )  
T ( n  - T ) '  $"- 

l f  yT is the point with above coordinates, then: 

2. f ( y T )  = n(n - l ) (n  - 2 ~ ) J ( n  - l ) / T ( n  - T) .  
3. If T = 1, then f ( y T )  = n(n - I)(n - 2) is the absolute maximum of the 

function. 
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4. If 1 I T I n - 1, then f (  yT)  is the absolute maximum of the function on the 
points ( y , ,  . . . ,y,) of the given domain, such that 

With this lemma, it may be shown that 

Another question which may be answered is the asymptotic behavior of 
the number of solutions, as k tends to cc : 

Indeed, from the previous formulas: 

Since Jyi(p, j)( < p - 1 (by (3.9)) it follows that lim,, ,[qi(p, j)/(p - l ) l k  = 0 
proving the assertion. 

Also, since 0 I N(p,m,k) I N(p,  m - 1, k )  [by (3B)], there exists an integer 
mo = mo(k,p) 2 1 such that N(p,m,k) = N(p,mo,k) for every m 2 m,. This 
number may be interpreted as being equal to the number of solutions of the 
equation 

l + X , + . . . + X , = O  

by elements in 0, (the multiplicative group of ( p  - 1)th roots of 1 in the ring 
2, of p-adic integers). 

KIosgen computed the values of N(p,m,k) for various values of m, k. To 
illustrate these results, I give some examples below: 

Table for N(p, l ,k )  
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The study of such congruences was also the object of numerous papers 
by Vandiver and by Hua, but their work is beyond the scope of my lectures. 
For the same reason, I shall also make only a passing reference to the work 
of Wei1(1949), Igusa (1975) and others, on the number of solutions of diagonal 
forms f (X) = Xd, + . . . + X;f over finite fields F,, and rings Z/Zps, where p 
is a prime not dividing d, s 2 1. Let Ns (respectively Nf) denote the number 
of solutions of f(X) = 0 in F,, (respectively Z/Zps)). Weil and Igusa proved 
respectively that F(t) = 1 + I,"=, Nsts, FF*(t) = 1 + I,"=, N f t h r e  rational 
functions of the indeterminate t. Stevenson (1978) gave a new proof of Igusa's 
result, using the same method of Weil. 

Table for N(p,2,k) (with values underlined, 
when not the same as in the preceding table) 
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LECTURE XI11 

Variations and Fugue on a Theme 

As composers sometimes do, when they strike a rich theme, mathematicians 
also like to consider variations of an interesting problem. 

The theme is Fermat's problem, in all its force and splendor. The varia- 
tions are analogous problems, sometimes reaching new depths, often only 
a caricature of the original problem. And the fugue, which usually ends the 
whole composition, keeps some of the original atmosphere. It begins with 
the well-known theme which, one might believe, has been completely ex- 
ploited. Yet, with a happy use of technique, it gains in substance and soon 
transcends the original idea. 

1. Variation I (In the Tone of 
Polynomial Functions) 

Consider the problem of finding the solutions of the equation 

xn + Y n  = zn (1.1) 

(where n 2 2) in the field of rational functions K(t) (where K is a field and t 
is transcendental). 

Since the equation is homogeneous, it is equivalent to find solutions in 
polynomials that is, elements of K[t] .  But this ring is a unique factorization 
domain, so 'it suffices to look for the nontrivial solutions (f,g,h), where 
f, g, h E K[ t ]  and gcd(f,g,h) = 1. 

In 1879, Liouville studied the problem when K = C, the field of complex 
numbers; he used analytical methods. In 1880, Korkine gave another proof, 
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which is algebraic and valid for any field K of characteristic 0. Another 
analytic proof with comments is in Shanks' book of 1962 (page 145), as well 
as in a paper of Greenleaf (1969). This latter proof actually is valid over any 
field whose characteristic does not divide the exponent in Fermat's equation. 

First, I consider the case n = 2. If K has characteristic 2, then any sum of 
squares is a square. So this case is trivial and may be left aside. 

(1A) Let K be a jield of characteristic distinct from 2, and assume that 
there exist elements a, b, c E K such that a2 + b2 = c2. Then the equation 
X2 + Y2 = Z2 has primitive nonconstant solutions f ,  g, h in K[t]. Iff has 
degree 1, and f + g2 = h2, then 

c f b  
h =  C +  dt + (&)d2t, 

where d E K, d = 0. 

The proof of this result contains no secrets. 
Now, I consider the case n > 2 and I present the proof of Greenleaf: 

(1B) Let n > 2 and let K be a field of characteristic not dividing n. Any 
primitive solution of (1.1) in K[t] consists of constant polynomials. 

PROOF. Without loss of generality, I may assume K algebraically closed. 
Suppose that (1.1) admits a primitive solution (f,g,h), such that the 

maximum m of the degrees off ,  g, h is positive. Among all such solutions, 
I consider one for which m is minimum. 

K contains a primitive nth root [ of 1, in view of the hypothesis. Let 
n -  1 

g n = h " -  f n =  n ( h - [ j f ) .  
j = O  

Since the polynomials h - [jf are pairwise relatively prime and K[t] is 
a unique factorization domain, each one is an nth power: 

h - ['f = gr, where gj E K[t]. 

But h - f ,  h - if, h - [ 2 f  are in the vector space generated over .K by 
h, f .  So there exist a,, a,, a, E K, not all equal to 0, such that 

Actually, these coefficients have to be all distinct from zero, because f,  h 
are relatively prime. 

2. Variations I1 (In the Tone of Entire Functions) 

Put k j  = &.gj E K[t]. Then 

k",++kk",=O 

with deg(kj) < m ( j  = 0,1,2), and max(deg((ko), deg(k,), deg(k2)) > 0. This 
contradicts the choice of rn. 0 

Pierre Samuel showed me this proof, which is more sophisticated. If 
f n  + gn = hn, where f ,  g, h E K[t] are relatively prime nonconstant poly- 
nomials, then (f/h,g/h) is a generic point of Fermat's curve X V  Yn = 1. 
Hence K( flh, glh) c K(t). By Liiroth's theorem, Fermat's curve is rational, 
that is of genus 0, and this implies that n = 1 or 2. 

2. Variation I1 (In the Tone of Entire Functions) 

This time, the search is for solutions in entire functions. But I'll not consider 
the question in its entirety (never mind the pun). I'll just pick a few striking 
results and proofs. 

Consider the equation 

An obvious nontrivial solution in entire functions is f(z) = cos z, h(z) = 
sin(z). Similarly, if h(z) is any entire function, then cos(h(z)), sin(h(z)) is a 
solution in entire functions. But conversely, Iyer proved in 1939: 

(2A) If f(z), g(z) are entire functions satisfying (2.1), then there exists an 
entire function h(z) such that f(z) = cos(h(z)), g(z) = sin(h(z)). 

PROOF. From f(z)' + g ( ~ ) ~  = 1 it follows that [ f(z) + ig(z)]( f(z) - ig(z)] = 1. 
Thus the two factors are entire functions without any zero. Then there exists 
h(z), an entire function such that 

f (z) + ig(z) = eih(') f (z) - ig (z) = e - ih(z). 

Therefore f (z) = (eih("' + eCih('))/2 = cos(h(z)) and g(z) = (eih(') - e-ih(z))/2i = 

sin(h(z)). 0 

Now I consider the case where n L 3 and instead of (2.1), the equation is 

where p(z) is a nonzero polynomial function of degree at most n - 2. The 
following result was obtained by Gross in 1966. The special case where 
p(z) = 1 was first done by Iyer in 1939, and then by Jategaonkar in 1965: 

(2B) If n 5 3, if p(z) is a nonzero polynomial of degree at most n - 2, if 
f(z) and g(z) are entire functions such that f(z)" + g(z)" = p(z), then f(z), 
g(z), and p(z) are constants. 
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PROOF. I'll give the proof under the stronger hypothesis that p(z) has degree 
at most n - 3. For the case where p(z) has degree n - 2 the proof is somewhat 
more technical. 

Let [ be a primitive 2nth root of 1. Then 

The meromorphic function p(z)/g(z)" has at most n - 3 zeroes. So, at 
least three factors of the right-hand side never vanish. Thus, the mero- 
morphic function f(z)/g(z) misses three values. By the well-known theorem 
of Picard, f(z)/g(z) is a constant. 

Now, it is anticlimatic to conclude the proof of the statement. 

Obvious corollaries are the following: 

(2C) If n 2 3 and f(z), g(z) are entire functions such that 

then f (z), g(z) are constants. 

(2D) If n 2 3, if f(z), g(z), h(z) are nonzero entire functions such that h(z) 
never vanishes, and if 

then there exist nonzero complex numbers a, b such that f(z) = ah(z), g(z) = 
bh(z), a" + b" = 1. 

3. Variation I11 (In the Theta Tone) 

In the preceding variation, it was quite exciting seeing that the (little) Picard 
theorem provided the key for the proof. 

This time, the search is for solutions which are analytic in the interior 
of the unit disk. And the exponent is just equal to 4. 

In 1829, Jacobi discovered a solution for 

in theta functions. Since these functions play quite an important role in 
various branches of arithmetic, analysis, and geometry, 1'11 take the time 
to introduce them and indicate the main steps towards Jacobi's result. 

It is convenient to introduce the theta functions as solutions of certain 
functional equations. 

Let t belong to the upper half-plane and let q = en'', so 191 < 1, that is, 
q is in the interior of the unit disk. 

Let k 2 1 be an integer, let t be given in the upper half-plane, let b = b(t) E @, 
b # 0 and consider the vector space V (depending on k,t,b) of all entire 
functions f (z) satisfying 

(3A) V has dimension k. 

SKETCH OF THE PROOF. Let f(z) E V. For every integer n # 0, 

is the coefficient of the Fourier expansion I,"= -, cne2"" of the periodic func- 
tion f (z) in the interval ( - n/2,71/2). 

For every integer h # 0, consider the rectangle Ch, with vertices -a/2, 
4 2 ,  (n/2) + ih, -(71/2) + ih. By Cauchy's theorem and the hypothesis (3.1) 

Thus 
1 ~ ~ 1  -< eZnhnMh, 

where 
Mh = max {I f(z - ih)/}. 

- n / 2 S z S n / 2  

Writing t = u + iv (where u, u are real, o > 0), writing h/n = mu + r, 
with 0 I r < u, and m an integer, and writing mu = s + u', with -3 < u' < *, 
and s an integer, it is not difficult to show that 

Mh = b-me2kmav~, 
where 

A = max (e2km'I f(z + n(u' - ir))l). 
- n / 2 S z s n / 2  

From these majorations, it is possible in a more or less standard way, 
to deduce that the Fourier series is absolutely and uniformly convergent 
in any bounded region. Thus 

The second functional equation of f(z) gives relations between the 
coefficients of the Fourier expansion, 

b-1 2" 
C n + k =  q cn- 

Hence, if n = sk + r, with integers r, s, s > 0, 0 < r < k, by iteration 

This relation holds also for s < 0. 
Let 
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From the uniqueness of the Fourier expansion, it follows that f(z) is, 
in a unique way, a linear combination of the functions fo(z), fl(z), . . . , fk- '(z), 
which belong to the vector space V,  and therefore constitute a basis. 

The special case where k = 1 and b = q-' gives the function denoted by 
m 

Zsiz 

Taking k = 1 and b = - q- ' gives the function 

Similarly, considering the functional equations 

it is seen that the space of such functions has dimension 1, and a generator is, 
for example, the function 

Taking b = -9-', respectively b = q-', gives the functions 
m 

@,(z,q) = - iq'I4 C ( - l)sqs2 + se(2s + 1)iz 

s = - m  

= 2q1I4(sin z - q2 sin 32 + q6 sin 5z - q'' sin 72 + . . .) (3.5) 

= 2q'14(cos z + qz cos 32 + q6 cos 5z + q" cos 72 + . . .). (3.6) 

The functions Oi(z,q) ( i  = 1,2,3,4) are Jacobi theta functions. I denote 
also Oi(q) = Oi(O,q), so these are functions defined in the interior of the 
unit disk. 

These functions are of course mutually related. For example, for every q 
in the interior of the unit disk: 
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I and also 

I 0 ,(O,q) = 0. 
, 

Between the squares of any three theta functions, there are also linear 
relations: 

I (3B) The following four linear relations are satisjied: 

By (3A) the space of entire functions satisfying these equations has dimen- 
sion 2. So, the squares of any three theta functions satisfy a nontrivial linear 
relation. 

If a, b, c are complex numbers such that 

computing these functions at z = 7112, t(n/2), (7112) + t(7c/2) and taking into 
account the relations indicated above yields 

But @,(O,q) = 0, @,(O,q) # 0, hence 

@:(odd a=- b = ------- 
@W,q) C' 

@'(o'q) c, with c + 0. 
@:(O,q) 

This gives the first relation. 



a. u has period 1 in each variable. 
b. There exists M > 0 such that, for any x, y, z: 

c. u is a solution of (4.1). 

(4A) With the above hypotheses, the Fourier expansion of u(x,y,z) is 
convergent: 

m 

and if pn + qn # r", then A , , , ,  = 0. 
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It follows from relation (3.15) for z = 0 that 

O:(O,q) + @2(0,9) = @@,q) 

and this may be rewritten as: 

(3C) The theta functions 02(q), 04(q), 03(q) satiSfy the relation 

O:M + = 034) 
in the interior of the unit disk. 

The proof whose main points I sketched may be found in the book of 
Bellman (1961). Another completely elementary proof has been published 
by van der Pol in 1955. 

4. Variation IV (In the Tone of 
Differential Equations) 

In 1962, Rodrigues-Salinas looked at the following differential equation, in 
analogy to Fermat's equation: 

There is, surprisingly, a relationship between the solution of Fermat's 
equation 

xn + Yn = zn ( 4 4  

and the solution of the differential equation in functions u(x,y,z), satisfying 
certain periodicity and boundary conditions. 

Let Q be the unit cube in the space R3, that is, the set of triples (x,y,z) 
such that 0 I x 5 1, 0 I y I 1, 0 I z 5 1. Suppose that u(x,y,z) is a real- 
valued function of three real variables, with continuous partial derivatives 
up to the order n. Assume also 

5. Variation V (Giocoso) 27 1 

The next results distinguish the cases where n is odd or even. To state 
these we consider two further conditions on a solution u: 

d. u(x,y,z) vanishes on any of the faces of unit cube Q. 
d'. u(x,y,z) vanishes on two faces of Q. 

(4B) I f  n is odd and if u(x,y,z) satisjies the conditions (a), (b), (c), and (d), 
then u(x,y,z) is identically zero. 

(4C) I f  n 2 2 is even, the following are equivalent: 

1. There exist nonzero integers a, b, c such that an + b" = cn. 
2. There exists a function u(x,y,z), not identically zero, satisfying (a), (b), (c), 

and (d'). 

I'll not try to sketch the proof of these results, since they may be found 
in the paper of Rodrigues-Salinas. Let me just say that if a2 + b2 = c2, then 
u(x,y,z) = (sin 2nax)(sin 2zby)(sin 2ncz). 

5. Variation V (Giocoso) 

Great tragedies often have some scenes of humor, tense musical symphonies 
their moments of gaiety. Mathematicians of the most serious kind also like 
to be amused. 

While collecting information about Fermat's theorem, I gathered various 
items which I have decided not to hide. 

To begin, I wish to quote a paper of Orts Aracil(1961). He said: 

As Fermat tried to  find the solutions of Xn + Y n  = Zn in positive integers, 
he must have considered first the easier cases n = 3, n = 4, obtaining the result 
that no such solutions exist. In view of this, he decided to tackle directly the 
general equation and begun searching whether the equation admits solutions 
of the form 

where a, p, q, r are positive integers 
He required the equality 

that is 

which may be written also: 

and putting an = m, 
mp + mq = mr. 
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Previously, in the paper, Orts Arcil considered the dual of Fermat's 
equation 

nX + nY = nZ 
and he proved: 

(5A) If n 2 3, there are no positive integers x, y, z such that nx + nY = nz. 
However, for n = 2, $2" + 2Y = 2', then x = y, z = x + 1. 

He says: 

Coming to the theme proper of this article, which constitutes the key of 
our conjecture, let us observe that if in Fermat's equation 

the bases and exponents are permuted, it becomes 

nX + nY = nZ, 

an equation to which, icuriosa coincidencia!, exactly and literally the same 
statement may be applied: this equation has no positive integer solutions 
if n 2 3. 

And even more curious, is that the proof in this case is immediate, at the 
level of any student of the first courses of mathematics at the university. 

He adds that he proved this point experimentally. And he concludes: 

This result [(5A)], no doubt known to Fermat, might have induced him, 
"sin mas" to formulate his famous theorem. 

"Caramba," it might have been indeed a "curiosa coincidencia". One 
which spurred a great progress to mathematics. 

6. Variation VI (In the Negative Tone) 

In 1967 and 1968, Therond considered the equation Xn + Yn = Zn  where n 
is a strictly negative integer. And he proved: 

(6A) If Fermat's theorem is true and if n < -2, then the equation X n  + 
Yn = Zn has no solution in nonzero integers. 

(6B) The equation X -  ' + Y-  ' = Z-' has primitive solutions (x,y,z) 
which are of the form 

x = a(a + b), y = b(a + b), z = ab, 

where a, b are nonzero integers, gcd(a,b) = 1. 
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(6C) The equation X-2  + Y-' = Z - 2  has primitive solutions (x,y,z) which 
are of the form 

x = 2ab(a2 + b2), y = (a2 - b2)(a2 + b2), z = 2ab(a2 - b2), 

where a, b are nonzero distinct integers such that gcd(a,b) = 1. 

7. Variation VII (In the Ordinal Tone) 

In 1950, Sierpifiski proved that the last theorem of Fermat is false for ordinal 
numbers : 

For every ordinal number p, there exist distinct ordinal numbers a, p, y, 
each larger than p and such that 

an + P" = yn for n = 1, 2, 3, 

This is the first of various similar results showing that Fermat's equation 

X" YY" = z*, 
where /1, is any ordinal number, also admits solutions which are not trivial. 

Once more, it is brought to light how strange is the arithmetic of ordinal 
numbers. 

8. Variation VIII (In a Nonassociative Tone) 

Nonassociative arithmetics? Yes, they have been invented, and perhaps soon 
they may enter into mathematics with some unexpected applications. While 
this day has not yet arrived, it is nevertheless fortunate that mathematicians 
know whether their Fermat's last theorem is true or false in a nonassociative 
arithmetic. 

I suspect that not everyone is familiar with this new theory. So, I will 
expose its general ideas. 

I trace the first paper to Etherington in 1939 (and again in 1949). Under 
another name, they were considered also by A. Robinson (1949) and Evans 
(1957). It was Evans who proved Fermat's last theorem in such nonassociative 
arithmetics; see also Minc (1959). 

It is best to follow the method of Peano, used to define the natural numbers. 
Let S be a set of elements which will be called nanumbers (nonassociative 
numbers), satisfying the following conditions: 

a. There is a nanumber, denoted by 1. 
b. There is a binary operation + between nanumbers. 
c. There are no nanumbers a, b such that a + b = 1. 
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d. Ifa, b, c, dare nanumbers and a + b = c + d, then a = c, b = d. 
e. (Principle of nonassociative induction): If S' is a subset of S, such that 

1 E S' and S' is closed under addition, then S' = S. 

The nanumbers are therefore represented as 1, 1 + 1, 1 + (1 + I), 
(1 + 1) + 1, 1 + (1 + (1 + I)), 1 + ((1 + 1) + I), (1 + 1) + (1 + I), ((1 + 1) + 
1) + 1, (1 + (1 + 1)) + 1, and so on. 

The natural nanumbers are 1 , l  + 1 denoted 2, and similarly 1 + (1 + 1) = 
1 + 2 = 3 ,  1 + 3 = 4 , e t c  . . .  . 

Each nanumber has a length, defined as follows: (11 = 1; if a = b + c, 
then la1 = Ibl + Icl; this is well defined in view ofthe axioms (c) and (d). 

I will now state various properties: 

1. I f a + b = b + a , t h e n a = b .  
2. For all a, b: a # a + b. 
3. For all a, b, c: a + (b + c) # (a + b) + c. 

The multiplication of nanumbers is defined as follows: 

a1 = a and a(b + c) = ab + ac. 

Clearly Jab1 = JaJ.  JbJ. Among the properties, I note: 

4. I f a b = l , t h e n a = l a n d b = l .  
5. l a  = a for all a. 
6. a(bc) = (ab)c for all a, b, c. 
7. If ba = ca, then b = c. 
8. If ab = ac, then b = c. 

From the associative property of multiplication, it is possible to define 
unambiguously exponentiation, where n is a natural number: a' = a, 
a n =  a a n - l  = a n - ,  a. 

If a = bc, then b is called a left factor of a and c is a right factor of a. If, 
moreover, b, c are different from 1, a, they are called proper factors. If a # 1 
has no proper left factor, then it is called a prime nanumber. It follows that 
it has no proper right factor. 

9. If c is a proper left factor of a + b, then c is a left factor of a and of b. 

In particular, 1 + b, a + 1 are primes. 

10. If the prime c is a left factor of ab, with a # 1, then c is a left factor of a. 

And now, the fundamental theorem of the arithmetic of nanumbers. 

11. Every nanumber is, in unique way, a product of prime nanumbers. 
12. If a prime nanumber p  is a right factor of ab, and b # 1, then p is a right 

factor of b. 

With all this preparation, I give the proof of Fermat's last theorem for 
nanumbers : 
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(8A) If n is a natural number, n 2 2, then the equation Xn + Yn = Zn has 
no solution in nanumbers. 

PROOF. Assume that x, y, z are nanumbers such that xn + yn = zn. 
Note that x # 1, otherwise z" = 1 + y" would be prime [by (9)], which is 

not true, because n 2 2. Similarly, y # 1. I note also that 1x1" + l y l n  = IzIn. 
Since z is a proper left factor of zn = xn + yn, by (9) z is a left factor of xn 

and of yn. By the fundamental theorem (1 I), 

Since zu = xn (for some nanumber u), q, . . . q,u = p , p 2  . . . p,xn-'. 
If t s s, by the uniqueness of decomposition into a product of prime 

nanumbers,q, = p , ,  . . . , qt =p,,hencex = zp,,, . . . p ,  ~01x1 = 121 I p , + , l  . . .  
Ips\ 2 IzI. On the other hand, JzJn = 1x1" + lyln > 1x1" SO I z I  > 1x1, which is a 
contradiction. 

Therefore t > s and q, = p,, . . . , q, = p, so z = xu, where a = 

4s+1 . . .  9t f 1. 
A similar argument gives z = yb where b # 1. Therefore lzln = 1x1" + 1 yln 

= (JzJ"/JaJn) + (Izln/lbln), hence 1 = (l/laJn) + (l/JbJn), where la], JbJ > 1. This is 
clearly impossible. 0 

9. Variation IX (In the Matrix Tone) 

Not much is known concerning the solution of Fermat's equation in square 
matrices. The question is trivial if singular matrix solutions are allowed. 
Indeed, if k 2 2, if 

and if 

are k x k matrices, then they are idempotent, 2 + B" = C", so 2 "  + Bn = C"" 
for every n 2 1. This was explicitly noted by Bolker in 1968 and, in special 
cases, by Domiaty in 1966. 

Hence, I shall only be interested in solutions in nonsingular matrices. 
Bolker proved the first result of any interest: 

(9A) Let R be a commutative ring with unit element. Let m 2 1 and assume 
that there exist nonzero elements x, y, z E R such that xm + ym = zm. Then 
there exist nonsingular n x n matrices A, B, C over R such that 
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PROOF. If n is any permutation on n letters let P = p(n) be the n x n matrix 
over R: 

p = (8 . .). . 
Z ( I ) , J  I , J ?  

that is, the entry of P position (i, j) is 6,,i,,j (the Kronecker &symbol): 
If n is any circular permutation, p(z) = P, let 

Then the matrices A, B, C are nonsingular and satisfy Fermat's equation for 
the exponent nm. 0 

Taking m = 1 and nonzero elements x, y, z such that x + y = z, then the 
above construction gives n x n nonsingular matrices A, B, C such that 
A" B" = C". 

In 1972, Brenner and de Pillis determined other solutions in nonsingular 
n x n matrices for the equation in (9A). These authors have also proved: 

(9B) If A, B, Care nonsingular n x n matrices with entries in Z, i fAB = BA 
and if Am + Bm = Cm, where m 2 1 ,  then there exists a nontricial triple of 
algebraic integers a, b, c, each ofdegree at most n and such that am + bm = cm. 

This follows at once from the existence of a common eigenvector for the 
commuting matrices A, B. 

A partial converse, proved by Brenner and de Pillis is the following: 

(9C) If a, b, c are integers in a quadratic numberfield, such that am + bm = 
cm, where m 2 2, then there exist nonsingular 2 x 2 matrices A, B, C ,  with 
entries in Z, such that Am + Bm = Cm. 

In 1961, Barnett and Weitkamp studied in more detail the solution of 
Fermat's equation in 2 x 2 nonsingular matrices with rational coefficients. 
This is their main result. 

(9D) Let n > 2, n # 4. If Fermat's theorem holds for the exponent n (when 
n is odd) or for the exponent n/2 (when n is even) i f  A, B are nonsingular 2 x 2 
matrices over Q, which are not scalar matrices but such that An, B" are scalar 
matrices, then there exists no 2 x 2 nonsingular matrix C,  with entries in Q, 
such that 

A" + B" = C". 

Barnett and Weitkamp gave also many examples of matrices A, B, C such 
that A" + Bn = C": 

10. Fugue (In the Quadratic Tone) 

1. Take 

In the above examples the matrices have fourth power equal to the identity 
matrix. 

3. If r is any rational number, and if 

I \ 

then A3 + B3 = C3. 

And there are more examples and methods, but I'll not discuss this matter 
any further. 

10. Fugue (In the Quadratic Tone) 

After all the variations, the long awaited fugue comes and it is written in the 
quadratic tone, which most suits it. What I really mean, is that I'll now 
consider the solution of Fermat's equation in algebraic number fields. And 
here again, the trivial cases have to be excluded. For example, 1" + 1" + 
(G)" = 0 tells us that in Q ( F ~ )  the equation 

has a nontrivial solution. So, the problem is interesting only when the 
algebraic number field has degree less than the exponent. 
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How about the simplest situation: To find out whether (10.1) has a solution 
in quadratic number fields? This study has been done only for a few ex- 
ponents: n = 2, 3, 4, 6,9. 

If n = 2 it makes a difference to consider (10.1) with exponent 2, or the 
equation X2 + y 2  = Z2. This equation has nontrivial solutions in ordinary 
integers, but it may be asked whether there are solutions of the type 
(a + b f i ,  a - b f i ,  c), where a, b, c E Z, m is a square-free integer, m # 0, 1. 
Aigner answered this question in 1934: 

(10A) There exist nonzero integers a, b, c E Z such that 

(a + b&12 + ( a  - b&)' = c2 

if and only ifm has no prime factor p such that p = + 3 (mod 8). 

On the other hand, for the equation X2 + Y2 + Z2 = 0, it is only in- 
teresting to investigate the solutions in an imaginary quadratic field. The 
following result was first proved by Nagell in 1972; a simpler proof was 
given by Szymiczek (1974): 

(10B) If m > 0 is square-free, then the equation X2 + Y2 + Z2 = 0 has a 
nontrivial solution in the imaginary quadratic jield Q(-) if and only if 
m $ - 1 (mod 8). 

Another way of looking at this result is the following. The level of an 
imaginary field is the smallest number s of squares such that - 1 is the sum 
of s squares. Since the field is imaginary, such number s exists, as was shown 
by Artin and Schreier (1927). Thus, the above theorem says that the level of 
Q ( F m )  is at most 2 if and only if m $ - 1 (mod 8). 

Aigner settled the case of exponent 4 in (1934); a new proof was given by 
Fogels in 1938: 

(10C) The equation X4 + Y4 = Z4 has a nontrivial solution in the field 
~(fi) (where m is a square-jiree integer, m= 0,l) if and only ifm = -7. 

In this situation, every nontrivial solution is equivalent (that is pro- 
portional with a nonzero multiplier) to one of the following solutions (with 
arbitrary signs) : 

( f  (1 + J-71, f (1 - J-7), t-2). 

The proof is somewhat elaborate, but involves no real difficulty. 
Since I'm not giving the proofs for the exponents 6,9 (which depend on 

the case of the exponent 3), I may as well state the results right now. Once 
more, they were obtained by Aigner in 1957: 

(10D) If m # 0, 1 is any square-free integer, then X6 + y6  = Z6 has only 
the trivial solution in ~( f i ) .  
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(10E) If m # 0, 1 is any square-free integer, then X9 + Y9 = Z9 has only 
the trivial solution in Q(fi). 

The proof of (10D) is also based on a result due to Nagell (1924): 

has only the trivial solution (1,O) over the field Q of rational numbers. I stress 
that there are no other rational solutions. It is already not totally easy to 
show that there are no other integral solutions of(10.2) than (1,O). See a proof 
given by Oblath (1952). 

Concerning the rational solutions, the analogous equation x3 + 1 = Y2 
had been treated already by Euler. Nagell has in fact considered the equation 
X3 + 1 = D Y ~ ,  where D # 0 is an arbitrary integer. Taking D = -3, the 
equation is equivalent to (10.2). 

These considerations illustrate the fact-to be expected-that to solve 
diophantine equations over quadratic fields, leads to the solutions over Q, 
or Z, of some associated diophantine equations. 

Let me also remark that (10D) and (10E) would be automatically true, 
if the Fermat cubic 

x3 + Y3 + Z3 = 0 (10.3) 

had only the trivial solution. But, as I shall indicate, this is far from being the 
case. The questions become: for which quadratic fields does (10.3) have 
nontrivial solutions, and in this situation, to describe all possible solutions. 

To fix the terminology, two solutions (x,y,z) and (xf,y',z') in a field K are 
K-equivalent if there exists a E K, a # 0, such that x' = ax, y' = ay, z' = az. 
A solution (x,y,z) is called a quadratic solution if x, y, z belong to some qua- 
dratic extension of Q. 

In 1915, Burnside described all the nontrivial quadratic solutions of 
Fermat's cubic; they may be parametrized by the rational numbers different 
from 0, - 1. This was rediscovered by Duarte in 1944, who gave a simpler 
proof. 

1. If k E Q, k # 0, - 1, and 

then xf + yf + zf = 0. 
2. If a E Q, a = 0, if k' = ak (with k # O), then the solutions corresponding to 

k and k' by the above method are equivalent if and only ifa = 1. 
3. If (x,y,z) is a nontrivial solution in the quadraticfield Q(&), there exists 

k E Q, k #'0, - 1, such that 
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where u is a rational number and ( x ,  y,z) is Q(fi)-equivalent to the solution 
( ~ k ? ~ k J k ) .  

This parametrization falls short of the expectations, because k is a rational 
parameter. It gives of course many quadratic solutions, for example: 

k = 2 gives (3  + 3 m ,  3 - 3-, 12), 
k = 1 gives ( 3  + m, 3 - m, 6), 
k = -2 gives (3 + p 3 , 3  - f l 3 ,  - 12). 

On the other hand, it is not obvious at once that there is a solution in 
~(p) ,  since it is not obvious that 

has a rational solution k. But, in fact taking k = 3, u = 3, this gives the 
solution (2  + -,2 - G, 2). 

In order to study the quadratic solutions of the Fermat cubic, it is helpful 
to remark that any solution is equivalent (in the field in question) to a con- 
jugate solution, which is one of the form 

x = a + bJm,  

y = a - b f i ,  (10.5) 

Z = c. 

This was established by Fueter in 1930 and again by Aigner in 1952. 
And now comes a very crucial fact shown by Fueter in 1913: 

(10G) The Fermat cubic has a conjugate solution in ~ ( f i )  i f  and only 
if it has a conjugate solution in Q(@). 

PROOF. I give this proof, since I shall require the explicit formulas to pass 
from the solution in one field to the other. 

Let (10.5) be a conjugate solution in ~ ( f i ) .  Then 

Writing (a  + b f i ) 3  = a + / ? f i  (with a, P E Z), then (a - b f i ) 3  = a - 

P f i  so 
(a2 - b2m)3 = a2 - P2m. 

From x3  + y3 + z3 = 0 it follows that 

a = a(a2 + 3b2m) = -3c3, 

= b(3a2 + b2m). 
Then 

[=3cr+/?J--3m 
r , = 3 u - p J % i  

[ = 3c(a2 - b2m) 
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is a conjugate solution in Q ( F m ) .  It may be verified that this solution 
is not trivial. 

To show the converse, I just note that ~ ( f i )  = Q( 4-)). 

From a more sophisticated point of view, the above method of deducing 
solutions in Q ( m )  from solutions in Q(&) corresponds to the com- 
plex multiplication by 6 3  on the elliptic curve X3 + Y3 + z3 = 0. More 
information on this point may be obtained in Cassels's survey article (1966), 
33 24 and 26. 

Repeating the procedure used in the proof of (10G) yields the following 
fact : 

(10H) If Fermat's cubic has a nontrivial solution in the jeld Q(&), then 
it has injnitely many (pairwise nonequivalent) solutions in this jield. 

I will not prove this, but illustrate with a typical numerical example. 
Beginning with the solution (2  + -,2 - 0 , 2 )  the proof of (10G) gives 
the solution 

( - 6  + 5 4 ,  -6 - 5$,18). 

Repeating the procedure, I obtain the new solution 

It may be shown that the new solution is never equivalent to the given one. 
From these considerations, the main question is to decide whether in a 

given field Q(&) there exists a nontrivial solution. As I said, this amounts 
to solving (10.4) in rational numbers m, u. This task cannot be handled 
directly as such. 

From Fueter's result, I may assume that 3 $m. Four cases are possible, 
according to the sign of m, and m r $. 1 (mod 3). For some unexplained 
reason, the results seem very much to differ according to the case. In some 
of the cases the class number of the quadratic field plays a role, in others 
it doesn't. I shall denote by H(m) the class number of the quadratic field 
Q(&), where m is square-free, m # 0. In 1913, Fueter proved: 

(101) If m is a square-free integer, m < 0 ,  m =- - 1 (mod 3), and if there 
exists a nontrivial solution for Fermat's cubic equation, then 3 divides the 
class number H(m). 

Fueter's proof involved a long analysis of behavior of primes in appro- 
priate extensions. He gave also actual examples of solutions in various 
fields. For example, in Q ( m ) ,  which has class number 3, he computed 
the following solutions: 
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and 

Incidentally, applying the method of (10H) to the first of the above solu- 
tions does not lead to the second one. So, it is not true that the method 
indicated will provide all solutions from a given one. And one wonders how 
many "independent" solutions will suffice to describe all, after repeated 
application of (lOH). This is still unknown. 

Fueter also considered the case where m < 0, m 1 (mod 3) and he gave 
examples of solutions both when H(m) is a multiple, or not a multiple of 3: 

In ~ ( p ) ,  of class number 1, there are the solutions 

(2 + ~ '2)~ + (2 - + 2, = o 
and 

(once more the second solution is not derived from the first one by applying 
the method of (2H)). 

In ~ ( m ) ,  of class number 3, Fueter found the solution 

In 1952, Aigner took up the case where m > 0. His first result makes 
essential use of an important theorem of Scholz (1932), which connects the 
3-rank of the class groups of ~ ( f i )  and Q(@). 

Let %? be the class group of ~(fi) (where m > 0) and let %?' be the class 
group of ~ ( m m ) .  Let %?, (respectively V;) be the subgroup of elements 
of order dividing 3 in V (respectively V'). So V3,  Vj are finite-dimensional 
vector spaces over the field IF, with 3 elements. Let s = dim,,(%?,), s' = 
dimF,(%?,). Then Scholz proved: 

(10J) With the above notations 

s < s l < s + l .  

In particular, if 3 does not divide H(- 3m), then 3 does not divide H(m). 
The above theorem is not an isolated fact, but a special case of Leopoldt's 

reflection theorem (1958), explained in Lecture IX. 
Back to Aigner-he proved (1952): 

(10K) If m is a square-free integer, m > 0 and m - 1 (mod 3), if there 
exists a nontrivial solution of Fermat's cubic in Q(Lm), then 3 diuides H(- 3m). 

As an example of this situation, Aigner showed that (486 + llJJ8)3 + 
(486 - 1 1 6 8 ) ~  - 6303 = 0; in this case H(- 174) = 12. 

Next, he observed that if riz > 0, m - - 1 (mod 3), then the existence of a 
nontrivial solution is independent of the divisibility of the class number by 

10. Fugue (In the Quadratic Tone) 

3, as the following examples illustrate: 
In ~($1, with H(- 6) = 2: 

In Q(@), with H(- 246) = 12 

The situation being fairly mysterious, Aigner proceeded to investigate 
more deeply the problem in a series of very interesting papers (1952, 1955, 
1956). His first result is the following: 

(10L Let m be a square- free integer, 3 Xm, m > 0. Assume the following 
condition: m is a product of primes qi such that qi 1 (mod 3) and 2 is not a 
cubic residue modulo qi. Then Fermat's cubic has only the trivial solution in 
a(,,&) and in Q(-). 

For example, since 2 is not a cubic residue modulo 61 then Fermat's 
cubic has only the trivial solution in &p(m); yet H(- 61) = 6. This shows 
that the converse of Fueter's result (101) is false. 

Similarly, 2 is not a cubic residue modulo 67, so Fermat's cubic has only 
the trivial solution in ~ ( 6 7 ) ;  yet H(-201) = 12. This shows that the con- 
verse of Aigner's theorem (10K) is false. 

Next Aigner improved his last result as follows: 

(10M) Let p be a prime such that p - 5 (mod6) and E = $- 1 is not a 
square modulo p. Let m = 2pq1 . . . q,, with r 2 0, where qi are distinct primes 
satisfying the conditions: qi - 1 (mod3), 2 is not a cubic residue modulo qi. 
Then Fermat's cubic has only the trivial solution in ~(fi) and in Q(-). 

These results are, however, only the most special cases of a theory de- 
veloped by Aigner in 1956. I cannot enter into any of the details, but I hope 
to explain clearly his results. 

The object is to find integers k which will guarantee that the only solution 
of Fermat's cubic in certain fields will be trivial. Accordingly, an integer 
k >  0 (not a multiple of 3) is an obstructing integer ( =Unmoglichkeitskernzahl) 
for Fermat's cubic when Fermat's cubic has only the trivial solution in 
Q(&) and in Q(-) for every m = kq, . . . q,, with r 2 0, where qi are 
distinct primes satisfying the conditions: 

1. qi 1 (mod3)for i =  1,.  . . , r, 
2. 2 is not a cubic residue modulo qi. 

Thus, the two preceding theorems say that 1 is an obstructing integer and 
if p is a prime, p 5 5 (mod 6) and E = ;/Z - 1 is not a square modulo p, 
then 2 p  is an obstructing integer. 

To obtain results about obstructing integers, Aigner required consid- 
erations in the cubic field K = ~($1. This field has an integral basis 
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So the problem becomes one of determining conditions for a graph to 
be obstructing. Aigner found the following graph-theoretical theorem: 

(10P) If T is an obstructing graph, then the number of vertices must be even. 

As a corollary: 

(10Q) If k is the product of an odd number of distinct primes q i  where 
q i  = 2 or q ,  = 5 (mod6), then k is not an obstructing number. 

A more precise analysis allowed Aigner to show: 

(10R) If k = 2 (mod 3), then k is not an obstructing integer 

The following examples of obstructing integers are among the innumerous 
possibilities which illustrate Aigner's results: 

2 9  P41 
64042 = 2 x 11 x 41 x 71 has the graph 

11 

21505 = 5 x 11 x 17 x 23 has the graph 
11 

I stop here, refraining from giving still other results from Aigner. At any 
rate, this should be enough to incite the reader's curiosity about this problem. 
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Epilogue 

There is no epilogue. The search continues. New methods are invented, 
which will in turn be applied to other problems. Or, it is just the reverse. 
And this is the best that could happen, for it is the probing and search of 
such profound questions that nourishes mathematics. 
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