ON THE HOMOTOPY TYPE OF INTERSECTION OF TWO
REAL BRUHAT CELLS. I

EMILIA ALVES, NICOLAU C. SALDANHA, BORIS SHAPIRO,
AND MICHAEL SHAPIRO

To Andrei Zelevinsky who left us far too early

ABSTRACT. In this paper, we continue the line of research initiated in [12, 13,
9, 10]. We introduce a new stratification of the intersection of two arbitrary
top-dimensional Bruhat cells in SL,, /B over R and present new topological
results about such intersection.
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1. INTRODUCTION

Bruhat/Schubert cell decompositions of Grassmannians and various spaces of
flags have been used in mathematics for more than a century and are standard
objects/tools in e.g. topology, enumerative geometry and representation theory.
Intersections of pairs and more general collections of Bruhat cells appear naturally
in several areas such as singularity theory, Kazhdan-Lusztig theory, matroid the-
ory, to mention a few. In spite of their importance, to the best of our knowledge,
there is hardly any topological information available about such intersections, see
e.g. [14] and references therein.

One exception from this general situation is the problem of counting connected
components in pairwise intersections of big (i.e. top-dimensional) Bruhat cells
over the reals where substantial progress was obtained in the late 90’s, see [12,
13, 15, 9, 10, 4, 16]. In short, this problem can be reduced to counting the orbits
of a certain finite group of symplectic transvections acting on a finite-dimensional
vector space over the two element field Fy; both the group and the vector space
are uniquely determined by the pair of Bruhat cells under consideration, see [15].
Further information about counting such orbits can be found in [11].

For example, in case of two opposite big Bruhat cells over the reals in the
standard space of complete flags Fl,, = SL,, /B where B is the Borel subgroup
of m x m upper-triangular matrices, the number #,, of connected components
in their intersection equals 2, 6,20,52 for m = 2,3,4,5 respectively. Starting
from m = 6, the number of connected components stabilizes and is given by
fm = 3 - 2™ which is explained by the possibility to embed, for m > 6, the
lattice Eg in a certain lattice arising in this problem, see [13].

Observe that the relative positions of two big Bruhat cells in Fl,, are in 1 — 1-
correspondence with permutations of length m, i.e. with the elements of the
symmetric group S,,. In particular, opposite big Bruhat cells correspond to the
longest permutation n = (m,m — 1,...,1). The study of the number f,,(o),
o € S, of connected components in the intersection of two big cells in a given
relative position o was initiated in § 7 of [13]. For each concrete o, the number
fm(0) can, in principle, be deduced from the results of [11] obtained about two
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decades ago. However, to the best of our knowledge, there is no closed formula
for #,,(o) in terms of o and this problem seems hard.

The main goal of the present paper and its sequel [1] is to introduce the appro-
priate tools which allow us to study the higher homotopy and homology groups
of the latter intersections. In particular, we introduce a novel stratification of
(every connected component of) an arbitrary pairwise intersection of big Bruhat
cells over the reals and show that the dual CW-complex of this stratification is
homotopy equivalent to the pairwise intersection under consideration. This strat-
ification depends on a reduced decomposition of the permutation encoding the
relative position of the cells. Although it is not a Whitney stratification meaning
that the closure of a stratum is not necessarily a union of low dimensional strata,
we can still extract from it important topological information using a certain
partial order of the strata. We illustrate our stratification in several examples,
consider in details the cases m = 4 and m = 5 and show that in these cases each
connected component of any such pairwise intersection is contractible.

Starting with m = 6 the situation becomes more complicated and we postpone
its study as well as further discussions of combinatorial and topological aspects
of our stratification till [1]. Our technique heavily relies on the use of the spin
group which is a double cover of the special orthogonal group which, in its turn,
is a multiple cover of the space of complete flags over the reals. Besides that, in
the present paper, we apply some of our technique to obtain new results about
the number of connected components.

Acknowledgements. The first author wants to acknowledge the hospitality of
the Department of Mathematics, Stockholm university in February 2019 when
this project was initiated. The second author wants to acknowledge the support
of CNPq, CAPES and Faperj (Brazil). The research of the third author was
supported by the Swedish Research Council grant 2016-04416. The fourth author
is supported by the NSF grant DMS-1702115.

2. GROUP-THEORETICAL AND OTHER PRELIMINARIES

2.1. Main notions. In what follows, it will be convenient to shift the index by
1, i.e. to use n = m — 1. For instance, we have Fl,,, := SL,, /B = SL,, /B.
For a permutation ¢ in the symmetric group S,,.1, define the Bruhat cell of o in
GL,1 as

(1) BI‘USL = {U(]MUUl; U(], U, € Up,H_l} C GLn+1 .

Here GL,4; is the group of all real invertible (n+ 1) x (n+ 1) matrices, Up,,,; C
GL, 1 is the subgroup of upper triangular matrices and M, is the permutation
matrix defined by e M, = ej,. This stratification of GL,,; has been extensively
studied, is well understood and has multiple applications.
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The quotient space Fl,,; is standardly interpreted as the space of complete
flags in R"*! (resp. C"*!) i.e., the space whose elements are sequences of enclosed
subspaces of all dimensions from 1 to n + 1. Fixing a complete flag f € Fl,,,4,
we define the top-dimensional Bruhat cell Bru?1 C Fl,,11 as the set of all com-
plete flags whose subspaces are in general position with all subspaces of f. One
can show that using the action of SL,, .1 any two flags can be transformed into
two coordinate flags. Therefore topology of intersection of two top-dimensional
Bruhat cells is the same as for the coordinate Bruhat cells where the first one
corresponds to the standard coordinate flag while the second one is an arbitrary
coordinate flag f,. In fact, we can identify Blrugl with Loy, and Bru®' with

Lo}, NBru$*. REWRITE

Below we extensively use the standard Coxeter-Weyl generators aq, ..., a, of
the symmetric group S,11; a; being the simple transposition (i,7+ 1). A reduced
word (also called reduced decomposition) for o € S,4; is a product o = a;, - - - a;,
where ¢ = inv(o) is the length of ¢ in the generators a;, i € [n]. A reduced word
can be drawn as wiring diagram like the one shown in Figure 1. (Notice that
there are different conventions in the literature; in our system, each crossing is a
generator, read left-to-right.)

FIGURE 1. The words ajasazajasasas and asasaasasasas are both
reduced and represent the same permutation o = (4,3,5,1,2).

Consider the natural projection v : SO,,; — Fl,.; sending an orthogonal
matrix o to the complete flag v(0) whose i-dimensional space is spanned by the fist
¢ columns of 0,7 =1,2,...,n+1. Recall that the spin group Spin,, ., is a double
covering space of the special orthogonal group SO,,,1; we denote this covering
map by II : Spin,, . ; — SO,41. The composition map v *II : Spin, . ; — Fl, 1y
will be denoted by ©.

Obviously, one can identify the Lie algebras spin, ; ~ so,.1. A convenient
family of generators of so0,,41 consists of a;, j € [n]; the only nonzero entries of

the skew-symmetric matrix a; being (a;)¢;+1,) = 1 and (a;)j+1) = —1. Recall
that a; € spin, ;| = 50,41, j € [n], is the skew-symmetric matrix whose only
nonzero entries are (a;)(41,5) = 1 and (a;)¢j11) = —1.

Denote by B, C SO,y the finite group of signed permutation matrices
with positive determinant (which is the corresponding Coxeter group) and set
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Bl :=T"'[B},] C Spin,,;. We also have the “forgetful” group homomor-
phism g : B, — S,41 sending a signed permutation matrix to the corre-
sponding usual permutation matrix, i.e., removing all the negative signs from the
signed permutation matrix. We denote by © : B 41 — Spy1 the composition

Let us introduce the following important elements of Bf{ R
p ™ N L \— A p
(2) 4; = exp (5 aj> ,oa;=(a)7Y  a; = (44)%
Observe that ©(d;) = (&) = as.
The next statement is straightforward.

Claim 2.1. The n-tuple~(dj), J € [n] is a system of genemtor’sNof the group B:H.
The kernel Quat, ., C By, of the group homomorphism © : By, | — S,41 is the
subgroup generated by a;, j € [n]. Additionally, the following relations hold:

(3) (CALZ)Q - —1, CALl(Al] - (—1)“2_]‘:1}&,]612

(Here we use the Iverson bracket notation so that [[i — j| =1 =1 if |i —j| =1
and [|i — j| = 1] = 0 otherwise.)

One has the natural short exact sequence
1 — Quat,,, — B, — Sy — 1.
For n > 2, the center Z(Quat, ) of Quat,_, contains {£1} and the quotient
Quat,,; /{%1}) is isomorphic to {£1}".

Recall the standard inclusion Spin,,.; C CI),; C Cl,; of the spin group in
(the even subalgebra of) the standard Clifford algebra, see [2, 5, 8]. (In what
follows we will only use C19 41 and not the whole Cl, ;. By a slight abuse of
notation we call it the Clifford algebra). Namely, the spin group Spin,, is a
subset of C1° 41, generated by the 1-parameter subgroups

(4) a;:R—Spin, ,, «a;(0) =exp(fa;) = cos <g) + sin (g) a;, 1€ [n].

The associative algebra C1° 41 1s a real vector space of dimension 2" with a
linear basis given by
HQua‘tn+1 = {]-; a, az, aiaz, az, ajas, azas, a1azas, . .., 414z " - - an}~

The set Quat, , = HQuat, , U(—HQuat, ;) C Spin,,; is a subgroup of
Spin,,,; of cardinality 2"*! generated by a;, i € [n].
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As an algebra, 012 .1 is generated by the elements a;, ¢ € [n] and multiplication
in CIY 41 satisfies the relations (3). In ce 41 we have the relations

I
a; = éaja S [[n]]
Additionally, in CI?,, relations (2) can be rewritten as
s 14 a; ™ 1—a;
d i = i<_):—lu a; = (a;) 7" = i<__):—l-
(5) a4 = ai { 5 7 a; = (4;) « 5 NG

As the vector space, Cl?l 41 is standardly equipped with the inner product (.,.)
with respect to which its basis HQuat,, | ; is orthonormal. Finally, for z € CISL e
we define its real part as R(z) := (z,1). Thus, for z = > ¢q ¢, one has

R(z) = c1.

Definition 2.2. Given o € 5,1 and a reduced word ¢ = a;, - - - a;,, define the
mapping P : {£1}4 — BF | given by

(6) P(é) = (dil)a(l) T (diz)sw)v
where ¢ : {1,...,0} — {+1,—1} is any sign sequence.

g€HQuat,, | 4

It is easy to verify that, for any sign sequence e € {£1}l] one has O(P(¢)) = 0.

2.2. The sets Bru,. Here we define a preliminary crude stratification of the sets
Bru, C Loy, by similar Bruhat cells Bru,, z € B;\,; where ©(z) = 0. (Our
main stratification will be introduced later.)

In (1) we defined, for ¢ € S,;1, the Bruhat cells Bru$“ ¢ GL,,;. For the
standard projection II : Spin,,  ; — SO,41 C GL, 4, define

BrulP™ .= T [Bruf NSOy 4] C Spin,,,; -

(When the group is clear from the context, we will omit the superscript. For
example, we can just write Bru, for Brul®™ < Spin, ;). In [5] it is proven
that every Bru, C Spin,_; has precisely 2" connected components, each one
containing a single element of @~ ![{c}] C B;,,. Using this fact, for each z €
B, 0 = O(z), define Bru, C Spin,,,, as the connected component of Bru,
containing z. Moreover, each Bru, is a smooth submanifold diffeomorphic to

R*v(O(=) e, a cell of dimension inv(©(z)). These cells define a stratification

(7) Spin,, ;, = |_| Bru, .

Zeértrl

Furthermore, for L € LO}LH, define Q(L) := @ € SO,,1 where L = @ - R with
R € Up! 41; here Up, 41 is the group of upper triangular matrices with positive
diagonal entries. The smooth map Q : Lo, +1 — SOy is essentially given by
the @) R-decomposition, i.e., the Gram-Schmidt orthogonalization of matrices in



:countBsigma}

stratexample}

ON THE HOMOTOPY TYPE OF INTERSECTION OF TWO REAL BRUHAT CELLS. I 7

Lo, . Lifting the above map to the spin group we define Q : Lo, ; — Spin,,,;
with Q(/) = 1. Let U; C Spin,; be the image of the map Q which is an open
contractible neighborhood of the unit element 1 € Spin,,_;.

Definition 2.3. The stratification of the spin group given by (7) allows us, for
each z € By, |, to define the (possible empty) set

Bru, = Q7 '[Bru,] C Lo, . .

Lemma 2.4. For any permutation 0 € S, 11, the manifold Bru, decomposes as
a disjoint union.:

(8) Bru, = I_l Bru,
2€0~1[{o}]

of submanifolds in the group LO}LH. In particular, the number of connected com-
ponents of Bru, s the sum of the number of connected components of Bru, where
z runs over O {c}].

Proof. This follows directly from the definitions and the fact that each set Bru,
is either empty or a smooth submanifold of dimension inv(O(z)). O

Let [U:z+1 be the Lie algebra of LOTIZH, i.e., the set of strictly lower triangular
matrices. For j € [n], let I; € lo}, 41 be the matrix whose only nonzero entry is
([j)j—l-l,j = 1. Denote /\](t) = exp(t[j).

Given a reduced word ¢ = a;, ---a;, € Sp41 where ¢ = inv(o), consider the
product

(9) L= X (1) -+ A, (o).
It is well known that L € Bru, and that if L € Bru, can be written as in (9) then
the vector (ty,...,t,) is unique, see [3]. Also, for almost all L € Bru,, there exists

a vector (ti,...,t;) € (R~ {0})* for which (9) holds. Now, for a sign sequence
e € {£1}*, define
(10)  Be = {Ni,(t1) -+ A, (te); t; € R~ {0},sign(t;) = £(j)} € Bru, C Lo, .

Clearly, B. is open in Bru,. Corollary 6.5 from [5] implies that B. C Bru,,
z = P(e).

3. INTRODUCING STRATIFICATION OF Bru,: FIRST EXAMPLES

In the next few sections we define the most essential construction of the article
which is a certain stratification of the sets Bru, and Bru, C Bru,, for z €
6 Quat, ;. WHY NOT IN ©~*(¢)? (This construction is in many ways similar
to the one presented in [6].)



lon:directlabel}

{example:aba}

8 EMILIA ALVES, NICOLAU C. SALDANHA, BORIS SHAPIRO, AND MICHAEL SHAPIRO

Remark 3.1. It is important to mention right away that
(i) our stratification depends on the choice of a reduced word for o;

(i) our stratification is not a Whitney stratification, i.e., the closure of a stra-
tum is not necessarily the union of some strata of lower dimension, see example
below?7? o

In this section we start with a few preliminary notations and examples.

Fix a reduced word o = a;, - - - a;, where ¢ = inv(0).

Definition 3.2. A sequence £ € {#1,4+2}l4 is called a valid e-label (or just a
label) if it allows us to define an associated sequence of permutations (px)o<k<e,
pr € S,41, satisfying the conditions:

(1) POZPZIW:(H+17717;1)7

(2) If [e(k)| = 1 then py = pr—1;

(3) If e(k) = —2 then py < pr—1 = prai,;

(4) If e(k) = 42 then pr_1 < pr = pPr—1Gi,;

(5) If pp—1 < pr—10a;, then e(k) = +2.

(The partial order under consideration is the standard Bruhat order.)

For a valid label €, we define its codimension as
d = codim(e) = |{k | e(k) = =2}| = |{k | e(k) = +2}|.
Next we extend the definition of the mapping P to e-labels as:
(11) P(e) = (G;,)"& W) ... (dil)sign(s(f)) € 6 Quat,,, , .

For each label €, we will later define the stratum B. C Bp() C Bru, and prove
that B. is a non-empty smooth contractible submanifold of codimension d =
codim(e). Moreover, we will show that for distinct valid e-labels, the respective
strata are disjoint and that their union over all valid e-labels is the whole Bru,,.

To start with, if € is a valid label of codimension 0, then, by definition,
Be = { i, (ta) -~ Ai (L), sign(ty) = e(k)},  Aj(t) = exp(tl)),

where [; is the (n+1) X (n+ 1)-matrix whose only non-zero entry is ([;),41; = 1.
After a couple of simple examples we describe how, given L € Bru,, we determine
the label € such that L € B..

Example 3.3. Take n = 2 and 1 = ajasa; = (3,2,1) € S3. We have

1 00
Loil,,: L=z 1 0];x,y,z€eR
z oy 1
Bru, = {L|2#0,2 # 2y} C Lo} . B yva =1L | z > max{0,zy}} C Bru,.

1—ajaz
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The ten valid labels are:
(£1,£1,+1), d=0; (—=2,+1,42),(-2,—-1,42), d=1.

For two labels with d = 1 we have p; = ps = ajas. Notice that the three
sequences (1,—1,—1), (=1,1,1) and (—2,1,2) are the only ones with P(¢g) =
gty = (1 — a182)/V/2.

A simple computation gives

1 0 0
/\1 (tl))\Z(tZ))\l (tg) - tl + t3 1 0
tots to 1

and therefore
B141,41) = {L | 2 > max{0,zy},y > 0},
Biia,—1,-1) = {L | z > max{0,zy},y < 0}

are both contained in B( N1 As we shall see later

1—a1as
B(—2,+1,+2) = {L ’ Yy = 072 > O}a
B _a140)v2 = B-1,41,41) U B2, 41,42) U B(41,-1,-1)-

The subset B(_3 4+1,12) C B(l_&lég)/\/g is a contractible submanifold of codimension
d = 1. A similar decomposition holds for B14a1a0)/v3

XK

FIGURE 2. Two reduced words for n = ajasa; = asajas € Ss.

As shown in Figure 2, the permutation 7 also admits the reduced word 1 =
asaias. A similar decomposition exists for the other reduced word, but the strata
are different. For this other word, the set B(1_4,4,)/v2 contains two open strata:

Biii41,-1 = {L | z > max{0, 2y}, x > 0},

Bii-141) ={L | z > max{0, 2y}, x < 0}
and a third stratum of codimension 1:

B3 149 = {L | z > max{0,zy},z = 0}.

Notice that the meaning of the label depends on the choice of the used reduced
word. o

Example 3.4. Take n = 3 and 0 = asajazas = (3,4,1,2) € Sy. Up to transpos-
ing adjacent commuting generators, as in asajasas = asasaias, the permutation
o admits only one reduced word, shown in Figure 3.
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FIGURE 3. The permutation asajasas € Sy.

The 20 valid sequences are
(£1,£1,4+1,£1), d=0; (—=2,£1,+1,+2), d=1.

For the four valid sequences with d = 1, we have p; = py = p3 = ajasasa2a,.
The three valid sequences with P(e) = —das = (1 — a1G9 — a1a3 — Goa3)/2 are
(+1,+1,—-1,-1), (=1,—1,+41,41) and (-2, —1,+1,+2).

Write L € Loy as

1 0 00
Loi: L= i;?g LU, VW, T, Y, 2 € R
w v oz 1

By applying the definition, the set Bru, is
Bru, = {L|w=0,u# 0,v # 0,zyz = 2v + zu}.
If L = Xo(t1)A1(t2)A3(t3) A2(ty) then
u="1ty, v=1tsty, w=0, =1y, yYy=1t1+1t4, 2z=13.
Let U C (0,+00)? x R? (with coordinates (u,v,z,y)) be the contractible open

set defined by zy < u. Consider the map ® : U — Bru, taking (u,v,z,y) to the
matrix L € Bru, with the prescribed values of u,v,z,y and z = zv/(zy — u).

If 2 > 0 we have L = ®(u,v,2,y) € B141,-1,-1); if £ < 0 we have L =
P(u,v,z,y) € B_1,-1,41,41)- We will see that
B(—a 141,42 = ®[(0,+00)* x {0} x R],
B_s4;, = B—1,-141,4+1) U B(—2,—1,41,42) U B—1,—1,41,41)-

It follows that B_s4, is contractible. Similarly, all connected components of Bru,
are contractible. o

4. €-LABELS VERSUS ¢-LABELS

Again consider a fixed permutation ¢ € S, and a fixed reduced word o =
a;, ---a;,, { =inv(o). In Definition 3.2 we explained how, for the given reduced
word for o, to define valid e-labels which are certain sequences ¢ € {#+1, 42}
In particular, given a valid label e, we have a sequence (px)o<r<¢ of permutations
with the following properties:
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(1) po = pe = n;
(2) for any k, either pp = pr—1 or pp = pr—_1a;,;

(3) if pr—1 < pr_104, then pp = p_1a;,.

Conversely, given a sequence (py) with the above properties, consider a sequence
e € {#1, £2} such that, for all k,

Pr < Pr—1 — 8(]6‘) =2, pp> Pk—1 — 6(]{3) =42, Pr = Pk—1 — |€(k’)| =1.

2572(1

One can easily check that ¢ is a valid label. Furthermore, there are such

labels, all of dimension d = [{k | pr < pr—1}|-

Let us now modify the sequence (pi) to define a -label. It will turn out that
a &-label contains the same information as a e-label.

Definition 4.1. A valid &-label is a sequence § € {0,1,2}4 such that the se-
quence o = (0k)o<k<¢ of elements of B;',; recursively defined by

(12) 0="7,  or=0or1(dy) ",

has the following properties:

(1) 0o =1 and ©(o¢) = n;
(2) if ©(or-1) < O(0k-1)a;, then {(k) = 1.

As above, the partial order is the (strong) Bruhat order. Notice that if £
is a valid label and (o) is defined by (12) then the sequence (pi) defined by
pr = II( o) satisfies the conditions in the beginning of this section.

Let us now describe a bijection between e-labels and £-labels. The definition
of this bijection is recursive in k. The sequence ¢ = (gx) of elements of B:{ 4
is defined by (12). The sequence (px)o<k<¢ of permutations and the sequence
(qk)o<k<e of elements of Quat,,; can be obtained from (o) via the relations
pr = (o) and g = (f) "tor. The recursive definition is:

0, e(k)=lai,,qr-1],

(13) €(k> = 27 €<k) = _[dik7qkfl]7
L le(k)] =2
Here [a;,, qu—1] = (&ik)_lq,;_lldiqu_l € {£1} is the commutator in the group-

theoretical sense.

Conversely, given a valid label &, consider g, pr = (o) and qx = () ' ok as
above. We then define
_2a §<k) = 17 Pr < Pr-1,
(14) () = { +2 ER) =1, x> pir,
(1 - £(k))[dlk7 Qkfl]v f(k) 7£ L.
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Lemma 4.2. Given a permutation o € S,i1 and a fived reduced word o =
a; - -a;,, { =inv(c), one has a bijection and its inverse from the set of e-labels
to the set of £-labels defined by formulas (13) and (14). Furthermore, if £ and
correspond to each other, then P(g) = éq[l.

Proof. Compute, compute, and compute. O

We write P(§) = P(¢). The codimension of a label ¢ equals d = codim(§) =
s{k | £(k) = 1}, and therefore equal to codim(e) where ¢ is the label corre-
sponding to &.

The Bruhat order in S, 1 can be defined by

op <oy <<=  Bru,, C Bru,,.

We extend it to a partial order in the group B: 41, which we also call the Bruhat
order, by
20<z <= DBru, CBru,.

As in S, 1, the above condition is equivalent to Bru,, NBru,, # {(}. Clearly,
2z < 21 implies that II(2) < ©(z1) (where © : B} | — 5,11 is the usual quotient

map), but the converse does not hold. For instance, if ©(zy) = II(2;) then zy < 2y
if and only if 2y = 2.

We now define a partial order on the sets of e- and &-labels. Given two dual
labels € and &, consider the corresponding valid labels € and € as in (13) and (14).
Let (o) and (gx) be defined by (12). We define

(15) Er-é = eré == (Vk,o> )

Notice that € = € implies P(¢) = P(£). The fact that this is a partial order is
straightforward.

5. A STRATIFICATION OF Bru,: FORMAL DEFINITION

For a fixed permutation and reduced word o = a;, - - - a;,, define recursively
oo =1, 01 = a;,, O = Op_1a;, = Q;, - -~ a;, 0 that o = o,. Recall that o; : R —
Spin,,,; are homomorphisms defined in (4). Theorem 1 from [5] claims that, for
2, € Brugs, C Spin, ., there exist unique z;_1 € Brus, , and 6, € (0,m) such
that 2, = zk_10, (0k).

Thus, given z, € Brug,, we have well-defined sequences (6, )o<r<¢ and (2x)o<k<es
2 € Brug,. The mapping

(16) (0,71')[ — BI'UéZ, (91,...,6@) — ai1(61)~~aiz(94),

is a diffeomorphism. Similarly, the functions Brus, — Brug,, z¢ — 2, are smooth
submersions.
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Recall that the maps Q : Lo, ; — Uy C Spin,; and L : U; — Lo, are
diffeomorphisms. The set U := 7 Bruy C Spin,,; is an open contractible neigh-
borhood of 1 € Spin,,, ;. We identify L € Bru, with

Zp = Q(L) € Bru, NU; C SpinnH .

There exist unique 2z, € Brus; and ¢, € Quat, , with 2z, = Z,q,. Moreover, if
L € Bru, (with z € B:{ 1) then, by definition, Z, € Bru, and therefore z, = Zyq, €
Bru,,, and therefore zq, = 6. Summing up, ¢ is characterized by L € B s, SO
that the notation is consistent with Lemma 4.2.

Use the diffeomorphism in (16) to define (0x)r<e, 0 € (0,7), such that z, =
a;, (01) - - a;,(0,). Recursively define

(17) 20=1, 2z = 2104, (0;) € Brug, .

Notice that the functions Bru, — (0,7), L — 0, are smooth. The functions
Bru, — Brug,, L — 2z, are also smooth.

The sequence () corresponding to L is defined by zj, € 7 Bru,,. The Bruhat
stratification of Spin,,,; shows that g, € B;,; is well-defined; we proceed to show
consistency with the notation of the previous section.

Lemma 5.1. Given L € Bru,, define sequences (z) and (o) as above. There
exists a unique label & such that (12) obtains (o) from &.

Proof. Using Theorem 1 from [5], we proceed by induction on k. We have zq =
1 € 1 Bru; and therefore gy = 1. Assume that z,_; € 7 Bru,, , and let p,_; =
H(Qkfl)-

If pr—1 < pr—1a;, then zp_ 04, (0) € Brug, 4, for any 6 € (0,7). It follows
that 2z, = 2,10, (0)) € Bru,, for op = ox_1d;,, {(k) = +1, as desired.

If pe_1 > pi = pr—1ai,, let 0, = 0—10,,. Given z;_;, there exists a unique 0, €
(0,7) such that zx_104, (—0,) € Bru,,. If 0 € (0,7 —0,) then zx = zx_10, (0k) €
Bru,, for op = ok—1, £(k) = 0. If 6, € (m — 0,,m) then 2z, = zp_104, (0x) € Bru,,
for op = ok—1a;,, §(k) = 2. Finally, if 6y = 7 — 0, then z, = zx_104, (0x) € Bru,,
for op = ok—1di,, £(k) = 1. d

Given a label &, let B¢ be the set of matrices L € Bru, with corresponding
label ¢. Thus, by Lemmas 4.2 and 5.1,

Bru, = |_|B€, Bru, = |_| Be.
3 P&)=

z

In the next section we shall prove that the sets B, are diffeomorphic to open
balls. First, however, we provide an alternative description, using e-labels. Let

up= || #Brus, U CUP CU C Spin,,, .

o’ESn+1
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The set U7 is a fundamental domain for the action of Quat,, ., on Spin,_ : given
z € Spin,, ., there exists a unique ¢ € Quat,_, such that zq € U} [5]. As above,
we have zj, € ) Bru,,. Set p, = II(0x) and g, = (px) ' ok so that

2k, " € N Bru,, gt = ) Brug, C Uy

We therefore define z;, € Uy by 2z, = Zkqx.

Lemma 5.2. There exist unique O, € (—m,0)U(0,7) such that % = Zx_1;, (6)).
Furthermore, 0, = £0, or 6, = £(m — 6y,).

Proof. Assume z,_1 = Zp_1qk—1 and 2z, = Zrqr with 2,1 € Brus, |, 2, € Brus,,
Qe—1,qx € Quat,; and Z,_q, Z, € U7. Assume furthermore that z, = 2,1, (0%),
0 € (0,7). We thus have z, = Zk,lqk,laik(Qk)qgl. Since a;,, gx—1 € Quat,, ., we
either have g—10;, = a;, qx—1 or gx—10;, = (—a;,)qr—1. In the either case there
exists g, € {£1} such that g1, (0) = @, (€.0)qx—1 for all § € R. We thus have

(18) % = Z1u, (8.00) (qro1qr ) € UL

Since Z,_1 € Uy there exists a permutation py_; such that Z,_; € 7)Bru,, ,. Let
Px = Pr—10Gi,. We either have pp_; < p, or py_1 > p,; we consider the two cases
separately.

If pp—1 < ps then Z;_10;, (6) € 1 Bruy, for all € (0, 7). Thus, for all § € (0, )
and ¢ € Quat,_; we have Z;_1c;, (0)q € 1) Brug,,. We therefore have Z;_1c, (6)q €
Uy if and only if ¢ = 1 (assuming 0 € (0,7)). If e, = +1, it follows from (18) that
Qk =0, and q;_ 1qk =1. If e, = —1, we have Qk =7 — 0, and qx_ lqk = —a,.

On the other hand, if py_1 > p, there exists a unique ¥ € (0,7) such that
Zr_10y, (—V) € nBrug,. For 0 € [—9, 7—19) and g € Quat,,,,, we have Z,_,a;,(0)q €
Uq. If e, = +1, it follows from (18) that we either have 6, = 6, € (0,7 — ©))
and qk,lqk’l =lorf€r—19,n), O, =0, —7 € [—4,0) and qk,lqk’l = —aq;,. If
g, = —1, ... This completes the proof of the claim and of the lemma. O

Remark 5.3. The case pp_1 < p, corresponds to the label +2. For p,_1 > py,
the case 0, = 0, € (0,7 —19) corresponds to the label +1, 0, = 71— and 0), = —0
to —2 and 0, € (7 — ¥, 7) and O = 6 — 7 € (=1,0) to —1. We give a different
but related definition of labels below. o

The sequence of permutations (px)o<k<¢ in the definition of e-labels is defined
by 7z, € Brug, . Notice that py = p, = 1. Finally, set

e(k) = sign(0x) (1 + [px # pr-1))-

It is easy to verify that this is indeed a label. The set B, C Bru, is defined to be
the set of matrices L € Lo, with label equal to ¢.



example:abal}

xample:bacbL}

ratification}

:submanifold}

ON THE HOMOTOPY TYPE OF INTERSECTION OF TWO REAL BRUHAT CELLS. I 15

Example 5.4. As in Example 3.3, set n = 2 and ¢ = n = ajasa;. Consider

100 V2/2 0 —/2/2

Lo=10 1 0], Z3 = Q(Lo) = 0 1 0

101 V2/2 0 V2/2
(More correctly, the matrix shown is I1(Z3) € SO3. Here and in other occasions
it is easier to do computations in SO,,;; instead of Spin,,;.)

We have Z3 = ai(—5)aa(F)a1(5). We have p; = p; = ajap and therefore (in

e-label notation) Ly € B(_21,2). More generally, it is not hard to verify that, for
L e Loé, we have L € B(_y19) if and only if y = 0 and z > 0. o

Example 5.5. As in Example 3.4, set n = 3 and 0 = asajazas. Consider

1000 5 10 -1 0
010 0 5 210 1 0 =1
Le=11 01 0| Q:Q@wzi'lo 1 0
0101 01 0 1

We have Zy = as(—5)oa(—=F)as(§)aa(5), p1 = p2 = p3 = aiasazaza; and there-
0 1,2)- %

6. THE STRATA B

We now prove that the strata B (or B.) are reasonably well-behaved.

Lemma 6.1. Consider a permutation and reduced word o = a;, ---a;, € Sp41
and a valid label §. The subset B¢ C Bru, is a smooth submanifold of codimension

d = codim(¢).

Proof. Consider L € Be. As above, construct Z, = Q(L) € Uy, 2z, = Ziqy € Brus,
q € Quat,, ;. Write
2= i (0h) -y, (0r)

and recursively define zgp = 1, 2z = 251, (0x) € Brus, N(nBru,, ). Let Ky =
{keZ,1<k</lo,<ori}sothat |[Ko|]=d. LetV ={xeR | ke Ky, —
rp = 0} C R a linear subspace of codimension d. We construct a compact set
U C R® and a smooth local diffeomorphism ® : U — Brug such that ®(0) = z
and ®(z) € Q[B¢q if and only if x € V.

The set U has the form
U=[—€,€e1] X X[—€€;

let Uy = UNRY (by R¥ C R® we mean of course the subspace spanned by the first
k unit vectors). We recursively domains €; > 0 and maps @, : U, — Brus, with
;. (0) = 2. In every case we shall have @y (z5_1,0) = Pr_1(zr_1)ay, (%), where *



na: contractible}

16 EMILIA ALVES, NICOLAU C. SALDANHA, BORIS SHAPIRO, AND MICHAEL SHAPIRO

stands for a smooth function of zj_1 € U1 and 0 € [—¢, €;]. The case k =0 is
of course trivial.

If k ¢ Ko, take ¢ > 0 sufficiently small such that the following two conditions
hold. For all x_; € U1 and 0 € [—¢y, €] we have @y (z5_1), (0x+0) € Brug, .
For all z_1 € Uy_1NV and 0 € [—eg, ;] we have Oy (xp_1), (0 +60) € 1 Bru,,.
The existence of such ¢, > 0 follows from Theorem 1 of [5]. We then define
Pp(2h-1,0) = Pp_1(wp—1) s, (01 +0).

If & € Ky, there exists a smooth function 9 : Uy_1 NV — (0,7) such that,
for all z;_; € Up—1 NV we have ®p_1(xr_1)ay, (0 + V(rg—1)) € Bru,, (here we
again use Theorem 1 of [5]). Notice that ©#(0) = 0. Let IT: Uy_1 — Up_1 NV be
the orthogonal projection. Extend ¢ to Uy_y by defining J(xx—1) = d(Il(xk_1));
notice that this is a smooth function. Define

(I)k<l'k,1, 9) = (I)k,1<l'k,1)oéik (9k -+ 79(1’]671) -+ 9)

Notice that, for x;_1 € Uy_1 NV we have Oy (z4_1,60) € Brugk(dik)sign(e). Choose
sufficiently small ¢, > 0 and we are done. U

Lemma 6.2. Consider a permutation o, a reduced word o = a;, - - - a;, and a label
¢ with d = codim(&). The smooth submanifold B. C Bru, is diffeomorphic to
R4,

Proof. Let (o1) be the usual sequence of elements of B, ;. Let ¥y, : (0,7)F —
Brug, be the diffeomorphism

\I/k(el, .. ,Qk) = Oéil (91) s Oéik (Gk)

We recursively define subsets X;, C X x (0,7) C (0,7)*. The set X has a
single element, the empty sequence. For (0,...,0r) € X1 x (0,7) we have
(01,...,0) € X}, if and only if Wi(6y,...,0;) € 7Bru,,. In particular, §; € X;
if and only if a4, (61) € 7 Bru,,. By definition, the restriction ¥, : X, — B¢ is a
bijection; it follows from Lemma 6.1 that it is a diffeomorphism. We recursively
prove that X} is diffeomorphic to an open ball of the appropriate dimension.

We again divide our discussion into cases. If {(k) =1 and gx—1 < 0k = 0k-14i,
then X; = Xj_1 x (0,7) and we are done.

Otherwise, we have py_ja;, < pr—1. Let o, = 0r—1a,,: there exists a smooth
function ¥ : Xj_1 — (0, 7) such that, for all © € X;_; we have

Ui 1(0)ay, (—9(©)) € Bru,, .
If £(0) = 0 we have
Xk = {(@,Qk) € Xk,1 X (O,ﬂ') ’ Hk < T — 19(@)},

which is diffeomorphic to Xj_; x (0,1) and therefore to an open ball. If £(0) = 2
we have

X, = {(@,Qk) € X1 X (O,?T) | Hk > T — 19(@)},
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and we are done. Finally, if £(0) =1 we have
X ={(0,0k) € Xj_1 x (0,7) | Op =7 —(O)},
which is diffeomorphic to X;_;. This completes the proof. [l

The following lemma is the reason why we defined a partial order among labels.

Lemma 6.3. Let £, be valid &-labels. If B:N Be # 0 then € = €.

Notice that we do not claim equivalence, or that either of the above conditions
imply Bg C Be.

Proof of Lemma 6.3. Assume that Bg N B¢ # 0. Thus, there exists a sequence
(L;) of elements of B¢ converging to an element Lo, of Bg. Since each subset
Bsy € Bru,, ¢ € Quat,, ., is both closed and open, we may assume that all L;
and Lo, belong to the same such set Bg,,. We may therefore write z;, = Z; ¢qs,
Zoo,Z = 20075(]@ ij = Q(LJ), 20074 = Q(Loo)7 limj_wo Zj[ = Zoo,g. Let Zj,k and

2ok De as usual; we have lim; o 2j5 = 200k We have 2, € 7Bru, and
Zook € 1) Brug,. We therefore have Brug, NBru,, # 0, which implies g > g, (for
all k), completing the proof. O

6.1. Counting preimages. The next three subsections are useful for counting
connected components and doing examples of our stratification...

Define
(19) N(z) = [P7{z})] = {e € {£1}10 | P(e) = 2},

Here P is the mapping introduced ... As we shall see, the choice of the reduced
word affects the map P, but not the value of N(z).

Definition 6.4. We say that a permutation ¢ € S, 1 blocks at the entry k,
k € [n] = {1,2,...,n}, if and only if for all j, j < k implies j© < k. Given
o, let Block(c) C [n] be the set of values of k such that o blocks at k. A
pair (ig,71) € [n + 1]* is an nversion of o € S, 11 if 49 < iy and § > f; also,
inv(o) € N denotes the number of inversions of o.

Observe that, given a subset B C [n], the set Hp of all permutations ¢ such
that Block(o) 2 B is the subgroup of S, generated by a;, i ¢ B. Denote by
Hp C B, the subgroup generated by d;, i € [n] \ B. In the next theorem we
will calculate the cardinalities of preimages under the mapping P.

Theorem 1. Given z € B, and 0 = O(2) € S,y1, set £ = inv(o), B =
Block(o) C [n], and b = |B|. In the above notation, if = ¢ Hp then N(z) =
N(—z) = 0; otherwise

N(Z) — 2£—n+b—1 + 2%—1 %(2),
where R : Clgﬂ — R is the real part defined above.
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Remark 6.5. Notice that since z € Spin,,_;, the real part $(2) takes values in
the interval [—1,1]. Thus Theorem 1 implies that |N(z) — 2¢-"+-1| < 2571, For
n large and most o € S, 41, we have that Block(c) = {0} and ¢ = inv(o) > n.
Therefore N(z) &~ 20-"=1 with an “error term” bounded by 251 = 2"z y/20-7-1,

o

For o = a;, -+~ a;, € Spy1, £ = inv(0), define S(o) € CI),; given by

(20) S(o)i= Y NEz= 3 PE) = 3 (@)W (@),

z€071[{o}] ec{x1}1 ce{+1}1

The following result gives a simple formula for S(o).

Lemma 6.6. For any o € Sy, we have S(o) =221 € CLY,; where { = inv(o).

Proof. The last formula in (20) can be rewritten as
S(U) = (dn + al1)(d12 + alz) T (dw + die)'
However, for any i € [n], we have d; + &; = /2, implying the desired result. [

Lemma 6.7. For any z € B, |, we have

where { = inv(c) and 0 = O(z2)).

Proof. Take o0 =II(z). Let us compute ¢ = (S(0), z) in two different ways. Using
(20) we get

c= > NEGE2= >, NEolqz)= >, N(zgg1),

zell-1[{o}] g€Quat,, q€Quat,, ¢
which implies that ¢ = N(z) — N(—z). On the other hand, by Lemma 6.6 we
have ¢ = 25 (1, z) = 22%R(z). The result follows. O

Recall that, for B C [n], Hg < B, is generated by d;, i € [n] \ B.

Lemma 6.8. For z € B, take 0 = O(2), { = inv(s), B = Block(s) and
b = |B|. If 2 € Hg, we have N(z) + N(—z2) = 2% otherwise, we have
N(z) = N(-z)=0.

Proof. For any e € {+1, —1}[[?], we have P(e) = (dil)a(i) -+ (4;,)°® € Hp. Also
—1 € Hp and therefore z € Hp if and only if (—z) € Hp, completing the proof
of the second claim.
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We want to compute N(z)+ N(—z) which is the number of solutions of P(e) =
+2. We may therefore compute P(g) in the quotient group B, 41+ In other words,
we want to compute and count in this quotient the products

(5)7'P(e) = di, -+ - iy (G5, )* -+ (a,)°9 € Quat,,,, /{£1}.
It is convenient to work in the group algebra Z[B;', ] and calculate the product:
C =i, i (Qiy + aqy) - (Giy + i) = Giy oo iy (1 + G5y ) (diy + Qi) - (G + @3,
In the algebra Z[B,/, ], for all i, j € [n], we have the relation

(14 a;)(a; + a;) = (a; + a;)(1 + a;).
We therefore obtain
C =G, - Giyaiy (Giy + Qi) (14 G5y ) (Giy + aig) - - (Gi, + Qi,)

= G, Qig (14 @3y ) (1 + G4, ) (diy + Qgy) - - - (Gay + G5,)

= Gy -+ Gy (14 Qg ) (1 + Gay)) (14 @, ) (G + Ggy) -+ - (Gay + @i,

= (14 ay,) - (1 +a,)(1+ a;,) € Z[Quat,, /{E£1}].
The group algebra Z[Quat,,,, /{£1}] is commutative and in it we have

(14 a)? = 2(1 + &).
We thus get
c=2" I (14a)=2""" > g.
i€[n]\B q€(Quat,, . NHp)/{£1}

The coefficient of ¢ = (&) 7'z in C'is N(z) + N(—z), completing the proof. ~ [J

Proof of Theorem 1. The result follows directly from Lemmas 6.7 and 6.8. Notice
that these lemmas also imply that if z ¢ Hp then R(z) = 0. O

6.2. Computing Ny, (2)-

Definition 6.9. Given a permutation o € S,41, a reduced word o = a;, - - - a;,
where ¢ = inv(o), B = Block(c), and a sign sequence € : [n] ~ B — {£1}, define
the element

]5(5) =P(éoi) = (dil)é(“) e (die)g(”) cO0 o} C Spin,, , ; .

Important special cases are the sign sequences €,1,6_1 € {jzl}([[”]]\B) defined by
gs(i) = s, for all i € [n] ~ B. We then have (in the notation of [5])

(21) P(€+1):dil"'di£:é’; P(E,l):di1~--di[:€7.

Definition 6.10. If P(8) = z we call ¢ = &0 i a thin solution of equation
P(e) = z. A solution of P(¢) = z which is not thin is called thick. VERY
UNCLEAR! NEEDS COMMENTS!
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Let Ninin(z) be the number of thin solutions:
(22) Nuwin(2) = [P {2} = {e € {£1} DD | P(e) = 2.

The multiplicative abelian group £& = {£1}" acts as an automorphism group of
(;12“, defined by (@) = (a;)*®Y = £(i)a;. This group also acts on Spin,,,; and
B:{. 41 by automorphisms. For z € Spin,, ., define £, C £ as the isotropy group of
z, i.e.

(23) E.={ec&| =z, &£={x1}"

Given a permutation o € S, 11, let nc(o) be the number of cycles of o (counting
cycles of length 1, i.e., fixed positions). In particular, for the Coxeter element
N € Spq1,ie. n=(n+1,n,...,1), weget £(n) =n(n+1)/2 and nc(n) = 1+ |5].

Theorem 2. Consider o € S,.1, b = |Block(0)|, and 6 € B}, as defined in
(21). Take the isotropy group Es as in (23) and set e := 27°|E|. Then, for
z € I {o}], Nuin(z) € {0,e}. WHAT IS e HERE? We have Ny (z) = e if

there exists € € £ with z = (6)Fl; otherwise, we have Ny (z) = 0.

Furthermore, |E5| = 2(¢1=¢n) where ¢ = nc(o) and can; = 1 if there exists
£ € & with (6)El = =6, cans = 0 otherwise.

Recall that the multiplicative abelian group £ = {£1}" acts by automorphisms
on the Clifford algebra CI) ;. Further, for ¢ € €& = {£1}", set

(@) = (a;)°Y = e(j)ay.
Restrictions of this action to the groups Spin,, ; and B:{ +1 act by automorphisms
as well.

Let Diag,,; C O,41 be the subgroup of diagonal matrices, so that if £ €
Diag,, ., then E; ; =0fori # j and E;; € {£1} forall j =1,...,n+1. Consider
homomorphisms II : Diag, ., — & and ¥ : £ — Diag, ; defined by

(24) (I(E)() = Eyy Bjurges (W), =[] (0.

i<j
The composition ITo ¥ equals identity and ker(IT) = {41} where I is the identity
matrix. The maps IT and ¥ thus provide us with an identification between £ and

Diag, , /{=1}.

The group Diag, ., acts on GL,41, SO, or LO}LJrl by conjugation. In each
case, this induces an action of £ on these groups. This is closely related to our
action of £ on Spin,, ;.

Lemma 6.11. Fore € &, let E = V(¢e). For z € Spin,,; and Q =1II(z) € SOy
we have I1(zF¥)) = EQE. Also, Q = EQFE if and only if 2 = +z.
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Proof. Consider the one-parameter subgroups «; : R — Spin,,; defined in (4).
The projection II : Spin, . ; — SO, gives us @ = I(;(#)) € SO, 41 with
Qi =1fori ¢ {j,j+1}, Qj; = Qji15+1 = cos(0) and Qj41,; = —Qj 541 = sin(6);
the other entries vanish. The action is given by (Il(;(9)))El = (a;((5)0)). A
straightforward computation verifies that this matches the statement. O

From now on we write Q! = W(£)QW¥(¢) (and similarly for the other groups).

Lemma 6.12. Let ¢ € €, E = VU(e), 29 € B;[H. The map Ay : B, — B.,,

z1 = z([f}, Ay (L) = ELE, is a diffeomorphism. Furthermore, thin connected
components are mapped by Ay to thin connected components.

Proof. We first prove that the map is well-defined (and smooth). Indeed, by
definition, if L € B,, then Q(L) € Bru,, C Spin,,,. We also have Q(ELE) =
(Q(L))" € Bru,, and therefore A.(L) € B,,, as desired.

We similarly have that Ay, : B., — B,, is well-defined. Since e2 =1, one map

is the inverse of the other. The final claim follows from the definition of a thin
connected component. [

Given o € S, 41, the group £ acts on the finite sets
6 Quat,, = 03 [{o}] € Bf,, and II;'[{0}] € B,

of cardinalities 2"™! and 2" by permutations. CORRECT NOTATION? Let us
describe these actions.

For @) € SO,, 11, we define the isotropy groups
(25) fq={c€€|Q9=Q},  (Diag,.,)q = {F € Diag,., | FQF = Q}.

Thus, if z € Spin,,,; we have
E.={ec&| =2} <&, ={cc&|: ==z}

Recall that a set X C [n + 1] is o-invariant if and only if X = X, where
X7 ={z% x € X}. This happens if and only if X is a disjoint union of cycles of
o. Given o € S,41, there exist 2¢ o-invariant invariant sets X C [n + 1] where
¢ :=nc(o) is the number of cycles of the permutation o.

Lemma 6.13. Consider a permutation o € S,1 with ¢ = nc(o) cycles and the
action of € on the set O5'[{c}]. For any Q € T5'[{c}], the isotropy group
Eq is the same. Indeed, consider ¢ € € and E = ¥(e) € Diag,,,. We have
e €& ifand only if X = {j € [n+ 1], E;; = —1} is o-invariant. Also, given
Qo, Q1 € 5 [{0}], Qo and Qy are in the same E-orbit if and only if, for each
cycle C C [n+1] of o,

(26) [1(@Q0)iir = [[(@1)ie-

icC icC
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We have |Eq| = 2¢71; there are 2°71 orbits, each of cardinality 2"+
STRANGE FORMULATION?

P’I"OOf. For 1 <n-+ 1, we have Qi,i" # 0 and (EQE)MU = Ei,iEi",iUQi,iU- ThIlS,
(EQE)Z,ZU = Qi,i" if and only if Efm‘ = Lijo jo. ThIlS, E e (Diagn+1)Q if and OIlly
if F;; is constant in each cycle of o, proving that & is as in the statement. Also,
if Qo and @), are in the same orbit then the condition in (26) holds; the converse
follows by counting. U

Consider o € 5,11, 20 € ﬁél[{a}] and Qo = I1(20) € I3 [{o}]. We know from
Lemma 6.13 what is the isotropy group &g,; we also know that the orbit Og, of
Qo has cardinality 2" ¢!, Concerning the action of £ on H]_é1 [{o}], there are two
possibilities:

(1) There exists ¢ € € with z([f} = —Zp. In this case the orbit O,, equals
II7[Og,] and has cardinality 2"~“"2. The isotropy group &,, has index 2
in £g,. We set canti(20) = 1.

(2) There exists no € € £ with z([f} = —%p. In this case the orbits O,, and O_,,
are disjoint, each with cardinality 2"~“*! and with union II7*[Og,]. The
isotropy group &, equals Eg,. We say the orbit splits and set canti(29) = 0.

Lemma 6.14. Let 2y € B}, |, 0 = 11(%) € S,y1 and ¢ = nc(o). The order of
the isotropy group of zg is |E,,| = 2671 Canti(z0),

Proof. This follows directly from Lemma 6.13 and the remarks above. 0J

Examples will be given in the next sections. Now we are ready to prove The-
orem 2.

Proof of Theorem 2. Lemma 6.14 gives us the desired formula for |E4|. As above,
set B = Block(c). The group £ acts on {#1}" 5 Indeed, given ¢ € £ and
g € {£1}"NB | define e2 € {£1}NB by (£8) (i) = e(4)é(i) for all i € [n] \ B.
The isotropy group of this action is {£1}? C &, of cardinality 2°. Thus, the
number of distinct elements & € {£1}I"I>8 with P(£) = 6 equals e = 277 |&.

For other values of z, € ©'[{c}], if there exists gy € &£, z = ¥}, then, for
all € € &, 2 = 6l if and only if € € £¢&;. Since |g0&s| = |E5|, this proves the
formula for Niuin(z0) in this case. If no such gy exists we have Nipin(20) = 0,
completing the proof. O

Remark 6.15. Determining the value of c,ui(2) for 2 € B, , appears to be a
question worthy of further consideration. As we shall see in the examples, the
value of ¢,y is not a function of the permutation o = ©(z). A simple observation
is that R(z) # 0 implies capti(z) = 0. o
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7. A CW COMPLEX

In this section we construct a finite CW complex which is homotopically equiv-
alent to B,: our main result is Proposition 7.2. This is obtained from the partial
order between labels, Lemma 6.3 above together with a topological Lemma 7.1
below.

Here SF~1 denotes the sphere of radius 7, B¥ denotes the open ball, D¥ denotes
the compact disk and K’joﬂ, . denotes the corona:

Sff*lz{yeRkHw:r}, Bf:{veRk|]v|<r},
Df={veR"|jo|<r}, K, ={veRF|r<|v| <}k

70,71

also, D¥ = DF. For a CW complex X, let XU C X denote the skeleton of
dimension j, that is, the union of cells of dimension at most j.

Lemma 7.1. Let My C M; be smooth manifolds of dimension {. Assume that
Ny = My ~ My C My s a smooth submanifold of codimension k, 0 < k < {, and
that Ny is diffeomorphic to R'%. Assume that X, is a finite CW complex and
that 1o : Xo — My is a homotopy equivalence.

There exists a map B : SF1 — X([)kfl] with the following properties. Let X,
be obtained from Xy by attaching a cell Cy of dimension k with glueing map 3.
There ezists a map iy : X1 — My with iy|x, = io such that iy : X1 — M, is a
homotopy equivalence.

The maps i and i; can be taken to be inclusions in many examples but are
not required to be so. The proof provides us with a construction of 3, of the CW
complex X7 and of the map i; : X7 — M;.

Proof of Lemma 7.1. By hypothesis, the map iy : Xo — M, is a homotopy equiv-
alence. Thus, there exist a continuous map py : My — X, and two homotopies
Hy:[0,1] x M — M and Hy : [0,1] x X — X with

Ho(0,2) =z, Hy(1,2) =i0(po(2)), F[O(O,x) =z, F[O(l,x) = po(io(x))

for all z € My and x € X,. Consider a tubular neighborhood of N; disjoint
from the compact set ig[Xy]. Since N, is diffeomorphic to R‘~*, the tubular
neighborhood may be assumed to be a smooth injective map ® : D§ x R“% — M,

with ®[{0} x R*“*] = N;. Let oy : Db — My, ay(z) = ®(,0), 21 = ay(0).
Consider the restriction 81 = oy |Sk1—l. We ignore the radius to write 3; : S¥~1 —
2

M,. Define 8y = pg o 31 : S*1 — X: notice that 5 and 4y o 8, are homotopic
in My, with homotopy Hy(-,51(-)). Also, there exists 3 : SF! — X([)k_u such
that 8, and 8 are homotopic in Xg; let Hx : [0,1] x S¥1 — X, be such a
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homotopy. Thus, £ and g o 8 are homotopic in MO. This is the desired glueing
map 3 : S — X[
The construction of X is a forced move; we proceed to construct ¢ : X1 — M.
Let oy : K& | — My satisfy Oé2|Sk1—1 = fi, oc2|S;§71 = jg 0 [y and 042|S;1€71 = jg0 .
27 = 2
4

2
More precisely, for r € [%, 1] and u € S¥1, set

o (1) = Ho(4r —2,51(u)), re€]
io(Hx(4r — 3,u)), r €]

3
' 4
1

],
.

Define o : D* — M, by oz|Dk1 = oy and agr = ag. Define 71 by i1|x, = 7o and
2 301
by i1(x) = a(x) for x € C; = DF.

We need to prove that i; is a homotopy equivalence. We could at this point
construct p; : M; — X; and homotopies H; and H;. Since that construction
is rather cumbersome, we prefer to proceed in a slightly different way: we first
prove that for any j > 0 the map m;(¢1) : 7;(X1) — 7;(M;) is a bijection.

ENJ[SCRNI T

We first prove the surjectivity of 7;(i1). Let ya : S7 — M;j: we want to prove
that there exists vx : S/ — X, such that v, and i; o yx are homotopic. We
may assume that 7, is smooth and transversal to Ni: let Ng = 7,/ [Vi] € §7,
a smooth submanifold of codimension k. By transversality, there exist € € (0, %)
and a tubular neighborhood W : D¥ x Ng — S’ with (0, s) = s (for all s € Ng).
We may furthermore assume that there exists a smooth function fy : DF x Ng —
R*~* such that vy, (¥ (v, s)) = ®(v, fo(v,s)) (here ® is the tubular neighborhood
of Ny described above).

Multiplication of fy by a bump function takes us from v,, to a homotopic func-
tion ya71 such that vy and 7y coincide in §7 \ W[B* x Ng| and 1 (¥ (v, s)) =
aj(v) for all s € Ng and v € Df/z. Another homotopy takes us to y,/2 such that
var1 and Yag, coincide in §7 \ W[BY, x Ng] and, if s € Ng and v € DY, then

a1 (2v/e), lv| < e€/4;

M2(¥ (v, 8)) = § ea(v/(2[v])), €/4 < |v| < 3e/8;
a1((2 = (3¢/2) — (4(1 = ) /e)|v])v), 3e/8 <[] <€/2.

We now compose with H, to obtain v,s3 as follows:

(20 0 po © Yar2)(s), s ¢ V[BS, 5 x Ngl,
yaes(s) = § Ho(8(v] = (e/4)) /e, va2(s)), s = U(v, ), |v] € [e/4,3¢/8],
Yar2(8), s € U[BF,, x Ns].

Notice that for s € Ng and |v| < 3¢/8 we have v 3(¥(v,s)) = a(2v/e). For
seS N \I/[IB’?fe/S x Ng| we have ypr3(s) = ({0 © po © Yar2)(s). A small adjustment
using Hx takes us to ya4 = 71 0 7x.4, completing the proof of surjectivity.
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The proof of injectivity of 7;(4;) is similar, and will be presented in a less detail.
Consider vx : & — X; and assume that 7;(i1)(yx) = 0 € 7;(M;). We may
assume that vx is smooth in the interior of the new cell C'; and that the center
Oc, € C) is a regular value. By hypothesis, there exists I'y; : D! — M; such
that ['ys]si = 410vx. Again, we may assume that I'y; is smooth in a neighborhood
of T',/[0¢,] and that O¢, is a regular value. Let Np = I';}[0¢,] € D/*!: this is a
smooth submanifold of codimension k with boundary ONp C §/, also a smooth
submanifold of codimension k. As above, pulling back ® gives us a tubular
neighborhood W¥. Again as above, we construct I'y . of the form 'y, =4 0'x .
where Iy, : D/t — X satisfies Iy .|si = yx. We thus have [yx] = 0 € 7;(X1),
completing the proof of injectivity.

At this point we know that ¢, : X; — M is such that 7;(4;) is bijective for
all 7. In other words, i; is a weak homotopy equivalence. The set X; is a CW
complex and M; is a manifold and therefore homeomorphic to a CW complex.
By Whitehead’s Theorem, the map 7; is a homotopy equivalence, as desired. [

In the situation of Lemma 7.1, both pairs (M, M) and (X7, Xo) are ANRs.

Proposition 7.2. The set B, is homotopically equivalent to a finite CW compler,
with one cell of dimension d for each label of codimension d.

Proof. Labels of codimension 0 are maximal elements under the partial order .
Let B, € B, be the union of the open, disjoint, contractible sets B, for £ of
codimension 0. The set B,y is homotopically equivalent to a finite set with one
vertex per label, which is of course a CW complex of dimension 0. This is the
basis of a recursive construction.

We can list the set of {-labels of codimension d > 0 as (§;)1<i< Ne In such a way
that & = &; implies 7 < j. Define recursively the subsets B,,; = By,i—1UB, C B,.
The partial order = guarantees that each subset B,; C B, is an open subset: in
other words, the sequence

(27) BJ;O C Bg;l c---C BO’;Ng—l C BO’;NE

is a filtration. We may therefore apply Lemma 7.1 to the pair B,;—1 C By,
completing the recursive construction and the proof. 0

The filtration in Equation 27 has the property that, for all 4, the pair (By.;, Byi—1)
is an ANR. This is crucial for Lemma 7.2.

The actual construction of the CW complex is not as easy as might perhaps
be desired. In the next sections we describe the glueing map for low dimensional
strata.
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8. STRATA OF CODIMENSION ONE

We already identified the labels and strata of codimension 0. In this section
we describe the strata of codimensions 1 and their glueing instructions. This
allows us to compute the connected components of B, or B,. We first make
some general remarks concerning strata of positive codimension.

As usual, assume o € S,4; and a reduced word o = a;, - - - a;, to be fixed. As
we saw, a matrix L € B, can be identified with a sequence (zj)o<g<, of elements
of Spin,, ., with 2y = 1, 2 = 2104, (0k), O € (0,7), 2, € Brus N(7) Bru,). The
values of 0, are smooth functions of L. Assume L € B C B, where ¢ is a label of
positive codimension d. We can construct a transversal section to B by keeping
fixed the values of 0y if either £(k) # 1 or g > k1. There are d values of k for
which (k) = 1 and g < gg_1: for these values of k we allow the coordinates 6, to
vary freely (and independently) in a small neighborhood of their original values.
We must then determine the labels of the perturbed strata. As in the proof of
Lemma 7.1, an understanding of a transversal section yields a description of the
boundary map.

Lemma 8.1. If kq, ko satisfy
(28) ’ikl = ’ikz, \V/k‘, (k’l <k< k‘g) — (Zk 7é ikl).

then any function & : [¢] — {0,1,2} with E1[{1}] = {k1, k2} is a label of codimen-
sion 1. Conversely, if £ is a label of codimension d = 1 then E {1} = {k1, ko }
where k1 < ko satisfy the condition in Equation (28). Then there are precisely
two labels & of codimension 0 with &€ < €. We can call them &, & with & (ki) = i.
Fork ¢ {ki,ko} we have §y(k) = &2(k) = £(k). The set Be C B, is a submanifold
of codimension one with Bg, on one side and Bg, on the other side. In the CW
complex, & is represented by an edge from & to &;.

Proof. The first two claims follow directly from the definition of labels. Let £ be
a label of codimension d = 1, with k1 < ko as above. We then have

T]aik ) kl S k < kzv
Pk = ! .
7, otherwise.

If £ = & we must have g, = n for k < ki or k > ky: we thus also have g, = ox
and therefore é(k) = &(k) for k < ky or k > ky. For ky < k < ko we must have
Pr € {n,naikl}. It &y <k—1<k < ky we have either p, = pr_1 or py, = pr_1a;,:
the second case contradicts the previous remarks. We thus have p, = n for all k.

In particular, codim(§) = 0.

If wy,w; € B:H, wo < wy and I(wy) = nai,, then either w; = wod;, or
wy = woa;, . Thus, if € > € there exists € : {ky,..., ks — 1} = {1} such that,
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for all k, k1 < k < ko implies 05, = Qk(dikl)é(k). For ki < k < ko, we have
O = Qk(dikl)a(k) = Qk—l(dik)g(k)(dikl)g(k)
= Or-1(d3,)*™ = 01 (g, )T (a5,
and therefore (d;, )*™ (d;, )*™ = (dikl)é(k_l)(dik)g(k). If |ip —ig,| = 1 and (k) =
this implies £(k) = £(k) and &(k) = —&(k—1). Otherwise, this implies E(k) = £(k)
and £(k) = &(k—1). In either case, this implies (k) = {(k) for all k & {k1, k2 }, as

desired. Furthermore, a choice of (k1) uniquely determines £(k) for ky < k < k.
Similarly, we have

&(kz) E(ka— 1)( )5(k2)

Oky = Ok, = kafldikl = @krl(d%) = ril(dikl) Wiy,

and therefore & (k2) = 1 — (k2 — 1), completing the proof that there are exactly
two labels § with § > &. The other claims follow by construction. 0

Remark 8.2. Notice that if £ is a label of codimension one there are two other
labels &, & which are also of codimension 0 and satisfy & (k) = i and §0( ) =
&(k) = €k k) for k & {ki,ko}. A straightforward computation gives us P(&) #

P(§) # P(fz) (fo) = —P<§2) ©

We may want to translate from &- to e-labels. This requires working with the
variables Gk instead of 6;. Recall that Hk is a smooth function of L when L is
restricted to a fixed stratum B, but is not a continuous function of L € B,. The
aim of the next lemma is to discuss this change of variables in a simple situation.

Lemma 8.3. Let iy,...i € [n], i1 =dp. Let 64,...,0, € R. We have
iy (01) -+ i, (00) = gy (01 + )iy (02) -+ gy, (1), (6 — ),
6, = (—1)lu-n=1llg,

Proof. Notice that (a;,) a;a;, = (—1)l1=1=a; and therefore
(61)7 s (0)is, = s (1))
The result follows by inserting 1 = a;, (a;,) ' between every two consecutive terms

of the left hand side. O

Consider a label ¢ of codimension one. Let & be the corresponding &-label: let
k1 < ko be as in Lemma 8.1. Clearly, k1 < ky are the two entries of £ of absolute
value 2. Let €4,e_ be labels of codimension 0 defined by

—€+(l{?>, k e {]{?1, ]{ZQ},
e+ (k) = sign(e(k)), e_(k) =13 —e(k), |ix—in| =1, k1 <k < ko,
ey(k),  otherwise.

Lemma 8.4. The labels e correspond to the labels &gy, &;.
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Proof. This is a straightforward computation using Lemma 8.3. U

A e-label of codimension 0 can be represented over a diagram for ¢ by indicating
a sign at each intersection. The edges are then constructed as follows. A bounded
connected component of the complement of the diagram has vertices k; and ko
on row i, plus all vertices k with k; < k < ko and |ix — i, | = 1. If ky and ko
have opposite signs we can click on that connecteed component, with the effect
of changing all signs on its boundary.

Example 8.5. Figure 4 shows an example of the construction above. We take
n = 3 and 0 = 1 = ajasajazasay, the top permutation (with ¢ = 6). As an

/////

—1+ay+ d1&3 — &1€L2d3 a1 — a1a9 + dg — dgdg
20 = .
2 ’ 2

BCCHERE DS

n=

==
R

FIGURE 4. The stratification of B,, C B,.

A case by case verification shows that B, has 4 strata (or labels) of codimension
0, 3 strata of codimension 1 and no strata of codimension higher that 1. It
follows that B, is homotopically equivalent to the graph in Figure 4 and therefore
contractible. In the figure, black indicates e(k) = —1 and white indicates (k) =
+1. o

9. STRATA OF CODIMENSION TWO

Labels and strata of codimension 2 also admit a relatively simple description.
Understanding them allows us to compute the fundamental group of each con-
nected component.

We prefer to break into cases. A &-label has the same type as its corresponding
e-label. A label ¢ of codimension 2 is of type I if and only if it fits at least one of
the two descriptions below:

(].) There exist k1 < ky < ]{?3 < k4 with
e(ky) = e(ks) = —2, e(ke) = e(kq) = +2.
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(2) There exist distinct ky, ko, k3, k4 with
e(k1) = e(ks) = =2, e(ke) = e(kq) = +2.

Uy = ikw ik3 = ik4, |’L]€1 — Zk3| > 1.
We will later define type II; we first discuss labels of type I.

Lemma 9.1. Given a label € of codimension 2 and type I, there exist exactly
four labels € of codimension 0 and four of codimension 1 such that € = . Figure
5 shows what every transversal section to B. looks like. In the C'W complex,
corresponds to a quadrilateral.

E—+ €0,+ 4+
E_0 S €10
E__ €0,— E4.—

FIGURE 5. A transversal section to a stratum of codimension 2,
type L.

Proof. Given a label ¢ of codimension 2 and type I, we define labels of codimension
1:

e o(k) = sign(e(k)), k€ {ki,ko},
0 e(k), otherwise;
—sign(e(k)), k€ {ki, ka},
8_70(1{3) = (—1)“ik_ik1|:1]€(]€), ki< k< k’Q,
e(k), otherwise;
o (K) = sign(e(k)), k€ {ks, ks},
O e(k), otherwise;
—sign(e(k)), k€ {ks, ka},
607_(1{3) = (—1)[|ik_ik3|:1]€(]€), kg <k< ]{?4,
e(k), otherwise.
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In the notation of codimension 1, define labels of codimension 0: e 4+ = (g9 +)+,
e_+ = (g04)—. Alternatively, we have e y = (e10)+, €x,— = (e1,0)—. It follows
easily from Lemma 8.3 that P(e) = P(ep+) = P(ex0) = P(ex 1).

The translation from e- to ¢-labels is easy. Indeed, we have (k1) = &(k2) =
E(k3) = &(ky) = 1; for other values of k, {(k) € {0,2}. We construct labels
i jas J1:72 € {0,1,2}, &1 = £ The labels are characterized by &, 5, (k1) = 71,
€j17j2<k3) =J2, k §§ {kbk??ki’n k4} - §j17j2(k) = g(k) and P(fjhjz) = P(g) Given
L € B; = B., obtain 0, ...,0,: a transversal section to B through L is given by

L(zy,22) = Q(QZIZ@l,SUz)),
z(x1,22) = ayy (01) - - ay (O, + 1) -+ - iy, (O + 22) -+ i, (6r)

where (z1,72) € U C R?, U being a small open neighborhood of 0 € R2. Given
2 (near 0), there exist unique g(x;) € R (near 0) and g, € B, , such that
2y (21, g(21)) € ) Bru,,. The function g is continuous in a small neighborhood of
0. Near the origin we have L(21,%2) € &iisign(a1),1+sign(za—g(z1))- Lhe rest of the
proof is similar to that of Lemma 8.1. O

A label € of codimension 2 is of type II if and only if there exist integers
ki < ks < k4 < kg such that:

(20)  e(ky) =elhs) = —2,  elk) = e(ka) = +2, iy — iy| = L.

Clearly, a label of codimension 2 is either of type I or of type II. A label of
codimension 2 type II is of subtype II-j if there are precisely j values of k with
]{31 S k S k)g and Zk :ikl.

Example 9.2. Consider now o = (4,2, 3,1) = ajasazasa;. A simple computation
gives ¢ = (ag + G1a3)/+v/2 and

s Quat {:I:l + GyGoa3 *ay £ aga3 *as + ajaz +az + dldg}

G Quat, = , , : .

! V2 V2 V2 V2

The action of £ on ¢ Quat, has 5 orbits. The orbit Oy = {(£ay & d1a3)/v/2}
has size 4, and for each z we have N(z) = Nyn(2) = 2 so that B, has two thin
(and therefore contractible) connected components. The orbits O;,6 = {(+as £
a105)/v2} and O, = {(Fa1 + d2G3)/v/2} both have size 4. For each z in
one of these two orbits we have N(z) = 2 and Nyn(z) = 0. Figure 6 shows
the stratification of B, for one representative of each orbit: it follows from the
previous section that such sets B, are contractible. The orbit Oz,s = {(—1 £

a102G3)/v/2} has size 2. For z in this orbit we have N(z) = 0, so that the
corresponding sets B, are empty.

Finally, the orbit O_s,6 = {(1 & G1G2a3)/v/2} also has size 2: consider z =
—G96 = G1d9G30201 = (1 + G182G3)/v/2. Figure 6 also shows the stratification of
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-
5% 128 [EE

FIGURE 6. The stratifications of B, 4, Bass, and B_;,s for 0 = ajasazasay.

==
S

B.. A straightforward computation verifies that the set B, consists of matrices
of the form:

ll 1 Ly > max{0, lo1lya, I31143},
| ln
(30) L= l31 l32 1 ’ l32 = l31l42

Iy lyp Iz 1 lu

The above description makes it clear that B, is contractible, but we want to
explore the decomposition into strata. The set B, contains 4 open strata, 4
strata of codimension 1 and one stratum of codimension 2, with label ¢ =
(—2,—2,41,+42,+2) and corresponding &-label & = (1,1,0,1,1). This is a la-
bel of subtype II-2. The set B is the set of matrices of the form above with
l3p = lyg = ly3 = 0. The open strata are characterized by the signs of 45 and
ly3. For instance, B_1 1 11,4+1,41 is the set of matrices L of the form described in
Equation (30) with l4o > 0, l43 > 0. Similarly, B_y 411,141 is the correspond-
ing set with lys > 0, l43 < 0. Thus, the nine strata form the same configuration
as shown in Figure 5, merely changing names. In our CW complex, the label
e = (—2,—-2,4+1,+2,42) corresponds to a square, glued along the four edges
(corresponding to labels of codimension 1) in the obvious way. Thus, B, is also
contractible. Summing up, B, has 18 connected components, all contractible. ©

Example 9.3. Set 0 = 1 = ajasa,a3a2a,. We have
n= R n= )
2 2
i +1 &+ a9 £ 413 £ G1a203 £a1 £ G109 £ a3 £ Gga3
1 Quat, = 5 5 9

where we must take an even number of ‘—’ signs (so that the above set has 16
elements). There are three £-orbits, determined by real part (two of size 4, one
of size 8). If R(z) = —1, the set B, has two thin connected components (and no
thick ones).
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FIGURE 7. The stratification of B_s,.

S
SRS RS

We already discussed in Example 8.5 the stratification of B_;, 4, which is con-
tractible. Figure 7 shows the stratifications of B,, where
14 ag + ayas + aasas
5 .
In B,, there are 6 labels of codimension 0, 6 labels of codimension 1 and exactly
one label of codimension 2: the e-label is ¢ = (=2, —2,+1,4+1,+2,+2) and the
corresponding ¢-label is € = (1,1,0,0,1,1). The label € is of Subtype I1.3. In
order to study a transversal section to B, = Be, we take

™ ™ s
21 =0 (5 +x1) , Ry = 21Qs (5 +x2) ,  R3 = 29011 <Z) .

We perform the computations in the orthogonal group. In order to determine
the position of a point in the strata above, we must study the signs of

21 = —GQ’I] = —77(1,2 =

(21)11 = —sin(ay),  det ((@171 (22)172) _ _sin(z),

(22)2,1 (22)2,2

(23)11 = —T(Sin(%) — cos(xq) sin(xg)).

These three expressions have pairwise linearly independent deritatives in the
origin. The transversal section is shown in Figure 8. Thus, in the CW complex
shown in Figure 7, the cell of dimension 2 glues in the obvious way. The set
B_4,5 is therefore contractible.

Summing up, the set B, has 20 connected components, all contractible. The
total number of connected components of B,, was first calculated by the third and
the fourth authors jointly with V1. Kostov using ad hoc methods back in 1987
(unpublished); see also [4, 12]. o

Example 9.4. Consider o = asasasaiasasazas and the labels
& =(1,1,0,0,2,0,1,1), & =(1,0,1,0,1,0,0,1).

We claim that
B§1 N BEO 7é (/)7 B€0 Z Bfl‘
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(+7 +7 R +a +7 +)

(_7_a+a+7+7+) (+a+7+7+7_a_)

(_7+7_a_7_a+) (+a_7_7_7+7_)

(_7 +7 +7 B +> _)

FIGURE 8. A transversal section to a stratum of codimension 2,
subtype II-3.

The fact that inclusion does not hold follows from the fact that B, and B, are
disjoint smooth submanifolds of the same dimension. Consider
8 = 042(91)043(92)042(93)041(94)a2(95)a4(96)a3(97)a2(98) c BI‘U&

and corresponding L. Take ¢, = /2, 03 = 04 = 05 = 0; = 03 = ©/4. For
0y = /2 and 05 = 7 — arctan(y/2) we have L € Bg,. For 6, € (7/3,7/2) and
05 = m — arctan(v/2) we have L € By, .

On the other hand, take 8, = 7/2, 05 = 37 /4: we have L € Be,. Consider the
transversal section

Z(ZIIl, 332) = 062(91 + 371)0(3(92 + 132)042(93)051 (04)@2(95)0(4(96)063(67)062(68>;

We have ... o

We are ready to describe the situation of strata of codimension 2, subtype II-j,
J<3.

Lemma 9.5. Consider o and a reduced word fized. Let § be a label of codimension
2, subtype 11-j, j € {2,3}. The set of labels & with & < £ has precisely 45 elements:
27 labels of codimension zero and 2j labels of codimension one. Combinatorially,
these 47 labels form a square if j = 2 or a hexagon if j = 3. Any smooth
transversal cross section to Be C B, meets the 45 lower codimensional strata as
in Figure 5 (if j = 2) or as in Figure 8 (if j = 3). In the CW complez, the 2-cell
corresponding to & is glued along the square or hexagon in the obvious way.

Proof. To be written. O

10. EXAMPLES

Here we study in details the low-dimensional cases n = 2,3 and 4.
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10.1. The case n = 2. Set a; = (1,2), az = (2,3). There is an identification
C13 = H (the quaternions) given by a; = k, G, = i. We have

Quat3 = {:l:]_, :l:dl, :l:dQ, ﬂ:dldg} = {:i:l, :i:i, :i:j, :l:k} = Qg,
+14i +14j  +j+k iliiijik}

Bi = {il,ii, +j, +k,

As a first example, take 0 = n = ajaza; = (3,2,1) € S3; we have
+14j +itk
7 Quat, = 117! = , )
fQuats = (g = { 20
The map P : {1}B] — II7'[{n}] satisfies

;s I+k)(1+1i)(1+k i+k
P+, 4) = adigdy = LHOUL VALK T

2V/2 V2
—i+k i—k —-i—k
P<+7_7+): \/5 9 P(_7+7_>:W7 P<_7_7_): \/§ )
P<_’+’+):P<+7_7_):1—\/_§‘]7 P(_7_7+):P(+’+a_):1—\j—§.]'

We thus have

()5 (25 v

In the notation of Theorem 1, we have ¢ = 3, B =0, b = 0 and Hp = B:H.
Theorem 1, Lemmas 6.7 and 6.8 thus predict that for any 2z € II™'[{n}] we have
N(z)+ N(—z) =2 and N(z) — N(—z) = 2v/2%R(2). In the notation of Theorem
2, we have ¢ = 2 (in cycle notation, n = (13)(2)) and can; = 1 ()7 = —5).
Theorem 2 thus predicts |€5] = 1. Indeed, we have Ny ((i £ k)/v2) = 1,
Nunin((£1 £3j)/v/2) = 0, also consistent with the numbers above.

As a second example, consider now o = ay = (2,3) € 53 and
+14i +j+k
O ' [{as}] = { ) } .

The image of the map P consists of 2 points only: P(+) = dy = (1 +1i)/V2
and P(—) = ay = (1 —i)/v/2. We thus have N((1 £1i)/v/2) = 1 and otherwise
N(z) =0 for z € ITI"'[{az}]. We have £ =1, B = {1} and b = 1. Theorem 1
predicts that for z € HpNIT ' [{as}] = {(£1=%1)/v/2} we have N(2)+N(—z) = 1
and N(z) — N(—z) = v/2R(z), again consistent with the numbers above.
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10.2. The case n = 3. Set ¢ = n = ajasaijazasa;. We have { = 6, b =
| Block(n)| =0, ¢ = nce(n) = 2 and
, -1+ dg + dl&g — &1&2&3 . —1- &2 + dldg + &2&2&3
n = ) n= ’
2 2
+1 4 ay + ajas & a1asa3 +a; + ajas + as + asas }

) = { : , :

where we must take an even number of ‘—’ signs (so that [ITI"'[{n}]| = 16). If
z € U '[{n}] and R(z) # 0 then (from Remark 6.15) c.mi(z) = 0; if R(z) =0
then (from a direct computation) cani(z) = 1. It follows from Lemma 6.14 that
there are three £-orbits, determined by real part (two of size 4, one of size 8).
It follows from Theorem 1 that N(z) = 4 + 4R(2) and from Theorem 2 that
Ninin(2) = 2 if R(2) = —1 and Nyin(z) = 0 otherwise. Thus, if R(z) = —3, the
set B, has two thin connected components (and no thick ones).

DCEHERER

il

Rl
R

FIGURE 9. The stratifications of B_;,,; and B_g,,.

Figure 9 shows the stratifications of B,, and B,,, where

a1 — Q10o + a3 — Qa3

20 = —a11 = —nas = 5 )
. . 1+ as + ayas + ajasas
21 = —GQ’I] = —na2 = 2 .

Notice that zy and z; are representatives of the two remaining orbits.

As computed above, we know the numbers of labels of codimension 0: there
are 4 with P(e) = zp and 6 with P(¢) = 2. They are listed in Figure 9: each



{fig:3412x}

{section:n4}

36 EMILIA ALVES, NICOLAU C. SALDANHA, BORIS SHAPIRO, AND MICHAEL SHAPIRO

such label is represented by indicating over a diagram for n the value of ¢ at each
intersection. We follow the convention that white stands for +1 and black for
—1. Each small box therefore represents a stratum of codimension 0.

A label € of codimension 1 is indicated by an edge between the boxes for ¢
and e_. Recall that B, is a two-sided contractible hypersurface in B,, with B,
on the two sides. There are no labels of codimension 2 in B,,. There is exactly
one label of codimension 2 in B,,: (—2,—2,+1,+1,+2,+2).

The stratification shows that both B, and B,, consist of a single thick con-
nected component (and no thin ones). The total number of connected components
of B, is therefore 20, comp. [12]. (This answer was first calculated by the third
and the fourth authors jointly with V1. Kostov using ad hoc methods back in
1987, unpublished.) It follows from the stratifications that B, is contractible
and B,, is ...(What? Also contractible?).

S et

FIGURE 10. The stratification of B_s;,, 0 = asajasas.

As another example, set 0 = asajaszay. We have ¢ = 4, b = | Block(o)| = 0,
¢ =nc(o) =2 and
i . a1+ as + az — a10203
o= —0g = 2 s
+aq & a9 £ a3 & G1G003 E1 £ G169 £ 4103 £ Qa3 }

1o} - { . , :

where we must take an odd number of ‘—’ signs. It follows from Theorem 1 that
N(z) = 1+ 2R(z). If R(z) = —3 we have N(z) = 0 and therefore B, = 0.
If R(z) = 0 we have N(z) = 1 and B, must therefore consist of a single thin
component. This is confirmed by Theorem 2 and ¢,,;(6) = 1. Finally, if R(z) = %
we have N(z) = 2 and B, has a unique thick connected component. Figure 10
shows the stratification of B_44,, —das = (1 — a1a9 — G143 — aga3)/2. The
total number of connected components of B, is therefore 12, and they are all
contractible.

10.3. The case n = 4. Set ¢ = 1 = ajasa1a3a2a;a4a3a2a;. We have ¢ = 10,
b = | Block(n)| = 0, ¢ = nc(n) = 3 and

, . —01 — 41203 — Ag — (20304

n=-n= 2 )
It follows from Theorem 1 that N(z) = 32+ 16R(z). In this example, it turns out

that II7![{n}] contains 4 elements with R(z) = 1, 4 elements with R(z) = —31
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and 24 elements with R(z) = 0. It turns out that, for z € I *[{n}], cani(z) =1
if and only if %(z) = 0. The set II7*[{n}] thus has 5 orbits, of sizes 8,4,4, 8,8,
shown below.

+a, + a1a903 £ a4 + asaza
o, :{ a1 £ 10203 £ Gy a2a3a4}7 N(2) =32, Non(2) = 2,

2
Ons = { 1 4 épas + a12a4 + a1a2a3a4} N =40, Nag(e) =0,
00— { 14 gy & a21a4 + a1a2a3a4} NG =24, New()=0,
Onny = {ialaQ + &1d32i piy a1a4} N2 =32, New(s)=0,
Onany = {iaQ + a3+ a;a2a4 + Gyégiy } N2 =32, New(s)=0,

The action of & splits the set 77 Quat,_; into 5 orbits. In the expressions in the
Clifford algebra, we must always have an even number of ‘—’ signs.

In order to count connected components and obtain further information about
the topology of the sets B, z € 17Quat, ;, we can pick one representative from
each orbit and draw the strata. As a sample, we do this in Figure 11 for z =
—a1M = —nay. In this case, there are exactly two labels of codimension 2:

(+]—7 _27 _27 +17 +17 +27 +17 +]-7 +27 +1>7
(_17 _27 _27 +17 _17 +27 _17 +17 +27 _1)7
there are no labels of higher dimension. It follows that B_; s is homotopically

equivalent to the disjoint union of two points. In other words, the connected
components are contractible.

Remark 10.1. We know that the thick parts are otherwise connected. This is
sufficient to reproduce the counting of 52 components.

Note to authors: we should complete the verification that all connected com-
ponents of B, are contractible. o

Consider now o = (5,4,2,3,1) = ajasaiazasaiasazasay; Figure 12 shows this
reduced word as a diagram. In the notation of cycles, o = (15)(243); we therefore
have n =4, ¢ =9, c =2 and b = 0. Theorem 1 tells us that, for z € 6 Quat;, we
have N(z) = 16 + 8v/2R(z). We have

—&1 + dlflg + dldg - dldgdg - &4 + &2&4 + d3&4 — d2&3&4

2v/2

and R(+£a,6) = £v/2/4.
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{fig:54321x} FIGURE 11. The stratification of B_;, ;.

{fig:54231} FIGURE 12. The permutation o € S;.

It turns out that R(z) = 0 implies ¢, = 1: the set 6 Quat, thus has 3 orbits
under &, of sizes 16, 8 and 8:

(90’—, %(Z) = 0, N(Z) = 16, Nthin(z) = 1,
Oas, R(2) = \/75, N(z) =20, Niin(2) =0,
O_a56, R(2) = —\/5 N(z) =12, Nupin(z) =0
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The thick part of Bs is connected, so that Bs has two connected components.
The set Bj;,s is also connected, but B_;,s has two connected components. In
Figure 13 we show the two connected components of B, for 2 = —4a;. There are
no labels of codimension 2 or higher and therefore these connected components
are contractible. Notice that an involution takes one component of B, to the
other. The total number of connected components of B, is therefore 56.

FIGURE 13. The twelve sets B, C B,.

Remark 10.2. Note to authors: the hand written notes contain a sketch of proof
that all connected components are contractible. What is missing is a solid proof
that cells of dimension 3 are glued to the CW complex in the expected way. ¢

11. OUTLOOK

1. To finish the introduction, let us mention that we hope to extend our
methods to the case of pairwise intersections of (big) Bruhat cells over C whose
cohomology has an important representation-theoretical interpretation, see e.g.
[7], sec. 1.5.

2. What about the Deodhar decomposition?

12. APPENDIX 1. ON THE NUMBER OF CONNECTED COMPONENTS OF Bru,.

As we mentioned in the introduction the number of connected components of
B, equals 3-2" for all n > 5. Our next result shows that this formula gives a lower
bound for almost all permutations o € S, if n is large. Recall the following
notion from the introduction.
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Definition 12.1. A permutation o € S, blocks at k, k € [n] = {1,2,...,n},
if and only if for all j, j < k implies 77 < k. Given o, let Block(c) C [n] be
the set of values of k such that o blocks at k. A pair (ig,7;) € [n + 1]* is an
inversion of o € S, 41 if ip < 4y and i > if; also, inv(c) € N denotes the number
of inversions of o.

Theorem 3. If, for a permutation o € S,y1, Block(o) =0 and inv(o) > 2n + 2
then Bru, has at least 3 - 2™ connected components.

Notice that, for n large, almost every permutation o € S, satisfies the as-
sumptions Block(o) = () and inv(o) > 2n + 2 of Theorem 3. There are reasons
to believe that the number of connected components of Bru, is exactly 3 - 2" for
most permutations.

Recall that ¢ € {£1}* is thin if and only if i;, = i;, implies £(jo) = £(j1)
(a reduced word o = a;, ---a;, € Spy1 is assumed to be fixed). Equivalently,
e € {#1}¢ is thin if and only if it can be written as e = £oi for some & € {£1}".
If e € {&1}" is thin and 2z = P(¢) then B. is a contractible connected component
of Bru,, z = P(e). Indeed, if ¢(j) = +1 for all j then B. = Pos,. We follow
here the notation of [5]; Pos, is the open semigroup of totally positive matrices
[3] and, for other o € S, Pos, = Bru, ﬂWsn is a contractible submanifold of
dimension inv(c). The other sets B, € thin, are obtained by conjugation by a
diagonal matrix £ with e(j) = £ ;E;4+1,41 (this is discussed in detail in Section
?7?). Such connected components B, C Bru, are thin; the others are thick.

Lemma 12.2. The number of thin connected components of Bru, is Ninin(2). If
Ninin(2) = N(z) then Bru, admits no thick connected component. On the other
hand, if Ninin(z) < N(z) then Bru, admits at least one connected component.

Proof. If € is a thick solution of P(g) = z then B, is contained in a thick connected
component of Bru,. O

Lemma 12.2 makes it clear that giving an estimate of N(z) and Nipnin(2), as in
Theorems 1 and 2, is relevant for determining the number of connected compo-
nents of Bru, and therefore of Bru,. We have not, however, used either Theorem
1 or 2 up to this point. For the rest of this section we change point of view: the
proof of the following lemma assumes Theorems 1 and 2.

Lemma 12.3. Consider o € S, y1. If Block(o) =0 and ¢ = {(c) > 2n + 2 then,
for all z € ITI7[{c}], the set Bru, has at least one thick connected component.

Proof. We have ¢ < n and therefore, from Theorem 2, Ny,(2) < 277! for all
z € IT7Y{o}]. We also have |R(z)| < 1 and therefore, from Theorem 1, N(z) >

9f=n=1 _95=1 > o+l _9n Thys, for all z € II"![{o}], we have N(z) > Nepin(2).
Lemma 12.2 completes the proof. O
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We are ready to prove Theorem 3 (again assuming Theorems 1 and 2).

Proof of Theorem 3. Since b = 0, the total number of thin connected components
is 2. There are 2" values of z € I7'[{c}]: from Lemma 12.3, for each z there
exists at least one thick connected component. 0

13. APPENDIX 2. TABLES FOR SL, /B AND SL; /B

1 2
permutation | # inversions | # connected components permutation | # inversions | # connected components

1234 0 1 12345 0 1
1243 1 2 12354 1 2
1324 1 2 12435 1 2
2134 1 2 13245 1 2
1423 2 4 21345 1 2
2143 2 4 12534 2 4
1342 2 4 12453 2 4
3124 2 4 13254 2 4
2314 2 4 21354 2 4
1432 3 6 14235 2 4
4123 3 8 21435 2 4
2413 3 8 13425 2 4
3142 3 8 31245 2 4
3214 3 6 23145 2 4
2341 3 8 15234 3 8
4132 4 12 12543 3 6
4213 4 12 13524 3 8
2431 4 12 21534 3 8
3412 4 12 14253 3 8
3241 4 12 21453 3 8
4312 5 16 13452 3 8
4231 5 18 31254 3 8
3421 5 16 23154 3 8
4321 6 20 14325 3 6

41235 3 8

24135 3 8

FIGURE 14. The number of connected components in the intersec-
tions of big Bruhat cells in SLy /B (left) and the beginning of the
ig:tablesl-2} table for SL5 /B (I‘lght)
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