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Abstract. In the late 80s, V. Arnold and V. Vassiliev initiated the study of the topology
of the space of real univariate polynomials of a given degree and with no real roots of
multiplicity exceeding a given positive integer. Expanding their studies, we consider the
spaces PcΘ

d of real monic univariate polynomials of degree d whose real divisors avoid
sequences of root multiplicities taken from a given poset Θ of compositions, closed under
a certain natural combinatorial operation. We reduce the computation of H∗(PcΘ

d ) to the
computation of the homology of a differential complex, defined purely combinatorially in
terms of the poset Θ. Building upon the combinatorics of this complex, we determine the
homotopy type of PcΘ

d and calculate H∗(PcΘ
d ) for several classes of Θ. We also consider the

stabilization of H∗(PcΘ
d ) when d goes to infinity. In particular, we prove stability results

and state conjectures in case when Θ is generated by a finite set ∆ of compositions.
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1. Introduction

In [Ar] V. Arnold proved the following statements which were later generalized by V. Vas-
siliev, see [Va]. In their formulation, we keep the original notation of [Ar], which we
will abandon later on. For 1 ≤ k ≤ d, let Gd

k be the space of real monic polynomials
xd + ad−1x

d−1 + · · · + a0 ∈ R[x] with no real roots of multiplicity greater than k. (In
what follows, theorems, conjectures etc. labelled by letters are borrowed from the existing
literature while those labelled by numbers are hopefully new.)

Theorem A. If k < d < 2k + 1, then Gd
k is diffeomorphic to the product of a sphere Sk−1

by an Euclidean space. In particular,

πi(G
d
k) ' πi(S

k−1) for all i.

An analogous result holds for the space of polynomials whose sum of roots vanishes, i.e.,
polynomials with vanishing coefficient ad−1.

Theorem B. The homology groups with integer coefficients of the space Gd
k are nonzero

only for dimensions which are multiples of k − 1. Namely, for (k − 1)r ≤ d,

Hr(k−1)(Gd
k) ' Z.

This paper being a sequel of [KSW1] is aimed to generalize Theorem A and Theorem B
to the situation when the multiplicities of the real roots avoid a given set of patterns. To
make this paper independent of [KSW1], we repeat below some basic definitions, notation
and results of loc. cit.

Let Pd denote the space of real monic univariate polynomials of degree d. Given a
polynomial P (x) = xd + ad−1x

d−1 + · · ·+ a0 with real coefficients, we define its real divisor
DR(P ) as the multiset

x1 = · · · = xi1︸ ︷︷ ︸
ω1=i1

< xi1+1 = · · · = xi1+i2︸ ︷︷ ︸
ω2=i2−i1

< · · · < xi`−1+1 = · · · = xi`︸ ︷︷ ︸
ω`=i`−i`−1

of the real roots of P (x). The tuple ω = (ω1, . . . , ω`) is called the (ordered) real root

multiplicity pattern of P (x). Let R̊ωd be of the set of all polynomials with root multiplicity

pattern ω, and let Rωd be closure in Pd of R̊ωd .
For a given collection Θ of root multiplicity patterns, we consider the union PΘ

d of the

subspaces R̊ωd , taken over all ω ∈ Θ. We denote by PcΘ
d its complement Pd \ PΘ

d .
One can easily observe that, in most of the cases, PΘ

d is contractible. Thus it makes
more sense to consider its one-point compactification P̄Θ

d (which is the union of the one
point compactifications R̄ωd for ω ∈ Θ with the points at infinity being identified). If the
set PΘ

d is closed in Pd, by the Alexander duality on P̄d ∼= Sd,

Hj(PcΘ
d ;Z) ≈ Hd−j−1(P̄Θ

d ;Z),

which implies that the spaces PcΘ
d and P̄Θ

d carry the same (co)homological information.
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Example 1.1. For Θ comprising all ω’s with at least one component greater than or equal
to k, we get PcΘ

d = Gd
k, in Arnold’s notation.

Roughly speaking, we will be interested in the following type of problems.

Question 1.2. Given a collection Θ such that PΘ
d is closed in Pd,

. how to describe πi(PcΘ
d ) and H̄ i(PcΘ

d ;Z) in terms of the combinatorics of Θ?
. does H̄ i(PcΘ

d ;Z) stabilize when d→∞?

We will make this question more precise in § 1.2, once more terminology will become
available. One of our essential tools will be a description of a combinatorial differential
complex (Z[Θ], ∂) of free Z-modules that calculates the homology of the spaces P̄Θ

d (see
Corollary 2.6). Then, applying discrete Morse theory to this complex and different com-
binatorial arguments, we will be able to study the cohomology of the spaces PcΘ

d . All in
all, our methods provide an alternative approach to the study of various spaces of real
univariate polynomials with restricted real divisors, as compared to the one used earlier
by V. Arnold and V. Vassiliev.

1.1. Cell structure on the space of real univariate polynomials. Let us first in-
troduce a well-known stratification of the space of real univariate polynomials of a given
degree.

For any real polynomial P (x), we have already defined its real divisor DR(P ), i.e. the
ordered set of its real zeros, counted with their multiplicities. Denote by DC(P ) its complex
conjugation-invariant non-real divisor in C, i.e. the set of its non-real roots with their
multiplicities. The standard divisor D(P ) of P (x) is the multiset of all its complex roots,
i.e. D(P ) = DR(P ) ∪DC(P ).

We have also associated to a polynomial P (x) ∈ R[x] its real root multiplicity pattern
(ω1, . . . , ω`). (Combinatorics of such multiplicity patterns will play the key role in our
investigations). An arbitrary sequence ω = (ω1, . . . , ω`) of positive integers is called a
composition of the number |ω| := ω1 + · · · + ω`. We also allow the empty composition
ω = () of the number |()| = 0.

Definition 1.3. For ω = (ω1, . . . , ω`), we call |ω| the norm and |ω|′ := |ω| − ` the reduced
norm of ω.

It is clear that the stratum Pωd is empty if and only if either |ω| > d, or |ω| ≤ d and
|ω| 6≡ d mod 2.

Denote by Ω the set of all compositions of natural numbers. Let us define two (sequences
of) operations on Ω that will govern our subsequent considerations, see also [Ka].

The merge operations Mj : Ω→ Ω, sending ω = (ω1, . . . , ω`) to the partition

Mj(ω) = (Mj(ω)1, . . . ,Mj(ω)`−1),
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where for any j ≥ `, one has Mj(ω) = ω and for 1 ≤ j < `, one has

Mj(ω)i = ωi if i < j,(1.1)

Mj(ω)j = ωj + ωj+1,

Mj(ω)i = ωi+1 if i+ 1 < j ≤ `− 1.

.
Similarly, we define the insertion operations Ij : Ω→ Ω, sending ω = (ω1, . . . , ω`) to the

partition Ij(ω) = (Ij(ω)1, . . . , Ij(ω)`+1), where for any j > `+ 1, one has Ij(ω) = ω and for
1 ≤ j ≤ `+ 1, one has

Ij(ω)i = ωi if i < j,(1.2)

Ij(ω)j = 2,

Ij(ω)i = ωi−1 if j ≤ i ≤ `+ 1.

The next proposition collects some basic properties of Rωd , see [Ka, Theorem 4.1] for
details.

Proposition C. Take d ≥ 1 and ω = (ω1, . . . , ω`) ∈ Ω such that |ω| ≤ d and |ω| ≡ d

mod 2. Then R̊ωd ⊂ Pd is an (open) cell of codimension |ω|′. Moreover, Rωd is the union of

the cells {R̊ω′d }ω′, taken over all ω′ that are obtained from ω by a sequence of merging and
insertion operations. In particular,

(a) The cell R̊ωd has (maximal) dimension d if and only if ω = (1, 1, . . . , 1︸ ︷︷ ︸
`

) for 0 ≤ ` ≤ d

and ` ≡ d mod 2.

(b) The cell R̊ωd has dimension 1 if and only if ω = (d). In this case, R̊(d) = R(d) =
{(x− a)d | a ∈ R}.

Geometrically speaking, if a point moves in R̊ωd and approaches the boundary Rωd \ R̊ωd ,
then either there is at least one value of j such that the distance between the jth and (j+1)st

distinct real roots goes to 0, or there is a value of j such that two complex-conjugate real
roots converge to a real root which is then the jth largest. The first situation corresponds
to the application of the merge operation Mj to ω, and the second one to the application
of the insertion Ij.

Note that the norm |ω| = deg(DR(P )) is preserved under the merge operations, while
the insert operations increase |ω| by 2 and thus preserve its parity.

The merge and insert operations can be used to define a natural partial order “�” on
the set Ω of all compositions.

Definition 1.4. For ω, ω′ ∈ Ω, we say that ω′ is smaller than ω (notation “ω � ω′ ”), if
ω′ can be obtained from ω by a sequence of merge and insert operations {Mj}, j ≥ 1, and
{Ij}, j ≥ 0. For a given ω � ω′, if there is no ω′′ such that ω � ω′′ � ω′, then we say that
ω � ω′ is a cover relation, or that ω′ is covered by ω.
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For a fixed d, by Proposition C, the above partial order reflects the adjacency of the
non-empty cells {Pωd }ω. From now on, we will consider a subset Θ ⊆ Ω as a poset, ordered
by �. As an immediate consequence of Proposition C, we get the following statement.

Corollary D. For Θ ⊆ Ω,

(i) PΘ
d is closed in Pd if and only if, for any ω ∈ Θ and ω′ ≺ ω, we have ω′ ∈ Θ;

(ii) if PΘ
d is closed in Pd, then P̄Θ

d carries the structure of a compact CW-complex with

open cells {R̊ωd}ω∈Θ, labeled by ω ∈ Θ, and the unique 0-cell, represented by the
point • at infinity.

The corollary motivates the following definition.

Definition 1.5. A subposet Θ ⊆ Ω〈d] is called closed in Ω〈d] if, for any ω′ ≺ ω and ω ∈ Θ,
we have ω′ ∈ Θ.

Revisiting the beginning of § 1, we observe that the closed posets Θ ⊆ Ω〈d] are exactly
the posets for which we would like to study the spaces PcΘ

d and P̄Θ
d .

Let us additionally define several natural subposets of Ω which inherit the partial order
�. Namely, let Ω〈d ] ⊂ Ω denote the set of all compositions ω such that |ω| ≤ d and |ω| ≡ d
mod 2. Further let Ωd ⊂ Ω〈d] denote the set of all ω ∈ Ω such that |ω| = d. One has

obvious inclusions

Ω〈1] ⊂ Ω〈3] ⊂ Ω〈5] ⊂ · · · and Ω〈2] ⊂ Ω〈4] ⊂ Ω〈6] ⊂ · · · .
Denote by Ωo (resp. Ωe) the poset obtained as the colimit of the first (resp. the second)

sequence. Clearly, Ωo contains all compositions with an odd norm and Ωe contains all
compositions with an even norm. In particular, Ω = Ωo ∪Ωe. Clearly, Ωe, Ωo are closed
subposets of Ω, and Ωd is a closed subposet of Ω〈d].

1.2. Main questions and further background. We are finally in position to precisely
formulate our main quests:

Problem 1.6. For a given closed subposet Θ ⊆ Ω〈d],

. calculate the homotopy groups πi(P̄Θ
d ) and πi(PcΘ

d ) in terms of the combinatorics
of Θ;

. calculate the integer homology of P̄Θ
d or, equivalently, the integer cohomology of

PcΘ
d in terms of the combinatorics of Θ.

Below we will introduce a spectral sequence and a combinatorial differential complex
which, in principle, enable us, to calculate the homology H̄∗(P̄Θ

d ,Z) of the one-point com-
pactification P̄Θ

d for any closed poset Θ ⊂ Ω〈d], see § 2. However, for a general poset Θ,
to obtain H̄∗(P̄Θ

d ,Z) in closed form seems impossible!
To justify this claim, consider the closed subposet Ωd ⊆ Ω〈d] and the corresponding space

PΩd
d , consisting of all polynomials of degree d having only real roots. It is easily seen that

the poset Ωd is isomorphic to the powerset of {1, . . . , d−1}, ordered by inclusion. The latter
can be identified with the face poset of the (d − 2)-simplex. Through this identification,
closed subposets Θ ⊆ Ωd correspond to the simplicial complexes on d − 1 vertices. In
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this case, it is known that the one-point compactification P̄Θ
d is a double suspension the

corresponding simplicial complex on d−1 vertices, see e.g. [SW]. In particular, it can carry
any homology that a simplicial complex on d−1 vertices can carry! Since P̄d\P̄Θ

d = Pd\PΘ
d ,

for d big enough, the cohomology of any space of finite homotopy type can occur in such
a way. In particular, an arbitrary torsion may occur.

However, in this example, the dimension of the simplicial complex, corresponding to
Θ, and the degree d of the polynomials under consideration are closely linked. If it is
possible to loosen this link, i.e. increase d while “keeping” Θ, then one typically observes
different types of (co)homological stabilization and rather “tame” answers for the limiting
H̄∗(P̄Θ

d ,Z), when d→∞.

Such stabilization is usually based on the standard affine inclusion inc : Pd ↪→ Pd+2,
obtained by multiplication of each polynomial P (x) ∈ Pd by x2 + 1. (This inclusion was
already used by Arnold and Vassiliev and apparently long before them as well.) Note that
the map inc preserves the combinatorial types of real divisors, i.e.

ωDR(inc(P )) = ωDR(P ).(1.3)

Let us now describe a general stabilization set-up whose special cases we consider below.
Let ∆ be any antichain of Ωe (resp. Ωo), i.e. a subset consisting of pairwise incomparable
elements. We say that ∆ is of even (resp. odd) parity if ∆ ⊆ Ωe (resp. ∆ ⊆ Ωo). We
denote by 〈∆〉 the closed subposet in Ω, generated by ∆. Note that, 〈∆〉 is always an
infinite poset even in case when the original set ∆ is finite and nonempty. But for any ∆,
whose elements have the same parity of their norms as d, the restriction 〈∆〉d := 〈∆〉∩Ω〈d]

is always a finite closed subposet.
Assuming that the norms of all the elements from ∆ and d are of the same parity, we

have the obvious sequence of inclusions:

〈∆〉d ⊆ 〈∆〉d+2 ⊆ 〈∆〉d+4 ⊆ · · · .(1.4)

Additionally, set

P〈∆〉d := P〈∆〉dd and Pc〈∆〉
d := Pc〈∆〉d

d .

By (1.3), the sequence (1.4) of the poset inclusions combined with the multiplication inc
by x2 + 1, gives rise to the following two filtrations:

(1.5)
Pd ↪

inc−→ Pd+2 ↪
inc−→ Pd+4 ↪

inc−→ · · ·
∪ ∪ ∪
P〈∆〉d ↪

inc−→ P〈∆〉d+2 ↪
inc−→ P〈∆〉d+4 ↪

inc−→ · · ·

(1.6)
Pd ↪

inc−→ Pd+2 ↪
inc−→ Pd+4 ↪

inc−→ · · ·
∪ ∪ ∪
Pc〈∆〉
d ↪

inc−→ Pc〈∆〉
d+2 ↪

inc−→ Pc〈∆〉
d+4 ↪

inc−→ · · ·
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Additionally, the inclusions in (1.5) extend to that of the one-point compactifications of
all spaces in the diagram. For every non-negative integer n, the inclusions of the spaces
in (1.5) and their one-point compactifications together with (1.6) induce the following
sequence of homomorphisms of the homology and cohomology groups.

Hn(P̄〈∆〉d ;Z) → Hn(P̄〈∆〉d+2;Z)→ Hn(P̄〈∆〉d+4;Z)→ · · · ,(1.7)

Hn(Pc〈∆〉
d ;Z) ← Hn(Pc〈∆〉

d+2 ;Z)← Hn(Pc〈∆〉
d+4 ;Z)← · · · ,(1.8)

Denote by Hn(P̄〈∆〉∞ ;Z) the colimit of (1.7) and by Hn(Pc〈∆〉
∞ ;Z) the limit of (1.8).

Problem 1.7. (i) For which ∆, does (1.7) or, equivalently, (1.8) stabilize? More pre-
cisely, for which ∆, there exists a number [n such the maps in (1.7) or, equivalently,
in (1.8) are isomorphisms for all d ≥ [n?

(ii) If the answer to (i) is positive, calculate the limit homology Hn(P̄〈∆〉∞ ;Z) or coho-

mology Hn(Pc〈∆〉
∞ ;Z).

(iii) For which ∆, (1.7) is a sequence of injective maps for all d sufficiently large? Equiv-
alently, for which ∆, (1.8) is a sequence of surjective maps for all d sufficiently large?

(iv) If the answer to (iii) is positive, what can be said about the growth of the homology

groups Hn(P̄〈∆〉∞ ;Z) or cohomology groups Hn(Pc〈∆〉
∞ ;Z)?

In what follows, we will study Problem 1.7 both in the cases when ∆ could be finite and
infinite.

Among infinite complexes ∆, we concentrate on a natural particular case, important for
applications.

(1) (d− k)-skeleta of Pd:

Consider
∆ = {ω ∈ Ωe | |ω|′ = k} or ∆ = {ω ∈ Ωo | |ω|′ = k},

where k is a given non-negative number. For such a ∆, whose elements ω are assumed to

have the norms |ω| ≡ d mod 2, the set P〈∆〉d is the union of all cells R̊ωd of codimension
≥ k, i.e. the (d − k)-skeleton of Pd. § 4 contains our results, related to this choice of ∆.
(This subproject can be thought as an extension of our study of the fundamental group of
the (d− 2)-skeleton carried out in [KSW1].)

For finite complexes ∆, we can consider a rather general situation as follows.

(2) finite ∆ and the sequence {〈∆〉d}:
We allow ∆ to be an arbitrary antichain, i.e. a finite collection of incompatible compo-

sitions ω with the same parity of their norms. Consideration of the sequence {〈∆〉d} and
the corresponding sequences (1.7) – (1.8) is called (the problem of) the direct stabilization.
In § 5 we consider the special case when ∆ contains a single composition ω, which is both
non-trivial and allows us to obtain interesting explicit results for each individual d. At the

same time, as d → ∞, we obtain rather general stabilization results about H̄∗(P̄〈∆〉d ;Z),
see § 6 below.
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Remark 1.8. In the concluding part [KSW2] of our study we consider Arnold–Vassiliev type
situation which includes and generalizes the original problem considered by V. Arnold [Ar]
and V. Vassiliev [Va]. Namely, for a given composition ω = (ω1, . . . , ω`) ∈ Ω, we call a
composition ω′ = (ω′1, . . . , ω

′
m) an extension of ω if |ω| and |ω′| are of the same parity and

there are numbers 1 ≤ i1 < · · · < i` ≤ m such that ωj = ω′ij for 1 ≤ j ≤ ` and ω′j = 1

for j ∈ {1, . . . ,m} \ {i1, . . . , i`}. add a sentence that describes this informally In other
words, to get such an ω′ from ω, we may insert any number of 1’s in-between the entries
of ω, as well as any number of 1’s prior or after the string ω. Let ext(ω) ⊂ Ω denote the
(infinite) set of all extensions of ω. By definition, the compositions in ext(ω) are pairwise
incomparable.

Given ω ∈ Ωe and an d ≥ |ω| of the same parity as |ω|, the space P〈〈ω〉〉d may be described
as the set of real polynomials of the form

T (x)

q∏
j=1

(x− αj)ωj ,

where T (x) ∈ Pd−|ω|, and α1 ≤ α2 ≤ · · · ≤ αq is a non-decreasing sequence of real numbers.

Let ∆ = {ω(1), . . . , ω(m)} ⊂ Ω be an antichain in the above partial order, i.e., a finite
collection of pairwise incomparable compositions with |ω(1)|, . . . , |ω(m)| of the same parity.
Set ext(∆) := ext(ω(1)) ∪ · · · ∪ ext(ω(m)). Note that under our assumptions, ext(∆) is a
set of pairwise incomparable composition with norms of equal parity. Finally, denote by
〈〈∆〉〉 ⊂ Ω the closed subposet, generated by ext(∆). Similarly to the above we have the
sequences

Hn(P̄〈〈∆〉〉d ;Z) → Hn(P̄〈〈∆〉〉d+2 ;Z)→ Hn(P̄〈〈∆〉〉d+4 ;Z)→ · · · ,(1.9)

Hn(Pc〈〈∆〉〉
d ;Z) ← Hn(Pc〈〈∆〉〉

d+2 ;Z)← Hn(Pc〈〈∆〉〉
d+4 ;Z)← · · · ,(1.10)

The main goal of [KSW2] is to study the topology of the spaces P̄〈〈∆〉〉d and Pc〈〈∆〉〉
d .

Let us outline the general structure of the paper. In § 2, we describe a combinatorial
complex associated with any closed subposet Θ ⊂ P〈d] which, in principle, allows us to
compute H∗(P̄Θ

d ;Z) or, equivalently, H∗(PcΘ
d ;Z). A short § 3 provides a brief description

of the basic results from the discrete Morse theory to be used in the rest of the paper. In
§ 4, using the discrete Morse theory, we provide explicit answers for the homotopy type of
the (d−k)-skeleta of Pd. In § 5 we describe the homotopy type of P̄Θ

d when Θ is generated
by a single composition ω. In § 6, we describe our stabilization results for H∗(P̄Θ

d ;Z) and
H∗(PcΘ

d ;Z) for arbitrary poset Θ generated by a finite set of compositions. In § 7 we
present examples of (co)homology groups of our spaces obtained with the help of computer
program in GAP written by the third author whose algorithm is based on the results of § 2.
These examples illustrate our stabilization results as well as show the existence of some
unstable (co)homology which we at present can not explain or describe. We also formulate
a number of natural open problems not covered by our results. Finally, in § 9 we present a
motivating example of the cohomology class of one of the spaces under consideration which
is relevant in the study of traversing vector fields on manifolds with boundary.
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Remark 1.9. Besides the previous studies of V. Arnold [Ar] and V. Vassiliev [Va], our
major motivation for this paper comes from the results of the first author, connecting
the cohomology H∗(PcΘ

d ;Z) with certain characteristic classes, arising in the theory of
traversing flows, see [Ka], [Ka1]. For traversing vector flows on compact manifolds X with
boundary ∂X and with an a priory forbidden tangency patterns Θ of their trajectories to
∂X, the spaces PcΘ

d play an important role, similar to the role of Grassmanians in the
category of vector bundles. (§ 9 gives some hints about this role).
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acknowledge the financial support of his research by the Swedish Research council through
the grant 2016-04416. The third author wants to thank department of Mathematics of
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an NSF grant DMS 0932078, administered by the Mathematical Sciences Research Institute
while the author was in residence at MSRI during the complimentary program 2018/19.
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2. A combinatorial differential complex computing H∗(P̄Θ
d ,Z)

In this section, we use the natural structure of CW-complex for Pd, presented in Propo-
sition C, to construct a combinatorial differential complex (Z[Θ], ∂) that calculates the
homology of the one-point compactification P̄Θ

d for any closed subposet Θ ⊂ Ω〈d]. Recall
that the cells {eω} of the CW-complex Pd are indexed by the compositions ω ∈ Ω〈d]. The
dimension of the cell eω equals d− |ω|′. This CW-complex has a single 1-dimensional cell,
labelled by ω? = (d). In particular, the Euler formula for P̄d ≈ Sd amounts to

d−1∑
k=0

(−1)d−k
∣∣{ω ∈ Ω〈d] : |ω|′ = k

}∣∣ = 1 + (−1)d.

Our next goal is, for a given closed subposet Θ ⊆ Ω〈d], to define a spectral sequence,
converging to the reduced homology H̄∗(P̄Θ

d ,Z), and to describe its properties.

For a closed subposet Θ ⊆ Ω〈d], consider a decreasing filtration of PΘ
d given by

PΘ
d = F0(PΘ

d ) ⊃ F1(PΘ
d ) ⊃ · · · ⊃ Fd−1(PΘ

d )

by the closed subsets

Fk(PΘ
d ) := P

Θ|∼|′≥k

d =
⋃

{ω∈Θ: |ω|′≥k}

Pωd .(2.1)

By Proposition C, each R̊ωd is an open (d − |ω|′)-cell. The filtration (2.1) immediately
extends to the one-point compactification by taking

P̄Θ
d = F •0 (P̄Θ

d ) ⊃ F •1 (P̄Θ
d ) ⊃ · · · ⊃ F •d−1(P̄Θ

d ) ⊃ F •d (P̄Θ
d ) := •.(2.2)
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Note that for any k < d, we have that

Fk(PΘ
d ) \ Fk+1(PΘ

d ) = F •k (P̄Θ
d ) \ F •k+1(P̄Θ

d )

is a disjoint union of the open cells P̊ωd , where ω ∈ Θ runs over all compositions with
|ω|′ = k. By Proposition C, each such cell is homeomorphic to Rd−k.

Consider the spectral sequence {Es
p,q} calculating reduced homology of the one-point

compactification P̄Θ
d of the space PΘ

d , associated with the decreasing filtration (2.2). Its
E2
p,q-term consists of the groups

E2
p,q
∼=

⊕
{ω∈Θ, |ω|′=p}

Hp+q(R̄ωd , ∂R̄ωd ; Z)

∼=
⊕

{ω∈Θ, |ω|′=p}

H̄p+q(S
d−|ω|′ ;Z)

∼=
⊕

{ω∈Θ, |ω|′=p}

H̄p+q(S
d−p;Z).

It is clear that E2
p,q is non-trivial only when p+q = d−p or, equivalently, when 2p+q = d.

Therefore,
E2
p,d−2p ≈ Z[Θ|∼|′=p]

is the group generated by formal integral combinations of the elements taken from the set
Θ|∼|′=p, and vanishes otherwise. In particular, E2

p,q = 0 outside of the range {(p, q)| 0 ≤
p ≤ d− 1; 0 ≤ p+ q ≤ d}.

Remark 2.1. Notice that the coincidence of the differences of strata for the original space
and for its one-point compactification does not imply that the E2-terms of the correspond-
ing spectral sequences are isomorphic.

Theorem 2.2. The spectral sequence {Es
p,q, d

s} degenerates at the E3-term.

Proof. Indeed due to the constraint 2p+ q = d, all the differentials

ds : Es
p,q → Es

p+s−1, q−s,

with s ≥ 3, have trivial targets. As a result, for all i ∈ [0, d],

H̄i(P̄Θ
d ;Z) ≈

ker
{
d2
d−i, 2i−d : Z[Θ|∼|′=d−i] −→ Z[Θ|∼|′=d−i+1]

}
im
{
d2
d−i−1, 2i−d+2 : Z[Θ|∼|′=d−i−1] −→ Z[Θ|∼|′=d−i]

} .
Note that if Θ|∼|′=d−i = {∅}, then, by definition, Z[∅] = 0. �

Our next goal is to explicitly describe the complex {E2, d2} purely combinatorially.
Observe that the free Z-module Z[Ω] comes with a bigrading, induced by the norm |ω|
together with the reduced norm |ω|′ where ω ∈ Ω. By definition, the first grading of an
element

∑
ω nω · ω ∈ Z[Ω], nω 6= 0 is greater than or equal to k, if |ω|′ ≥ k for all ω

in the sum. We call this grading codimensional. It gives rise to a decreasing filtration
{Z[Ω]′≥k}k∈Z+ of Z[Ω]. The same reasoning works verbatim for both Z[Ωo] and Z[Ωe].
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By definition, the second grading of an element
∑

ω nω · ω is greater than or equal to d,
if |ω| ≥ d for all ω in the sum. We call this grading degree-based. Thus if Z[Ω〈d]] denotes
the Z-submodule of Z[Ωe] (resp. Z[Ωo]), generated by the elements whose degree-based
grading is less than or equal to d, we get an increasing filtration

. . . ⊂ Z[Ω〈d]] ⊂ Z[Ω〈d+2]] ⊂ Z[Ω〈d+4]] ⊂ . . .

of Z[Ωe] (resp. Z[Ωo]).

Below we will concentrate on the case when d is even, i.e. |ω| ≡ 0 mod 2 and study
the sequence

Ω〈2] ⊂ Ω〈4] ⊂ Ω〈6] ⊂ . . . .

In this case it will be convenient to use |ω|/2 for the degree-based grading. (The case of
odd d is completely parallel.) In fact, when d is fixed in order to introduce the degree-based

grading we can instead of |ω| consider d−|ω|
2

which is integer for both even and odd d.

Using the merge operator M• and the insert operator I• on Ωe (resp. Ωo) from § 1.1, we
define two homomorphisms on Z[Ωe] given by

∂M(ω) := −
sω−1∑
k=1

(−1)kMk(ω) and ∂I(ω) :=
sω∑
k=0

(−1)kIk(ω),

where sω := |ω| − |ω|′ is the cardinality of the support of ω.

Next, we define a homomorphism

∂ = ∂M + ∂I : Z[Ω〈d]]→ Z[Ω〈d]]

by the formula

∂(ω) :=

 −
∑sω−1

k=1 (−1)k Mk(ω) +
∑sω

k=0(−1)k Ik(ω), for |ω| < d,

−
∑sω−1

k=1 (−1)k Mk(ω), for |ω| = d.
(2.3)

Assuming that Θ ⊂ Ωe is some closed subposet, set

Θd := Θ ∩Ωd and Θ〈d] := Θ ∩Ω〈d].

(Obviously, Θ〈d] is a closed subposet of Ω〈d]).

Lemma 2.3. In the above notation the following facts hold:

(1) The homomorphisms ∂M, ∂I : Z[Θ] → Z[Θ] are anti-commuting differentials, i.e.,
∂2
I = ∂2

M = ∂I∂M + ∂M∂I = 0 which implies that ∂ = ∂M + ∂I is a differential as well;
(2) ∂M increases the codimensional grading by 1 and preserves the degree-based grading,

while ∂I increases both the degree-based and the codimensional gradings by 1.

Remark 2.4. Again when d is fixed, we can introduce the quantities κ(ω) := d−|ω|
2

and

ν(ω) := d−|ω|
2

+sω which we will use later in this text. Here as above s(ω) is the cardinality
of the support of ω. In these notations, ∂M preserves κ(ω) and decreases ν(ω) by 1 while
∂I preserves ν(ω) and decreases κ(ω) by 1. The sum κ(ω) + ν(ω) equals the dimension of
the stratum Pωd .
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Proof. To settle (1), we need to show that ∂2
I = 0, ∂2

M = 0, and ∂I∂M + ∂M∂I = 0. Consider
any composition ω = (. . . a, b, c, . . . ), where a, b, c are arbitrary natural numbers. Then the
expression for ∂M(ω) will include the terms

±(. . . a+ b, c, . . . )∓ (. . . a, b+ c, . . . ).

Thus ∂2
M(ω) will consist of the terms

±(. . . a+ b+ c, . . . )∓ (. . . a+ b+ c, . . . ),

which cancel each other. When the support of ω has cardinality ≤ 2 an even simpler
argument applies.

To show that ∂2
I = 0, we take ω = (. . . , a, b, . . . ) and calculate

∂I(ω) = · · · ± (. . . , a, 2, b, . . . )∓ . . . .
Then ∂2

I (ω) will only contain the terms

±(. . . , a, 2, 2, b, . . . )∓ (. . . , a, 2, 2, b, . . . ),

which again cancel each other.

Finally, let us compute (∂I∂M + ∂M∂I)(ω) with ω = (. . . , a, b, . . . ). Observe that ∂I(ω)
consists of the terms

±(. . . , 2, a, b, . . . )∓ (. . . , a, 2, b, . . . )± (. . . , a, b, 2, . . . ).

Computing ∂M∂I(ω), after a cancellation, we will be left with the contribution

∓(. . . , 2, a+ b, . . . )± (. . . , a+ b, 2, . . . ).

In a similar computation of ∂I∂M(ω), we will be left with the contribution

±(. . . , 2, a+ b, . . . )∓ (. . . , a+ b, 2, . . . ),

which implies that (∂I∂M + ∂M∂I)(ω) = 0.

The second claim of the lemma is straightforward. �

Proposition 2.5. For any closed subposet Θ ∈ Ω〈d], the differential complex (Z[Θ], ∂)
coincides with the E2-term of the spectral sequence {Es

p,q, d
s}, associated with the filtration

(2.1) and converging to the reduced homology H̄∗(P̄Θ
d ;Z) of P̄Θ

d .

Proof. By Proposition C, the (topological) boundary ∂Rωd coincides with

(
sω−1⋃
k=1

R
Mk(ω)
d )

⋃
(
sω⋃
k=0

R
Ik(ω)
d ).

Therefore, the boundary ∂[R̄ωd ] of the chain [R̄ωd ] in the cellular chains complex C̄d−|ω|′(P̄Θ
d ;Z)

is equal to the sum

sω−1∑
k=1

ak[R̄
Mk(ω)
d ] +

sω∑
k=0

bk[R̄
Ik(ω)
d ](2.4)

for some choice of integral coefficients {ak} and {bk}.
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Note that the chain R̄ωd can be also thought of as a generator of H̄d−|ω|′(R̄ωd , ∂R̄ωd ; Z), or

even as an element of H̄d−|ω|′
(
P̄Θ|ω|′

d , P̄Θ|ω|′+1

d ;Z
)
.

Recall how the preferred orientation of the chain [R̄ωd ] is generated by the canonical

orientation of the open cell R̊ωd ≈ Symsω(R)×Symmω(H), where H denotes the upper half-
plane {z ∈ C| Im(z) > 0} and mω := (d− |ω|)/2 (see [Ka]). Namely, the orientation of the
open cell Symmω(H) is canonically induced by its complex structure, while the orientation
of Symsω(R) is induced from its embedding, as a convex (open) polyhedron Π◦ω, in the space
Rsω with the coordinates (x1, x2, . . . , xsω). The polyhedron Π◦ω is given by the inequalities

x1 < x2 < · · · < xsω . In other words, the orientation of R̊ωd is given by the volume form

θω := (dx1 ∧ · · · ∧ dxsω) ∧
( i

2

)mω

(dz1 ∧ dz̄1 ∧ · · · ∧ dzmω ∧ dz̄mω)

considered on the product Symsω(R)× Symmω(H).

We claim that in the formula (2.4) for the boundary operator ∂, ak = (−1)k+1. Note

that, if Mk(ω) = Ml(ω), then k = l.1 Therefore, for each polynomial P ∈ R̊
Mk(ω)
d and any

path Pt ⊂ R̊ωd such that limt→0 Pt = P , there exists for all sufficiently small t, a single pair
of real roots xk(t), xk+1(t) of Pt that merge, forming a root x?k of P . Moreover, for any two

t-paths Pt, Qt ⊂ R̊ωd such that limt→0 Pt = limt→0Qt = P , their germs at P are isotopic in

R̊ω◦ . Such isotopy is produced by the linear homotopy that connects each root xl(Pt) to the

root xl(Qt). Such an isotopy extends to the identity on R
Mk(ω)
d . Therefore, the germ of R̊ωd

at P has a single connected component. As a result, the incidence index ak of the cell R̊ωd
with the cell R̊

Mk(ω)
d equals ±1.

Now consider a t-family of polynomials Pt ⊂ R̊ωd such that:

(1) limt→0 P (t) = P ∈ R̊
Mk(ω)
d ;

(2) polynomials P (t) share the all roots with P , except for the roots xk(t), xk+1(t) and
x?k;

(3) xk(t) = x?k − t, xk+1(t) = x?k + t.

The tangent vector to the path P (t) at t = 0 is given by w = (0, . . . , 0,−1, 1, 0, . . . ).
This vector is the inward normal to the face {xk = xk+1} in the polyhedron Πω ⊂ Rsω

at the point p? representing the ordered sequence of real numbers that coincide with the
support of DR(P ) ⊂ R. The inner product “c” of w with the volume form in Rsω is given
by

w c(dx1 ∧ · · · ∧ dxk ∧ dxk+1 ∧ · · · ∧ dxsω) = (−1)k+1(dx1 ∧ · · · ∧ dxk ∧ dxk+2 ∧ · · · ∧ dxsω).

Therefore, the orientation of the boundary ∂Π◦ω, induced by the orientation of Π◦ω, differs
from the preferred orientation of Π◦Mk(ω) exactly by the factor (−1)k+1.

1It is possible that Mk(ω) = Ml(ω
′) for k 6= l and an appropriate ω′ 6= ω.
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Next, let us determine the incidence coefficient bk of the cell Rωd with the cell R
Ik(ω)
d in

the sum (2.4). It is a more delicate task since, in the vicinity of P ∈ R̊
Ik(ω)
d , multiple sheets

(components) of R̊ωd may appear.

The simplest example of such phenomenon is the case when P has two consecutive real
roots, xi and xi+1, each of the multiplicity 2. Let us denote by P1 and P2 two polynomials
obtained by resolving the first and the second roots into a pair of simple complex-conjugate
roots. Then the combinatorial patterns of DR(P1) and DR(P2) are identical. Although P1

and P2 are close to each other in Rωd , there is no short path in R̊ωd that connects them
in a neighborhood of P , i.e. these polynomials P1 and P2 represent different connected
components of R̊ωd .

Denote by x?1, . . . , x
∗
sω+1 the distinct real roots of P ∈ R̊

Ik(ω)
d ordered by their magnitude,

and by {(z?l , z̄?l )}l the unordered collection of non-real roots of P . Assume that x?k+1 is

a root of multiplicity 2. Let Pt ⊂ R̊ωd be a path in R̊ωd . Denote by {xj(t)} all real and
{(zl(t), z̄l(t)} all non-real roots of P (t). We can choose Pt so that:

(1) xj(t) = x?j for all j ≤ k and xj(t) = x?j+1 for all j > k + 1,
(2) the pair (zk+1(t), z̄k+1(t)) = (x?k+1 + i t, x?k+1 − i t) is a root pair for Pt,
(3) all the other non-real root pars for Pt and P coincide.

In the ordered “root space” Rsω ×Cmω , w = (0, . . . , 0, i, 0, . . . 0) is the tangent vector to
the curve Pt at P .

The volume form θω can be written as θRω ∧ θCω , where

θRω := dx1 ∧ · · · ∧ dxsω

and

θCω :=

(
i

2

)mω

(dz1 ∧ dz̄1) ∧ · · · ∧ (dzmω ∧ dz̄mω).

Since i c
(
i
2
dz ∧ dz̄

)
= (0, 1) c(dx ∧ dy) = −dx, we get

w c(θRω ∧ θCω) = (−1)sω θRω ∧ (w cθCω) = (−1)sω θRω ∧ dx?k+1 ∧ θCIk(ω)

= (−1)2sω+k θRIk(ω) ∧ θCIk(ω) = (−1)k θIk(ω).

Similar considerations apply to the case k = 0 when x?0 < x1(t), or to the case k = sω
when x?sω+1 > xsω(t).

This means that the part R̊
Ik(ω)
d of the boundary ∂(Rω), being approached via the path

Pt,k := Pt ⊂ Rωd as above, acquires an orientation that differs from its θIk(ω)-induced
orientation by the factor bk = (−1)k. However, in general, this factor is not the incidence

coefficient of Rωd with R
Ik(ω)
d ! We already mentioned that several sheets of Rωd can join

along R̊
Ik(ω)
d implying that topologically the germ of Rωd along R̊

Ik(ω)
d is an open book. This

fact is consistent with formula (2.3), where Ik(ω) could be equal to Il(ω) for some l 6= k.
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Thus we have shown that, (E2, d2)-term of the H̄∗-homology spectral sequence, associ-
ated to the filtration {Fk(P̄Θ

d )}k of the space P̄Θ
d , coincides with the differential complex

complex ∂ : Z[Θ]→ Z[Θ], defined by the formula (2.3). �

As a first application of Proposition 2.5 we will compute PcΘ
d = Pd \PΘ

d = Sd \P̄Θ
d . This

computation extends part (1) in Theorem 2.7 of [SW] which deals with closed subposets
Θ whose cover relations only involve merging operations.

Corollary 2.6. Let Θ ⊂ Ω〈d] be a closed subposet. Then, by the Alexander duality, for
any j ∈ {0, 1, . . . , d− 1},

Hj(PcΘ
d ;Z) ≈ Hd−j−1(∂ : Z[Θ]→ Z[Θ])(2.5)

:=
ker{∂ : Z[Θ|∼|′=j+1]→ Z[Θ|∼|′=j+2]}

im{∂ : Z[Θ|∼|′=j]→ Z[Θ|∼|′=j+1]}
.

Observe that our choice of the lower index d− j − 1 in the formulation of Corollary 2.6
for the homology of the differential complex (Z[Θ], ∂) differs from the standard indexing
used in the homological algebra.

Proof. The result follows by a combination of the Alexander duality

Hj(PcΘ
d ;Z) ≈ H̄d−j−1(P̄Θ

d ;Z)

with Proposition 2.5. In particular, with the collapse of the spectral sequence of the
filtration {F •k (P̄Θ

d )}k at the E3-term, validates formula (2.5). �

Given two polynomials, P(t) and Q(t), we write “P(t) � Q(t)” if the formal t-power
series

(
P(t)− Q(t)

)
(1 + t)−1 is a polynomial and all its coefficients are nonnegative.

Corollary 2.7. Let Θ ⊂ Ω〈d] be a closed subposet. Consider the t-polynomial

P(Z[Θ],∂)(t) :=
d−1∑
j=0

∣∣Θ|∼|′=j+1

∣∣ tj.
Then:

• rk{Hj(PcΘ
d ;Z)} ≤

∣∣Θ|∼|′=j+1

∣∣;
• the Poincaré polynomial PPcΘ

d
(t) of the space P cΘ

d satisfies the relation

PPcΘ
d

(t) � P(Z[Θ],∂)(t);

• the Euler characteristic of P cΘ
d is given by the formula

χ(P cΘ
d ) = ±

d−1∑
j=0

(−1)j
∣∣Θ|∼|′=j+1

∣∣.
Proof. The claim follows from a well-known observation that the Poincaré polynomial
of a finite graded differential complex is greater than or equal to (“ � ”) the Poincaré
polynomial of its graded homology, see e.g. [F, Lemma 1.3]. �
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3. Crash course in discrete Morse theory

The proofs of a number of our (co)homological results are based on discrete Morse theory.
For that reason we introduce its basics in a short section. We use and describe discrete
Morse theory for algebraic complexes as developed in [Sk, JW]. This theory is an adaption
of discrete Morse theory for cell complexes by Forman [Fo] to an algebraic setting.

Let R be a ring and

F := {· · · d+1−−→ Fi
di−→ · · · d1−→ F0

d0−→ 0}
be a chain complex of free R-modules of finite ranks. Choose an R-basis Bi for Fi for all i.
We build a directed graph G = (B,E) whose vertices are labeled by the elements of the set
B =

⋃
i≥0Bi. The edge set E of G consists of the edges [b → b′], where b ∈ Bi, b

′ ∈ Bi−1

and b′ appears in the support of the differential ∂ib with a coefficient which is invertible in
the coefficient ring. In particular, the coefficient must be nonzero.

Example 3.1. In all our applications we have the following situation. Let Θ ⊆ Ω be a closed
subposet and as above, given a positive integer d ≥ 0, set Θ〈d] := Θ ∩Ω〈d]. Let F be the
chain complex of Z-modules Fi, freely generated by ω ∈ Θ with |ω|′ = i. The differential
acting on F will be the differential ∂ of Z[Θ〈d]] from Proposition 2.5. (Additionally, by

Proposition 2.5, we know that H̃i(P̄Θ
d ;Z) ∼= Hi(F)).

We define the graph G = (B,E) corresponding to this complex as follows. It vertex set
B coincides with Θ ∩ Ω〈d] where Bi = {ω ∈ Θ〈d] | |ω|′ = i}. The edge set E consists of
edges [ω → ω′] corresponding to the cover relations ω � ω′ in Θ〈d] for which the coefficient
of ω in ∂ω′ is ±1. Note that if ω � ω′ is a cover relation, then the coefficient of ω in ∂ω′

can only be zero if ω arises from ω′ by insertion of a 2 in a block of an odd number of 2’s.
In all other cases it is ±1.

To move further, we need some graph theoretic notation.

Definition 3.2. Given a graph G = (B,E), we say that M ⊆ E is a matching, if no vertex
b ∈ B appears in two different edges belonging to M .

Given the graph G = (B,E), we say that M ⊆ E is an acyclic matching if

• M is a matching;
• the graph

GM =
(
B, (E \M) ∪ {[b′ → b]

∣∣ [b→ b′] ∈M}
)

where the directions of the edges from M are reversed, contains no directed cycles.

Given an acyclic matching M , we call b ∈ B critical with respect to M , if b is not
contained in an edge from M .

The following remark is well known.

Remark 3.3. Let G = (B,E) be the directed graph associated to a chain complex of free
R-modules with basis B. If M ⊆ E is a matching such that GM contains a directed cycle,
then for each cycle in GM , there is an index i such that the cycle contains only vertices
from Bi and Bi+1.
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Proof. On a directed cycle there cannot be two consecutive edges that increase the homo-
logical dimensions since both edges would have to come from the matching M . Thus an
edge increasing the homological dimension by 1 is always followed by an edge decreasing
the homological dimension by 1. It follows that if i is the maximal homological dimension
of a vertex b ∈ B appearing in a cycle then there cannot be a vertex b′ ∈ B in the cycle of
homological dimension < i− 1. The assertion follows. �

Finally we come to the result that makes discrete Morse theory useful for our purposes
(see for example [JW, Theorem 2.2]).

Proposition 3.4. Let F :=
{
· · · → Fi

∂i→ · · · ∂1→ F0 → 0
}

be a chain complex of finitely
generated free R-modules. Let G = (B,E) be the directed graph associated to F after
choosing bases Bi for Fi and setting B =

⋃
iBi. For an acyclic matching M on G, there

exists a chain complex

FM :=
{
· · · → FM

i
∂i→ · · · ∂1→ FM

0 → 0
}

of free R-modules, where FM
i is a free R-module, generated by the set

B′i = {b ∈ Bi | b critical with respect to M}

such that Hi(F) ∼= Hi(FM). If for any i and any b ∈ B′i, there are no directed paths in GM

to an element of B′i−1 then for all i, we have that Hi(F) is the free R-module generated by
B′i.

4. Homotopy types of (d− k)-skeleta of Pd
Observe that for Θ = Ω〈d], the one-point compactification P̄Θ

d = P̄d is a d-dimensional
sphere. Thus, by Corollary 2.6, all the homology of the complex ∂ : Z[Ω〈d]] → Z[Ω〈d]] is
trivial, except for the top dimension d, in which it equals Z. In this section we show that
this observation admits a generalization to the situation when Θ is the (d− k)-skeleton of
our celluation of the space of real polynomials of degree d, i.e. Θ = Ω|∼|′≥k, k ≥ 1.

We will actually consider a more general situation. For that, let Ω
(q)

|∼|′≥k be the set of all

ω ∈ Ω with |ω|′ ≥ k and |ω| ≥ q. Note that, for Θ = Ω
(0)

|∼|′≥k = Ω|∼|′≥k we have that P̄Θ
d is

the full (d− k)-skeleton of Pd.
To formulate our next result, we need the following invariant. For a composition ω =

(ω1, . . . , ω`), we set t(ω) := i if there is an 1 ≤ i < ` such that ω1 = · · · = ωi−1 = 1, ωi = 2
and t(ω) = +∞ otherwise.

Now, for k ≥ 1 and d ≥ q ≥ 0, q ≡ d mod 2, let us introduce the nonnegative integer
A(k, d, q) by

A(k, d, q) :=∣∣∣{ω = (ω1, . . . , ω`)
∣∣ |ω|′ = k,

q ≤ |ω| ≤ d,

|ω| ≡ d mod 2,

t(ω) = +∞
}∣∣∣.



18 G. KATZ, B. SHAPIRO, AND V. WELKER

Proposition 4.1. Fix 1 ≤ k < d and q ≥ 0 such that q ≡ d mod 2. Then the one-point

compactification P̄
Ω

(q)

|∼|′≥k

d has the homotopy type of a wedge of (d−k)-dimensional spheres.
The number of spheres in the wedge equals A(k, d, q).

The proof of the proposition is based on discrete Morse theory. (Consult § 3 for defini-
tions and the basic setup). Since this is our first application of discrete Morse theory, we
will carefully guide the reader and provide all the details.

Proof. Let G = (B,E) be the directed graph associated to B = Ω
(q)
|∼|′≥k ∩ Ω〈d] in Ex-

ample 3.1. Note that Ω
(q)
|∼|′≥k ∩ Ω〈d] is a closed subposet of Ω〈d]. Next we define an

acyclic matching M on G. In M we assemble the edges [γ → ω], where ω = (ω1, . . . , ω`),
i = t(γ) ≤ ` <∞ and

γ = (1 = ω1, 1 = . . . , 1 = ωi−1, 2, ωi − 2, ωi+1, . . . , ω`).

In particular, we must have ωi > 2, |γ|′ = |ω|′ + 1 ≥ k, |γ| = |ω| and γ � ω, Thus the
coefficient of ω in the differential of γ in ∂ω is ±1 (and, in particular, is non-vanishing).
Thus we have [γ → ω] in E.

We claim that M is an acyclic matching on the graph G. Indeed,

• (matching) This is obvious from the definition.
• (acyclic) Clearly, there can be an edge [γ → ω] in M only if t(ω) =∞.

We prove acyclicity by contradiction. Assume that we have a directed cycle
in GM . By Remark 3.3 it follows that along the directed cycles the edge from
E \M and reversed edges from M alternate. Hence the cycle must contain an edge
[ω → γ], where [γ → ω] ∈M . By definition of M we must have t(γ) < t(ω) =∞.

Now consider a covering ω′ � γ where ω′ 6= ω. We need to treat the following
cases:

– if ω′ arises from γ by inserting a 2, then t(ω′) ≤ t(γ) <∞. But then we cannot
continue the directed cycle at ω′ since there is no edge [γ′ → ω′] in M .

– if ω′ arises from γ by merging two blocks, then we have to distinguish two
subcases. If the 2 at position t(γ) is merged with the 1 to its left then t(ω′) =
∞. But then the unique γ′ with [γ′ → ω′] ∈ M arise from ω′ by splitting the
just merged 3 into a 2 and a 1 to its right. Thus t(γ′) = t(γ)− 1. In all other
cases either ω = ω′ or t(ω′) <∞ and there is no edge [γ′ → ω′] in M .

Thus we can arrange the composition visited on a directed cycle in such a way that
the t-values alternate between +∞ and a strictly decreasing sequence of numbers.
This implies that the cycle cannot be closed, a contradiction implying that the
matching is acyclic.

Next we determine the critical cells of M . Assume that ω = (ω1, . . . , ω`) is not matched
by M . There are two possible subcases to consider:

• i = t(ω) <∞
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Then we must have ω = (1, . . . , 1, 2, ωi+1, . . . , ω`) for some ` > i and ω is matched
with ω = (1, . . . , 1, 2 + ωi+1, ωi+2, . . . , ω`). Thus there are no critical cells ω with
t(ω) <∞.
• t(ω) =∞

In this case, either ω = (1, . . . , 1), (1, . . . , 1, 2) or ω = (1, . . . , 1, w, . . .) for some
w > 2. In the first situation, we must have k = 0 which we have excluded. In
the second situation, we have k = 1. In the third situation ω is matched with
(1, . . . , 1, 2, w − 2, . . .) unless |ω|′ = k. By w > 2 it follows that this can only be
the case when k > 1.

Considering the cases, it follows that the number of unmatched compositions is A(d, k, q).
In addition, all unmatched compositions have reduced norm equal to k. By Proposition 3.4
all of them contribute one copy of Z to homology in dimension d − k. The homological
isomorphism in Proposition 4.1 now follows.

Using the fact that all the critical cells have reduced norm equal to k, it follows that

they are maximal cells in the CW-complex P̄
Ω|∼|′≥k

d . Hence we can remove them and
retain the CW-structure on the remaining space X. By the above arguments the CW-
complex X has an acyclic matching with no critical cells. Hence by Proposition 3.4 it is

acyclic. It follows from the long exact sequence of the pair (P̄
Ω|∼|′≥k

d , X) that the projection

p : P̄
Ω|∼|′≥k

d → P̄
Ω|∼|′≥k

d /X induces an isomorphism in homology.

For the maximal possible k = d− 1, the poset Ω|∼|′≥d−1 consists of a single critical cell

ω = (d) and the stratum P̄
Ω|∼|′≥d−1

d is a circle S1. So in this case, the map p reduces to a
homeomorphism of two circles.

For k ≤ d−2, it follows from Theorem 2.2. of [KSW1] that P̄
Ω|∼|′≥d−1

d is simply connected.
By the Hurewicz theorem, p is a homotopy equivalence, which concludes the proof. �

Note that for q = d we have that P̄
Ω

(q)

|∼|′≥k

d is the full (d− k)-skeleton of P̄d.

Corollary 4.2. Let 1 ≤ k < d, 0 ≤ q ≤ d, q = d mod 2, and set Θ = Ω
(q)

|∼|′≥k. Then

H̄j(Pc Θ
d ;Z) ∼=

{
0 for j 6= k − 1,

ZA(k,d,q) for j = k − 1.

Next we consider a subposet of Ω
(0)

|∼|′≥k. Let Ω 6=1

|∼|′≥k be the set of all ω = (ω1, . . . , ωr) ∈ Ω

such that |ω|′ ≥ k and ωi 6= 1 for i = 1, . . . , r. This poset will become crucial in the study

of stabilizazion results in § 6. Of similar use as t(ω) for the analysis of Ω
(q)

|∼|′≥k is the

following invariant.
For a composition ω = (ω1, . . . , ω`), we set s(ω) := i if there is an 1 ≤ i < ` such that

ω1 = · · · = ωi−1 = 3, ωi = 2 and t(ω) = +∞ otherwise.
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Proposition 4.3. Fix 1 ≤ k ≤ d. Then the one-point compactification P̄
Ω 6=1

|∼|′≥k

d has the
homotopy type of a wedge of (d− k)-spheres. The spheres are indexed by the compositions

ω ∈ Ω 6=1

|∼|′≥k such that |ω|′ = k and of the following types:

(i) ω = (3, . . . , 3, 2),
(ii) ω = (3, . . . , 3, w, . . .) for some w > 3.

Proof. Except for some technicalities, the proof proceeds along the lines of the proof of

Proposition 4.1 where s()̃ assumes the role of t()̃ and the role of parts 1 is now played
by parts 3. We again use discrete Morse theory. Let G = (B,E) be the directed graph

associated to B = Ω 6=1
|∼|′≥k ∩Ω〈d]. Again Ω6=1

|∼|′≥k ∩Ω〈d] is a closed subposet of Ω〈d]. Next we

define an acyclic matching M on G. In M we assemble the edges [γ → ω] of the following
two types:

(Type I)

ω = (ω1, . . . , ω`) ∈ Ω 6=1
|∼|′≥k ∩ Ω〈d] and γ = (ω1, . . . , ωi−1, 2, ωi − 2, ωi+1, . . . , ω`),

where ω1, . . . , ωi−1 = 3, ωi > 3, and |γ|′ = |ω|′ − 1 ≥ k.

(Type II) ω = (3, . . . , 3︸ ︷︷ ︸
r

, 2) and γ = (3, . . . , 3︸ ︷︷ ︸
r

).

Note that for both types, we have γ ≺ ω, |γ|′ = |ω|′ + 1 ≥ k and the coefficient of ω in

∂γ is ±1 (and is non-vanishing). In particular, if γ ∈ Ω6=1
|∼|′≥k then [γ → ω] in E. In type

I, we also have |γ| = |ω|.
We again claim that M is an acyclic matching on the graph G. Indeed,

• (matching) This is obvious from the definition.
• (acyclic) Clearly, there is an edge [γ → ω] in M then s(ω) =∞.

We prove acyclicity by contradiction. Assume that we have a directed cycle in
GM . Any directed cycle must contain an edge [ω → γ], where [γ → ω] ∈ M . If
[γ → ω] is of type II then the directed cycle must involve an edge [γ′ → ω] ∈ E for
some γ′ 6= γ. But then ω arises from γ′ be merging or insertion of a 2. If it arises
by inserting a 2 then we must have γ′ = γ and if it arises from a merging then one
of the merged parts has to be a 1, which is excluded. It follows that a directed
cycle cannot involve [ω → γ] for some [γ → ω] ∈M of type II.

Thus the directed cycle only involves edges from M of type I. By definition of
type I we must have s(γ) < s(ω) =∞.

Now consider a covering γ � ω′ where ω′ 6= ω. We need to treat the following
cases:

– if ω′ arises from γ by inserting a 2, then s(ω′) ≤ s(γ) < ∞. But then we
cannot continue the directed cycle at ω′ since there is no edge [γ′ → ω′] in M .

– if ω′ arises from γ by merging two blocks, then we have to distinguish two
subcases. If the 2 at position t(γ) is merged with a 3 to its left then t(ω′) =∞.
But then the unique γ′ with [γ′ → ω′] ∈M arises from ω′ by splitting the just
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merged 3 into a 2 and a 1 to its right. Thus s(γ′) = s(γ)−1. In all other cases
either ω = ω′ or s(ω′) <∞ and there is no edge [γ′ → ω′] in M .

Again it follows that we can arrange the composition visited on a directed cycle
in such a way that the s-values alternate between +∞ and a strictly decreasing
sequence of numbers. This implies that the cycle cannot be closed, a contradiction.

Next we determine the critical cells. Assume that ω = (ω1, . . . , ω`) is not matched by
M .

• s(ω) < ∞ Then we must have ω = (3, . . . , 3, 2, ωi+1, . . . , ω`) for some ` > i and ω
is matched with (3, . . . , 3, 2 + ωi+1, ωi+2, . . . , ω`). Thus there are no critical cells ω
with s(ω) <∞.
• s(ω) =∞

In this case, either ω = (3, . . . , 3), (3, . . . , 3, 2) or ω = (3, . . . , 3, w, . . .) for some
w > 3. (3, . . . , 3︸ ︷︷ ︸

r

) is matched with (3, . . . , 3︸ ︷︷ ︸
r

, 2) and (3, . . . , 3, 2) is unmatched if and

only if |(3, . . . , 3, 2)| = k. In the third situation ω is matched with (3, . . . , 3, 2, w −
2, . . .) unless |ω|′ = k.

Thus unmatched compositions are of codimension k and by Proposition 3.4 each con-
tributes one copy of Z to homology in the respective dimension. The homological isomor-
phism in Proposition 4.3 now follows.

All critical cells are maximal in the CW-complex P̄
Ω 6=1

|∼|′≥k

d . Hence we can remove them
and retain the CW-structure on the remaining space X. By the arguments above the
CW-complex X has an acyclic matching with no critical cells. Hence by Proposition 3.4

it is acyclic. It follows from the long exact sequence of the pair (P̄
Ω 6=1

|∼|′≥k

d , X) that the

projection p : P̄
Ω 6=1

|∼|′≥k

d → P̄
Ω|∼|′≥k

d /X induces an isomorphism in homology.

For the maximal possible k = d− 1, the poset Ω6=1

|∼|′≥d−1
consists of a single critical cell

ω = (d), unless d = 1 and the stratum P̄
Ω|∼|′≥d−1

d is a circle S1. So in this case, the map p
reduces to a homeomorphism of two circles.

For k ≤ d− 2, we know that P̄
Ω 6=1

|∼|′≥k

d is simply connected by [KSW1, Theorem 2.2]. By
the Hurewicz theorem, p is a homotopy equivalence, which concludes the proof. �

The following corollary is an immediate consequence of Proposition 4.3.

Corollary 4.4. Fix 1 ≤ k ≤ d. Then the one-point compactification H̄i(P̄
Ω6=1

|∼|′≥k

d ,Z) = 0
for i < k.

5. Homology and the homotopy type of P̄〈ω〉d for a single composition ω

The following detailed guess is based on our extensive computer experiments for poly-
nomials of degrees up to 14.
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Conjecture 5.1. (i) For any single pattern ω with an entry exceeding 2 and any d ≥
|ω| of the same parity as |ω|, the one-point compactification P̄〈ω〉d is contractible or
homotopy equivalent to a sphere of a certain dimension.

(ii) for a given d, all the strata which are non-contractible correspond to compositions
ω whose entries can only be 1, 2 or 3 with the only exception. Namely, for d = 8,

the stratum P̄〈(4)〉
d is homotopy equivalent to S3;

(iii) for a given d, all the strata of codimension at least 1 which are non-contractible
satisfy the condition |w| = d− 4 with one exception. Namely, if d is even then the

stratum P̄〈(2)〉
d is homotopy equivalent (and in fact homemorphic) to Sd−1;

(iv) for a given d, among the top-dimensional strata, i.e., dim P̄〈ω〉d = d in which case ω
contains only 1’s, the strata with the minimal and maximal possible number of real
roots are contractible while the remaning

[
d−2

2

]
top-dimensional strata are homotopy

equivalent to Sd−1.

(v) for a given d, if a stratum P̄〈ω〉d is non-contractible then neither the first nor the
last entry of ω can be a 2 with the same exception as above. Namely, if d is even

then the stratum P̄〈(2)〉
d is homotopy equivalent to Sd−1. In particular, for a given

d, among the strata of codimension 1, i.e. ω contains a single 2 and some number
of 1’s which also satisfy the necessary condition |w| = d− 4, see (iii) then for any
ω of the latter form in which the only included 2 is not in the first nor in the last

positions the stratum P̄〈ω〉d is homeomorphic to Sd−5. In the remaining two cases,

i.e. when ω either starts or ends with 2, P̄〈ω〉d is contractible. (Notice the special

case P̄〈(2)〉
d which appears for d = 6.)

(vi) for a given d, among the strata of codimension 2 satisfying the necessary condition
|w| = d− 4, i.e. ω either contains a single 3 and (d− 7) 1’s or two 2’s and (d− 8)
1’s , then a) every stratum with a single 3 is homotopy equivalent to Sd−4.

(vii) More to come...

Remark 5.2. Recall that by Theorem 2.2 of [KSW1] for any closed poset Θ ⊆ Ω〈d], the

fundamental group π1(P̄Θ
d ) is trivial unless Θ = {(d)} in which case P̄〈(d)〉

d ) ' S1. Therefore
in all cases in which we can prove the triviality of (the reduced) homology H̄∗(P̄Θ

d ,Z) we
also obtain that the 1-point compactification P̄Θ

d itself is contractible. Additionally, in all
cases when we can show that homology with integer coefficients live in single dimension
bigger than one and the fundamental group is trivial we get the following. This is probably
folklore, and a direct proof could be given by using the classical theorems of Hurewicz and
JHC Whitehead.

Instead of trying to do that, let us mention a much more general result, due to David
Anick (1984). The second author heard of this result from Matthias Kreck in Nov 1999
while on a RiP at MFO with Stefan Papadima (Kreck was director of MFO at the time),
and it appears in the paper we wrote then (https://doi.org/10.1006/aima.2001.2023), see
[PaSu] in Remark 2.14. Namely:
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Every simply connected, finite-type CW-complex with no torsion in integral homology
admits a minimal cell structure (that is, a cell structure with the exact number of cells
predicted by the Betti numbers).

In the situation from your question, assuming K is of finite type (ie, has finitely many
cells in each dimension), and H∗(K,Z) ∼= H∗(S

k,Z), then Anick’s result implies that K is
homotopy equivalent to a cell complex with a single 0-cell and a single k-cell, and that is
Sk.

5.1. Spectral sequence of the double complex (Z[Θ], ∂I, ∂M) and its application

to calculation of H∗(P̄〈ω〉d ,Z). By Theorem 2.2 and Proposition 2.5 for any closed poset
Θ ⊂ Ω〈d], the combinatorial differential complex (Z[Θ], ∂) where ∂ = ∂M + ∂I calculates
H̄∗(P̄Θ

d ,Z). Since by Lemma 2.3, ∂M and ∂I are anti-commuting differentials, one gets a
double complex (Z[Θ], ∂I, ∂M) and one can apply one or both of the spectral sequences of
this double complex to calculate the homology of (Z[Θ], ∂) and therefore H̄∗(P̄Θ

d ,Z).
As we mentioned above, for any composition ω ∈ Ω〈d], the differential ∂M preserves

κ(ω) and decreases ν(ω) by 1 while ∂I preserves ν(ω) and decreases κ(ω) by 1 where

κ(ω) := d−|ω|
2

, ν(ω) := d−|ω|
2

+ sω and sω stands for the cardinality of the support of a
composition ω. The sum κ(ω) + ν(ω) equals the dimension of the stratum Pωd ⊂ Pd.

For any composition ω ∈ Ω〈d], denote by 〈ω〉M ⊂ Ω〈d] the set of compositions ob-
tained by applying to ω the merge operation one or several times. We include ω in
〈ω〉M as well. For example, for ω = (1, 3, 2) and d = 8, 〈ω〉M consists of 4 composi-
tions 〈ω〉M = ((1, 3, 2); (4, 2); ((1, 5); (6)). Obviously, for any d ≥ |ω| and d ≡ |ω| mod 2,
〈ω〉M is independent of d. Alternatively, one can describe 〈ω〉M as the lower interval of ω
in Ω〈d] in the partial order induced by merging. The next statement is trivial.

Lemma 5.3. In the above notation, ∂M acts on 〈ω〉M and the complex (〈ω〉M, ∂M) is acyclic.
In fact, this complex is isomorphic to the standard boundary complex calculating the reduced
homology of a simplex of dimension sω − 2.

Similarly, for any composition ω ∈ Ω〈d], denote by 〈ω〉I,d ⊂ Ω〈d] the set of compositions
obtained by applying to ω the insertion operation one or several times. Observe that we
only allow to insert the number of 2’s such that the norm of the obtained composition does
not exceed d. As above, we include ω in 〈ω〉I,d. For example, for ω = (1, 3, 2) and d = 8,
then 〈ω〉I,8 consists of 4 compositions 〈ω〉M = ((1, 3, 2); (2, 1, 3, 2); ((1, 2, 3, 2); (1, 3, 2, 2)).
If ω = (1, 3, 2) and d = 10, then 〈ω〉I,10 consists of 10 compositions 〈ω〉I,10 = 〈ω〉I,8 ∪
((2, 2, 1, 3, 2); (2, 1, 2, 3, 2); (2, 1, 3, 2, 2); (1, 2, 2, 3, 2); (1, 2, 3, 2, 2), (1, 3, 2, 2, 2)). If ω = (1, 3, 2)
and d = 12, then 〈ω〉I,12 consists of 20 compositions 〈ω〉I,12 = 〈ω〉I,10 ∪ ((2, 2, 2, 1, 3, 2);
(2, 2, 1, 2, 3, 2); (2, 2, 1, 3, 2, 2); (2, 1, 2, 2, 3, 2); (2, 1, 2, 3, 2, 2); (2, 1, 3, 2, 2, 2); (1, 2, 2, 2, 3, 2);
(1, 2, 2, 3, 2, 2); (1, 2, 3, 2, 2, 2); (1, 3, 2, 2, 2, 2)).

Proposition 5.4. In the above notation, ∂I acts on 〈ω〉I,d and the complex (〈ω〉I, ∂I) has
the following homology. If ∂(ω) 6= 0, then the complex is torsion-free and all homology is
concentrated in the bottom dimension. If ∂(ω) = 0 then homology is torsion-free and has
a copy of Z in the top dimension and the rest in the bottom dimension. CHECK!!!
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Definition 5.5. Given a composition ω = (ω1, ω2, . . . , ωs) we associate to it its symbol
S(ω) = (x1, x1, . . . , xs) where each xj attains two values 2 and ” ”. Example, (2, 3, 1, 2, 2, 5)
corresponds (2, , , 2, 2, ) or, equivalently, (1, , , 2, ) where the numbers count
the lengths of the sequences of consecutive 2’s.

Remark 5.6. Given a composition ω, ∂I(ω) = 0 if and only if ω starts and ends with odd
numbers of 2’s and any two consecutive non-two entries are separated by an odd number
of 2’s. In other words, the second type of symbol starts and ends with an even number
and each second entry of it is an even number. A composition ω′ is not in the image of ∂I
(CLARIFY) if and only if it contains non-increasable sequences of 2’s of even length.

We start with the following claim.

Lemma 5.7. In the above notation, if ∂I(ω) 6= 0 then (〈ω〉I, ∂I) is acyclic except for the
homology in the bottom dimension which equals Z|χ| where χ is the Euler characteristic of
〈ω〉I, see below.

Proof. We will use the technique of discrete Morse theory and will find a matching of all
compositions of neighbouring levels except for some elements of the bottom level. We
will construct our matching by using the simple-minded procedure starting from with
the unique composition ω lying on the top level. Assume that we have constructed our
matching for all compositions of level i − 1. Now, for each composition ω′ of the level i
which were not previously matched with some composition from the level i− 1 we choose
the composition from the level i + 1 which is obtained by insertion of 2 in the leftmost
possible position of ω′ with an even number of 2’s, i.e. the corresponding arrow does not
vanish. See example below. We have to show that this procedure creates a matching for
all compositions of all levels from the top to j− 1 and that the ”inversion of the directions
of the arrows does not create cycles”.

Base of induction. Indeed, assume that ∂I(ω) 6= 0, i.e. ω contains at least one group of 2’s
of even length (including possibly an empty group). Then we match ω to the composition
obtained by inserting 2 in the leftmost possible position. Let us first discuss the case
when ω contains no 2’s. Then in the above procedure each composition which is not on
the bottom level and which starts with an even group of 2’s (possibly empty) will be the
starting vertex of an edge of the above matching and each composition which starts with
an odd group of 2’s will be the ending vertex of an edge of the above matching.

Next consider the case when ω contains some even group of 2’s (possibly empty). If ω
starts with an even group of 2’s (possibly empty) then exactly the same argument as above
applies. Analogously, we can inserts 2’s in this group and everything works out. Explain
this better...

Finally, consider the case when ω contains only odd groups of 2’s. BLA
�

Remark 5.8. If sω = s and d−|ω|
2

= j then

|χ| =
(
s+ j

j

)
−
(
s+ j − 1

j − 1

)
+

(
s+ j − 2

j − 2

)
+ · · ·+ (−1)j+1.
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5.2. Proving Conjecture 5.1.

Proposition 5.9. The following statements are true.

(1) If d is even and ω = (∅) then P̄〈ω〉d is contractible.

(2) If d > 2 is even and ω = (2) then P̄〈ω〉d ' Sd−1 (resp. Sd−2 in the reduced setting).

(3) If d is even and ω = (1, 1, . . . , 1)︸ ︷︷ ︸
` ones

where 1 < ` < d, ` ≡ d mod 2 then P̄〈ω〉d ' Sd−1 (resp.

Sd−2 in the reduced setting).

(4) If d is odd and ω = (1, 1, . . . , 1)︸ ︷︷ ︸
` ones

where 1 < ` < d, ` ≡ d mod 2 then P̄〈ω〉d ' Sd−1 (resp.

Sd−2 in the reduced setting).

Proof. To prove (1) notice that for d even, R̊∅d coincides with the set of monic positive

polynomials of even degree d. This set is open and convex in Pd. Its closure P〈∅〉d coincides
with the convex closed set of monic non-negative polynomials which is homeomorphic to

a closed halfspace in Pd. Thus its one-point compactification P̄〈∅〉d is contractible.

To settle (2) notice that for d even, P〈(2)〉
d coincides with the set of non-negative polynomi-

als with at least one real root, i.e. it is the boundary of P〈∅〉d . Thus P〈(2)〉
d is homeomorphic

to a hyperplane in Pd implying that P̄〈∅〉d is homeomorphic to Sd−1.

To settle (3) notice that for d even, P〈ω〉d with ω = (1, 1, . . . , 1)︸ ︷︷ ︸
` ones

coincides with the set of

all monic polynomials of degree d with at least ` real zeros counting multiplicity of which
at most ` are simple....

Analogously in case (4) for d odd, P〈ω〉d with ω = (1, 1, . . . , 1)︸ ︷︷ ︸
` ones

coincides with the set of

all monic polynomials of degree d with at least ` real zeros counting multiplicity of which
at most ` are simple....

�

5.3. Volkmar’s results on P̄Θ
d . The next result provides a substantial support for the

validity of Conjecture 5.1.

Proposition 5.10. Let ω be a composition and d ≥ |ω| be a positive integer of the same
parity as |ω|. If ω contains at least two distinct entries and no entry ≤ 2, then the one-

point compactification P̄〈ω〉d is contractible. In particular, H̄∗(Pc〈ω〉
d ;Z) = 0. If ω = (`) for

some 2 < ` ≤ d, then P̄〈ω〉d
∼= Sd−`+1.

Proof. If ω = (d) for some d ≥ 2, then P̄〈ω〉d consists of a single open 1-cell R̊ω
d and a 0-cell

at infinity. Obviously, P̄〈ω〉d is homeomorphic to S1.

Now assume that ω contains at least two entries and no entry ≤ 2. We will show in

these cases that the reduced homology of P̄〈ω〉d is trivial. By Theorem 2.2. of [KSW1] we

know that P̄〈ω〉d is simply connected in this situation. If we can show that the reduced
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homology is trivial, then together with the latter fact this implies that P̄〈ω〉d is contractible.

The assertion about H̄∗(Pc〈ω〉
d ;Z) follows by the Alexander duality.

To verify homological triviality of P̄〈ω〉d we need to consider several cases. We do so by
exhibiting an acyclic matching on 〈ω〉d which covers all its elements.

If d = |ω| then 〈ω〉d, ordered by �, is isomorphic to a Boolean lattice of subsets of a
finite set. Since ω contains at least two entries, the Boolean lattice is the lattice of subsets
of a set of size at least one, or equivalently, the face lattice (including the empty face) of
a full r-simplex for some r ≥ 0, where r = sup(ω) − 1 = |ω| − |ω|′ − 1. Since there is no
insertion of a 2, it follows that the coefficients of the differential in (2.3), corresponding to
the cover relations in the poset 〈ω〉d, are nonzero. Hence any cover relation can be part
of a matching. It is well known that Boolean lattices have a perfect acyclic matching, i.e.
an acyclic matching covering all elements of the Boolean lattice. In the lattice of subsets
of {1, . . . , n} take all edges (A→ A \ {n}) for subsets A containing n. It is easily checked

that this is an acyclic matching. It follows that P̄〈ω〉d has trivial homology.
Assume d ≥ |ω| + 2. Consider the following matching M1 on the graph of 〈ω〉d. Let

ω′ = (ω′1, . . . , ω
′
r) ∈ 〈ω〉d. Let j(ω) be the minimal index such that ω′j(ω) 6= 2. By the

assumptions on ω we have 1 ≤ j(ω) ≤ r.
For ω′ ∈ 〈ω〉 such that |ω| < d and j(ω) is odd set

ω′′ := (2, ω′1, . . . , ω
′
r) ∈ 〈ω〉d.

By the choice of the parity of j(ω), we have that the edge [ω′′ → ω′] is in the graph of
〈ω〉d.

If ω′ ∈ 〈ω〉 is not in one of the edges constructed before then either |ω′| = d and
j(ω′) is odd. If I(ω′) is nonempty, we choose i to be minimal in I(ω′) and add the edge
[ω′′ → ω′], corresponding to that choice of i, to M1. Note that, by this construction, we
have I(ω′′) = ∅. Consider the case when I(ω′) is empty and there is an 1 ≤ i ≤ r− 1 such
that ω′i = 2. Let i be minimal with that property. Set ω′′ = (ω′1, . . . , ωi−1, 2+ω′i+1, . . . , ω

′
r).

Then [ω′ → ω′′] is in M1.
This shows that, so far, we have defined a matching M1 on 〈ω〉d.
The edges fromM1 match all compositions, except for those compositions ω′ = (ω′1, . . . , ω

′
r),

for which the following holds

• if ω′i = 2 then i = r and
• for every i such that ωi > 2, replacing ω′i by by 2 and ωi − 2 yields a composition

not contained in 〈ω〉d.
We claim that if ω′ ∈ 〈ω〉d is not matched by M1 then |ω′| = |ω| or |ω′| = |ω|+ 2.
Indeed if, |ω′| ≥ |ω|+ 4 then on the way from ω to ω′ at least two 2s have been inserted.

Thus even if ω′r = 2 then either one of ω′1, . . . , ω
′
r−1 is a 2 that can be removed while staying

inside of 〈ω〉d or for some i the block ω′i > 2 can be split into 2 and ω′i − 2.
Conversely, consider any composition ω′ = (ω′1, . . . , ω

′
r) in 〈ω〉d for which |ω′| = |ω|.

Since ω contains no blocks of size ≤ 2, so does ω′ and for the same reason no 2 can be split
off either. It follows that ω′ is unmatched by M1.
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Next consider a composition ω′ in 〈ω〉d with |ω′| = |ω|+ 2. Then on the way from ω to
ω′ a single 2 must have been inserted. By our assumptions on ω this is the only possibility
a 2 can arise in ω′. If this block 2 is still indeed still present in ω′ then ω′ is unmatched if
and only if the 2 is the rightmost block. If the 2 has disappeared then it must have been
merged and can be split off. In this case ω′ is matched by M1.

Now we define a matching M2 covering the composition unmatched by M1. In M2 we
collect the edges [ω′ → ω′′] where ω′ is a composition with |ω| = |ω′| and ω′′ arise from ω′

be adding a 2 as the rightmost block. Since ω does not contain blocks of size ≤ 2 it follows
that ω′ does not contain a 2. In particular, ω′′ has nonzero coefficient in the differential of
ω′.

By construction and the arguments above M2 is a matching that does not touch any
composition from an edge in M1. It follows that M = M1 ∪M2 is a matching. Since M2

matches all compositions not matched by M1 it follows that all composition in 〈ω〉d are
matched by M .

It remains to be show that this matching is acyclic. Assume there is a directed cycle
ω1 → ω2 · · · → ω2`+1 = ω1. We can assume that [ω1 → ω2] is an edge such that [ω2 →
ω1] ∈M . Then, since directed cycles alternate between two homological degrees, it follows
that in the edges [ω2j → ω2j+1], j = 1, . . . , `, either two blocks are merged or a 2 is inserted.
In the first case, |ω2j| = |ω2j+1|. In the second case, |ω2j+1| = |ω2j| + 2. It also follows
that [ω2j → ω2j−1] ∈ M for j = 1, . . . , `. If [ω2j → ω2j−1] ∈ M1, then |ω2j−1| = |ω2j|, and
if [ω2j → ω2j−1] ∈M2, then |ω2j| = |ω2j−1| − 2. Since edges in M2 connect compositions of
norm |ω| and norm |ω|+2, it follows that in the directed cycle either only edges and inverted
edges corresponding to mergings occur or that |ωj| ∈ {|ω|, |ω|+ 2} for j = 1, . . . , 2`+ 1.

First consider the case that only mergings occur. By construction if ω2 = (ω2
1, . . . , ω

2
r)

then

ω1 = (ω2
1, . . . , ω

2
i−1, 2, ω

2
i − 2, ω2

i+1, . . . , ω
2
r)

for the smallest index i from I(ω2) and I(ω1) = ∅. Let [ω2` → ω1] be the preceding
arrow in the directed cycle, where by our assumptions two blocks are merged. Then either
I(ω2`) = I(ω1) = ∅ or I(ω2`) 6= ∅ and min I(ω2`) < min I(ω2). If I(ω2`) = ∅ then
[ω2` → ω2`−1] cannot be in M1 and we arrive at a contradiction. Thus we must have
I(ω2`) 6= ∅. But iterating the considerations in order to arrive back at ω1 we obtain a
decreasing sequence min I(ω2) > min I(ω2`) > · · · > min I(ω2). Again we arrive at a
contradiction.

It remains to consider the case when |ωj| ∈ {|ω|, |ω| + 2}, j = 1, . . . , 2` + 1. Since we
have also already covered the case when only mergins occurs along the directed cycle we
may also assume that [ω2 → ω1] ∈M2. Thus the last block of ω1 is a 2 and since removing
this block leads to a composition ω2 of norm |ω2| = |ω| it follows by our assumptions on
ω that this is the only 2 in ω1. Hence ω2 is a composition without any 2. Since neither
edges in M1 nor M2 add blocks of size 2 to the right of the rightmost block of a comosition,
it follows that there is a first edge [ω2j → ω2j+1] where the trailing 2 is added. Since
|ω2j|, |ω2j+1| ∈ {|ω|, |ω|+ 2} it follows that |ω2j| = |ω| and |ω2j+1| = |ω|+ 2. But then this
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edge is part of the matching and an element of M2. These edges can can only be traversed
from ω2j → ω2j+1. Again a contradiction.

Thus we have shown that the matching is acyclic. Since all element of 〈ω〉d are covered
the remaining assertion follows. �

6. (Co)homological stabilization

Theorem 6.1. Let ∆ = {ω(1), . . . , ω(m)} be a finite set of compositions such that |ω(1)| ≡
· · · ≡ |ω(m)| mod 2. Then the following claims hold:

(i) if no ω(i), i = 1, . . . ,m, contains a 1, then for any non-negative integer i, the

homology group H̄i(P̄〈∆〉d ,Z) vanishes for any sufficiently large d,

(ii) if no ω(i), i = 1, . . . ,m, contains a 1, then the space P̄〈∆〉∞ = limd→∞ P̄〈∆〉d , obtained
as the direct limit (1.5), is weakly homotopically trivial,

(iii) for any non-negative integer j, we have H̄j(Pc〈∆〉
d ,Z) ∼= H̄j+2(Pc〈∆〉

d+2 ,Z) for d large
enough.

The following statement implies Theorem 6.1(i).

Proposition 6.2. Let ∆ = {ω(1), . . . , ω(m)} ⊆ Ω be a set of compositions such that |ω(1)| ≡
· · · ≡ |ω(m)| mod 2 and such that none of the compositions has an entry 1 and none of
the composition equals (). We set

r := min
{
|ω(1)|, . . . , |ω(m)|

}
.

Then r ≥ 2 and H̄i(P̄〈∆〉d ) = 0 for all positive i < b d
r−1
c.

In particular, limd→∞ H̄i(P̄〈∆〉d ) = 0 for all positive i ≥ 0.

Proof. Since no ω(i), i = 1, . . . ,m, equals () we have that r > 0. Furthermore if r = 1 then
there is an i with ω(i) = (1), but this contradicts our assumptions. Thus r ≥ 2. Now take
ω ∈ Ω〈d] with |ω| ≡ r mod 2, containing no 1 and such that its largest part is greater than

or equal to r. Then ω ≺ ω(i) for all i such that |ω(i)| = r. In particular, ω ∈ 〈∆〉d. Thus
the shortest chain connecting the composition (d) to a composition all parts of which are
smaller than r is the one where at each step one successively splits off parts of size r − 1.
For example, if all parts r − 1 are split off to the left, one constructs the chain

(d) ≺ (r − 2, d− (r − 1)) ≺ (r − 1, r − 1, d− 2(r − 1)) ≺ · · ·

· · · ≺ (r − 1, . . . , r − 1︸ ︷︷ ︸
b d
r−1
c

, d− b d

r − 1
c (r − 1)).

Note that the last element may not lie in 〈∆〉. When going up the chain, the reduced norm
of the compositions decreases by 1 in each step. It follows that, for k ≤ d−b d

r−1
c, the poset

Ω 6=1
|∼|′≥k coincides with {ω ∈ 〈∆〉d | |ω|′ ≥ k}. Thus H̄i(P̄〈∆〉d ,Z) ∼= H̄i(P̄

Ω6=1

|∼|′≥k

d ,Z) = 0 for

all i < k. Now Proposition 4.3 implies that H̄i(P̄〈∆〉d ,Z) = 0 for all i < b d
r−1
c. �
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Remark 6.3. Note that if () ∈ ∆ in Proposition 6.2 then r = 0, Ω6=1
|˜|′≥0 = ∆ and

H̄i(P̄〈∆〉d ,Z) = 0 for i < d. The case r = 1 can occur only if we allow 1’s as parts in
the compositions. Even though experiments suggest that a similar vanishing occurs in
these cases as well, we do not know how to handle this situation at present.

Proof of Theorem 6.1(ii). By [KSW1, Theorem 2.2] we know that P̄Θ
d is simply connected

if Θ 6= {(d)}. Clearly for any d > max{|ω(1), . . . , |ω(m)|}, we have 〈∆〉d 6= {(d)}. Thus

P̄〈∆〉d is simply connected. Now by (i) and the Hurewicz theorem we have that P̄〈∆〉d is
(b d
r−1
c − 1)-connected. The result follows. �

To settle Theorem 6.1(iii) we need the following statement.

Proposition 6.4. Let ∆ = {ω(1), . . . , ω(m)} ⊆ Ω be a set of compositions such that |ω(1)| ≡
· · · ≡ |ω(m)| mod 2. Define

t := max
{
|ω(1)|, . . . , |ω(m)|

}
, and s := min

{
|ω(1)|′, . . . , |ω(m)|′

}
.

Then for d ≥ t with d ≡ t mod 2, we have

〈∆〉d ∩Ω|∼|′≤k = 〈∆〉d+2 ∩Ω|∼|′≤k,(6.1)

where k := s+ 1
2
(d− t).

In particular, H̄i(P̄〈∆〉d ) ∼= H̄i(P̄〈∆〉d+2) for i > k − 1.

Proof. Assume that ω is in 〈∆〉d+2 \ 〈∆〉d. It follows that |ω| = d + 2 and there exists
ω(i) ∈ ∆ such that ω ≺ ω(i). Hence |ω|′ ≥ |ω(i)|′ ≥ s and d + 2 = |ω| ≥ t ≥ |ω(i)|. Thus in
order to get from ω(i) to ω at least d+2−t

2
insertions of 2 must be performed. Each insertion

increases |̃ |′ by one. This implies that

|ω|′ ≥ d+ 2− t
2

+ s >
d− t

2
+ s.

Now (6.1) follows. From this the homological consequence is immediate by Corollary 2.6.
�

Now we can finish the proof of Theorem 6.1(iii).

Proof of Theorem 6.1(iii). By Proposition 6.4 H̄i(P̄〈∆〉d ) ∼= H̄i+2(P̄〈∆〉d+2) of i ≥ s + 1
2
(d − t)

for some numbers s and t depending only on ∆. By the Alexander duality we de-

duce H̄d−i−1(Pc〈∆〉
d ,Z) ∼= H̄d+2−i−1(P〈∆〉d+2,Z) if i ≥ s + 1

2
(d − t). Hence H̄j(Pc〈∆〉

d ,Z) ∼=
H̄j+2(P〈∆〉d+2,Z) if j ≤ d

2
− s+ t

2
. �

The next result claims that, for a large assortment of ideals 〈∆〉, generated by finite

collections ∆, the limit Pc〈∆〉
∞ is also homologically trivial. Combining this fact with the

results about π1(Pc〈∆〉
∞ ) from [KSW1], we get the homotopy triviality of Pc〈∆〉

∞ as well.
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Proposition 6.5. Let ∆ = {ω(1), . . . , ω(m)} ⊆ Ω be a finite set of compositions such that
|ω(1)| ≡ · · · ≡ |ω(m)| mod 2. If none of the ω(i) is of the form

(2, . . . , 2︸ ︷︷ ︸
odd

, ω′, · · · · · ·︸ ︷︷ ︸
possibly empty

)

for ω′ 6= 2, and none of the ω(i) contains two consecutive 1’s, then Hi(P̄〈∆〉d ) = 0 for all

i >
1

2
d+ max

1≤i≤m

{1

2
|ω(i)| − |ω(i)|′

}
.

By the Alexander duality, this implies H̄j(Pc〈∆〉
d ,Z) = 0 in the range

j <
1

2
d− 1− max

1≤i≤m

{1

2
|ω(i)| − |ω(i)|′

}
.

Proof. Let ω ∈ 〈∆〉d. Assume that ω = (2, . . . , 2︸ ︷︷ ︸
`

, ω′, . . . , ) for ω′ 6= 2. If ` is even and

d − |ω| ≥ 2, then γ = (2, . . . , 2︸ ︷︷ ︸
`+1

, ω′, . . . , ) lies in 〈∆〉d. By assumption breaking up one of

the leading 2′s from γ into two 1′s does not result in a a composition from 〈∆〉d. Thus the
(` + 1)st 2 is inserted in one of the ` + 1 positions before, between or after a 2 from the
leading block of 2’s in ω. The coefficients of these insertions in the differential alternate
from left to right and sum up to 1 since ` is even. Thus γ has a nonzero coefficient in ∂ω.
Hence the graph associated to 〈∆〉 contains the edge [ω → γ]. Let M be the collection of
all those edges.

Assume now that ` is odd. Since by our assumption any ω(i) � ω contains no two
consecutive 1s and starts with an even number of 2’s it follows that γ = (2, . . . , 2︸ ︷︷ ︸

`−1

, ω′, . . . , )

lies in 〈∆〉d. Moreover, the reasoning above shows that [γ → ω] is in the graph associated
to 〈D〉. In particular, [γ → ω] ∈M .

We want to show that indeed M defines an acyclic matching (see § 3).

• (matching) This is obvious from the definition.
• (acyclic) If there is a directed cycle then it must contain an edge [γ → ω] for some

[ω → γ] ∈ M . Say ω has ` leading 2’s. Then by definition of M we have that ` is
even and γ has ` + 1 leading 2’s. Let γ′ ∈ 〈D〉 such that [ω → γ′] follows [γ → ω]
in a directed cycle. Then we have |γ′|′ = |γ|′ and γ′ 6= γ. If follows that either
the number of leading 2’s is ` and hence even or at least one of the leading 2s is
merged with a neighboring block. If γ′ has an even number leading 2’s then there
is no edge [ω′ → γ′] ∈ M . In this case the directed cycle cannot be continued by
an edge [g′ → ω′]. Note that directed cycles alternate between two homological
degrees. Thus γ′ must have an odd number of 2’s and by γ′ 6= γ arises from ω by
merging the rightmost of the leading 2’s with its block to the right. In particular,
there are ` − 1 leading 2’s in γ′. It follows that on a directed path the number of
leading 2s is strictly decreasing. Thus there cannot be a directed cycle.
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There is no critical cell in this matching of dimension greater than or equal to

max
1≤i≤m

{
d− |ω(i)|′ − d− |ω(i)|

2

}
=

1

2
d+ max

1≤i≤m

{1

2
|ω(i)| − |ω(i)|′

}
.

From this the claim follows. �

Proof. BLA �

7. Computer experiments and open problems

7.1. Computer experiments. Here we present a number of homological results obtained
on computer. Our main goal is to illustrate the results and motivate the conjectures
from the previous sections and to present some intriguing information about nontrivial
non-stable homology, i.e. homology which disappears when the degree grows and whose
existence does not follow from our previous considerations. These examples might serve as
an inspiration for a future research in the area.

In order to calculate H̄∗(P̄〈∆〉d ; Z), for a given finite set ∆ of compositions having the
same parity of their norms, the third author wrote a program in GAP language. Namely,
given an arbitrary finite set ∆ of compositions and a number j, the program creates the
corresponding closed poset 〈∆〉d. The poset comes with the corresponding height function,
given by the reduced norm | ∼ |′. Then the program calculates the homology of the

differential complex (Z[〈∆〉], ∂) which coincides with the reduced homology H̄∗(P̄〈∆〉d ; Z)

(resp. H̄∗(P̄〈〈∆〉〉d ; Z)). The source can be found at https://www.mathematik.uni-
marburg.de/welker/.

In the tables below, the sequence standing after the symbol i consists of the homology

Hi(P̄〈∆〉d ;Z) read backwards, i.e., starting from the dimension of the complex and ending
with dimension 0 (in which case, we always have the vanishing Betti number).

Notice that in our computer examples shown below we only present ∆ with at least
two different patterns. However, we performed many experiments with single patterns not
shown below; these results were instrumental in the formulations of the above Conjec-
ture 5.1.

In the following tables we will mark the entries in stabilization range of Proposition 6.2
with red and the entries in stabilization range of Proposition 6.4 with blue. Non-vanishing
entries, shown in the usual black color, are non-stable. In all examples below we were not
able to detect any torsion although it undoubtedly exists in more sophisticated examples,
see discussions in the Introduction.

Example 1. ∆ = {[2, 3], [3, 2]}, H̄∗(P̄〈∆〉2k+5; Z) coincides with the homology of S2k+2. That

is, H∗(Pc〈∆〉
d ; Z) = (Z, 0,Z, . . . ), where “. . . ” stand for zeros. Checked for k = 0, . . . , 7.

Example 2. ∆ = {[2, 4], [4, 2]}.
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d\i 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
6 Z 0 0
8 Z Z 0 0 0
10 Z 0 0 0 0 0 0
12 Z 0 0 Z 0 0 0 0 0
14 Z 0 0 0 0 Z 0 0 0 0 0
16 Z 0 0 0 0 Z 0 0 0 0 0 0 0
18 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 Z 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) = (Z, 0, 0,Z, . . . ), where “. . . ” stands for the

unstable cohomology, which appears and disappears sporadically in higher and higher
dimensions.

Example 3. ∆ = {[3, 4], [4, 3]}.

d\i 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 Z 0 0
9 0 0 0 0 0
11 0 0 Z 0 0 0 0
13 0 0 0 0 0 0 0 0 0
15 0 0 0 0 Z 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) only has some unstable cohomology.

Example 4. ∆ = {[1, 5], [5, 1]}.

d\i 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
6 Z 0 0
8 0 0 0 0 0
10 0 0 0 Z 0 0 0
12 0 0 0 0 0 Z 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The table shows that H∗(Pc〈∆〉
d ; Z) only has some unstable cohomology.

Example 5. ∆ = {[3, 5], [5, 3]}.
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d\i 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 Z 0 0
10 0 Z 0 0 0
12 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 Z 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) only has some unstable cohomology.

Example 6. ∆ = {[1, 2, 3] + all permutations}.
d\i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
6 Z2 0 0 0
8 Z 0 Z 0 0 0
10 Z 0 0 0 0 0 0 0
12 Z 0 0 0 Z 0 0 0 0 0
14 Z 0 0 0 0 0 0 0 0 0 0 0
16 Z 0 0 0 0 0 Z 0 0 0 0 0 0 0
18 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The table suggests that starting with d = 8, H∗(Pc〈∆〉
d ; Z) = (Z, 0,Z, . . . ), where “. . . ”

stands for the unstable cohomology.

Example 7. ∆ = {[2, 3, 4] + all permutations}.
d\i 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9 Z 0 0 0
11 Z Z 0 0 0 0
13 Z 0 0 0 0 0 0 0
15 Z 0 0 Z 0 0 0 0 0 0
17 Z 0 0 0 0 0 0 0 0 0 0 0
19 Z 0 0 0 0 Z 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) = (Z, 0, 0, 0, 0,Z, . . . ) with some unstable coho-

mology.

Example 8. ∆ = {[1, 3, 5] + all permutations}.
d\i 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9 Z 0 0 0
11 0 Z2 0 0 0 0
13 0 0 0 Z 0 0 0 0
15 0 0 0 0 Z Z3 0 0 0 0
17 0 0 0 0 0 Z Z3 Z3 0 0 0 0
19 0 0 0 0 0 0 0 0 Z3 0 0 0 0 0

The above suggests that H∗(Pc〈∆〉
d ; Z) has no stable, but a lot of unstable cohomology.
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Example 9. ∆ = {[2, 4, 6] + all permutations}.

d\i 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
12 Z2 0 0 0
14 Z Z 0 0 0 0
16 Z 0 0 0 0 0 0 0
18 Z 0 0 Z Z 0 0 0 0 0
20 Z 0 0 0 0 0 0 0 0 0 0 0
22 Z 0 0 0 0 Z 0 0 0 0 0 0 0 0
24 Z 0 Z 0 0 0 0 0 0 0 Z 0 0 0 0 0
26 Z 0 0 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0
28 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) = (Z, 0, 0, 0, 0, 0, 0, 0,Z, . . . ) with some unstable

cohomology.

Example 10. ∆ = {[3, 5, 7, 9] + all permutations}.

d\i 10 9 8 7 6 5 4 3 2 1 0
24 Z Z 0 0 0
26 0 Z3 Z2 0 0 0 0
28 0 0 Z Z 0 0 0 0 0
30 0 0 0 0 Z2 0 0 Z 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) has no stable, but a lot of unstable cohomology.

Example 11. ∆ = {[3, 4, 5, 6] + all permutations}.

d\i 10 9 8 7 6 5 4 3 2 1 0
18 Z Z 0 0 0
20 0 Z2 Z4 Z 0 0 0
22 0 0 Z2 Z3 Z2 0 0 0 0
24 0 0 0 Z Z5 Z8 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) has no stable, but a lot of unstable cohomology.

Example 12. ∆ = {[2, 2, 3, 3, 4, 4] + all permutations}.

d\i 10 9 8 7 6 5 4 3 2 1 0
18 0 Z2 Z3 0 0 0 0
20 0 Z Z2 Z4 0 0 0 0 0
22 0 Z Z 0 Z6 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) has no stable, but a lot of unstable cohomology.

Example 13. ∆ = {[2, 2, 4] + all permutations}.
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d\i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 Z 0 0 0
10 0 0 0 0 0 0
12 0 0 Z 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 Z 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) has no stable, but some unstable cohomology.

Example 14. ∆ = {[2, 3, 4] + all permutations + [2, 5] + [5, 2]}.

d\i 12 11 10 9 8 7 6 5 4 3 2 1 0
9 Z 0 0 0 0
11 Z 0 0 0 0 0 0
13 Z 0 0 0 0 0 0 0 0
15 Z 0 0 0 0 0 0 0 0 0 0
17 Z 0 0 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) = (Z, 0, 0, 0,Z).

Example 15. ∆ = {[2, 3, 4] + all permutations + [1, 6] + [6, 1]}.

d\i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9 0 0 0 0 0
11 0 0 0 0 0 0 0
13 0 0 0 0 Z 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 Z 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) only has some unstable cohomology.

Example 16. ∆ = {[1, 2, 3] + all permutations except for [3, 1, 2]}.

d\i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
6 Z 0 0 0
8 0 0 Z 0 0 0
10 0 0 0 0 0 0 0 0
12 0 0 0 0 Z 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 Z 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) only has some unstable cohomology.

Example 17. ∆ = {[2, 3] + [3, 2] + [4, 1] + [1, 4]}.
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d\i 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
5 Z3 0 0
7 Z Z2 0 0 0
9 Z 0 Z3 0 0 0 0
11 Z 0 0 Z3 0 0 0 0 0
13 Z 0 0 0 Z4 0 0 0 0 0 0
15 Z 0 0 0 0 Z4 0 0 0 0 0 0 0
17 Z 0 0 0 0 0 Z5 0 0 0 0 0 0 0 0
19 Z 0 0 0 0 0 0 Z6 0 0 Z 0 0 0 0 0 0
21 Z 0 0 0 0 0 0 0 Z6 0 0 0 0 0 0 0 0 0 0

The table suggests that H∗(Pc〈∆〉
d ; Z) = (Z, 0,Z, . . . ) and the unstable cohomology be-

haves regularly.

7.2. Open problems. Here we collect some natural questions about which we do not have
any relevant information.

Question 1. What about the unstable part? When can the sum of Betti numbers grow
to infinity under the direct stabilization?

Question 2. What about the torsion? Does it always disappear under the stabilization?

It is well-known that any partially ordered set S canonically generates a simplicial complex
∆(S). In particular, for any closed Θ ⊂ Ω〈d], we may consider the simplicial complex ∆(Θ)
and its homology H∗(∆(Θ);Z).

Question 3. What is the relation between H∗(P̄Θ
d ;Z) and H∗(∆(Θ);Z)? Recall that a

standard construction delivers the canonical homomorphism π∗ : H∗(P̄Θ
d ;Z)→ H∗(∆(Θ);Z).

Is π∗ an epimorphism? an isomorphism?

8. Appendix. List of compositions ω with non-contractable P̄〈ω〉d for d ≤ 13.

Below we list all nontrivial compositions obtained using the same program indicating

the topology of P̄〈ω〉d in the space of reduced polynomials, i.e. with the sum of all roots
vanishing.

d = 4. codim=0: 1) ω = (1, 1), S2;
codim=1: 2) ω = (2), S2;
codim=max: 3) ω = (4), S0.

d = 5. codim=0: 1) ω = (1, 1, 1), S3;
codim=max: 2) ω = (5), S0.

d = 6. codim=0: 1) ω = (1, 1, 1, 1), S4; 2) ω = (1, 1), S4;
codim=1: 3) ω = (2), S4;
codim=max: 4) ω = (6), S0;.

d = 7. codim=0: 1) ω = (1, 1, 1, 1, 1), S5; 2) ω = (1, 1, 1), S5;
codim=max: 3) ω = (7), S0.



REAL POLYNOMIALS WITH CONSTRAINED REAL DIVISORS, II. 37

d = 8. codim=0: 1) ω = (1, 1, 1, 1, 1, 1), S6; 2) ω = (1, 1, 1, 1), S6; 3) ω = (1, 1), S6;
codim=1: 4) ω = (1, 2, 1), S2; 5) ω = (2), S6;
codim=2: 6) ω = (1, 3), S2; 7) ω = (3, 1), S2;
codim=3: 8) ω = (4), S2;
codim=max: 9) ω = (8), S0.

d = 9. codim=0: 1) ω = (1, 1, 1, 1, 1, 1, 1), S7; 2) ω = (1, 1, 1, 1, 1), S7; 3)
ω = (1, 1, 1), S7;
codim=1: 4) ω = (1, 1, 2, 1), S3; 5) ω = (1, 2, 1, 1), S3;
codim=2: 6) ω = (1, 1, 3), S3; 7) ω = (1, 3, 1), S3; 8) ω = (3, 1, 1), S3;
codim=max: 9) ω = (9), S0.

d = 10. codim=0: 1) ω = (1, 1, 1, 1, 1, 1, 1, 1), S8; 2) ω = (1, 1, 1, 1, 1, 1), S8; 3)
ω = (1, 1, 1, 1), S8; 4) ω = (1, 1), S8;
codim=1: 5) ω = (1, 1, 1, 2, 1), S4; 6) ω = (1, 1, 2, 1, 1), S4; 7) ω = (1, 2, 1, 1, 1), S4;
8) ω = (2), S8;
codim=2: 9) ω = (1, 1, 1, 3), S4; 10) ω = (1, 1, 3, 1), S4; 11) ω = (1, 3, 1, 1), S4; 12)
ω = (3, 1, 1, 1), S4;
codim=max: 13) ω = (10), S0.

d = 11. codim=0: 1) ω = (1, 1, 1, 1, 1, 1, 1, 1, 1), S9; 2) ω = (1, 1, 1, 1, 1, 1, 1), S9; 3)
ω = (1, 1, 1, 1, 1), S9; 4) ω = (1, 1, 1), S9;
codim=1: 5) ω = (1, 1, 1, 1, 2, 1), S5; 6) ω = (1, 1, 1, 2, 1, 1), S5; 7) ω = (1, 1, 2, 1, 1, 1), S5;
8) ω = (1, 2, 1, 1, 1, 1), S5;
codim=2: 9) ω = (1, 1, 1, 1, 3), S5; 10) ω = (1, 1, 1, 3, 1), S5; 11) ω = (1, 1, 3, 1, 1), S5;
12) ω = (1, 3, 1, 1, 1), S5; 13) ω = (3, 1, 1, 1, 1), S5; 14) ω = (1, 2, 1, 2, 1), S3;
codim=3: 15) ω = (1, 2, 1, 3), S3; 16) ω = (3, 1, 2, 1), S3;
codim=4: 17) ω = (3, 1, 3), S3;
codim=max: 18) ω = (11), S0.

d = 12. codim=0: 1) ω = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), S10; 2) ω = (1, 1, 1, 1, 1, 1, 1, 1), S10;
3) ω = (1, 1, 1, 1, 1, 1), S10; 4) ω = (1, 1, 1, 1), S10; 5) ω = (1, 1), S10;
codim=1: 6) ω = (1, 1, 1, 1, 1, 2, 1), S6; 7) ω = (1, 1, 1, 1, 2, 1, 1), S6; 8) ω =
(1, 1, 1, 2, 1, 1, 1), S6; 9) ω = (1, 1, 2, 1, 1, 1, 1), S6; 10) ω = (1, 2, 1, 1, 1, 1, 1), S6;
11) ω = (1, 2, 1), S4; 12) ω = (2), S10;
codim=2: 13) ω = (1, 1, 1, 1, 1, 3), S6; 14) ω = (1, 1, 1, 1, 3, 1), S6; 15) ω = (1, 1, 1, 3, 1, 1), S6;
16) ω = (1, 1, 3, 1, 1, 1), S6; 17) ω = (1, 3, 1, 1, 1, 1), S6; 18) ω = (3, 1, 1, 1, 1, 1), S6;
19) ω = (1, 1, 2, 1, 2, 1), S4; 20) ω = (1, 2, 1, 1, 2, 1), S4; 21) ω = (1, 2, 1, 2, 1, 1), S4;
22) ω = (1, 2, 2, 1), S2; 23) ω = (1, 3), S4; 24) ω = (3, 1), S4;
codim=3: 25) ω = (1, 1, 2, 1, 3), S4; 26) ω = (1, 2, 1, 1, 3), S4; 27) ω = (1, 2, 1, 3, 1), S4;
28) ω = (1, 3, 1, 2, 1), S4; 29) ω = (3, 1, 1, 2, 1), S4; 30) ω = (3, 1, 2, 1, 1), S4; 31)
ω = (1, 2, 3), S2; 32) ω = (3, 2, 1), S2; 33) ω = (1, 4, 1), S2; 34) ω = (4), S4;
codim=4: 35) ω = (1, 3, 1, 3), S4; 36) ω = (3, 1, 3, 1), S4 37) ω = (1, 5), S2; 38)
ω = (5, 1), S2; 39) ω = (3, 3), S2;
codim=5: 40) ω = (6), S2;
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codim=max: 41) ω = (12), S0.

d = 13. codim=0: 1) ω = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), S11; 2) ω = (1, 1, 1, 1, 1, 1, 1, 1, 1), S11;
3) ω = (1, 1, 1, 1, 1, 1, 1), S11; 4) ω = (1, 1, 1, 1, 1), S11; 5) ω = (1, 1, 1), S11;
codim=1: 6) ω = (1, 1, 1, 1, 1, 1, 2, 1), S7; 7) ω = (1, 1, 1, 1, 1, 2, 1, 1), S7; 8) ω =
(1, 1, 1, 1, 2, 1, 1, 1), S7; 9) ω = (1, 1, 1, 2, 1, 1, 1, 1), S7; 10) ω = (1, 1, 2, 1, 1, 1, 1, 1), S7;
11) ω = (1, 2, 1, 1, 1, 1, 1, 1), S7; 12) ω = (1, 1, 2, 1), S5; 13) ω = (1, 2, 1, 1), S5;
codim=2: 14) ω = (1, 1, 1, 1, 1, 1, 3), S7; 15) ω = (1, 1, 1, 1, 1, 3, 1), S7; 16) ω =
(1, 1, 1, 1, 3, 1, 1), S7; 17) ω = (1, 1, 1, 3, 1, 1, 1), S7; 18) ω = (1, 1, 3, 1, 1, 1, 1), S7;
19) ω = (1, 3, 1, 1, 1, 1, 1), S7; 20) ω = (3, 1, 1, 1, 1, 1, 1), S7; 21) ω = (1, 1, 3), S5;
22) ω = (1, 3, 1), S5; 23) ω = (3, 1, 1), S5; 24) ω = (1, 1, 1, 2, 1, 2, 1), S5; 25)
ω = (1, 1, 2, 1, 1, 2, 1), S5; 26) ω = (1, 1, 2, 1, 2, 1, 1), S5; 27) ω = (1, 2, 1, 1, 1, 2, 1), S5;
28) ω = (1, 2, 1, 1, 2, 1, 1), S5; 29) ω = (1, 2, 1, 2, 1, 1, 1), S5; 30) ω = (1, 1, 2, 2, 1), S3;
31) ω = (1, 2, 2, 1, 1), S3;
codim=3: 32) ω = (1, 1, 1, 2, 1, 3), S5; 33) ω = (1, 1, 2, 1, 1, 3), S5; 34) ω = (1, 1, 2, 1, 3, 1), S5;
35) ω = (1, 1, 3, 1, 2, 1), S5; 36) ω = (1, 2, 1, 1, 3, 1), S5; 37) ω = (1, 2, 1, 3, 1, 1), S5;
38) ω = (1, 3, 1, 1, 2, 1), S5; 39) ω = (1, 3, 1, 2, 1, 1), S5; 40) ω = (3, 1, 1, 2, 1, 1), S5;
41) ω = (3, 1, 2, 1, 1, 1), S5; 42) ω = (1, 1, 2, 3), S3; 43) ω = (1, 2, 3, 1), S3; 44)
ω = (1, 3, 2, 1), S3; 45) ω = (3, 2, 1, 1), S3; 46) ω = (1, 1, 4, 1), S3; 47) ω =
(1, 4, 1, 1), S3;
codim=4: 48) ω = (1, 1, 3, 1, 3), S5; 49) ω = (1, 3, 1, 3, 1), S5 50) ω = (3, 1, 3, 1, 1), S5

51) ω = (1, 3, 3), S3; 52) ω = (3, 3, 1), S3; 53) ω = (1, 1, 5), S3; 54) ω =
(1, 5, 1), S3; 55) ω = (5, 1, 1), S3;
codim=max: 56) ω = (13), S0.

9. Appendix. Spaces PcΘ
d as Grassmanians for vector flows with the

Θ-constrained tangency patterns

The next Proposition 9.1 is instrumental in producing interesting examples of traversing
vector fields on compact manifolds X with boundary, vector fields with a priori prescribed
combinatorial tangency patterns of their trajectories to ∂X. These applications belongs
to a different paper; the proposition below gives just a hint of these future investigations,
which employ our computations of the cohomology H∗(PcΘ

d ;Z).

For each element ω ∈ Ω〈d], let ω� denote the set of elements in Ω〈d] that are smaller
than ω. The complementary set c(ω�) = ω� consists of elements that are bigger than or
equal to ω.

Proposition 9.1. For each element ω ∈ Ω〈d] the boundary ∂(ω) ∈ Z[Ω〈d]], given by
formula (2.3), produces, with the help of the Alexander duality AP in the ambient space
P̄d, a cohomology class

θω := AP([∂Rωd ]) ∈ H |ω|′(Pc{ω�}
d ;Z).
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The value of θω on each homology class [h] ∈ H|ω|′(Pc{ω�}
d ;Z), represented by a singular

cycle h : Σ ↪→ Pc{ω�}
d , is the linking number lk(h(Σ), ∂R̄ωd ). The later number may be

interpreted as the algebraic intersection between the cycle h(Σ) and the cell R̊ωd .

Proof. For any ω ∈ Ω〈d], take the closed poset ω� = 〈ω〉 \ ω ⊂ Ω〈d] for the role of Θ
in Corollary 2.6. Then the boundary ∂(ω), given by the formula (2.3), represents the
cycle ∂R̄ωd in C̄d−|ω|′−1(P̄ω�d ;Z), and thus defines an element [∂R̄ωd ] ∈ H̄d−|ω|′−1(P̄ω�d ;Z). By
the Alexander duality AP , this element produces a cohomology class θω = AP([∂R̄ωd ]) ∈
H |ω|

′
(Pc{ω�}

d ;Z).
The last claim of the proposition spells out the nature of the Alexander duality. �

In general, evaluating the pull-back h∗(θω) of the characteristic class θω on the |ω|′-
dimensional cycle Σ, gives an oriented count of the trajectories of the combinatorial type
ω on an appropriate (|ω|′ + 1)-dimensional manifold X ⊂ Σ× R.

Example 9.2. For d = 6, we get the following cohomology classes:

• θ121 = AP(R̄31
6 − R̄13

6 − R̄2121
6 + R̄1212

6 ) ∈ H1(P c{121�}
6 ;Z),

• θ3111 = AP(R̄411
6 − R̄321

6 + R̄312
6 ) ∈ H2(Pc{3111�}

6 ;Z),

• θ31 = AP(R̄4
6 − R̄231

6 + R̄321
6 − R̄312

6 ) ∈ H2(Pc{31�}
6 ;Z),

• θ1221 = AP(R̄321
6 − R̄141

6 + R̄123
6 ) ∈ H2(Pc{1221�}

6 ;Z).

For example, take ω = (3111). By Proposition 9.1, the value of θ3111 on any singular

surface h : Σ2 → Pc{3111�}
6 is its linking number lk

(
h(Σ2), ∂R̄3111

6 ) with the 3-cycle ∂R̄3111
6 =

R̄411
6 − R̄321

6 + R̄312
6 . In particular, consider a small ball D3

411 ⊂ P6, normal to the stratum

R̊411
6 , and take its boundary S2

411 ⊂ P
c{411�}
6 for the role of Σ2. By analyzing the poset

(411)≺, one can check that

〈θ3111, S
2
411〉 = lk(S2

411, ∂R̄3111
6 ) = S2

411 ◦ R3111
6 = 1.

As a result, along the lines of the proof of ??, we get an example of a flow on a 3-manifold
X ⊂ S2 × R with a single trajectory of the combinatorial type (3111). Similar examples

of flows are provided by the normal spheres S2
321 ⊂ P

c{321�}
6 and S2

312 ⊂ P
c{312�}
6 .
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