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Abstract. The goal of this text is to provide a positive answer to a question of Silverberg and
Zarhin on (𝑝, 𝑡, 𝑎)-inertial groups in the case of 𝑝-groups.

1. Introduction

1.1.1. The finite monodromy groups of abelian varieties have been introduced by Grothendieck
in [SGA7.1] exposé IX. They represent the local obstruction to semi-stable reduction. Silverberg
and Zarhin studied these groups in [SZ98; SZ05], and the author in order to give an effective
version of Grothendieck’s semi-stable reduction theorem in [Phi22a; Phi22b; Phi24].

For a fixed natural integer 𝑔 ≥ 1, the list of finite groups which can be realized as finite monodromy
groups of some abelian variety of dimension 𝑔 is not known. An attempt to provide this list is
made by the notion of (𝑝, 𝑡, 𝑎)-inertial groups introduced in [SZ05].

Definition 1.1 ([SZ98]). Let 𝑝 be a prime number or 𝑝 = 0 and 𝑡, 𝑎 positive integers. A finite
group 𝐺 is said to be (𝑝, 𝑡, 𝑎)-inertial if it satisfies the two following conditions :

(𝑖) If 𝑝 = 0 then 𝐺 is cyclic otherwise 𝐺 is a semi-product Γ𝑝 ⋊Z/𝑛Z with Γ𝑝 a 𝑝-group and
𝑛 an integer prime to 𝑝.

(𝑖𝑖) For all primes ℓ ̸= 𝑝 there is an injection

𝐺 →˓ GL𝑡(Z)× Sp2𝑎(Qℓ)

such that the projection map onto the first factor is independent of ℓ and the characteristic
polynomial of the projection of any element onto the second factor has integer coefficients
independent of ℓ.

It follows from the definition that the character 𝜒ℓ of the Qℓ representation given by the projection
on the second factor has integer values and is independent of ℓ.

A precise statement is given by question 1.13 of loc. cit.. Specifically, the question is to realize
a (𝑝, 𝑡, 𝑎)-inertial group 𝐺 as the finite monodromy group of an abelian variety 𝐴 of dimension
𝑔 = 𝑡 + 𝑎 at a place of residue characteristic 𝑝. In the same paper they show that the set of
(𝑝, 𝑡, 𝑎)-inertial groups with 𝑡+ 𝑎 = 2 are realized as finite monodromy groups of abelian surfaces
over local fields of equal characteristic 𝑝. Further Chrétien and Matignon in [CM13] have shown
that this list is also realized with abelian surfaces over number fields by an ad hoc construction
for the last unrealized (2, 0, 2)-inertial group.
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1.1.2. In [Phi24], the first criterion for realizability of finite groups as finite monodromy groups of
abelian varieties over number fields in arbitrary fixed dimension is given. This criterion provides a
path to answer the question of Silverberg and Zarhin. From Théorème 1.1 of [Phi24], it is enough to
show that a (𝑝, 𝑡, 𝑎)-inertial group 𝐺 can be embedded as a subgroup of the automorphism group
of a semi-abelian variety 𝐴0 of toric rank 𝑡 and abelian rank 𝑎 over a finite field of characteristic
𝑝 which is stable by some polarization. The result for abelian surfaces can thus be recovered
directly from this theorem and [SZ05].

A complete answer for 𝑝-groups follows.

Theorem 1.2. Let 𝐺 be a finite 𝑝-group. Then 𝐺 is a (𝑝, 𝑡, 𝑎)-inertial group if and only if it is
the finite monodromy group of an abelian variety 𝐴 of dimension 𝑔 = 𝑡+ 𝑎 over a 𝑝-adic field 𝐾
such that for an extension 𝐿/𝐾 with 𝐴𝐿 semi-stable the toric rank of the reduction of 𝐴𝐿 is 𝑡
and its abelian rank is 𝑎.

This is obtained as a corollary of the following result.

Theorem 1.3. Let 𝐺 be a finite 𝑝-group. which is a (𝑝, 𝑡, 𝑎)-inertial group. Then there is a polarized
semi-abelian variety 𝐴0 over a finite field of characteristic 𝑝 and an embedding 𝜄 : 𝐺 →˓ Aut(𝐴0, 𝜆0)
such that 𝜄ℓ is isomorphic to 𝑇ℓ ∘ 𝜄 for all ℓ ̸= 𝑝 where 𝑇ℓ is the injection Aut𝐴0 →˓ Aut𝑇ℓ𝐴.

The proof of Theorem 1.2 is then given by applying Théorème 3.10 of [Phi24] to the embedding
given by 𝜄. The fact that 𝑝-groups are ramification groups is lemma 3.5 of [Phi22b]. The converse
is given, for instance, by section 5 of [SZ98].

1.1.3. The first part of the paper is devoted to the representations of algebras. We show the
unicity part of the result. The second part gives the proof of our main result Theorem 1.3. The
first step is a reduction to the case of (𝑝, 0, 𝑎)-inertial groups, in other words, the toric part plays
no significant role. We then provide abelian varieties over finite fields with embeddings into their
automorphism groups from the finite 𝑝-groups we consider using the results of Roquette [Roq58]
and Honda-Tate theory.

2. On the rational representation of finite groups and algebras

2.1. Unicity of rational representations of algebras

2.1.1. Let 𝐸 be a simple, finite Q-algebra and 𝐹 ⊂ 𝐸 its center. We shall deal with rational
representations of 𝐸 in the following sense.

Definition 2.1. A representation 𝜌 : 𝐸 → M2𝑔(Qℓ) is said to be rational if the characteristic
polynomials of the elements of 𝐸 have rational coefficients.

The aim of this section is to show some unicity results for such rational representation and in the
general case, where 𝐸 is not assumed simple, when they come from ℓ-adic Tate module maps of
abelian varieties over finite fields.

Proposition 2.2. Let 𝑔 ∈ N ∖ {0}. There is at most one rational Qℓ-representation of 𝐸 of
dimension 2𝑔 up to isomorphism.

Proof. Let 𝜌 : 𝐸 → M2𝑔(Qℓ) be a rational representation of 𝐸. There is a factorization

𝐸 → 𝐸 ⊗Q Qℓ → M2𝑔(Qℓ)
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and 𝐸 itself acts on Q2𝑔
ℓ . The algebra 𝐸 ⊗Q Qℓ decomposes into a product

𝑟∏︀
𝑖=1

𝐸𝑖 where 𝐸𝑖 is

central simple over 𝐹𝑖 with 𝐹 ⊗Q Qℓ =
𝑟∏︀

𝑖=1
𝐹𝑖.

In particular there is a unique class of non trivial simple 𝐸𝑖-module up to isomorphism which we
denote by 𝑆𝑖. By the structure theorem of Wedderbun we have 𝐸𝑖 = M𝑟𝑖(𝐷𝑖) with 𝐷𝑖 a division
algebra central over 𝐹𝑖. Considering the different dimensions we note 𝑠𝑖 = dim𝐹𝑖 𝑆𝑖, 𝑎2𝑖 = dim𝐹𝑖 𝐸𝑖,
𝑑2𝑖 = dim𝐹𝑖 𝐷𝑖. It follows that 𝑎𝑖 = 𝑑𝑖𝑟𝑖, 𝑆𝑖 = 𝐷𝑟𝑖

𝑖 , 𝑠𝑖 = 𝑑2𝑖 𝑟𝑖 and that dimQℓ
𝑆𝑖 = 𝑑2𝑖 𝑟𝑖[𝐹𝑖 : Qℓ]

depends only on 𝐸.
Now we also have

Q2𝑔
ℓ =

𝑟⨁︁
𝑖=1

𝑆𝑛𝑖
𝑖 .

We will show that 𝑛𝑖 depend only on 𝐸 and 𝑔. By Lemma 2.1 of [Tam95] the 𝐹 ⊗Q Qℓ-module
Q2𝑔

ℓ is free, that is there is some integer 𝑚 such that

Q2𝑔
ℓ ≃ (

𝑟∏︁
𝑖=1

𝐹𝑖)
𝑚.

A simple computation gives

𝑚 =
2𝑔

[𝐹 : Q]
.

It also follows that 𝑆𝑛𝑖
𝑖 = 𝐹𝑚

𝑖 as 𝐹𝑖-vector space and thus 𝑠𝑖𝑛𝑖 = 𝑚 which gives that 𝑛𝑖 does not
depend on 𝜌 but only on 𝑔 and 𝐸. □

The following corollary thus follows directly.

Corollary 2.3. Let 𝑘 be a field, 𝑔 a positive integer and 𝐸 a simple finite Q-algebra. Let 𝒜 be
the set of abelian varieties 𝐴 over 𝑘 such that End𝐴 ⊗Q ≃ 𝐸 taien up to isogeny. Then, the
image of the map

𝒜 −→ {𝜌 : 𝐸 → M2𝑔(Qℓ) | rational and faithful}/ ∼
induced by taking the representation given by the ℓ-adic Tate module has at most one element.

We will now specify our treatment to the case of finite fields but generalize to any finite algebra
over Q.

First let us consider again the case where 𝐸 = M𝑛(𝐷) is simple. In that case, we know from Tate’s
theorem that if 𝐸 = End𝐴⊗Q for some abelian variety 𝐴 over a finite field then 2 dim𝐴 = 𝑛𝑑𝑓
where 𝑓 = [𝐹 : Q] with 𝐹 the center of 𝐷 and 𝑑2 = dim𝐹 𝐷. In particular, the dimension 𝑔 of
the variety is completely determined by 𝐸.
Second let us remark that since we are working up to isogeny, we can read the isogeny decomposition
of 𝐴 on End𝐴 ⊗Q. So let us consider 𝐸 a finite algebra over Q such that 𝐸 =

∏︀𝑟
𝑖=1𝐸𝑖 with

𝐸𝑖 simple over Q such that 𝐸𝑖 = M𝑛𝑖(𝐷𝑖) for some skew field 𝐷𝑖 and denote by 𝑓𝑖, 𝑑𝑖 the
corresponding invariants. We thus have that 𝐴 is isogenous to a product of abelian varieties
𝐴1, . . . , 𝐴𝑟 such that End𝐴𝑖 ⊗Q ≃ 𝐸𝑖 and 𝐴𝑖 is of dimension 𝑔𝑖 = 1/2 · 𝑛𝑖𝑑𝑖𝑓𝑖.

Both remarks leads to the following theorem, completing the previous corollary in the case of
finite fields.



4 SÉVERIN PHILIP

Theorem 2.4. Let 𝑘 be a finite field, 𝑔 a positive integer and 𝐸 a finite Q-algebra. Let 𝒜 be the
set of abelian varieties 𝐴 over 𝑘 such that End𝐴⊗Q ≃ 𝐸 taken up to isogeny. Then, the image
of the map

𝒜 −→ {𝜌 : 𝐴 → M2𝑔(Qℓ) | rational and faithful}/ ∼
factors through the set

{𝜌 : 𝐴 → M2𝑔(Qℓ) | 𝜌 =
𝑟∏︁

𝑖=1

𝜌𝑖, 𝜌𝑖 : 𝐸𝑖 → M2𝑔𝑖(Qℓ), 𝑔𝑖 = 𝑛𝑖𝑑𝑖𝑓𝑖 and
𝑟∑︁

𝑖=1

𝑔𝑖 = 𝑔}.

In particular, the image is always empty except possibly for 𝑔 =
∑︀𝑟

𝑖=1 𝑔𝑖 where it has at most one
element.

3. The realization of (𝑝, 𝑡, 𝑎)-inertial groups as finite monodromy groups

3.1. Some context and notations

3.1.1. The notion of polarized semi-abelian variety is the one from [Phi24], based on the chapter
2 of [FC90]. We recall it here.

Definition 3.1. Let 𝐴0 and 𝐴𝑡
0 be semi-abelian varieties over a finite field. A polarization

𝜆0 : 𝐴0 → 𝐴𝑡
0 is a map of semi abelian varieties

0 𝑇0 𝐴0 𝐵0 0

0 𝑇 𝑡
0 𝐴𝑡

0 𝐵∨
0 0

𝜆𝑇0

𝑝

𝜆0 𝜆𝐵0

𝑝

such that the induced maps 𝜆𝑇0 is an isogeny and 𝜆𝐵0 is a polarization. A semi-abelian variety
𝐴0 equipped with a polarization 𝜆0 is said to be polarized.

In the next sections of the text, we will conserve the notations 𝑇0 and 𝐵0 for the maximal torus
and abelian quotient of a semi-abelian variety 𝐴0.

3.2. A first reduction step

3.2.1. We show that, in order to realize a (𝑝, 𝑡, 𝑎)-inertial group 𝐺 as a finite monodromy group,
it is enough to realize its projection as a subgroup of the automorphism group of an abelian
variety over a finite field. A (𝑝, 𝑡, 𝑎)-inertial group 𝐺 is given with embeddings

𝜄ℓ : 𝐺 −→ GL𝑡(Z)× Sp2𝑎(Qℓ)

for all ℓ ̸= 𝑝. We denote by 𝑝ℓ the composition of 𝜄ℓ with the projection on the factor Sp2𝑎(Qℓ).

Lemma 3.2. Let 𝐺 be a (𝑝, 𝑡, 𝑎)-inertial group. Then the groups 𝑝ℓ(𝐺) are independent of ℓ. In
particular, 𝑝ℓ(𝐺) is (𝑝, 0, 𝑎)-inertial.

Proof. Let ℓ ̸= 𝑝 be fixed. The character of the representation of 𝐺 on Q2𝑎
ℓ is independent of

ℓ. In particular, its kernel 𝐻ℓ ⊂ 𝐺 is also independent of ℓ. It follows that 𝑝ℓ(𝐺) ≃ 𝐺/𝐻ℓ is
independent of ℓ.

We thus have induced representations of 𝑝ℓ(𝐺) on Q2𝑎
ℓ′ for all ℓ′ ̸= 𝑝, which satisfies the conditions

of definition 1.1 with 𝑡 = 0. □
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Proposition 3.3. Let 𝐺 be a (𝑝, 𝑡, 𝑎)-inertial group. Then there is a polarized semi-abelian variety
(𝐴0, 𝜆0) with toric rank 𝑡 and abelian rank 𝑎 and an embedding 𝜄 : 𝐺 →˓ Aut(𝐴0, 𝜆0) such that 𝜄ℓ
is isomorphic to 𝑇ℓ ∘ 𝜄 if and only if the same statement holds for 𝑝ℓ(𝐺) as (𝑝, 0, 𝑎)-inertial group.

Proof. Assume first there is a polarized semi-abelian variety (𝐴0, 𝜆0) and an embedding 𝜄 : 𝐺 →˓
Aut(𝐴0, 𝜆0) with the desired property. We first remark that this leads to an embedding

𝐺 →˓ Aut𝑇0 ×Aut(𝐵0, 𝜆𝐵0)

with the notations of section 3.1. It is clear that the map 𝑇ℓ respects this decomposition so that
the the second projection induces an embedding 𝑝ℓ(𝐺) →˓ Aut(𝐵0, 𝜆𝐵0) which concludes.

For the converse, we have an embedding 𝜄′ : 𝑝ℓ(𝐺) →˓ Aut(𝐵0, 𝜆𝐵0 for some polarized abelian
variety 𝐵0 of dimension 𝑎 over a finite field which satisfies that 𝑇ℓ ∘ 𝜄′ is isomorphic to 𝑝ℓ ∘ 𝜄ℓ for
all ℓ ̸= 𝑝. Consider now the semi-abelian variety G𝑡

𝑚 ×𝐵0 with the product polarization (id, 𝜆𝐵0).
Its automorphism group is given by

GL𝑡(Z)×Aut(𝐵0, 𝜆𝐵0)

And since 𝐺 embeds as a subset of GL𝑡×𝑝ℓ(𝐺) it has an embedding in Aut(𝐴0, 𝜆0) which satisfies
the conditions. □

From this result we should now only be concerned about constructing embeddings into the
automorphism groups of polarized abelian varieties over finite fields.

3.3. The case of 𝑝-groups

3.3.1. Let 𝐺 be a finite 𝑝-group. Let us first recall some basic results on group algebras in order
to introduce notations and context. I t follows from the results of Roquette in [Roq58] that the
rational group algebra Q[𝐺] is a product of matrix algebras over fields with the only possible
skew fields appearing being of the form 𝐹 ⊗H where 𝐹 is a finite field extension of Q and H
the standard quaternion algebra over Q. This last case can only happen when 𝑝 is even. More
precisely, the fields appearing in such a decomposition are of the form Q(𝜇𝑝𝑛) for some 𝑛 ≥ 0.

3.3.2. We can now prove our main result.

Proof. (of Theorem 1.3)

By Proposition 3.3 it is enough to consider 𝐺 a 𝑝-group which is (𝑝, 0, 𝑎)-inertial. Now remark
that it is enough to show that 𝐺 embeds in a polarized abelian variety of dimension 𝑔 ≤ 𝑎 over
some finite field. Indeed, it is clear that any group that has such an embedding also has one into
a polarized abelian variety of dimension 𝑎.

For some ℓ ̸= 𝑝 consider the finite Q-algebra 𝐸 generated by the image of 𝐺 in M2𝑎(Qℓ). We
have a decomposition

𝐸 ≃
𝑟∏︁

𝑖=1

M𝑛𝑖(𝐷𝑖)

where 𝐷𝑖 is a central simple algebra over 𝐹𝑖, a finite extension of Q. Moreover, since 𝐸 is a
quotient of Q[𝐺] we know from the previous description that either 𝐷𝑖 = 𝐹𝑖 = Q(𝜇𝑝𝑛) or 𝐷𝑖 is a
base change of the standard quaternion algebra and 𝐹𝑖 is of the previous form. In any case, the
fields 𝐹𝑖 are CM fields.
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The existence of Weil 𝑞-integers in the CM fields 𝐹𝑖 with the desired properties follow for instance
from Proposition A.4.8.4 of [CCO14] which by Honda-Tate theory provides abelian varieties 𝐴′

𝑖
over a finite field of characteristic 𝑝 such that 𝐴′

𝑖
𝑛𝑖 has endomorphism algebra M𝑛𝑖(𝐷𝑖). Since 𝐺

embeds in the order generated by Z ·𝐺 of 𝐸, by Theorem 3.13 of [Wat69] there is an abelian
variety 𝐴 such that End𝐴⊗Q ≃ 𝐸 and 𝐺 →˓ Aut𝐴.

Moreover, the symplectic structure provides 𝐸 with a positive involution compatible with the
embedding of 𝐺. This gives us the desired polarization.

The unicity part of the statement follow directly from Theorem 2.4. It also provides that dim𝐴 ≤ 𝑎.
□
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