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“Real-time PCR for mRNA quantitation”
Review paper (Wong & Medrano, 2005) ≈ citations:

Real-time PCR and real-time RT–PCR has dramatically
changed the field of measuring gene expression.
It is a class of techniques that
• has a large dynamic range,
• boasts tremendous sensitivity,
• requires much less RNA template than other methods,
• can be highly sequence-specific,
• has little or no post-amplification,
• is amenable to increasing sample throughput.
• But therefore requires sound experimental design and
• in-depth understanding of normalization techniques



Steps in real-time PCR
• RNA isolation and characterization
• cDNA synthesis
• Real-time PCR data acquisition (during the process)

– Incl. adjustment to baseline, setting cycle threshold
• Generation of normalization factors

– (using house-keeping genes)
• Normalized data
• Data analysis



“Real-time”,
with determination of “cycle threshold” Ct

y0 ebCt = a
    =>
log y0 =
log a - bCt



Crude calibration by
standard curve for genomic DNA

Ct versus
log y0



Schizophrenia study
Castensson et al. Biological Psychiatry 2003

Sundberg et al. Biostatistics 2006

• Patients and controls (55 of each,  = 110)
• Several (brain) samples per individual (2)
• Put on plates with < 96 wells per plate
• Fluorescence measurements of mRNA by

Real-time RT–PCR combined with TaqMan
assay:   One master-plate  =>  many replica
plates, one per gene



Statistical aspects
• Design: Balanced incomplete design on plates
• Basic model:  MRANCOVA,  i.e.

multivariate nested random effects
analysis of covariance model   (see below)

• Inference:
(1) Reference genes for increased precision
(2) Prediction aspects
(3) Minor problems: plate effect estimation
left-censoring for low-expressing genes, outliers,
non-constant variances, multiple testing,  etc.



Modelling
Basic ≈ MRANCOVA model, for controls:
Y = log(fluoresc.) vector   (gene <=> comp. y)

yhij = µ+αh+β’uhi+γk(hij)+δhi+εhij
h = stratum index (brain bank, sex),
i = individuals within stratum h,
j = samples within individual,
k = plate number allocation,
u = individual covariate (age, time post mortem)
Nested variance components from δ and ε



Testing and further inference

• Test H0:  Absence of disease effect
• Under significance, estimation or prediction?

Explore effect distribution (interactions?
affected subgroup?  effects correlated btw
genes?)



Multivariate aspects
• Nested components δ and ε are multivariate,

i.e. represented by covariance matrices,   
dimension = #genes

• Correlations btw components (genes)
were high in ε, and even higher in δ.

• Motivates use of unaffected reference gene(s),
for statistical efficiency.  (“house-keeping” gene)

• Predict candidate gene values from ref-genes,
adjusting for other covariates



For candidate genes

• With x like y, but for ref-gene,  fit E(y|x),

yhij = as before + θ xhij ,
or correspondingly for averages yhi.
Note: parameters have new interpretations,
and some are no longer needed in model



Prediction aspects
• Alternative interpretation of  E(y|x):

Predict candidate gene values from ref–
genes, for each individual, adjusting for
other factors.

• Predict patient values via model fitted to the
unaffected controls, to explore non-constant
disease effects
Varying disease effect => loss of power in
standard two-sample tests



Plate effects and averaging

• Incomplete design motivates plate effect
estimation within individuals, for statistical
efficiency

• But regression on x ‘within individuals’ will
be different from regression on x ‘between
individuals’

• => sacrifice ‘within’ plate effect estimates,
and average over samples from individual



Results
• Gain from use of reference genes:

Std error typically reduced by factor 2 – 3,
crucial for obtaining significant effects.

• 2 out of 16 genes were found significant,
see box-plots etc

• Their individual effects were correlated,
see scatter-plot



Standardized residuals/Prediction errors
for controls and patients,

two significant genes: HTR2C & MAOB



Observed against predicted f. two genes
Controls:  o
Patients:   *
55 of each

Upper:
Gene HTR2C

Lower:
Gene MAOB



Standardized residuals/predict. errors
jointly for the two genes

Controls: o
r = –0.02 ≈ 0

Patients:  *
r = –0.45

=> differential
coregulation



Another project: 7 genes for discrimination.
Box plots for old sample and new sample
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Box plots for old sample and new sample,
and the two diagnoses CD and UC

Variable: PC1 from old sample
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Box plots for old sample and new sample,
and the two diagnoses CD and UC

-2
0

2
4

6

CD UC CD UC

0 1

Graphs by 0=old 1=new

Box plots for gene 6
Gene 6

Old:  0

New: 1



Kolak: Ref-genes replicates ANOVA
Failure because too much variation btw runs

Source of variation
Treatment
Individuals
Runs (“time”)
Pairwise interactions
Residual

MSE(TBP)

  0.3
  0.1
  4.1
  0.2
  0.1

MSE(RPLPO)

   0.3
   0.5
   4.4
   0.2
   0.4

DF
1
8
5 / 2
53 / 26
40 / 16



CONCLUSIONS

Real-time RT–PCR
Can be a powerful technique

But it sometimes fails
Use of reference genes is important


