Real-time RT–PCR
for identification of differentially expressed genes.
(with Schizophrenia application)
Rolf Sundberg, Stockholm Univ.

Göteborg, May 2006
“Real-time PCR for mRNA quantitation”
Review paper (Wong & Medrano, 2005) \(\approx\) citations:

Real-time PCR and real-time RT–PCR has dramatically changed the field of measuring gene expression. It is a class of techniques that

- has a large dynamic range,
- boasts tremendous sensitivity,
- requires much less RNA template than other methods,
- can be highly sequence-specific,
- has little or no post-amplification,
- is amenable to increasing sample throughput.

But therefore requires sound experimental design and

- in-depth understanding of normalization techniques.
Steps in real-time PCR

- RNA isolation and characterization
- cDNA synthesis
- Real-time PCR data acquisition (during the process)
 - Incl. adjustment to baseline, setting cycle threshold
- Generation of normalization factors
 - (using house-keeping genes)
- Normalized data
- Data analysis
“Real-time”,
with determination of “cycle threshold” C_t

$y_0 e^{bC_t} = a$

\Rightarrow \hspace{1cm} \log y_0 = \log a - bC_t$
Crude calibration by standard curve for genomic DNA

\[C_t \text{ versus } \log y_0 \]
Schizophrenia study
Castensson et al. Biological Psychiatry 2003
Sundberg et al. Biostatistics 2006

- Patients and controls (55 of each, \(= 110 \))
- Several (brain) samples per individual (2)
- Put on plates with \(< 96 \) wells per plate
- Fluorescence measurements of mRNA by Real-time RT–PCR combined with TaqMan assay: One \textit{master-plate} => many \textit{replica plates}, one per gene
Statistical aspects

- **Design**: Balanced incomplete design on plates
- **Basic model**: MRANCOVA, i.e. multivariate nested random effects analysis of covariance model (see below)
- **Inference**:
 1. Reference genes for increased precision
 2. Prediction aspects
 3. Minor problems: plate effect estimation, left-censoring for low-expressing genes, outliers, non-constant variances, multiple testing, etc.
Modelling

Basic \approx MRANCOVA model, for controls:

\[Y = \log(\text{fluoresc.}) \text{ vector (gene } \leftrightarrow \text{ comp. } y) \]

\[y_{hij} = \mu + \alpha_h + \beta'u_{hi} + \gamma_{k(hij)} + \delta_{hi} + \epsilon_{hij} \]

\(h = \text{ stratum index (brain bank, sex),} \)
\(i = \text{ individuals within stratum } h, \)
\(j = \text{ samples within individual,} \)
\(k = \text{ plate number allocation,} \)
\(u = \text{ individual covariate (age, time post mortem)} \)

Nested variance components from \(\delta \) and \(\epsilon \)
Testing and further inference

- Test H_0: Absence of disease effect
- Under significance, estimation or prediction?
 Explore effect distribution (interactions? affected subgroup? effects correlated btw genes?)
Multivariate aspects

• Nested components δ and ε are multivariate, i.e. represented by covariance matrices, dimension = #genes

• Correlations btw components (genes) were high in ε, and even higher in δ.

• Motivates use of unaffected reference gene(s), for statistical efficiency. (“house-keeping” gene)

• Predict candidate gene values from ref-genes, adjusting for other covariates
For candidate genes

- With x like y, but for ref-gene, fit $E(y|x)$,

$$y_{hij} = \text{as before} + \theta x_{hij},$$

or correspondingly for averages y_{hi}. Note: parameters have new interpretations, and some are no longer needed in model
Prediction aspects

• Alternative interpretation of $E(y|x)$: Predict candidate gene values from ref–genes, for each individual, adjusting for other factors.

• Predict patient values via model fitted to the unaffected controls, to explore non-constant disease effects
 Varying disease effect => loss of power in standard two-sample tests
Plate effects and averaging

- Incomplete design motivates plate effect estimation within individuals, for statistical efficiency
- But regression on x ‘within individuals’ will be different from regression on x ‘between individuals’
- \Rightarrow sacrifice ‘within’ plate effect estimates, and average over samples from individual
Results

• Gain from use of reference genes:
 Std error typically reduced by factor 2 – 3, crucial for obtaining significant effects.

• 2 out of 16 genes were found significant, see box-plots etc

• Their individual effects were correlated, see scatter-plot
Standardized residuals/Prediction errors for controls and patients, two significant genes: HTR2C & MAOB
Observed against predicted f. two genes

Controls: o
Patients: *
55 of each

Upper:
Gene HTR2C

Lower:
Gene MAOB
Standardized residuals/predict. errors jointly for the two genes

Controls: \(o \)
\[r = -0.02 \approx 0 \]

Patients: \(* \)
\[r = -0.45 \]

=> differential coregulation
Another project: 7 genes for discrimination.

Box plots for old sample and new sample

all 7 genes
Box plots for old sample and new sample, and the two diagnoses CD and UC
Variable: PC1 from old sample
Box plots for old sample and new sample, and the two diagnoses CD and UC

Gene 6

Old: 0
New: 1
Kolak: Ref-genes replicates ANOVA

Failure because too much variation btw runs

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>DF</th>
<th>$\text{MSE}_{\text{RPLPO}}$</th>
<th>MSE_{TBP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Individuals</td>
<td>8</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Runs ("time")</td>
<td>5 / 2</td>
<td>4.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Pairwise interactions</td>
<td>53 / 26</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Residual</td>
<td>40 / 16</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Real-time RT–PCR
Can be a powerful technique
But it sometimes fails
Use of reference genes is important