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Collinearity

Collinearity refers in a strict sense to the presence
of exact linear relationships within a set of vari-
ables, typically a set of explanatory (predictor) vari-
ables used in a regression-type model. In common
statistical language it also allowsnear-collinearity,
when variables are close to linearly related, that is
when their correlation matrixC is near-singular. In
other words, data are ill-conditioned. The ‘collinear-
ity problem’ refers to the fact that in a multiple
regression with collinearity, least squares regres-
sion coefficients are unstable (sensitive to small
changes in input data) or not even uniquely defined,
have highly inflated variances, and are impossible
to interpret individually. In any generalized linear
modeling, an analogous collinearity problem will
appear.

A frequent cause of collinearity is that the explana-
tory variables represent the composition of a (chem-
ical, say) sample, so they sum to or near 100%.
In experimental or observational studies, confounded
variables are also collinear. Another frequent situ-
ation is that an (automatic) measuring instrument
registers a large set of variables, for example a
spectrum of 100 or 1000 wavelengths in a spec-
trophotometer to be calibrated, whereas the number
of samples available is much more limited, for cost
or time reasons. Then there must be exact collinear-
ities. However, even if the number of samples had
been sufficiently large to avoid such collinearities,
we should have expected a large number of near-
collinearities in the spectral data, simply because the
sources of variation represented would not be so
many. The ‘chemical rank’ of the situation would
be smaller than the number of variables. Quantita-
tive structure–property relationships (QSPR) studies
give other example types that may show a high
degree of collinearity. For example, toxicity may
be determined for a small set of different dioxins
and modeled by a large set of physical–chemical
descriptors at molecular level, in order to form a
predictor that can be used on not yet toxicity-tested
dioxins.

For prediction, collinearity is not necessarily harm-
ful. Say that we study how toxicity depends on the
concentrations of some compounds, which in nature
tend to appear together in certain proportions. From
natural samples, it will then be difficult to distinguish

their respective toxicity and to see if they inter-
act, so collinearity is a problem for understanding
relationships. However, this does not necessarily
make it impossible to predict well the toxicity of a
new sample, provided that the compounds appear in
about the same proportions. The crucial question is
whether the collinearity is inherent in the type of data
studied, or worse, if it is only generated by design.
Anyhow, it is not advisable to use ordinary least
squares for predictor construction under collinearity.
There are many better methods for constructing such
predictors, under the titles of regularized or shrinkage
estimators, and including ridge regression, PCR and
PLS regression (see Shrinkage regression).

Mathematically, exact collinearities can be elimi-
nated by reducing the number of variables, and near-
collinearities can be made to disappear by forming
new, orthogonalized and rescaled variables. How-
ever, omitting a perfect confounder from the model
can only increase the risk for misinterpretation of
the influences on the response variable. Replacing an
explanatory variable by its residual, in a regression
on the others from a set of near-collinear variables,
makes the new variable orthogonal to the others, but
with comparatively very little variability. Owing to
this lack of substantial variability, we are not likely
to see much of its possible influence. Mathemati-
cal rescaling cannot change this reality, of course.
To a large extent it is a matter of judgement what
should be called a comparatively large or small vari-
ation in different variables and variable combinations,
and this ambiguity remains when it comes to shrink-
age methods for predictor construction, because these
are not invariant under individual rescaling and other
nonorthogonal transformations of variables. We could
say that the ‘near’ in near-collinearity is not scale
invariant.

To collect more data does not necessarily elim-
inate the collinearity problem. If the new data are
representative of the same population as the old data,
they are likely to show the same types of collinearity.

The degree ofmulticollinearity in a set of vari-
ables can be investigated by principal components
analysis (PCA) of their sample correlation matrixC.
Small eigenvalues indicate near-collinearities, and the
corresponding principal components are the near con-
stant linear combinations of the variables. As a rule
of thumb, Hocking [1] suggests that if the small-
est eigenvalue is less than 0.05, this is an indication
of serious collinearity, and less than 0.10 indicates
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moderate collinearity. The condition number ofC
(the ratio between the largest and smallest eigenval-
ues) is a related diagnostic, but of more numerical
than statistical relevance. For the individual variables,
collinearity may be diagnosed by the variance infla-
tion factors (VIF), which are the diagonal elements of
C�1, indicating how much the variance of the regres-
sion coefficient for a single variable is inflated by
the presence of the other, correlated variables (see
Regression diagnostics).

Not all statistical packages are good at indicating
collinearity. Such diagnostics are typically only found
in their linear regression programs, if at all. To

mention some examples, SPSS andSAS (PROC
REG) have options COLLIN, yielding various char-
acteristics, whereas MINITAB and STATA go for VIF
values.
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