
Complexity of the Lambek Calculus
and Its Extensions

Stepan L. Kuznetsov

LACompLing 2021 ⋅ MALIN 2021

Steklov Mathematical Institute, RAS

About This Talk

• This talk will be probably more technical than most of the talks
at the conference.

• We shall discuss some of the mathematical tools under
categorial grammar formalisms.

• Once a formalism gets introduced, and it is validated that it
captures the desired language phenomena, mathematical
questions concerning this formalism arise — most importantly
algorithmic ones.

• And this is where mathematicians enter the battle.

1/29

About This Talk

• This talk will be probably more technical than most of the talks
at the conference.

• We shall discuss some of the mathematical tools under
categorial grammar formalisms.

• Once a formalism gets introduced, and it is validated that it
captures the desired language phenomena, mathematical
questions concerning this formalism arise — most importantly
algorithmic ones.

• And this is where mathematicians enter the battle.

1/29

About This Talk

• This talk will be probably more technical than most of the talks
at the conference.

• We shall discuss some of the mathematical tools under
categorial grammar formalisms.

• Once a formalism gets introduced, and it is validated that it
captures the desired language phenomena, mathematical
questions concerning this formalism arise — most importantly
algorithmic ones.

• And this is where mathematicians enter the battle.

1/29

About This Talk

• This talk will be probably more technical than most of the talks
at the conference.

• We shall discuss some of the mathematical tools under
categorial grammar formalisms.

• Once a formalism gets introduced, and it is validated that it
captures the desired language phenomena, mathematical
questions concerning this formalism arise — most importantly
algorithmic ones.

• And this is where mathematicians enter the battle.

1/29

Lambek Calculus

• We start with the Lambek calculus, which was introduced by
Joachim Lambek (1958) for mathematical description of natural
language syntax.

• We formulate it as a sequent calculus.

• Sequents are expressions of the form 𝐴1, … , 𝐴𝑛 → 𝐵, where 𝐴𝑖
and 𝐵 are formulae built using \, /, ⋅.

• There is a subtle question whether one should allow empty
antecedents (𝑛 = 0). The constraint which disallows them is
called Lambek’s non-emptiness restriction.

2/29

Lambek Calculus

• We start with the Lambek calculus, which was introduced by
Joachim Lambek (1958) for mathematical description of natural
language syntax.

• We formulate it as a sequent calculus.

• Sequents are expressions of the form 𝐴1, … , 𝐴𝑛 → 𝐵, where 𝐴𝑖
and 𝐵 are formulae built using \, /, ⋅.

• There is a subtle question whether one should allow empty
antecedents (𝑛 = 0). The constraint which disallows them is
called Lambek’s non-emptiness restriction.

2/29

Lambek Calculus

• We start with the Lambek calculus, which was introduced by
Joachim Lambek (1958) for mathematical description of natural
language syntax.

• We formulate it as a sequent calculus.

• Sequents are expressions of the form 𝐴1, … , 𝐴𝑛 → 𝐵, where 𝐴𝑖
and 𝐵 are formulae built using \, /, ⋅.

• There is a subtle question whether one should allow empty
antecedents (𝑛 = 0). The constraint which disallows them is
called Lambek’s non-emptiness restriction.

2/29

Lambek Calculus

• We start with the Lambek calculus, which was introduced by
Joachim Lambek (1958) for mathematical description of natural
language syntax.

• We formulate it as a sequent calculus.

• Sequents are expressions of the form 𝐴1, … , 𝐴𝑛 → 𝐵, where 𝐴𝑖
and 𝐵 are formulae built using \, /, ⋅.

• There is a subtle question whether one should allow empty
antecedents (𝑛 = 0). The constraint which disallows them is
called Lambek’s non-emptiness restriction.

2/29

Lambek Calculus

• Axioms and inference rules of the Lambek calculus are as
follows:

𝐴 → 𝐴 𝐼𝑑 Γ, 𝐴, 𝐵, Δ → 𝐶
Γ, 𝐴 ⋅ 𝐵, Δ → 𝐶 ⋅𝐿 Π → 𝐴 Δ → 𝐵

Π, Δ → 𝐴 ⋅ 𝐵 ⋅𝑅

Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, Π, 𝐴 \ 𝐵, Δ → 𝐶 \𝐿 𝐴, Π → 𝐵

Π → 𝐴\𝐵 \𝑅
Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, 𝐵 /𝐴, Π, Δ → 𝐶 /𝐿 Π,𝐴 → 𝐵

Π → 𝐵 /𝐴 \𝑅

• Lambek’s restriction here means adding “Π is non-empty” to
\𝑅 and /𝑅.

3/29

Lambek Calculus

• Axioms and inference rules of the Lambek calculus are as
follows:

𝐴 → 𝐴 𝐼𝑑 Γ, 𝐴, 𝐵, Δ → 𝐶
Γ, 𝐴 ⋅ 𝐵, Δ → 𝐶 ⋅𝐿 Π → 𝐴 Δ → 𝐵

Π, Δ → 𝐴 ⋅ 𝐵 ⋅𝑅

Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, Π, 𝐴 \ 𝐵, Δ → 𝐶 \𝐿 𝐴, Π → 𝐵

Π → 𝐴\𝐵 \𝑅
Π → 𝐴 Γ, 𝐵, Δ → 𝐶
Γ, 𝐵 /𝐴, Π, Δ → 𝐶 /𝐿 Π,𝐴 → 𝐵

Π → 𝐵 /𝐴 \𝑅

• Lambek’s restriction here means adding “Π is non-empty” to
\𝑅 and /𝑅.

3/29

Lambek Calculus

• The Lambek calculus is used for modelling natural language:

Pete met the girl whom John likes
𝑁 , (𝑁 \ 𝑆) /𝑁 , 𝑁 /𝐶𝑁 , 𝐶𝑁 , (𝐶𝑁 \ 𝐶𝑁) /(𝑆 /𝑁), 𝑁 , (𝑁 \ 𝑆) /𝑁

→ 𝑆

• As one can see from this example, the Lambek calculus is
capable of handling quite involved syntax.

• Moreover, it can be considered as the preferable system among
others, since it is exactly the atomic theory of the language
algebra (Pentus 1995).

• However, it has severe theoretical limitations.

4/29

Lambek Calculus

• The Lambek calculus is used for modelling natural language:

Pete met the girl whom John likes
𝑁 , (𝑁 \ 𝑆) /𝑁 , 𝑁 /𝐶𝑁 , 𝐶𝑁 , (𝐶𝑁 \ 𝐶𝑁) /(𝑆 /𝑁), 𝑁 , (𝑁 \ 𝑆) /𝑁

→ 𝑆
• As one can see from this example, the Lambek calculus is
capable of handling quite involved syntax.

• Moreover, it can be considered as the preferable system among
others, since it is exactly the atomic theory of the language
algebra (Pentus 1995).

• However, it has severe theoretical limitations.

4/29

Lambek Calculus

• The Lambek calculus is used for modelling natural language:

Pete met the girl whom John likes
𝑁 , (𝑁 \ 𝑆) /𝑁 , 𝑁 /𝐶𝑁 , 𝐶𝑁 , (𝐶𝑁 \ 𝐶𝑁) /(𝑆 /𝑁), 𝑁 , (𝑁 \ 𝑆) /𝑁

→ 𝑆
• As one can see from this example, the Lambek calculus is
capable of handling quite involved syntax.

• Moreover, it can be considered as the preferable system among
others, since it is exactly the atomic theory of the language
algebra (Pentus 1995).

• However, it has severe theoretical limitations.

4/29

Lambek Calculus

• The Lambek calculus is used for modelling natural language:

Pete met the girl whom John likes
𝑁 , (𝑁 \ 𝑆) /𝑁 , 𝑁 /𝐶𝑁 , 𝐶𝑁 , (𝐶𝑁 \ 𝐶𝑁) /(𝑆 /𝑁), 𝑁 , (𝑁 \ 𝑆) /𝑁

→ 𝑆
• As one can see from this example, the Lambek calculus is
capable of handling quite involved syntax.

• Moreover, it can be considered as the preferable system among
others, since it is exactly the atomic theory of the language
algebra (Pentus 1995).

• However, it has severe theoretical limitations.

4/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

Limitations of the Lambek Calculus

• The first issue is expressivity.

• Lambek grammars can generate only context-free languages
(Pentus 1993 — the proof of Chomsky conjecture).

• On the other hand, natural language syntax includes
non-context-free phenomena (Shieber 1985).

• The second issue is complexity.

• The Lambek calculus is NP-complete (Pentus 2006), as well as
its (\, /)- and (\, ⋅)-fragments (Savateev 2008).

• The only polynomially decidable fragment is the one with only
\ (Savateev 2007).

• Thus, we should simultaneously try to increase expressivity and
harness complexity.

5/29

This Talk

• A survey of complexity results for the Lambek calculus itself
and its fragment was given at the talk of Mati Pentus at
Advances in Modal Logic 2010.

• In this talk, we shall discuss algorithmic complexity for
extensions and variants of the Lambek calculus, trying to see
how expressive power correlates with complexity growth.

• The presentation is based on joint work and discussions with
Mati Pentus, Max Kanovich, Andre Scedrov, Glyn Morrill, and
Stanislav Speranski.

6/29

This Talk

• A survey of complexity results for the Lambek calculus itself
and its fragment was given at the talk of Mati Pentus at
Advances in Modal Logic 2010.

• In this talk, we shall discuss algorithmic complexity for
extensions and variants of the Lambek calculus, trying to see
how expressive power correlates with complexity growth.

• The presentation is based on joint work and discussions with
Mati Pentus, Max Kanovich, Andre Scedrov, Glyn Morrill, and
Stanislav Speranski.

6/29

This Talk

• A survey of complexity results for the Lambek calculus itself
and its fragment was given at the talk of Mati Pentus at
Advances in Modal Logic 2010.

• In this talk, we shall discuss algorithmic complexity for
extensions and variants of the Lambek calculus, trying to see
how expressive power correlates with complexity growth.

• The presentation is based on joint work and discussions with
Mati Pentus, Max Kanovich, Andre Scedrov, Glyn Morrill, and
Stanislav Speranski.

6/29

Categorial Grammar Parsers

• The importance of algorithmic decidability and reasonable
complexity bounds is connected to the usage of Lambek-style
formalisms is natural language parsers.

• The (probably) most well-known Lambek-based parsers are
Grail (Moot et al.) and CatLog (Morrill et al.).

• Grail uses the non-associative Lambek calculus as the basic
system, which is out of the scope of this talk.

• However, the non-associative Lambek calculus, unlike the
associative one, is polynomially decidable.

• CatLog’s calculus is associative, but includes a mechanism of
brackets for controlled non-associativity.

7/29

Categorial Grammar Parsers

• The importance of algorithmic decidability and reasonable
complexity bounds is connected to the usage of Lambek-style
formalisms is natural language parsers.

• The (probably) most well-known Lambek-based parsers are
Grail (Moot et al.) and CatLog (Morrill et al.).

• Grail uses the non-associative Lambek calculus as the basic
system, which is out of the scope of this talk.

• However, the non-associative Lambek calculus, unlike the
associative one, is polynomially decidable.

• CatLog’s calculus is associative, but includes a mechanism of
brackets for controlled non-associativity.

7/29

Categorial Grammar Parsers

• The importance of algorithmic decidability and reasonable
complexity bounds is connected to the usage of Lambek-style
formalisms is natural language parsers.

• The (probably) most well-known Lambek-based parsers are
Grail (Moot et al.) and CatLog (Morrill et al.).

• Grail uses the non-associative Lambek calculus as the basic
system, which is out of the scope of this talk.

• However, the non-associative Lambek calculus, unlike the
associative one, is polynomially decidable.

• CatLog’s calculus is associative, but includes a mechanism of
brackets for controlled non-associativity.

7/29

Categorial Grammar Parsers

• The importance of algorithmic decidability and reasonable
complexity bounds is connected to the usage of Lambek-style
formalisms is natural language parsers.

• The (probably) most well-known Lambek-based parsers are
Grail (Moot et al.) and CatLog (Morrill et al.).

• Grail uses the non-associative Lambek calculus as the basic
system, which is out of the scope of this talk.

• However, the non-associative Lambek calculus, unlike the
associative one, is polynomially decidable.

• CatLog’s calculus is associative, but includes a mechanism of
brackets for controlled non-associativity.

7/29

Categorial Grammar Parsers

• The importance of algorithmic decidability and reasonable
complexity bounds is connected to the usage of Lambek-style
formalisms is natural language parsers.

• The (probably) most well-known Lambek-based parsers are
Grail (Moot et al.) and CatLog (Morrill et al.).

• Grail uses the non-associative Lambek calculus as the basic
system, which is out of the scope of this talk.

• However, the non-associative Lambek calculus, unlike the
associative one, is polynomially decidable.

• CatLog’s calculus is associative, but includes a mechanism of
brackets for controlled non-associativity.

7/29

Is NP Too Hard?

• Pentus’ result on NP-hardness of the Lambek calculus was
considered as a negative one, limiting the use of the Lambek
calculus in practices (in comparison with other categorial
grammar formalisms, which are polynomially tractable).

• However, in fact the input parameter is the length of a sentence,
not the whole text, so it is roughly ≲ 20.

• This makes NP brute-force-search algorithms, with good
optimisations, practically usable.

• Moreover, those can be easily expanded to some
“algorithmically harmless” extensions of the system.

8/29

Is NP Too Hard?

• Pentus’ result on NP-hardness of the Lambek calculus was
considered as a negative one, limiting the use of the Lambek
calculus in practices (in comparison with other categorial
grammar formalisms, which are polynomially tractable).

• However, in fact the input parameter is the length of a sentence,
not the whole text, so it is roughly ≲ 20.

• This makes NP brute-force-search algorithms, with good
optimisations, practically usable.

• Moreover, those can be easily expanded to some
“algorithmically harmless” extensions of the system.

8/29

Is NP Too Hard?

• Pentus’ result on NP-hardness of the Lambek calculus was
considered as a negative one, limiting the use of the Lambek
calculus in practices (in comparison with other categorial
grammar formalisms, which are polynomially tractable).

• However, in fact the input parameter is the length of a sentence,
not the whole text, so it is roughly ≲ 20.

• This makes NP brute-force-search algorithms, with good
optimisations, practically usable.

• Moreover, those can be easily expanded to some
“algorithmically harmless” extensions of the system.

8/29

Is NP Too Hard?

• Pentus’ result on NP-hardness of the Lambek calculus was
considered as a negative one, limiting the use of the Lambek
calculus in practices (in comparison with other categorial
grammar formalisms, which are polynomially tractable).

• However, in fact the input parameter is the length of a sentence,
not the whole text, so it is roughly ≲ 20.

• This makes NP brute-force-search algorithms, with good
optimisations, practically usable.

• Moreover, those can be easily expanded to some
“algorithmically harmless” extensions of the system.

8/29

Extensions of the Lambek Calculus

• In real-life applications, the Lambek calculus is extended by a
huge amount of extra operations and syntactic mechanisms.

• For example, the calculus of Morrill’s CatLog uses about 45
operations (and this number could grow in the future).

• While it is impossible to discuss all these operations in detail
during this talk, we shall try to classify them from the
algorithmic point of view.

• Most of these operations are “harmless,” in the sense that adding
these operations does not increase algorithmic complexity (if
we are already in a non-deterministic class like NP or PSPACE).

• Others are “dangerous,” as they lead to complexity growth and
even to undecidability.

9/29

Extensions of the Lambek Calculus

• In real-life applications, the Lambek calculus is extended by a
huge amount of extra operations and syntactic mechanisms.

• For example, the calculus of Morrill’s CatLog uses about 45
operations (and this number could grow in the future).

• While it is impossible to discuss all these operations in detail
during this talk, we shall try to classify them from the
algorithmic point of view.

• Most of these operations are “harmless,” in the sense that adding
these operations does not increase algorithmic complexity (if
we are already in a non-deterministic class like NP or PSPACE).

• Others are “dangerous,” as they lead to complexity growth and
even to undecidability.

9/29

Extensions of the Lambek Calculus

• In real-life applications, the Lambek calculus is extended by a
huge amount of extra operations and syntactic mechanisms.

• For example, the calculus of Morrill’s CatLog uses about 45
operations (and this number could grow in the future).

• While it is impossible to discuss all these operations in detail
during this talk, we shall try to classify them from the
algorithmic point of view.

• Most of these operations are “harmless,” in the sense that adding
these operations does not increase algorithmic complexity (if
we are already in a non-deterministic class like NP or PSPACE).

• Others are “dangerous,” as they lead to complexity growth and
even to undecidability.

9/29

Extensions of the Lambek Calculus

• In real-life applications, the Lambek calculus is extended by a
huge amount of extra operations and syntactic mechanisms.

• For example, the calculus of Morrill’s CatLog uses about 45
operations (and this number could grow in the future).

• While it is impossible to discuss all these operations in detail
during this talk, we shall try to classify them from the
algorithmic point of view.

• Most of these operations are “harmless,” in the sense that adding
these operations does not increase algorithmic complexity (if
we are already in a non-deterministic class like NP or PSPACE).

• Others are “dangerous,” as they lead to complexity growth and
even to undecidability.

9/29

Extensions of the Lambek Calculus

• In real-life applications, the Lambek calculus is extended by a
huge amount of extra operations and syntactic mechanisms.

• For example, the calculus of Morrill’s CatLog uses about 45
operations (and this number could grow in the future).

• While it is impossible to discuss all these operations in detail
during this talk, we shall try to classify them from the
algorithmic point of view.

• Most of these operations are “harmless,” in the sense that adding
these operations does not increase algorithmic complexity (if
we are already in a non-deterministic class like NP or PSPACE).

• Others are “dangerous,” as they lead to complexity growth and
even to undecidability.

9/29

“Harmless” Extensions

• Fortunately, most of the extensions are “harmless.”

• One of such extensions introduces the bracketing mechanism
with modalities and bracket structure which restrict
associativity.

• This disallows incorrect sentences like “the girl whom John
likes Mary and Pete likes” (which are validated by the original
Lambek calculus), by making the dependent clause a strong
island: “[[John likes Mary and Pete likes ...]].”

• Another example is medial extraction: in order to parse “the girl
whom John met yesterday,” we have to move 𝑁 to the middle of
the dependent clause.

• This is achieved by assigning type (𝐶𝑁 \ 𝐶𝑁) /(𝑆 / !𝑁) to
“whom,” where the ! modality allows permutation.

10/29

“Harmless” Extensions

• Fortunately, most of the extensions are “harmless.”

• One of such extensions introduces the bracketing mechanism
with modalities and bracket structure which restrict
associativity.

• This disallows incorrect sentences like “the girl whom John
likes Mary and Pete likes” (which are validated by the original
Lambek calculus), by making the dependent clause a strong
island: “[[John likes Mary and Pete likes ...]].”

• Another example is medial extraction: in order to parse “the girl
whom John met yesterday,” we have to move 𝑁 to the middle of
the dependent clause.

• This is achieved by assigning type (𝐶𝑁 \ 𝐶𝑁) /(𝑆 / !𝑁) to
“whom,” where the ! modality allows permutation.

10/29

“Harmless” Extensions

• Fortunately, most of the extensions are “harmless.”

• One of such extensions introduces the bracketing mechanism
with modalities and bracket structure which restrict
associativity.

• This disallows incorrect sentences like “the girl whom John
likes Mary and Pete likes” (which are validated by the original
Lambek calculus), by making the dependent clause a strong
island: “[[John likes Mary and Pete likes ...]].”

• Another example is medial extraction: in order to parse “the girl
whom John met yesterday,” we have to move 𝑁 to the middle of
the dependent clause.

• This is achieved by assigning type (𝐶𝑁 \ 𝐶𝑁) /(𝑆 / !𝑁) to
“whom,” where the ! modality allows permutation.

10/29

“Harmless” Extensions

• Fortunately, most of the extensions are “harmless.”

• One of such extensions introduces the bracketing mechanism
with modalities and bracket structure which restrict
associativity.

• This disallows incorrect sentences like “the girl whom John
likes Mary and Pete likes” (which are validated by the original
Lambek calculus), by making the dependent clause a strong
island: “[[John likes Mary and Pete likes ...]].”

• Another example is medial extraction: in order to parse “the girl
whom John met yesterday,” we have to move 𝑁 to the middle of
the dependent clause.

• This is achieved by assigning type (𝐶𝑁 \ 𝐶𝑁) /(𝑆 / !𝑁) to
“whom,” where the ! modality allows permutation.

10/29

“Harmless” Extensions

• Fortunately, most of the extensions are “harmless.”

• One of such extensions introduces the bracketing mechanism
with modalities and bracket structure which restrict
associativity.

• This disallows incorrect sentences like “the girl whom John
likes Mary and Pete likes” (which are validated by the original
Lambek calculus), by making the dependent clause a strong
island: “[[John likes Mary and Pete likes ...]].”

• Another example is medial extraction: in order to parse “the girl
whom John met yesterday,” we have to move 𝑁 to the middle of
the dependent clause.

• This is achieved by assigning type (𝐶𝑁 \ 𝐶𝑁) /(𝑆 / !𝑁) to
“whom,” where the ! modality allows permutation.

10/29

“Harmless” Extensions

• There are also toy examples of “harmless” extensions, like
adding the word reversal operation R (K. 2012).

• These extensions, and many others, still keep the derivability
problem in the NP class.

• For brackets, there is also a specific question of bracket
guessing, or bracket induction (Morrill et al. 2018), since the
bracketing (island) structure is not given as the input.

• In the implementations, several techniques are used for
optimisation, one of which is focusing. Focusing means
reorganising a cut-free sequent proof by exchanging rules in a
systematic way, which reduces proof-search space.

11/29

“Harmless” Extensions

• There are also toy examples of “harmless” extensions, like
adding the word reversal operation R (K. 2012).

• These extensions, and many others, still keep the derivability
problem in the NP class.

• For brackets, there is also a specific question of bracket
guessing, or bracket induction (Morrill et al. 2018), since the
bracketing (island) structure is not given as the input.

• In the implementations, several techniques are used for
optimisation, one of which is focusing. Focusing means
reorganising a cut-free sequent proof by exchanging rules in a
systematic way, which reduces proof-search space.

11/29

“Harmless” Extensions

• There are also toy examples of “harmless” extensions, like
adding the word reversal operation R (K. 2012).

• These extensions, and many others, still keep the derivability
problem in the NP class.

• For brackets, there is also a specific question of bracket
guessing, or bracket induction (Morrill et al. 2018), since the
bracketing (island) structure is not given as the input.

• In the implementations, several techniques are used for
optimisation, one of which is focusing. Focusing means
reorganising a cut-free sequent proof by exchanging rules in a
systematic way, which reduces proof-search space.

11/29

“Harmless” Extensions

• There are also toy examples of “harmless” extensions, like
adding the word reversal operation R (K. 2012).

• These extensions, and many others, still keep the derivability
problem in the NP class.

• For brackets, there is also a specific question of bracket
guessing, or bracket induction (Morrill et al. 2018), since the
bracketing (island) structure is not given as the input.

• In the implementations, several techniques are used for
optimisation, one of which is focusing. Focusing means
reorganising a cut-free sequent proof by exchanging rules in a
systematic way, which reduces proof-search space.

11/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

Pseudopolynomial Algorithms

• For the original Lambek calculus, it is even possible to perform
polynomial-time parsing, in the following sense.

• Let us consider two complexity parameters: 𝑛 for the size of the
sequent and 𝑑 for its depth (roughly speaking, nesting of
divisions and multiplications).

• Pentus (2010) proposed an algorithm whose running time is
polynomial in 𝑛 and exponential in 𝑑 : poly(𝑛, 2𝑑).

• Kanovich et al. (2017) extended this to the Lambek calculus
with brackets, but the complexity now is only poly(𝑛, 2𝑑 , 𝑛𝑏),
where 𝑏 is bracket nesting depth.

• Unfortunately, while 𝑑 is usually small, 𝑏 could be large (in
sentences like “the house that Jack built”).

• Thus, (pseudo)polynomiality is not robust even for “harmless”
extensions.

12/29

“Dangerous” Extensions

• Unlike “harmless” extensions discussed before, there are certain
operation which significantly increase algorithmic complexity.

• We shall consider the following ones:
• additive conjunction and disjunction (∧, ∨);
• subexponentials (!) which allow non-local contraction

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, !𝐴, Φ, Δ → 𝐶 !𝐶

or a variant of this rule;
• the Kleene star, ∗.

13/29

“Dangerous” Extensions

• Unlike “harmless” extensions discussed before, there are certain
operation which significantly increase algorithmic complexity.

• We shall consider the following ones:
• additive conjunction and disjunction (∧, ∨);
• subexponentials (!) which allow non-local contraction

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, !𝐴, Φ, Δ → 𝐶 !𝐶

or a variant of this rule;
• the Kleene star, ∗.

13/29

“Harmless” Extensions as “Linear” Ones

• The “harmless” extensions have the following common
property: the new rules of inference maintain linearity, in the
sense that each formula occurrences in the conclusion of a rule
maps to not more than one occurrence in the premise(s).

• This makes the size of cut-free proof polynomial w.r.t. the size
of the goal sequent, thus an NP upper bound.

• In contrast, the rules for “dangerous” operations have more
complex premises, which leads to blowup of proof search.

14/29

“Harmless” Extensions as “Linear” Ones

• The “harmless” extensions have the following common
property: the new rules of inference maintain linearity, in the
sense that each formula occurrences in the conclusion of a rule
maps to not more than one occurrence in the premise(s).

• This makes the size of cut-free proof polynomial w.r.t. the size
of the goal sequent, thus an NP upper bound.

• In contrast, the rules for “dangerous” operations have more
complex premises, which leads to blowup of proof search.

14/29

“Harmless” Extensions as “Linear” Ones

• The “harmless” extensions have the following common
property: the new rules of inference maintain linearity, in the
sense that each formula occurrences in the conclusion of a rule
maps to not more than one occurrence in the premise(s).

• This makes the size of cut-free proof polynomial w.r.t. the size
of the goal sequent, thus an NP upper bound.

• In contrast, the rules for “dangerous” operations have more
complex premises, which leads to blowup of proof search.

14/29

“Harmless” Extensions as “Linear” Ones

• Thus, rules for “harmless” operations, from a bird-eye view, just
perform some reorganisation of the same material (formulae).

• The differences are only in the structure of meta-formulae
which form the sequent.

• Recently, Pshenitsyn (2021) proposed a general framework for
such situations, called the hypergraph Lambek calculus HL.

• The syntax of HL is quite involved (using hypergraphs instead
of formulae), but it is still in the NP class.

• Moreover, it absorbs many of the known “harmless” extensions
of the Lambek calculus, so it could probably become the
“umbrella logic” for them.

15/29

“Harmless” Extensions as “Linear” Ones

• Thus, rules for “harmless” operations, from a bird-eye view, just
perform some reorganisation of the same material (formulae).

• The differences are only in the structure of meta-formulae
which form the sequent.

• Recently, Pshenitsyn (2021) proposed a general framework for
such situations, called the hypergraph Lambek calculus HL.

• The syntax of HL is quite involved (using hypergraphs instead
of formulae), but it is still in the NP class.

• Moreover, it absorbs many of the known “harmless” extensions
of the Lambek calculus, so it could probably become the
“umbrella logic” for them.

15/29

“Harmless” Extensions as “Linear” Ones

• Thus, rules for “harmless” operations, from a bird-eye view, just
perform some reorganisation of the same material (formulae).

• The differences are only in the structure of meta-formulae
which form the sequent.

• Recently, Pshenitsyn (2021) proposed a general framework for
such situations, called the hypergraph Lambek calculus HL.

• The syntax of HL is quite involved (using hypergraphs instead
of formulae), but it is still in the NP class.

• Moreover, it absorbs many of the known “harmless” extensions
of the Lambek calculus, so it could probably become the
“umbrella logic” for them.

15/29

“Harmless” Extensions as “Linear” Ones

• Thus, rules for “harmless” operations, from a bird-eye view, just
perform some reorganisation of the same material (formulae).

• The differences are only in the structure of meta-formulae
which form the sequent.

• Recently, Pshenitsyn (2021) proposed a general framework for
such situations, called the hypergraph Lambek calculus HL.

• The syntax of HL is quite involved (using hypergraphs instead
of formulae), but it is still in the NP class.

• Moreover, it absorbs many of the known “harmless” extensions
of the Lambek calculus, so it could probably become the
“umbrella logic” for them.

15/29

“Harmless” Extensions as “Linear” Ones

• Thus, rules for “harmless” operations, from a bird-eye view, just
perform some reorganisation of the same material (formulae).

• The differences are only in the structure of meta-formulae
which form the sequent.

• Recently, Pshenitsyn (2021) proposed a general framework for
such situations, called the hypergraph Lambek calculus HL.

• The syntax of HL is quite involved (using hypergraphs instead
of formulae), but it is still in the NP class.

• Moreover, it absorbs many of the known “harmless” extensions
of the Lambek calculus, so it could probably become the
“umbrella logic” for them.

15/29

Additive Operations

• Let us return to more interesting, “dangerous” stuff.

• Additive operations are governed by the following inference
rules:

Γ, 𝐴1, Δ → 𝐶 Γ, 𝐴2, Δ → 𝐶
Γ, 𝐴1 ∨ 𝐴2, Δ → 𝐶 ∨𝐿 Π → 𝐴𝑖

Π → 𝐴1 ∨ 𝐴2
∨𝑅

Γ, 𝐴𝑖, Δ → 𝐶
Γ, 𝐴1 ∧ 𝐴2, Δ → 𝐶 ∧𝐿 Π → 𝐴1 Π → 𝐴2

Π → 𝐴1 ∧ 𝐴2
∧𝑅

• Additive operations allow imposing several syntactic conditions
on a word at the same time.

16/29

Additive Operations

• Let us return to more interesting, “dangerous” stuff.

• Additive operations are governed by the following inference
rules:

Γ, 𝐴1, Δ → 𝐶 Γ, 𝐴2, Δ → 𝐶
Γ, 𝐴1 ∨ 𝐴2, Δ → 𝐶 ∨𝐿 Π → 𝐴𝑖

Π → 𝐴1 ∨ 𝐴2
∨𝑅

Γ, 𝐴𝑖, Δ → 𝐶
Γ, 𝐴1 ∧ 𝐴2, Δ → 𝐶 ∧𝐿 Π → 𝐴1 Π → 𝐴2

Π → 𝐴1 ∧ 𝐴2
∧𝑅

• Additive operations allow imposing several syntactic conditions
on a word at the same time.

16/29

Additive Operations

• Let us return to more interesting, “dangerous” stuff.

• Additive operations are governed by the following inference
rules:

Γ, 𝐴1, Δ → 𝐶 Γ, 𝐴2, Δ → 𝐶
Γ, 𝐴1 ∨ 𝐴2, Δ → 𝐶 ∨𝐿 Π → 𝐴𝑖

Π → 𝐴1 ∨ 𝐴2
∨𝑅

Γ, 𝐴𝑖, Δ → 𝐶
Γ, 𝐴1 ∧ 𝐴2, Δ → 𝐶 ∧𝐿 Π → 𝐴1 Π → 𝐴2

Π → 𝐴1 ∧ 𝐴2
∧𝑅

• Additive operations allow imposing several syntactic conditions
on a word at the same time.

16/29

Additive Operations

• This allows describing finite intersections of context-free
languages (Kanazawa 1992) and, moreover, languages generated
by conjunctive grammars (K., Okhotin 2017) and closures of
such under symbol-to-symbol homomorphisms.

• The latter class includes an NP-hard language, thus we have no
hope for a pseudopolynomial algorithm here.

• The Lambek calculus with additives (MALC) itself is
PSPACE-complete (Kanovich 1994), and this holds even for its
(\, ∧)-fragment (Kanovich et al. 2019).

• Additive operations raise complexity, but keep decidability, and
they are still under the scope of exponential-free linear logic.

17/29

Additive Operations

• This allows describing finite intersections of context-free
languages (Kanazawa 1992) and, moreover, languages generated
by conjunctive grammars (K., Okhotin 2017) and closures of
such under symbol-to-symbol homomorphisms.

• The latter class includes an NP-hard language, thus we have no
hope for a pseudopolynomial algorithm here.

• The Lambek calculus with additives (MALC) itself is
PSPACE-complete (Kanovich 1994), and this holds even for its
(\, ∧)-fragment (Kanovich et al. 2019).

• Additive operations raise complexity, but keep decidability, and
they are still under the scope of exponential-free linear logic.

17/29

Additive Operations

• This allows describing finite intersections of context-free
languages (Kanazawa 1992) and, moreover, languages generated
by conjunctive grammars (K., Okhotin 2017) and closures of
such under symbol-to-symbol homomorphisms.

• The latter class includes an NP-hard language, thus we have no
hope for a pseudopolynomial algorithm here.

• The Lambek calculus with additives (MALC) itself is
PSPACE-complete (Kanovich 1994), and this holds even for its
(\, ∧)-fragment (Kanovich et al. 2019).

• Additive operations raise complexity, but keep decidability, and
they are still under the scope of exponential-free linear logic.

17/29

Additive Operations

• This allows describing finite intersections of context-free
languages (Kanazawa 1992) and, moreover, languages generated
by conjunctive grammars (K., Okhotin 2017) and closures of
such under symbol-to-symbol homomorphisms.

• The latter class includes an NP-hard language, thus we have no
hope for a pseudopolynomial algorithm here.

• The Lambek calculus with additives (MALC) itself is
PSPACE-complete (Kanovich 1994), and this holds even for its
(\, ∧)-fragment (Kanovich et al. 2019).

• Additive operations raise complexity, but keep decidability, and
they are still under the scope of exponential-free linear logic.

17/29

Subexponentials with Contraction

• Real nonlinearity comes with the contraction rule for
(sub)exponential modalities.

• The natural language phenomenon here is the situation of
multiple extraction: “the paper that the author of signed without
reading.”

• Here the dependent clause (“the author of ... signed ... without
reading ...”) includes several gaps which should be filled by
copies of the same 𝑁 (“the paper”).

• This requires some form of contraction rule for !𝑁 :

… !𝑁 … !𝑁 … → 𝐶
… !𝑁 … … → 𝐶

18/29

Subexponentials with Contraction

• Real nonlinearity comes with the contraction rule for
(sub)exponential modalities.

• The natural language phenomenon here is the situation of
multiple extraction: “the paper that the author of signed without
reading.”

• Here the dependent clause (“the author of ... signed ... without
reading ...”) includes several gaps which should be filled by
copies of the same 𝑁 (“the paper”).

• This requires some form of contraction rule for !𝑁 :

… !𝑁 … !𝑁 … → 𝐶
… !𝑁 … … → 𝐶

18/29

Subexponentials with Contraction

• Real nonlinearity comes with the contraction rule for
(sub)exponential modalities.

• The natural language phenomenon here is the situation of
multiple extraction: “the paper that the author of signed without
reading.”

• Here the dependent clause (“the author of ... signed ... without
reading ...”) includes several gaps which should be filled by
copies of the same 𝑁 (“the paper”).

• This requires some form of contraction rule for !𝑁 :

… !𝑁 … !𝑁 … → 𝐶
… !𝑁 … … → 𝐶

18/29

Subexponentials with Contraction

• Real nonlinearity comes with the contraction rule for
(sub)exponential modalities.

• The natural language phenomenon here is the situation of
multiple extraction: “the paper that the author of signed without
reading.”

• Here the dependent clause (“the author of ... signed ... without
reading ...”) includes several gaps which should be filled by
copies of the same 𝑁 (“the paper”).

• This requires some form of contraction rule for !𝑁 :

… !𝑁 … !𝑁 … → 𝐶
… !𝑁 … … → 𝐶

18/29

Subexponentials with Contraction

• The non-local contraction rule is formulated as follows:

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, !𝐴, Φ, Δ → 𝐶 !𝑁𝐶1

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, Φ, !𝐴, Δ → 𝐶 !𝑁𝐶2

• Non-locality is necessary in the absence of permutation (which
is usually not the case); otherwise, logical properties like
cut-elimination get broken (Kanovich et al. 2018).

• Extensions of the Lambek calculus with a ! which allows 𝑁𝐶1,2
are undecidable (Kanovich et al. 2018), more precisely,
Σ01-complete.

19/29

Subexponentials with Contraction

• The non-local contraction rule is formulated as follows:

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, !𝐴, Φ, Δ → 𝐶 !𝑁𝐶1

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, Φ, !𝐴, Δ → 𝐶 !𝑁𝐶2

• Non-locality is necessary in the absence of permutation (which
is usually not the case); otherwise, logical properties like
cut-elimination get broken (Kanovich et al. 2018).

• Extensions of the Lambek calculus with a ! which allows 𝑁𝐶1,2
are undecidable (Kanovich et al. 2018), more precisely,
Σ01-complete.

19/29

Subexponentials with Contraction

• The non-local contraction rule is formulated as follows:

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, !𝐴, Φ, Δ → 𝐶 !𝑁𝐶1

Γ, !𝐴, Φ, !𝐴, Δ → 𝐶
Γ, Φ, !𝐴, Δ → 𝐶 !𝑁𝐶2

• Non-locality is necessary in the absence of permutation (which
is usually not the case); otherwise, logical properties like
cut-elimination get broken (Kanovich et al. 2018).

• Extensions of the Lambek calculus with a ! which allows 𝑁𝐶1,2
are undecidable (Kanovich et al. 2018), more precisely,
Σ01-complete.

19/29

Subexponentials with Contraction: Undecidability

• The undecidability argument is a refinement of the one used by
Lincoln et al. (1992) for proving undecidability for propositional
linear logic with the exponential modality (which allows all
structural rules: contraction, weakening, and permutation).

• Notice that in the non-commutative case the undecidability
proof does not require additives.

• The argument is based on encoding derivability from finite sets
of non-logical axioms.

• The latter problem is also undecidable (Buszkowski 1982, 2005),
which is quite unfortunate, since sometimes we want to express
extra properties of syntactic types (like subtyping:
𝑁 inanimate → 𝑁).

20/29

Subexponentials with Contraction: Undecidability

• The undecidability argument is a refinement of the one used by
Lincoln et al. (1992) for proving undecidability for propositional
linear logic with the exponential modality (which allows all
structural rules: contraction, weakening, and permutation).

• Notice that in the non-commutative case the undecidability
proof does not require additives.

• The argument is based on encoding derivability from finite sets
of non-logical axioms.

• The latter problem is also undecidable (Buszkowski 1982, 2005),
which is quite unfortunate, since sometimes we want to express
extra properties of syntactic types (like subtyping:
𝑁 inanimate → 𝑁).

20/29

Subexponentials with Contraction: Undecidability

• The undecidability argument is a refinement of the one used by
Lincoln et al. (1992) for proving undecidability for propositional
linear logic with the exponential modality (which allows all
structural rules: contraction, weakening, and permutation).

• Notice that in the non-commutative case the undecidability
proof does not require additives.

• The argument is based on encoding derivability from finite sets
of non-logical axioms.

• The latter problem is also undecidable (Buszkowski 1982, 2005),
which is quite unfortunate, since sometimes we want to express
extra properties of syntactic types (like subtyping:
𝑁 inanimate → 𝑁).

20/29

Subexponentials with Contraction: Undecidability

• The undecidability argument is a refinement of the one used by
Lincoln et al. (1992) for proving undecidability for propositional
linear logic with the exponential modality (which allows all
structural rules: contraction, weakening, and permutation).

• Notice that in the non-commutative case the undecidability
proof does not require additives.

• The argument is based on encoding derivability from finite sets
of non-logical axioms.

• The latter problem is also undecidable (Buszkowski 1982, 2005),
which is quite unfortunate, since sometimes we want to express
extra properties of syntactic types (like subtyping:
𝑁 inanimate → 𝑁).

20/29

Subexponentials with Contraction: Decidability

• However, it turns out that for practical applications
subexponentials which allow contraction can be considered
harmless!

• Let us consider the so-called “relevant modality,” which allows
contraction and permutation, but not weakening.

• This ! gets applied to types of syntactic objects which get
abstracted.

• Usually, this is a noun phrase: !𝑁 . One could potentially think
of abstracting a verb, !(𝑁 \ 𝑆), but definitely not more
complicated objects.

21/29

Subexponentials with Contraction: Decidability

• However, it turns out that for practical applications
subexponentials which allow contraction can be considered
harmless!

• Let us consider the so-called “relevant modality,” which allows
contraction and permutation, but not weakening.

• This ! gets applied to types of syntactic objects which get
abstracted.

• Usually, this is a noun phrase: !𝑁 . One could potentially think
of abstracting a verb, !(𝑁 \ 𝑆), but definitely not more
complicated objects.

21/29

Subexponentials with Contraction: Decidability

• However, it turns out that for practical applications
subexponentials which allow contraction can be considered
harmless!

• Let us consider the so-called “relevant modality,” which allows
contraction and permutation, but not weakening.

• This ! gets applied to types of syntactic objects which get
abstracted.

• Usually, this is a noun phrase: !𝑁 . One could potentially think
of abstracting a verb, !(𝑁 \ 𝑆), but definitely not more
complicated objects.

21/29

Subexponentials with Contraction: Decidability

• However, it turns out that for practical applications
subexponentials which allow contraction can be considered
harmless!

• Let us consider the so-called “relevant modality,” which allows
contraction and permutation, but not weakening.

• This ! gets applied to types of syntactic objects which get
abstracted.

• Usually, this is a noun phrase: !𝑁 . One could potentially think
of abstracting a verb, !(𝑁 \ 𝑆), but definitely not more
complicated objects.

21/29

Subexponentials with Contraction: Decidability

• Thus, formulae which really appear under ! are (\, /)-formulae
of depth not greater than 1: (𝑞1 …𝑞𝑛) \ 𝑝 /(𝑟1 … 𝑟𝑚).

• And for such formulae under !, the derivability problem is
decidable and belongs to the NP class (Dudakov et al. 2021).

• The algorithm uses a dyadic syntax which propagates all
applications of contraction up to the axioms.

• Axiom checking is quite involved, and requires so-called total
derivability in context-free grammars.

22/29

Subexponentials with Contraction: Decidability

• Thus, formulae which really appear under ! are (\, /)-formulae
of depth not greater than 1: (𝑞1 …𝑞𝑛) \ 𝑝 /(𝑟1 … 𝑟𝑚).

• And for such formulae under !, the derivability problem is
decidable and belongs to the NP class (Dudakov et al. 2021).

• The algorithm uses a dyadic syntax which propagates all
applications of contraction up to the axioms.

• Axiom checking is quite involved, and requires so-called total
derivability in context-free grammars.

22/29

Subexponentials with Contraction: Decidability

• Thus, formulae which really appear under ! are (\, /)-formulae
of depth not greater than 1: (𝑞1 …𝑞𝑛) \ 𝑝 /(𝑟1 … 𝑟𝑚).

• And for such formulae under !, the derivability problem is
decidable and belongs to the NP class (Dudakov et al. 2021).

• The algorithm uses a dyadic syntax which propagates all
applications of contraction up to the axioms.

• Axiom checking is quite involved, and requires so-called total
derivability in context-free grammars.

22/29

Subexponentials with Contraction: Decidability

• Thus, formulae which really appear under ! are (\, /)-formulae
of depth not greater than 1: (𝑞1 …𝑞𝑛) \ 𝑝 /(𝑟1 … 𝑟𝑚).

• And for such formulae under !, the derivability problem is
decidable and belongs to the NP class (Dudakov et al. 2021).

• The algorithm uses a dyadic syntax which propagates all
applications of contraction up to the axioms.

• Axiom checking is quite involved, and requires so-called total
derivability in context-free grammars.

22/29

Subexponentials with Contraction: Brackets

• In Morrill’s systems for CatLog, contraction has a subtle
interaction with the bracketing structure.

• This is due to the fact that in multiple extraction there is one
principal gap, and others are parasitic ones, appearing in
islands: “[the author of ...] signed ... [without reading ...].”

• Morrill uses different rules in different versions of his system,
we cite one of the most recent ones (Morrill 2018):

Ξ(𝐴) → 𝐶
Ξ(!𝐴) → 𝐶 !𝐿 !𝐴 → 𝐵

!𝐴 → !𝐵 !𝑅 Ξ(Γ1, !𝐴, [!𝐴, Γ2], Γ3) → 𝐶
Ξ(Γ1, !𝐴, [[Γ2]], Γ3) → 𝐶 !𝐶

Ξ(Γ, !𝐴) → 𝐶
Ξ(!𝐴, Γ) → 𝐶 !𝑃1 Ξ(!𝐴, Γ) → 𝐶

Ξ(Γ, !𝐴) → 𝐶 !𝑃2

23/29

Subexponentials with Contraction: Brackets

• In our JoLLI paper (Kanovich, K., Scedrov 2021) we give
proof-theoretic analysis of Morrill’s systems and prove their
undecidability.

• However, the argument involves using bracket modalities under
! to break the bracket discipline.

• In real applications this does not happen, and standard proof
search algorithms solve the derivability problem.

• Theoretically, this is supported by decidability results for
certain conditions on bracket modalities under ! (Kanovich,
Stepan G. Kuznetsov, K., Scedrov 2021), which make !
“harmless” (NP for Lambek, PSPACE for MALC).

• Notice that now no restriction is imposed on the depth of
formulae under !.

24/29

Subexponentials with Contraction: Brackets

• In our JoLLI paper (Kanovich, K., Scedrov 2021) we give
proof-theoretic analysis of Morrill’s systems and prove their
undecidability.

• However, the argument involves using bracket modalities under
! to break the bracket discipline.

• In real applications this does not happen, and standard proof
search algorithms solve the derivability problem.

• Theoretically, this is supported by decidability results for
certain conditions on bracket modalities under ! (Kanovich,
Stepan G. Kuznetsov, K., Scedrov 2021), which make !
“harmless” (NP for Lambek, PSPACE for MALC).

• Notice that now no restriction is imposed on the depth of
formulae under !.

24/29

Subexponentials with Contraction: Brackets

• In our JoLLI paper (Kanovich, K., Scedrov 2021) we give
proof-theoretic analysis of Morrill’s systems and prove their
undecidability.

• However, the argument involves using bracket modalities under
! to break the bracket discipline.

• In real applications this does not happen, and standard proof
search algorithms solve the derivability problem.

• Theoretically, this is supported by decidability results for
certain conditions on bracket modalities under ! (Kanovich,
Stepan G. Kuznetsov, K., Scedrov 2021), which make !
“harmless” (NP for Lambek, PSPACE for MALC).

• Notice that now no restriction is imposed on the depth of
formulae under !.

24/29

Subexponentials with Contraction: Brackets

• In our JoLLI paper (Kanovich, K., Scedrov 2021) we give
proof-theoretic analysis of Morrill’s systems and prove their
undecidability.

• However, the argument involves using bracket modalities under
! to break the bracket discipline.

• In real applications this does not happen, and standard proof
search algorithms solve the derivability problem.

• Theoretically, this is supported by decidability results for
certain conditions on bracket modalities under ! (Kanovich,
Stepan G. Kuznetsov, K., Scedrov 2021), which make !
“harmless” (NP for Lambek, PSPACE for MALC).

• Notice that now no restriction is imposed on the depth of
formulae under !.

24/29

Subexponentials with Contraction: Brackets

• In our JoLLI paper (Kanovich, K., Scedrov 2021) we give
proof-theoretic analysis of Morrill’s systems and prove their
undecidability.

• However, the argument involves using bracket modalities under
! to break the bracket discipline.

• In real applications this does not happen, and standard proof
search algorithms solve the derivability problem.

• Theoretically, this is supported by decidability results for
certain conditions on bracket modalities under ! (Kanovich,
Stepan G. Kuznetsov, K., Scedrov 2021), which make !
“harmless” (NP for Lambek, PSPACE for MALC).

• Notice that now no restriction is imposed on the depth of
formulae under !.

24/29

Kleene Star

• We finish our survey by discussion one of the most interesting
operations, namely iteration or Kleene star, 𝐴∗.

• In Morrill’s systems, it is denoted by ?𝐴 and called “existential
exponential.”

• However, it obeys standard rules for Kleene star, one of which
is the omega-rule:

(Γ, 𝐴𝑛, Δ → 𝐶)∞𝑛=0
Γ, 𝐴∗, Δ → 𝐶 ∗𝐿𝜔 → 𝐴∗ ∗𝑅0 Π → 𝐴 Δ → 𝐴∗

Π, Δ → 𝐴∗ ∗𝑅

25/29

Kleene Star

• We finish our survey by discussion one of the most interesting
operations, namely iteration or Kleene star, 𝐴∗.

• In Morrill’s systems, it is denoted by ?𝐴 and called “existential
exponential.”

• However, it obeys standard rules for Kleene star, one of which
is the omega-rule:

(Γ, 𝐴𝑛, Δ → 𝐶)∞𝑛=0
Γ, 𝐴∗, Δ → 𝐶 ∗𝐿𝜔 → 𝐴∗ ∗𝑅0 Π → 𝐴 Δ → 𝐴∗

Π, Δ → 𝐴∗ ∗𝑅

25/29

Kleene Star

• We finish our survey by discussion one of the most interesting
operations, namely iteration or Kleene star, 𝐴∗.

• In Morrill’s systems, it is denoted by ?𝐴 and called “existential
exponential.”

• However, it obeys standard rules for Kleene star, one of which
is the omega-rule:

(Γ, 𝐴𝑛, Δ → 𝐶)∞𝑛=0
Γ, 𝐴∗, Δ → 𝐶 ∗𝐿𝜔 → 𝐴∗ ∗𝑅0 Π → 𝐴 Δ → 𝐴∗

Π, Δ → 𝐴∗ ∗𝑅

25/29

Kleene Star

• With ∗𝐿𝜔 , the Lambek calculus with Kleene star are
undecidable and Π01-complete (Buszkowski, Palka 2007; K. 2020).

• This means that disproving a sequent is an enumerable task
(due to the finite model property), but proving requires
infinitary mechanisms.

• Fortunately, Morrill uses his “existential exponential” only in
positive positions, which do not involve ∗𝐿𝜔 .

• Namely, “and” in iterated coordination situations like “John,
Bill, Mary and Suzy” receives the type (?𝑁 \𝑁) /𝑁

26/29

Kleene Star

• With ∗𝐿𝜔 , the Lambek calculus with Kleene star are
undecidable and Π01-complete (Buszkowski, Palka 2007; K. 2020).

• This means that disproving a sequent is an enumerable task
(due to the finite model property), but proving requires
infinitary mechanisms.

• Fortunately, Morrill uses his “existential exponential” only in
positive positions, which do not involve ∗𝐿𝜔 .

• Namely, “and” in iterated coordination situations like “John,
Bill, Mary and Suzy” receives the type (?𝑁 \𝑁) /𝑁

26/29

Kleene Star

• With ∗𝐿𝜔 , the Lambek calculus with Kleene star are
undecidable and Π01-complete (Buszkowski, Palka 2007; K. 2020).

• This means that disproving a sequent is an enumerable task
(due to the finite model property), but proving requires
infinitary mechanisms.

• Fortunately, Morrill uses his “existential exponential” only in
positive positions, which do not involve ∗𝐿𝜔 .

• Namely, “and” in iterated coordination situations like “John,
Bill, Mary and Suzy” receives the type (?𝑁 \𝑁) /𝑁

26/29

Kleene Star

• With ∗𝐿𝜔 , the Lambek calculus with Kleene star are
undecidable and Π01-complete (Buszkowski, Palka 2007; K. 2020).

• This means that disproving a sequent is an enumerable task
(due to the finite model property), but proving requires
infinitary mechanisms.

• Fortunately, Morrill uses his “existential exponential” only in
positive positions, which do not involve ∗𝐿𝜔 .

• Namely, “and” in iterated coordination situations like “John,
Bill, Mary and Suzy” receives the type (?𝑁 \𝑁) /𝑁

26/29

Kleene Star

• For logical completeness, however, we need some sort of a left
rule for Kleene star.

• One option could be an inductive-style axiomatisation (like in
action logic, Pratt 1991):

→ 𝐵 𝐴, 𝐵 → 𝐵
𝐴∗ → 𝐵 ∗𝐿 Π → 𝐴 Γ, 𝐵, Δ → 𝐶

Γ, Π, Δ → 𝐶 𝐶𝑢𝑡

• This again leads an undecidable system, now it is Σ01-complete
(K. 2019 — solving a problem raised by Kozen in 1994).

27/29

Kleene Star

• For logical completeness, however, we need some sort of a left
rule for Kleene star.

• One option could be an inductive-style axiomatisation (like in
action logic, Pratt 1991):

→ 𝐵 𝐴, 𝐵 → 𝐵
𝐴∗ → 𝐵 ∗𝐿 Π → 𝐴 Γ, 𝐵, Δ → 𝐶

Γ, Π, Δ → 𝐶 𝐶𝑢𝑡

• This again leads an undecidable system, now it is Σ01-complete
(K. 2019 — solving a problem raised by Kozen in 1994).

27/29

Kleene Star

• For logical completeness, however, we need some sort of a left
rule for Kleene star.

• One option could be an inductive-style axiomatisation (like in
action logic, Pratt 1991):

→ 𝐵 𝐴, 𝐵 → 𝐵
𝐴∗ → 𝐵 ∗𝐿 Π → 𝐴 Γ, 𝐵, Δ → 𝐶

Γ, Π, Δ → 𝐶 𝐶𝑢𝑡

• This again leads an undecidable system, now it is Σ01-complete
(K. 2019 — solving a problem raised by Kozen in 1994).

27/29

Kleene Star and Subexponential

• We conclude by considering an extension of the Lambek
calculus with both ∗ and !.

• Formally speaking, Morrill’s system is such a system.

• In the presence of ∗𝐿𝜔 and !𝑁𝐶1,2, this system’s complexity is
as high as Π11 (K., Speranski 2021).

• Namely, they are capable of encoding well-foundedness of
recursively defined infinite graphs (Kozen 2002).

• There are intermediate fragments which fall into the
hyperarithmetical hierarchy, but these questions are definitely
beyond any reasonable linguistic applications.

28/29

Kleene Star and Subexponential

• We conclude by considering an extension of the Lambek
calculus with both ∗ and !.

• Formally speaking, Morrill’s system is such a system.

• In the presence of ∗𝐿𝜔 and !𝑁𝐶1,2, this system’s complexity is
as high as Π11 (K., Speranski 2021).

• Namely, they are capable of encoding well-foundedness of
recursively defined infinite graphs (Kozen 2002).

• There are intermediate fragments which fall into the
hyperarithmetical hierarchy, but these questions are definitely
beyond any reasonable linguistic applications.

28/29

Kleene Star and Subexponential

• We conclude by considering an extension of the Lambek
calculus with both ∗ and !.

• Formally speaking, Morrill’s system is such a system.

• In the presence of ∗𝐿𝜔 and !𝑁𝐶1,2, this system’s complexity is
as high as Π11 (K., Speranski 2021).

• Namely, they are capable of encoding well-foundedness of
recursively defined infinite graphs (Kozen 2002).

• There are intermediate fragments which fall into the
hyperarithmetical hierarchy, but these questions are definitely
beyond any reasonable linguistic applications.

28/29

Kleene Star and Subexponential

• We conclude by considering an extension of the Lambek
calculus with both ∗ and !.

• Formally speaking, Morrill’s system is such a system.

• In the presence of ∗𝐿𝜔 and !𝑁𝐶1,2, this system’s complexity is
as high as Π11 (K., Speranski 2021).

• Namely, they are capable of encoding well-foundedness of
recursively defined infinite graphs (Kozen 2002).

• There are intermediate fragments which fall into the
hyperarithmetical hierarchy, but these questions are definitely
beyond any reasonable linguistic applications.

28/29

Kleene Star and Subexponential

• We conclude by considering an extension of the Lambek
calculus with both ∗ and !.

• Formally speaking, Morrill’s system is such a system.

• In the presence of ∗𝐿𝜔 and !𝑁𝐶1,2, this system’s complexity is
as high as Π11 (K., Speranski 2021).

• Namely, they are capable of encoding well-foundedness of
recursively defined infinite graphs (Kozen 2002).

• There are intermediate fragments which fall into the
hyperarithmetical hierarchy, but these questions are definitely
beyond any reasonable linguistic applications.

28/29

Thank you!

29/29

