Categorial Dependency Grammars: Analysis and

Learning (Invited Talk)

Denis Béchet, University of Nantes
Annie Foret, University Rennes 1, France

LAComplLing 2021, Montpellier, December 15-17 2021

D. Béchet and A. Foret CDG: Analysis and Learning

@ Introduction to CDG
© CDG Languages

© CDG Analysis

@ Grammatical Inference
© K-star CDG

@ Conclusion and Open Problems

D. Béchet and A. Foret CDG: Analysis and Learning

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

a-obj comp-conj _
det red _G) TT=> conj-th

TN ~
This deal brought more problems than profits

Dependencies are determined by valencies of words

brought has +valency pred of a left adjacent word
deal has —valency pred of a right adjacent word
Saturation of valency pred determines projective dependency

d
deal T brought (Governor: brought, Subordinate: deal)

D. Béchet and A. Foret CDG: Analysis and Learning

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

a-obj comp-conj _
det red _G) TT=> conj-th

TN /
This deal brought more problems than profits

Dependencies are determined by valencies of words

more has +valency comp-conj of a word somewhere on its right
than has —valency comp-conj of a word somewhere on its left

Saturation of comp-conj determines non-projective dependency

comp-conj .
more --» than (Governor: more, Subordinate: than)

D. Béchet and A. Foret CDG: Analysis and Learning

Repeatable Dependencies

Some dependency valencies are MULTIPLE

a_copul

3_copul pred is non-repeatable
red R S a_copul is repeatable
She was tall , blond and young

Principle of Repeatable Dependencies [Mel¢uk’'88]

e Every dependency d is either repeatable or non-repeatable
e d is repeatable if SOME governor uses d in SOME DS at
least (K =) 2 times

e Any word governing through a repeatable dependency d in
SOME DS may have any number of subordinates through d

4

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)
CDG Types express dependency valencies

PROJECTIVE DEPENDENCIES (AND ANCHORS)

Dependency: Gov i) Sub:
Governor Type: Gov + [..\../../d/..]F
Subordinate Type: Sub s [.\d/..]P

Anchors are non-important projective dependencies. Used for:
@ Anchoring punctuation
@ Anchoring the subordinate of non-projective dependencies

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)
CDG Types express dependency valencies

c copul
epos-I red
ﬁa\ =
/_\ m

In the beginning was the Word

in — [c_copul / prepos —I]

the — [det]

beginning — [det\prepos—]
was +— [c_copul\S/pred|
Word +— [det\ pred]

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)
CDG Types express dependency valencies

NON-PROJECTIVE DEPENDENCIES
Polarized valencies: "d, \,d, \ d, ,/d
Dependency: Gov —C—j+ Sub:
Governor Type Potential: Gov + [..]+/7~

Subordinate Type Potential: Sub — [..]"\d"

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)
CDG Types express dependency valencies

a-obj comp-conj_
det red , ar — ~ T ~-> conj-th

This deal brought more problems than profits

this — [det]

deal — [det\ pred|

brought — [pred\S/a— obj]
problems — [compar\a— obj]
profits + [conj— th]

more + [compar]/compP—<oni
than — [/conj— th] Memp-conj

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

NON-PROJECTIVE DEPENDENCIES WITH ANCHORS
Polarized valencies: "d, \ d, \ d, ,/ d
Anchor valencies: #\,d, #, d

d
Dependency and anchor: Gov —C—je Sub #A Host:
Governor Type: Gov — [..]+/7-
Subordinate Type: Sub — [.\#\,d/..] 9"

Host Type: Host +— [.\#\,d\../..]F

D. Béchet and A. Foret CDG: Analysis and Learning

Categorial Dependency Grammars (CDG)
CDG Types express dependency valencies

S

comp-conj _ _

det ~=> conj-th

& This deal brought more problems than profits

#\comp-conj

this — [det]

deal — [det\ pred|

brought — [pred\S/@fs/a— obj]
problems — [compar\a— obj /#\ comp— conj]
profits — [conj—th]

more +— [compar]/compP—<oni

than — [#\,comp— conj / conj— th] >omp—conj

. [Ofs]

D. Béchet and A. Foret CDG: Analysis and Learning

CDG calculus

Left-oriented rules

L. [CIP[C\AI° F [3]P° G -2 Gl

D. Béchet and A. Foret CDG: Analysis and Learning 6/20

CDG calculus

L. [CIP[C\B]@ F [8]P° Gov 55 Sub
LL. [1PI819 + [B]F9 (no new dependency)

D. Béchet and A. Foret CDG: Analysis and Learning 6/20

CDG calculus
Left-oriented rules

L. [CIP[C\AI° F [3]P° G -2 Gl
LL. [1PI819 + [B]F9 (no new dependency)
I [CIP[CM\B]@ F [C*\B]PQ Cow 2 Guf
Q. [cx\g]P +[8]F (no new dependency)

D. Béchet and A. Foret CDG: Analysis and Learning 6/20

CDG calculus
Left-oriented rules

L. [CIP[C\AI° F [3]P° G -2 Gl
LL. [1PI819 + [B]F9 (no new dependency)
I [CIP[C\B]C I [C*\B]P° o =2 Gl
Q. [cx\g]P +[8]F (no new dependency)
D'. P OPRCOP: o PLPP: Gov —ge Sub |

First-Available Rule

FA: in (L C)P(NC), the valency C is the first available for the
dual valency \C, i.e. P has no occurrences of ,/C,NC

D. Béchet and A. Foret CDG: Analysis and Learning 6/20

Derivation

LEXICON:

ran fast

pr\S/ e

yesterday
[pr\ S/ c’] [c]
[pr\S/c']
JOhﬂ - Qr
[pr] [pr\ S] |
L
S

John w— [pr]
ran— [pr\ S/ c*]
fast, yesterday — [c]

Dependency structures

C
r

John ran fast yesterday

L' [CIP[C\B]9 F 8179

U (S i (Vi R
Q' [C\A” - [)”

[C\B]7?

D' aPtVIPC\VIP2 | o PLPP2 if EA

D. Béchet and A. Foret

L [B/C"[C19 - [8]79

I [B/C1PICI9 F [p/C1P?

Q" [g/Cc1P 81"

DF aPtUVIPOSVIP2 - oPIPP2 i FA

CDG: Analysis and Learning

CDG example: mix [LACL2005]

a [S]enB,nC>
[S\S]<nB,~C>
[S]<sC, 7B=T
[s\8]=-C, ~B=>
[S]=nB, ~C= . -
[S\S]<xB, »C= . _C . s
[S]<xC, 2B> c /s ,-B RENE|
[5\S]<xC, »B= BTN

b [l=vB= c a a b ¢
[J=uB=

c []=cC=
[J=wC=

A CDG for mix with a parse example

In the above grammar, some types have empty heads ; other grammars
avoiding empty heads can be provided, but the above one is simpler.

D. Béchet and A. Foret CDG: Analysis and Learning

CDG example: a"b"c”

a [Al=.D=
[A\A] <D=

b [B/ClexD=
[A\S/C]lexD>

c [C]
[B\C]

A CDG for a"b"c" with a parse example

D. Béchet and A. Foret CDG: Analysis and Learning

Parsing Algorithms

CdgAnalyst (Dekhtyar-Dikovsky-Karlov, TCS 2015)
@ Dynamic programming parsing algorithm

@ Based on CYK parsing algorithm
+ polarized valency calculus information

Filtering parsers (Alfared-Béchet-Dikovsky, Depling 2011)
@ Reduction of the search space

@ Based on sentence “complexity” of natural languages
= Limit the complexity of potentials

Greedy parsers (Lacroix-Béchet, Coling 2014)
@ Transition-Based Dependency Parser

@ 3 steps (local / left non-projective / right non-projective)

D. Béchet and A. Foret CDG: Analysis and Learning

Parsing Algorithm Complexity

Theorem 8
Algorithm CdgAnalyst has time complexity

O (Ig - a2 - (Ag - n)* . n?).

Complexity of CdgAnalyst (Dekhtyar-Dikovsky-Karlov, TCS 2015)

n : The length of the input string

Ic : The number of assignments in G

ac . The maximal number of left or right subtypes in G
A¢ : The maximal valency deficit in G

pi - The number of polarized valency names in G

D. Béchet and A. Foret CDG: Analysis and Learning

@ Introduction to CDG
© CDG Languages

© CDG Analysis

@ Grammatical Inference
© K-star CDG

@ Conclusion and Open Problems

D. Béchet and A. Foret CDG: Analysis and Learning

Grammatical inference symbolic, from positive examples [Gold'67]

Grammatical class G is learnable if there is an algorithm A which

o for every target grammar Gt € G

@ every enumeration o = L(Gt) and every prefix o[n],
returns a hypothetical grammar A(o[n]) € G and :

(1) the sequence of languages {L(A(c[n])) | n € N} converges to
the target language L(GT)

(i) this holds for all enumerations o of L(GT)

Learning from strings: o(N) = L(G7)
from structures: o(N) = A(G7)

D. Béchet and A. Foret CDG: Analysis and Learning 12 /20

Learnability of k-valued CDG

from strings (FG'2004)

@ k-valued CDG without * iterated types are learnable from
structures and from strings

e rigid CDG with * are not learnable from strings (a limit point).

Limit point
Thpeacm o
’/7: &= g 1=) C = f/7 ! _ ! * *
G ={as Db [Dl,c s [/ 1= G/A/B
L(G!) = {c(b*a*)* | k < n} and L(G.) = c{b,a}*.

from structures (FG'2010, ...)

@ rigid CDG with * are not learnable from DS

So the CDG are not learnable from dependency treebanks !

D. Béchet and A. Foret CDG: Analysis and Learning 13/20

Learning Algorithm from Dependency Structures (FG'2010, ...)

Type-Generalize-Expand (TGE)

Computes words' types from their VICINITIES in DS

Vicinity V(w, D) of word w in DS D:

& On y trouve aussi une partition récente a récupérer de | ONPL signée par Iui .

V/(partition, D) = [det\a— obj/modif / attr/attr / modif],
V(de, D) = [attr/prepos—g]|

Type-Generalize-Expand (TGE) : types with d*, repeating principle

Type-Generalize-Expand (TGE) : lexicon level, CV for a subclass

D. Béchet and A. Foret CDG: Analysis and Learning

Algorithm TGE(K) (type-generalize-expand):
Input: o, a training sequence of length N.
Output: CDG TGE() ().

let Gy = (WH,CH,S,)\H) where Wy :=0; Cy := {S}, Ay =0

(loop) for i =1to N // loop on o
let D such that o[i] = o[i — 1] - D; // the i-th DS of o
let (X,E)=D;
(loop) for every w € X // the order of the loop is not important
Wy = Wy U{w};
let t, = V(w, D) // the vicinity of w in D

(loop) while t,, = [a\/\d\ - - - \d\r\B]
with at least K consecutive occurrences of d, | # d (or not present) and r # d (or not present)
= [\ \P\4]
(loop) while t, = [a/I/d/---/d/r/pB]
with at least K consecutive occurrences of d, | # d (or not present) and r # d (or not present)

tw = [a/1/d" /r/B]

An(w) == Ag(w) U {tw}; // lexicon expansion
end end
return Gy
TH TGE() learns K-star revealing CDG from DS (FG 2010)J

Importantly, no bound on the number of types is assumed

D. Béchet and A. Foret CDG: Analysis and Learning

John — [N] to_the_station — [L]
ran — [N\A*\S/A*/L/A*], [N\A*\S/A*]
seemingly, slowly, alone, every_morning — [A]

(Global Simple K-star)
Algorithm TGE®):

P
ran+— [N\S] for (i =1): John ran

PR,
ran — [N\S/A] for (i = 2): John ran slowly

L
N

A
ran — [N\S/L/A] for (i = 3): John ran sowly to the station .

A A

/—M\
ran — [N\A\S/ A*] for (I = 4); seemingly John ran slowly alone .

D. Béchet and A. Foret CDG: Analysis and Learning

Learning approaches with iterated types

Number (k) Repetition
Structured Example Annotation of Types number (K) for
per word Indiscernibility
functor-argument unlabelled
(FA, proof-tree) (no dep. name) bound no bound
dependency structure labelled
(DS) (dep. names) no bound bound

from [Béchet-Foret, Machine Learning, 2021]

Criteria and readings of the "repetition principle”
consecutive or dispersed in a type ; left-right ; global
@ K-star revealing (complex equivalence property)

° D Simple K-star (syntactic) : (1) at most K — 1 occurrences of d
and (2) no occurrence of d if there exists at least one occurrence of d*
ineach 1 \ b\ ...I, \ where each [; is either d or some x*

° D Global Simple K-star : (1) (2) ineach 1\ b\ ...I[r \
(both sides)

D. Béchet and A. Foret CDG: Analysis and Learning 17 /20

Experiments on Corpora and prospective work

UD Corpora
also available for under-resourced languages (breton)

@ producing a CDG grammar

@ properties of some dependencies, repeating patterns, measures

Star Scope Star Pattern Class constraint
local couzt CDG d* (FG 2010) (synt — sem)
- + choices (di|d2)* Simple K-star
dispersed) A
(global count) (LACL 2011) ICF1 2016, MLJ 2021
£ + sequences (died>)* K-star revealing
sided or both .
(LACL 2016) (on A(G) semantic)

@ beyond d* : repeating / dr/ di/ dy/ di, etc. as / (diedr)*
a proposal for extended CDG, with iterated sequences of dep.

and TGE-like algorithm for sequences of length 2 [LACL 2016]

D. Béchet and A. Foret CDG: Analysis and Learning 18 /20

Some open questions

from [Dekhtyar-Dikovsky-Karlov, TCS 2015]

(CDG-languages as a class of push-down automata with independent counters)
@ An effective tool for showing L is not a CDG-language 7
status of the copy language {ww|w € {a,b}*} ?
@ Relationships between CDG and other classes of languages ?
@ Does the number of non-proj. dep. define a strict hierarchy ?

@ Closure under iteration ?
[Kanazawa Wollic (2016) " Abstract Families of Abstract Categorial Languages”
Abstract Family of Languages (fu// AFL) if closed under
e union v/, concatenation v/, Kleene plus / Kleene star,
e c-free homomorphism v/ homomorphism,
inverse homomorphism v/
e and intersection with regular sets v’

Control over non-projective dependencies ?

D. Béchet and A. Foret CDG: Analysis and Learning

THANK YOU !

D. Béchet and A. Foret CDG: Analysis and Learning

	 Introduction to CDG
	CDG Languages
	CDG Analysis
	Grammatical Inference
	K-star CDG
	Conclusion and Open Problems

