
Categorial Dependency Grammars: Analysis and
Learning (Invited Talk)

Denis Béchet, University of Nantes
Annie Foret, University Rennes 1, France

LACompLing 2021, Montpellier, December 15–17 2021

D. Béchet and A. Foret CDG: Analysis and Learning 1 / 20

Plan

1 Introduction to CDG

2 CDG Languages

3 CDG Analysis

4 Grammatical Inference

5 K -star CDG

6 Conclusion and Open Problems

D. Béchet and A. Foret CDG: Analysis and Learning 2 / 20

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

Dependencies are determined by valencies of words

brought has +valency pred of a left adjacent word
deal has −valency pred of a right adjacent word
Saturation of valency pred determines projective dependency

deal
pred←− brought (Governor: brought, Subordinate: deal)

D. Béchet and A. Foret CDG: Analysis and Learning 3 / 20

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

Dependencies are determined by valencies of words

more has +valency comp-conj of a word somewhere on its right
than has −valency comp-conj of a word somewhere on its left
Saturation of comp-conj determines non-projective dependency

more
comp-conj

99K than (Governor: more, Subordinate: than)

D. Béchet and A. Foret CDG: Analysis and Learning 3 / 20

Repeatable Dependencies

Some dependency valencies are MULTIPLE

pred is non-repeatable
a copul is repeatable

Principle of Repeatable Dependencies [Mel’čuk’88]

• Every dependency d is either repeatable or non-repeatable

• d is repeatable if SOME governor uses d in SOME DS at
least (K =) 2 times

• Any word governing through a repeatable dependency d in
SOME DS may have any number of subordinates through d

D. Béchet and A. Foret CDG: Analysis and Learning 4 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

PROJECTIVE DEPENDENCIES (AND ANCHORS)

Dependency: Gov
d−→ Sub:

Governor Type: Gov 7→ [..\../../d/..]P

Subordinate Type: Sub 7→ [..\d/..]P

Anchors are non-important projective dependencies. Used for:

Anchoring punctuation

Anchoring the subordinate of non-projective dependencies

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

in 7→ [c copul/prepos−l]
the 7→ [det]
beginning 7→ [det\prepos−l]
was 7→ [c copul\S/pred]
Word 7→ [det\pred]

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

NON-PROJECTIVE DEPENDENCIES

Polarized valencies: ↗d , ↘d , ↖d , ↙d

Dependency: Gov
d
99K Sub:

Governor Type Potential: Gov 7→ [..]..↗d ..

Subordinate Type Potential: Sub 7→ [..]..↘d ..

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

this 7→ [det]
deal 7→ [det\pred]
brought 7→ [pred\S/a−obj]
problems 7→ [compar\a−obj]
profits 7→ [conj−th]
more 7→ [compar]↗comp−conj

than 7→ [/conj−th]↘comp−conj

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

NON-PROJECTIVE DEPENDENCIES WITH ANCHORS
Polarized valencies: ↗d , ↘d , ↖d , ↙d
Anchor valencies: #↘d , #↙d

Dependency and anchor: Gov
d
99K Sub

#↘d←− Host:

Governor Type: Gov 7→ [..]..↗d ..

Subordinate Type: Sub 7→ [..\#↘d/..]..↘d ..

Host Type: Host 7→ [..\#↘d\../..]P

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

Categorial Dependency Grammars (CDG)

CDG Types express dependency valencies

this 7→ [det]
deal 7→ [det\pred]
brought 7→ [pred\S/@fs/a−obj]
problems 7→ [compar\a−obj/#↘comp−conj]
profits 7→ [conj−th]
more 7→ [compar]↗comp−conj

than 7→ [#↘comp−conj/conj−th]↘comp−conj

. 7→ [@fs]

D. Béchet and A. Foret CDG: Analysis and Learning 5 / 20

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ` [β]PQ Gov
C−→ Sub

Ll
ε. []P [β]Q ` [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ` [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ` [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ` αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG: Analysis and Learning 6 / 20

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ` [β]PQ Gov
C−→ Sub

Ll
ε. []P [β]Q ` [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ` [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ` [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ` αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG: Analysis and Learning 6 / 20

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ` [β]PQ Gov
C−→ Sub

Ll
ε. []P [β]Q ` [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ` [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ` [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ` αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG: Analysis and Learning 6 / 20

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ` [β]PQ Gov
C−→ Sub

Ll
ε. []P [β]Q ` [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ` [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ` [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ` αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG: Analysis and Learning 6 / 20

LEXICON:
John 7→ [pr]
ran 7→ [pr \S/c∗]
fast, yesterday 7→ [c]

Derivation

John

[pr]

ran

[pr \ S / c∗]
fast

[c]
Ir

[pr \ S / c∗]
yesterday

[c]
Ir

[pr \ S / c∗]
Ωr

[pr \ S]
Ll

S

Dependency structures

Ll [C]P [C\β]Q ` [β]PQ Lr [β/C]P [C]Q ` [β]PQ

Il [C]P [C∗\β]Q ` [C∗\β]PQ Ir [β/C∗]P [C]Q ` [β/C∗]PQ

Ωl [C∗\β]P ` [β]P Ωr [β/C∗]P ` [β]P

Dl αP1(↙V)P(↖V)P2 ` αP1PP2 , if FA Dr αP1(↗V)P(↘V)P2 ` αP1PP2 , if FA

D. Béchet and A. Foret CDG: Analysis and Learning 7 / 20

CDG example: mix [LACL2005]

A CDG for mix with a parse example

In the above grammar, some types have empty heads ; other grammars

avoiding empty heads can be provided, but the above one is simpler.

D. Béchet and A. Foret CDG: Analysis and Learning 8 / 20

CDG example: anbncn

A CDG for anbncn with a parse example

D. Béchet and A. Foret CDG: Analysis and Learning 9 / 20

Parsing Algorithms

CdgAnalyst (Dekhtyar-Dikovsky-Karlov, TCS 2015)

Dynamic programming parsing algorithm

Based on CYK parsing algorithm
+ polarized valency calculus information

Filtering parsers (Alfared-Béchet-Dikovsky, Depling 2011)

Reduction of the search space

Based on sentence “complexity” of natural languages
=⇒ Limit the complexity of potentials

Greedy parsers (Lacroix-Béchet, Coling 2014)

Transition-Based Dependency Parser

3 steps (local / left non-projective / right non-projective)

D. Béchet and A. Foret CDG: Analysis and Learning 10 / 20

Parsing Algorithm Complexity

Complexity of CdgAnalyst (Dekhtyar-Dikovsky-Karlov, TCS 2015)

n : The length of the input string
lG : The number of assignments in G
aG : The maximal number of left or right subtypes in G
∆G : The maximal valency deficit in G
pG : The number of polarized valency names in G

D. Béchet and A. Foret CDG: Analysis and Learning 11 / 20

Plan

1 Introduction to CDG

2 CDG Languages

3 CDG Analysis

4 Grammatical Inference

5 K -star CDG

6 Conclusion and Open Problems

D. Béchet and A. Foret CDG: Analysis and Learning 11 / 20

Grammatical inference symbolic, from positive examples [Gold’67]

Grammatical class G is learnable if there is an algorithm A which

for every target grammar GT ∈ G
every enumeration σ = L(GT) and every prefix σ[n],

returns a hypothetical grammar A(σ[n]) ∈ G and :

(i) the sequence of languages {L(A(σ[n])) | n ∈ N} converges to
the target language L(GT)

(ii) this holds for all enumerations σ of L(GT)

Learning from strings: σ(N) = L(GT)

from structures: σ(N) = ∆(GT)

D. Béchet and A. Foret CDG: Analysis and Learning 12 / 20

Learnability of k-valued CDG

from strings (FG’2004)

k-valued CDG without ∗ iterated types are learnable from
structures and from strings

rigid CDG with ∗ are not learnable from strings (a limit point).

Limit point
G ′0 = {a 7→ [A], b 7→ [B], c 7→ [C ′0]}
G ′n = {a 7→ [A], b 7→ [B], c 7→ [C ′n]}
G ′∗ = {a 7→ [D], b 7→ [D], c 7→ [S / D∗]}

C ′0 = S
C ′n+1 = C ′n / A∗ / B∗

L(G ′n) = {c(b∗a∗)k | k ≤ n} and L(G ′∗) = c{b, a}∗.

from structures (FG’2010, ...)

rigid CDG with ∗ are not learnable from DS

So the CDG are not learnable from dependency treebanks !

D. Béchet and A. Foret CDG: Analysis and Learning 13 / 20

Learning Algorithm from Dependency Structures (FG’2010, ...)

Type-Generalize-Expand (TGE)

Computes words’ types from their VICINITIES in DS

Vicinity V (w ,D) of word w in DS D:

V (partition,D) = [det\a−obj/modif /attr/attr/modif],
V (de,D) = [attr/prepos−g]

Type-Generalize-Expand (TGE) : types with d∗, repeating principle

Type-Generalize-Expand (TGE) : lexicon level, CV for a subclass

D. Béchet and A. Foret CDG: Analysis and Learning 14 / 20

Algorithm TGE(K) (type-generalize-expand):
Input: σ, a training sequence of length N.
Output: CDG TGE(K)(σ).

let GH = (WH ,CH ,S , λH) where WH := ∅; CH := {S}; λH := ∅;
(loop) for i = 1 to N // loop on σ

let D such that σ[i] = σ[i − 1] · D; // the i-th DS of σ
let (X ,E) = D;
(loop) for every w ∈ X // the order of the loop is not important

WH := WH ∪ {w};
let tw = V (w ,D) // the vicinity of w in D
(loop) while tw = [α\l\d\ · · · \d\r\β]

with at least K consecutive occurrences of d , l 6= d (or not present) and r 6= d (or not present)
tw := [α\l\d∗\r\β]

(loop) while tw = [α/l/d/ · · · /d/r/β]
with at least K consecutive occurrences of d , l 6= d (or not present) and r 6= d (or not present)

tw := [α/l/d∗/r/β]
λH(w) := λH(w) ∪ {tw}; // lexicon expansion
end end

return GH

TH TGE(K) learns K -star revealing CDG from DS (FG 2010)

Importantly, no bound on the number of types is assumed

D. Béchet and A. Foret CDG: Analysis and Learning 15 / 20

Exemple

John 7→ [N] to the station 7→ [L]
ran 7→ [N\A∗\S/A∗/L/A∗], [N\A∗\S/A∗]
seemingly , slowly , alone, every morning 7→ [A]

(Global Simple K-star)

Algorithm TGE(2):

ran 7→ [N\S] for (i = 1):

ran 7→ [N\S/A] for (i = 2):

ran 7→ [N\S/L/A] for (i = 3):

ran 7→ [N\A\S/ A∗] for (i = 4):
...

D. Béchet and A. Foret CDG: Analysis and Learning 16 / 20

Learning approaches with iterated types

Structured Example Annotation
Number (k)

of Types
per word

Repetition
number (K) for
Indiscernibility

functor-argument
(FA, proof-tree)

unlabelled
(no dep. name)

bound no bound

dependency structure
(DS)

labelled
(dep. names)

no bound bound

from [Béchet-Foret, Machine Learning, 2021]

Criteria and readings of the ”repetition principle”
consecutive or dispersed in a type ; left-right ; global

K-star revealing (complex equivalence property)

⊇ Simple K-star (syntactic) : (1) at most K − 1 occurrences of d
and (2) no occurrence of d if there exists at least one occurrence of d∗

in each l1 \ l2 \ ...lp \ where each li is either d or some x∗

⊇ Global Simple K-star : (1) (2) in each l1 \ l2 \ ...lp \
(both sides)

D. Béchet and A. Foret CDG: Analysis and Learning 17 / 20

Experiments on Corpora and prospective work

UD Corpora
also available for under-resourced languages (breton)

producing a CDG grammar

properties of some dependencies, repeating patterns, measures

Star Scope
local count
dispersed

(global count)
sided or both

Star Pattern
CDG d∗ (FG 2010)

+ choices (d1|d2)∗

(LACL 2011)

+ sequences (d1•d2)∗

(LACL 2016)

Class constraint
(synt — sem)
Simple K -star

ICFI 2016, MLJ 2021

K -star revealing
(on ∆(G) semantic)

beyond d∗ : repeating / d2 / d1 / d2 / d1 , etc. as / (d1•d2)∗

a proposal for extended CDG, with iterated sequences of dep.

and TGE-like algorithm for sequences of length 2 [LACL 2016]

D. Béchet and A. Foret CDG: Analysis and Learning 18 / 20

Some open questions

from [Dekhtyar-Dikovsky-Karlov, TCS 2015]

(CDG-languages as a class of push-down automata with independent counters)

An effective tool for showing L is not a CDG-language ?
status of the copy language {ww |w ∈ {a, b}∗} ?

Relationships between CDG and other classes of languages ?

Does the number of non-proj. dep. define a strict hierarchy ?

Closure under iteration ?
[Kanazawa Wollic (2016) ”Abstract Families of Abstract Categorial Languages”

Abstract Family of Languages (full AFL) if closed under

union X, concatenation X, Kleene plus / Kleene star,
ε-free homomorphism X/ homomorphism,
inverse homomorphism X
and intersection with regular sets X

Control over non-projective dependencies ?

D. Béchet and A. Foret CDG: Analysis and Learning 19 / 20

THANK YOU !

D. Béchet and A. Foret CDG: Analysis and Learning 20 / 20

	 Introduction to CDG
	CDG Languages
	CDG Analysis
	Grammatical Inference
	K-star CDG
	Conclusion and Open Problems

