
Constructing categories and setoids of setoids
in type theory∗

Erik Palmgren†and Olov Wilander‡

March 23, 2013

Abstract

In this paper we consider the problem of building rich categories of setoids
in standard intensional Martin-Löf type theory (MLTT), and in particular how
to handle the problem of equality on objects in this context. We show that any
(proof-irrelevant) family of setoids over a setoid gives rise to a category with
object equality. Such a family may be obtained from Aczel’s model construction
of CZF in type theory. It is proved that the category obtained is isomorphic
to the internal category of sets in this model. We also show that Aczel’s model
construction may be extended to include the elements of any setoid as atoms or
urelements. We moreover obtain a natural extension of CZF, adding atoms. This
extension, CZFU, is validated by the extended model. The main theorems of the
paper have been checked in the proof assistant Coq which is based on MLTT.

1 Introduction

Martin-Löf type theory (MLTT) and its manifestations, in proof assistants such as Agda
and Coq, is intended to be a framework for formalizing (constructive) mathematics on
a full scale. It is known that the intensional version of MLTT is sometimes difficult to
employ when formalizing mathematics that depends on having (propositional) equality
between sets or setoids. This may be troublesome in parts of category theory [10, 15]
where an equality on objects is a standard assumption. A typical example is when we
wish to deal with some category of sets or setoids on equal footing to other categories.
The built-in propositional equalities of type theory, given by the intensional identity

∗This work was supported by a grant (Dnr 621-2008-5076) from the Swedish Research Council (VR)
†Stockholm University, Department of Mathematics, 106 91 Stockholm, Sweden. E-mail:

palmgren©αmath.su·se.
‡Stockholm University, Department of Mathematics. Current affiliation: Sjöland & Thyselius, Box

6238, 102 34 Stockholm. E-mail: olov.wilander©α st·se

1

types, are not extensional enough for this work without further complications. The
root of the problem is that the intensional identity type of MLTT induces a non-trivial
groupoid structure on types [5]. This can be avoided by introducing extra elimination
axioms like the K-axiom of Streicher [13] or weaker axioms [15]. Adding these axioms
is, however, an unsatisfactory solution according to the general philosophy of MLTT,
where the elimination rule is supposed to be generated by the introduction rule.

In this paper we consider a solution to this problem within the standard intensional
version of MLTT, with one universe and W-types. The proposal is to employ a universe
V of iterative sets that form a model of Aczel-Myhill constructive set theory (CZF),
and consider the category of setoids that the sets of V induces. This turns out to
be a well-behaved category of setoids isomorphic to the internal category of sets of V
(Theorem 5.5). The model and the theorem have been formalized in the proof assistant
Coq, and give, in principle, a method for formalizing further category-theoretic results
in Coq that depend on a good category of sets. Theorem 5.5 allows passage between
the setoids of type theory and the sets of V .

Models of CZF have previously been implemented in systems similar to Coq: in
LEGO by Mendler [7] and in Agda/Alfa by Takeyama [9]. See also Hickey [3] and
Yu [16] for work done in MetaPRL. However, we add a new twist here by allowing
urelements or atoms in the model, and importantly, giving the relation to setoids, via
the notion of a V -representable setoid (Section 5.2). Our formalized model moreover
allows us to embed an arbitrary setoid M in a CZF-universe V (M). As a bonus of
the construction V (M), we obtain a model of CZF with atoms (elements of M), which
is formalized as a first-order theory CZFU (Section 5.4). Leading up to these result,
Section 2 and Section 3 give some basic definitions and results regarding setoids and
families of setoids. It is shown that each proof-irrelevant family of setoids induces a
natural category of setoids (Section 4). We end by some remarks on the formalization
in Coq (Section 6).

2 Setoids

In the following we freely use the propositions-as-types principle in the logical argu-
ments. Thus we may speak of a proof q of a proposition Q, meaning that q is of type Q
and written as usual q : Q. In our implementation in Coq this corresponds to avoiding
the built-in type Prop and using Set or Type for propositions. (See Section 6.)

Recall that a setoid A = (|A|,=A) is a type |A| with an equivalence relation =A. We
denote the constructions associated with proofs of reflexivity, symmetry and transitivity
as follows

ref(x) : x =A x (x : |A|)

p−1 : y =A x (x, y : |A|, p : x =A y)

2

q ◦ p : x =A z (x, y, z : |A|, p : x =A y, q : y =A z)

We shall often write x ∈ A for x : |A| to simplify notation. For setoids A and B, an
extensional function f : A //B is a pair f = (|f |, extf) where |f | : |A| // |B| and extf
is a proof-object for extensionality of the operation |f |, that is that

(∀x, y ∈ A)(x =A y =⇒ |f |(x) =B |f |(y)).

We write f(x) for |f |(x).
For setoids A and B denote by Ext(A,B) the setoid of extensional functions from

A and B, with point-wise equality (=ext) as equivalence relation. The setoids and
extensional functions form an E-category, which shall be named Setoids here. We
recall that an E-category C has a type of objects with no equality assumed between
them. The morphisms, denoted HomC(A,B), from object A to B is a setoid and the
composition operation

◦ : HomC(B,C)× HomC(A,B) // HomC(A,C)

is an extensional function. The usual laws for composition and identity are supposed
to be satisfied.

Example 2.1. Let F (x) (x : S) be a family of setoids indexed by a type S. Then an
E-category E(S, F) = E of setoids can be formed whose type of objects is S and where

HomE(a, b) = Ext(F (a), F (b)).

3 Families of setoids

A good notion of a family of setoids over a setoids is the following (compare the discus-
sion in [10]). A proof irrelevant family F of setoids over A — or just family of setoids
— consists of a setoid F (x) = (|F (x)|,=F (x)) for each x ∈ A, and for p : (x =A y) an
extensional function F (p) ∈ Ext(F (x), F (y)) which satisfies the conditions (F1) – (F3)
below.

(F1) F (ref(x)) =ext idF (x) for x ∈ A.

(F2) F (p) =ext F (q) for p, q : x =A y and x, y ∈ A. This is the proof-irrelevance
condition, since F (p) does not depend on p.

(F3) F (q) ◦ F (p) =ext F (q ◦ p) for p : x =A y, q : y =A z and x, y, z ∈ A.

The function F (p) is sometimes called a transportation function. Because of condition
(F2), condition (F1) can be replaced by (F1’)

(∀x ∈ A)(∀p : x =A x)F (p) =ext idF (x)

3

and condition (F3) can be replaced by (F3’)

(∀x, y, z ∈ A)(∀p : x =A y)(∀q : y =A z)(∀r : x =A z)F (q) ◦ F (p) =ext F (r).

We shall sometimes use the notation x ·p for F (p)(x) when F is clear from the context.

As can be seen from (F1) – (F3) a family F may be regarded as a functor (or rather
E-functor) from the discrete E-category A#, induced by A, to Setoids.

4 From families to categories of setoids

It is well-known that the E-category of setoids in Martin-Löf type theory forms a locally
cartesian closed (LCC) category (see [4]). It can moreover be shown to be a pretopos
with further properties [8]. In fact, one can straightforwardly verify in Coq (see for
instance [12]) that the E-category of setoids forms an LCC pretopos. For categories
of setoids with equality on objects the constructions are more delicate and this is the
subject of this and the next section.

Similarly to the standard set-theoretic definition, we define in type theory a (small)
category C as a triple of setoids C0, C1, C2 consisting of objects, arrows and composable
arrows, equipped with extensional functions id : C0 // C1, dom, cod : C1 // C0 and
cmp, fst, snd : C2 // C1 that satisfy the axioms

1. dom(id(x)) = x,

2. cod(id(x)) = x,

3. dom(cmp(u)) = dom(fst(u)),

4. cod(cmp(u)) = cod(snd(u)),

and

5. fst(u) = fst(v), snd(u) = snd(v) =⇒ u = v,

6. dom(f) = cod(g) =⇒ ∃u ∈ C2(snd(u) = f ∧ fst(u) = g),

7. fst(u) = id(y) =⇒ cmp(u) = snd(u),

8. snd(u) = id(x) =⇒ cmp(u) = fst(u),

9. fst(w) = fst(v), snd(v) = fst(u), snd(u) = snd(z), snd(w) = cmp(u), cmp(v) =
fst(z) =⇒ cmp(w) = cmp(z).

A functor F : B // C is a triple of extensional functions Fk : Bk // Ck, k = 0, 1, 2,
such that all operations of the categories are preserved, that is

4

F1 ◦ id = id ◦ F0,

F0 ◦ dom = dom ◦ F1,

F0 ◦ cod = cod ◦ F1,

F1 ◦ fst = fst ◦ F2,

F1 ◦ snd = snd ◦ F2,

F1 ◦ cmp = cmp ◦ F2.

The axioms 1 – 9 take a more familiar form if we rewrite them using the composition
predicate Comp(f, g, h) (or f ◦ g ≡ h) by

(∃u ∈ C2)(fst(u) = g ∧ snd(u) = f ∧ cmp(u) = h).

Remark 4.1. Any category C may be viewed as an E-category C by ignoring the
equality on objects and defining HomC(a, b) to be the setoid

((Σf ∈ C1)[dom(f) = a ∧ cod(f) = b],∼)

where (f, p) ∼ (f ′, p) iff f =C1 f
′. Composition and identity are then defined in the

obvious way using the axioms above.

4.1 Construction of a category of setoids

Any family F of setoids over a setoid A gives rise to a category of setoids C = C(A,F)
in the following way. The objects are given by the index setoid C0 = A, and are thus
equipped with equality, and the setoid of arrows C1 is

((Σx, y : |A|)Ext(F (x), F (y)),∼)

where two arrows are equal (x, y, f) ∼ (u, v, g) if, and only if, there are proof objects
p : x =A u and q : y =A v such that the diagram

F (u) F (v)g
//

F (x)

F (u)

F (p)

��

F (x) F (y)
f // F (y)

F (v)

F (q)

��

commutes, or equivalently

(∀t ∈ F (x))[f(t) · q =F (v) g(t · p)].

(Note that F (p) and F (q) are independent of p and q.) The domain and codomain maps
dom : C1 → C0 and cod : C1 → C0 are given by dom(x, y, f) = x and cod(x, y, f) = y.
The setoid C2 of composable maps is then

((Σh, k : |C1|)[cod(h) =C0 dom(k)],≈)

5

where (h, k, p) ≈ (h′, k′, p′) if and only if h ∼ h′ and k ∼ k′. The composition map
cmp : C2 // C1 is given by

cmp((x, y, f), (u, v, g), p) =def (x, v, g ◦ F (p) ◦ f).

Furthermore, let

fst((x, y, f), (u, v, g), p) =def (x, y, f) snd((x, y, f), (u, v, g), p) =def (u, v, g).

It is straightforward to verify

Theorem 4.2. If F is a family of setoids over a setoid A, then C = C(A,F) is a small
category.

Lemma 4.3. In the category C(A,F) the composition predicate Comp may be charac-
terized as follows

Comp((c, d, g), (a, b, f),h)⇐⇒ (∃r : b =A c)(a, d, g ◦ F (r) ◦ f) ∼ h.

If b and c are definitionally equal, then F (r) is the identity map.

Let D be a category with terminal object 1. An arrow f : X // Y of the category
is called onto if for every y : 1 // Y , there is some x : 1 //X with f ◦ x = y. If each
arrow f : A // B in D that is both onto and mono, is also an isomorphism, then we
say that 1 is a strong generator for D. In such categories it is possible to express the
internal logic in terms of elements; see [11].

The category C(A,F) has a strong generator whenever the family F contains the
terminal object. This follows from

Lemma 4.4. Let F be a family of setoids indexed by the setoid A, and suppose that
c ∈ A represents the terminal setoid. Then

(a) c is the terminal object in C(A,F).

(b) If (a, b, f) is an arrow of C(A,F) then it is mono if and only if f : F (a) // F (b)
is injective.

(c) If (a, b, f) is an arrow of C(A,F) then it is onto if and only if f : F (a) // F (b)
is surjective.

(d) The terminal object of C(A,F) is a strong generator for the category.

If the family F is a universe, we get a category C(A,F) with closure conditions
depending on the type-theoretic closure conditions of the universe. In [8] it was shown
that by letting A,F be a particular universe of U -small setoids, the category is a
locally cartesian closed pretopos with W . However, the construction of A and F in

6

that paper used constructions going outside standard intensional type theory, in fact,
a tacit assumption was made of a principle (see [10, Theorem 5.2]) which is equivalent
to Uniqueness of Identity Proofs, which, in turn, is false in the groupoid model. In [15]
a somewhat weaker axiom is proposed, which may possibly let the constructions of [8]
go through. We have constructed (in Coq) a graded universe of setoids Aω, Fω, with
no transfinite types, but closed under grade bounded Π and Σ, as well as sums and
coequalizers. However the expected categorical properties of C(Aω, Fω) have turned out
quite difficult to verify formally. In a possible further paper we plan to investigate these
issues.

In the next section we show that chosing A and F to be induced by the Aczel
universe V of iterative sets, the category C(A,F) gets good categorical properties; see
Theorem 5.5.

5 Aczel’s iterative sets and setoids

It is known that the category of sets inside Constructive Zermelo-Fraenkel set theory
(CZF) has good category-theoretic properties [2]. Aczel [1] presented a model of CZF
in MLTT. This suggest that we may use such models of CZF to build useful categories
for type theory. The model builds on the iterative conception of set, which is to say,
a set is a, possibly infinite, well-founded tree, and where equality of sets is defined in
terms of bisimulation.

5.1 Iterative sets with urelements

We consider here a modification of Aczel’s standard model of CZF, to be able to add
urelements or atoms. For a universe U, T (·), and a setoid M = (|M |,=M) (of urele-
ments), the set-theoretic universe V (M) = V is inductively defined by the rules

a : U f : T (a) // V

sup(a, f) : V

b : |M |
atom(b) : V

.

The equality =V is the smallest relation satisfying the two rules

∀x : T (a).∃y : T (b).f(x) =V g(y) ∀y : T (b).∃x : T (a).f(x) =V g(y)

sup(a, f) =V sup(b, g)

a =M b

atom(a) =V atom(b)
.

The membership relation is defined by

u ∈V sup(a, f)⇐⇒ ∃x : T (a).u =V f(x)

7

and declaring u ∈V atom(b) to be false. We have a =M b iff atom(a) =V atom(b), so
that equality of atoms is exactly that of the setoid. The standard model is the special
case when M is the empty setoid (no atoms).

We say that a setoid M = (|M |,=M) belongs to the universe U if there is some
m : U with |M | = T (m), and some e : |M | // |M | // U such that for all x, y : |M |,

x =M y ⇐⇒ T (e(x, y)).

For such setoids we have:

Lemma 5.1. If M is a setoid which belongs to U , then the relations x =V y and x ∈V y
are propositions in U .

It is crucial that the basic relations ∈ and = are interpreted as propositions in the
universe U in order to be able to verify that all bounded formulas (∆0-formulas) may
be used in the separation scheme of CZF. We will thus consider V (M) where the setoid
M belongs to U .

5.2 V -representable setoids

We consider here for simplicity only pure sets, thus let V = V (∅). For each u : V define
the setoid

B(u) = (|B(u)|,=B(u))

of elements of V belonging to u by letting

|B(u)| = Σz : V.z ∈V u

and
(z, p) =B(u) (z′, p′)⇐⇒ z =V z′. (1)

Note that for a set u = sup(a, f), it holds that

B(sup(a, f)) ∼= (T (a),∼f)

where
x ∼f x

′ ⇐⇒ f(x) =V f(x′).

We define therefore
R(sup(a, f)) = (T (a),∼f).

It is thereby easy to find the setoid and its underlying type from the set. A setoid A is
V -representable iff there is some u : V and a bijection φ : A ∼= R(u). Let u = sup(a, f)
and v = sup(b, g). If we examine

Ext(R(u), R(v)),

8

the standard construction of the setoid of functions from R(u) to R(v), it has the
underlying type

Σh : T (a) // T (b).(∀x, y : T (a)(fx =V fy ⇒ h(gx) =V h(gy))) (2)

and equality ∼ defined by

(h, p) ∼ (h′, p′) iff ∀x : T (a).h(gx) =V h′(gx).

Let Fu,v denote the type in (2). Define

γ(h, p) = sup(a, λx.〈fx, h(gx)〉)

which gives the graph of the function h, when (h, p) : Fu,v. Suppose that the type Fu,v

has a code ϕu,v in U so that Fu,v = T (ϕu,v). Now we can form

vu = sup(ϕu,v, γ),

which is the set all of functions from u to v. Indeed we have

z ∈V vu iff z is a total and functional relation from u to v,

where the latter can be formally expressed as the conjunction of the following statements

(∀t ∈ V)(t ∈V z ⇒ (∃x, y ∈ V)(x ∈V u ∧ y ∈V v ∧ t =V 〈x, y〉)),

(∀x ∈ V)(x ∈V u⇒ (∃y ∈ V)(y ∈V v ∧ 〈x, y〉 ∈V z)),

(∀x, y, y′ ∈ V)(〈x, y〉 ∈V z ∧ 〈x, y′〉 ∈V z ⇒ y =V y′).

We have the following bijective correspondence

Proposition 5.2. For any u = sup(a, f), v = sup(b, g) ∈ V , there is a bijection

ψ : R(vu) // Ext(R(u), R(v))

given by ψ(h, p) = (h, p).

Actually we have arrived at the standard definition of the function set in by ana-
lyzing representable sets and functions.

9

5.3 Two isomorphic categories

The internal category of sets in V may be described as follows. Define the category V
to have as objects V0 the setoid V = (V,=V). The arrows V1 has as underlying type

Σu ∈ V.Isarrow(u)

where Isarrow(u) is the predicate

∃a, b, f ∈ V.u =V 〈〈a, b〉, f〉 ∧ f is a total and functional relation from a to b.

Equality (u, p) =V1 (u′, p′) is defined to be u =V u′. The setoid V2 of composable arrows
has for underlying type

Σw ∈ V.Σu, v ∈ V1.w =V 〈π1(u), π1(v)〉 ∧ codu =v dom v

and its equality is given by (w, p) ∼ (w′, p′) iff w =V w′. Composition cmp of arrows is
obtained by composition of relations in the usual set-theoretic way.

Theorem 5.3. V is a category.

A different category is constructed using the method of Section 4.1. We extend R(·)
to a family of setoids R̄ over the setoid V = (V,=V).

Lemma 5.4. R̄ is a family of setoids over (V,=V).

Proof. Let p be a proof object for sup(a, f) =V sup(b, g), or equivalently, for

∀x : T (a).∃y : T (b).f(x) =V g(y) ∧ ∀y : T (b).∃x : T (a).f(x) =V g(y).

We thus have

∀x : T (a).f(x) =V g(π1(π1(p)(x))) and ∀y : T (b).f(π1(π2(p)(y))) =V g(y).

Let R(p)(x) = π1(π1(p)(x)). This defines an extensional function

R(p) : R(sup(a, f)) //R(sup(b, g)),

which is independent of p. Indeed, if p, p′ are arbitrary and x ∼f x
′, then

g(R(p)(x)) =V f(x) =V f(x′) =V g(R(p′)(x).

This verifies (F2). If p : sup(a, f) =V sup(a, f), then f(R(p)(x)) =V f(x), soR(p)(x) ∼f

x. Hence R(p) is the identity, and (F1) is clear. Finally, we check (F3’). Suppose we
have three proof objects p : sup(a, f) =V sup(b, g), q : sup(b, g) =V sup(c, h) and

10

r : sup(a, f) =V sup(c, h). Expanding as above we have g(R(p)(x)) =V f(x) and
h(R(q)(y)) =V g(y) for all x and y. Thus

h(R(q)(R(p)(x))) =V g(R(p)(x)) =V f(x)

for all x. Now the third proof object gives similarly h(R(r)(x)) =V f(x) for all x. Hence
for all x,

R(q)(R(p)(x)) ∼h R(r)(x).

Thus R̄ is a family of setoids over (V,=V).

From the family (V, R̄), we may construct the category C = C(V, R̄), as in Section
4.1 and, then compare it to the category V above. The objects of the two categories
are give by the same setoid. Let F0 : C0 //V0 be the identity map. There is a bijection
C1 // V1 given by

(a, b, f) 7→ 〈〈a, b〉, γ(|f |, extf)〉.

Further, this yields a bijection F2 : C2 // V2 by letting F1 act on the two component
arrows. It is then straightforward to verify that F0, F1 and F2 form a functor which is
an isomorphism. We have

Theorem 5.5. The categories C(V, R̄) and V are isomorphic.

5.4 CZFU – constructive sets with urelements

The model V (M) in Section 5.1 suggests an axiomatization of CZF with urelements or
atoms. For an example of a classical set theory with atoms, see e.g. [9]. In [1], a theory
called CZFI, which is CZF extended with a class of individuals, is mentioned but the
axioms are not detailed in that paper. It is not clear to us whether it is actually a version
of the theory presented below. Nevertheless, we propose the following axiomatization
of CZF with atoms, CZFU.

The language is that of set theory, with a binary predicate for membership ∈,
extended with unary predicate S, for being a set. Define A(x) = ¬S(x). Write ∀Sx...
for ∀x.S(x)⇒ ... and ∃Sx... for ∃x.S(x) ∧

The axioms are the following
(C1) ∀x.S(x) ∨ A(x). Each object is either a set or an atom.
(C2) ∀xy.y ∈ x⇒ S(x). An object which has an element must be a set.
(C3) ∀Sx.∀Sy.(∀z.z ∈ x ⇐⇒ z ∈ y) ⇒ x = y. Sets are determined by their

elements.
(C4) Let ϕ(x) be any formula. Then take set-induction for this formula as an axiom

(∀x.(∀y ∈ x.ϕ(x))⇒ ϕ(x))⇒ ∀x.ϕ(x).

11

Since atoms have no elements this is actually equivalent to

(∀x.A(x)⇒ ϕ(x))⇒ (∀Sx.(∀y ∈ x.ϕ(x))⇒ ϕ(x))⇒ ∀x.ϕ(x).

(C5) Union: ∀Sx.∃Su.(∀z.z ∈ u ⇐⇒ (∃y ∈ x)z ∈ y).
(C6) Pairing: ∀xy.∃Su.(∀z.z ∈ u ⇐⇒ (z = x ∨ z = y)).
(C7) Bounded separation: Let ϕ(x) be any bounded formula. Then take as an

axiom:
∀Su.∃Sv.∀x.x ∈ v ⇐⇒ x ∈ u ∧ ϕ(x).

(C8) Subset collection: for any formula ϕ

∀ab.∃Sc.∀u.(∀x ∈ a.∃y ∈ b.ϕ(x, y, u))⇒
∃d ∈ c.(∀x ∈ a.∃y ∈ d.ϕ(x, y, u)) ∧ (∀y ∈ d.∃x ∈ a.ϕ(x, y, u))

(C9) Strong collection: for any formula ϕ

∀a.(∀x ∈ a.∃y.ϕ(x, y))⇒ ∃Sb.(∀x ∈ a.∃y ∈ b.ϕ(x, y)) ∧ (∀y ∈ b.∃x ∈ a.ϕ(x, y))

(C10) Infinity axiom:

∃Sx.∅ ∈ x ∧ (∀y ∈ x)y+ ∈ x.

Here y+ = {y, {y}}.
If we add the purity axiom (everything is a set) we get a system, which is easily

seen to be equivalent to the standard CZF.

(Purity): ∀x.S(x).

Theorem 5.6. For any setoid M = (|M |,=M) belonging to U , the set-theoretic universe
V (M) is a model of CZFU. The model also verifies that there is a set containing all
atoms, that is

∃Sx.∀z.z ∈ x⇐⇒ A(z). (3)

Proof. The proof is similar to the verification in Aczel’s standard set-theoretic model
in case of the axioms C3 – C6, C8 – C10. The axioms C1 and C2 are directly verified
by the meaning of A and ∈V . As for axiom C7, bounded separation, we may use the
standard proof once we have noticed that by Lemma 5.1, a =V b and a ∈V b are in U ,
whenever M is in U .

To verify (3) first construct a = sup(m, f) where m : U is such that T (m) = M and
f : M // V is given by f(t) = atom(t). Then for any z ∈ V , z ∈V a if, and only if,
there is t : T (m) such that z =V atom(t), that is A(t) is true.

12

6 The implementation in Coq and applications

In our Coq implementation [12] we understand setoids in the sense of propositions-as-
types, which means that the equality relation takes its truth values in Set or Type.
This is in contradistinction to the standard setoids of Coq where the equality relation
is Prop-valued. We have used the built-in type Set to interpret the universe U . The
setoids belonging to U are therefore setoids based on Set and called just setoids.
What we call setoids in this paper is called Typeoid in the Coq code and they are
based on Type.

The V -sets and V (M)-sets are constructed using the generalized inductive defini-
tions available for Type of Coq. They could as well have been constructed using a
general W-type. In several places record types are used, which corresponds to Σ-type
applications of MLTT. The following theorems of the paper are formalized: Theorems
4.2, 5.3, 5.5, and 5.6.

We verify as well the Regular Extension Axiom (REA) in our Coq implementation.
This axiom is crucial for formalizing transfinite inductive definitions in CZF. There are
important extensions of the REA [6] that unfortunately seem difficult to model in the
Coq-system, since the system currently lacks the ability to handle general inductive-
recursive definition.

A possible practical application of our implementation is to first develop theorems
in CZF or CZFU and then translate the first order formulas and proofs into the richer
language that is modelled in the Coq implementation. This translation can easily be
done automatically, and the development of the CZF theorems could be done in a
theorem prover or proof assistant that can handle intuitionistic logic.

References

[1] Peter Aczel. The type-theoretic interpretation of constructive set theory. In: A.
Macintyre, L. Pacholski and J. Paris (eds.), Logic Colloquium ’77. North-Holland,
Amsterdam 1978.

[2] Benno van den Berg and Ieke Moerdijk. In: S. Barry Cooper, Herman Geuvers,
Anand Pillay and Jouko Väänänen (eds.) Logic Colloquium 2006, Lecture Notes
in Logic, Cambridge University Press 2009, pp. 18 – 37.

[3] Jason J. Hickey. The MetaPRL Logical Programming Environment. PhD thesis,
Cornell University, Ithaca, NY, January 2001.

[4] Martin Hofmann. On the Interpretation of Type Theory in Locally Cartesian
Closed Categories In: Proceedings of Computer Science Logic, Lecture Notes in
Computer Science, Springer, 1994, pp. 427 – 441.

13

[5] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type the-
ory. In: G. Sambin and J. Smith (eds.) Twenty-five years of constructive type theory
(Venice, 1995), pp. 83 – 111, Oxford Logic Guides, 36, Oxford Univ. Press, New
York, 1998.

[6] Robert S. Lubarsky and Michael Rathjen. On the regular extension axiom and its
variants. Mathematical Logic Quarterly 49 (2003), pp. 513 – 518.

[7] Nax P. Mendler. Note: An Implementation of Constructive Set Theory in the
LEGO System. Department of Computer Science, Manchester University 1991.

[8] Ieke Moerdijk and Erik Palmgren. Type Theories, Toposes and Constructive Set
Theory: Predicative Aspects of AST. Annals of Pure and Applied Logic 114(2002),
pp. 155 – 201.

[9] Yannis N. Moschovakis. Notes on Set Theory. Second Edition. Springer 2006.

[10] Erik Palmgren. Proof-relevance of families of setoids and identity in type theory.
Archive for Mathematical Logic 51(2012), pp. 35 – 47.

[11] Erik Palmgren. Constructivist and Structuralist Foundations: Bishop’s and Law-
vere’s Theories of Sets. Annals of Pure and Applied Logic 163(2012), pp. 1384 –
1399.

[12] Erik Palmgren and Olov Wilander. www.math.su.se/~palmgren/coq/czf and setoids

File repository of the implementation described in the present paper.

[13] Thomas Streicher. Investigations into intensional type theory. Ha-
bilitation Thesis, Ludwig-Maximilians Universität, Munich, 1993.
http://www.mathematik.tu-darmstadt.de/~streicher/

[14] Makoto Takeyama. Personal communication.

[15] Olov Wilander. Constructing a small category of setoids. Mathematical Structures
in Computer Science 22(2012), pp. 103 – 121.

[16] Xin Yu. Formalizing abstract algebra in constructive set theory. Master’s thesis,
California Institute of Technology, 2002.

14

