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The h∗-polynomial
Throughout:

• M ∼= Zr is a lattice, MR := M ⊗Z R ∼= Rr.

• P ⊆MR is n-dimensional lattice polytope.

Theorem. [Stanley 1980]
There is a polynomial h∗(t) ∈ Z[t] of degree ≤ n with
nonnegative integer coefficients such that∑

k≥0

|kP ∩M | tk =
h∗(t)

(1− t)n+1
.
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Definition:

• h∗P (t) := h∗(t) is called h∗-polynomial of P .

• h∗P := (h∗0, . . . , h
∗
n) is called h∗-vector of P .

Observations:

• h∗0 = 1.

• h∗1 = |P ∩M | − (n + 1).

• h∗n = | int(P ) ∩M |.
• h∗0 + · · · + h∗n = Vol(P ) = n! vol(P ).

(from now on: volume = normalized volume)
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Example: n = 2

1+13t+8t²

h∗P (t) = 1 + (|P ∩M | − 3) t + | int(P ) ∩M | t2.

Pick’s formula:

Vol(P ) = h∗P (1) = |∂(P ) ∩M | + 2| int(P ) ∩M | − 2.
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The degree
Definition: The degree of P is defined as the degree of
the h∗-polynomial.

deg(P ) := max(i : h∗i 6= 0).

Hence
0 ≤ deg(P ) ≤ n = dim(P ).

Philosophy: The degree of a lattice polytope may be
regarded as its ”true” dimension.
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The codegree
Definition: The codegree of P is defined as:

codeg(P ) := min{k ∈ Z≥0 : int(kP ) ∩M 6= ∅}

Reciprocity-Theorem ⇒

1 ≤ codeg(P ) = n + 1− deg(P ) ≤ n + 1,

h∗deg(P ) = | int(codeg(P )P ) ∩M |.
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Example: n = 2

codeg 3 codeg 2

P
2P

3P
4P

1 1+3t 1+7t+t² 1+12t+3t²
codeg 1codeg 1

Observations:

• codeg(P ) = 1 ⇔ deg(P ) = n ⇔ int(P ) ∩M 6= ∅
• codeg(P ) = n + 1 ⇔ deg(P ) = 0 ⇔ P is

unimodular
simplex.
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2. Classification of lattice
polytopes of degree one
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Dimension two
Let P ⊆MR be a lattice polygon.

deg(P ) ≤ 1 ⇔ P has no interior lattice points.

Theorem. [Arkinstall 1980; Koelman 1991; Kho-
vanskii 1997; Schicho 2003]
There are precisely two cases, in which P has no interior
lattice points:
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either

P is the exceptional triangle S:

1+3tS

or

P lies between two parallel hyperplanes of integral
distance one:

1+t 1+t 1+2t1
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Lattice pyramid construction
Definition: The lattice pyramid over P is defined as
Pyr(P ) := conv({0}, P × {1}) ⊆MR ⊕ R.

P
distance
lattice
one

Pyr(P)

Recursively: k-fold pyramid over P :

Pyrk(P ) := Pyr(Pyrk−1(P )).

Proposition: P and Pyr(P ) have same h∗-polynomial.
⇒ Degree and volume is unchanged!
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Higher dimensions

Definition: An n-dimensional exceptional simplex is an
(n− 2)-fold lattice pyramid over S.

Example: n = 3

1+3t
Pyr(S)
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Definition: An n-dimensional Lawrence prism with
heights h1, . . . , hn:

e0

e1

en−1

enh = 12

h = 2

h = 1

1

n

3

2

1+5t

1

2

0 0

4

1+2t 1+3t

0
1
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Classification result

Theorem. [Batyrev, N. 2006]
A lattice polytope has degree ≤ 1 if and only if
it is an exceptional simplex or a Lawrence prism.

Proof by induction on the number of lattice points,
using the monotonicity property of the degree:

Theorem. [Stanley 1993]
Q ⊆ P lattice polytopes ⇒ h∗Q ≤ h∗P coefficientwise.
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3. How many lattice polytopes
with given h∗-polynomial?
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Case of degree one

Example: h∗ = 1 + t (deg = 1 and Vol = 2):

• n = 1: P1

• n = 2:

P21Pyr(P)

• n ≥ 3:

P1 2PPyr  (   )
n−2

Pyr  (   )
n−1

Proposition: An n-dimensional lattice polytope P of
degree one is a lattice pyramid, if n > Vol(P ).
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The general case

Theorem. [Batyrev 2006]
A lattice polytope of dimension n, volume V , and degree d
is a lattice pyramid, if

n ≥ 4d

(
2d + V − 1

2d

)
.

Proof relies heavily on commutative algebra.
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Definition: C(V, d, n) := number of isomorphism classes
of lattice polytopes of volume V , degree d, dimension n.

• finite (theorem of Lagarias and Ziegler),

• upper monotone in n (pyramid construction),

• eventually become constant (Batyrev’s result).

Corollary: There are only finitely many lattice polytopes
with the same h∗-polynomial up to isomorphisms and pyra-
mid constructions.
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4. What about lattice poly-
topes of given degree?
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The Cayley polytope conjecture

Definition: A lattice polytope P is a Cayley polytope

P = P1 ∗ P2, if

distancelattice
one

P

P2

P1

On the other hand, let P1, . . . , Ps ⊆MR be given.

Definition: P1 ∗ · · · ∗ Ps is defined as

conv(P1 × {e1}, . . . , Ps × {es}) ⊆MR ⊕ Zs,

where e1, . . . , es is a lattice basis of Zs.
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Conjecture I [Batyrev, N.]: Let d be fixed.
There exists N such that any lattice polytope of degree d and
dimension n is a Cayley polytope, if

n ≥ N.

Example: Conjecture I holds for d = 1 with N = 3.

• Pyramids are Cayley polytopes.

• Lawrence prisms are Cayley polytopes of segments.

[0,2]*[0,3]*[0,1]
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A surprise ...

Theorem I. [N. 2007]
A lattice simplex of degree d and dimension n is a
lattice pyramid, if

n ≥ 4d− 1.

Example: A lattice simplex of degree d = 1 is a lattice
pyramid, if n ≥ 3.

• Exceptional simplices are lattice pyramids for n ≥ 3.

• Simplices that are Lawrence prisms are lattice pyramids
for n ≥ 2.
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... and its generalization

Theorem II. [N. 2007]
A lattice polytope of degree d and dimension n is a
lattice pyramid, if

n ≥ (f0 − n− 1)(2d + 1) + 4d− 1,

where f0 equals the number of vertices of P .

Proofs of Theorems I and II are purely combinatorial.



Introduction

Degree one

Fixed h∗-polynomial

Fixed degree

Proof of Theorem I

Outlook

Back to h∗-polynomial

f0 − n− 1 ≤ |P ∩M | − n− 1 = h∗1 ⇒

Corollary: A lattice polytope of degree d and dimension n
is a lattice pyramid, if

n ≥ h∗1(2d + 1) + 4d− 1.

Fine tuning of Theorem II  

Corollary: A lattice polytope of dimension n, volume V ,
and degree d is a lattice pyramid, if

n ≥ (V − 1)(2d + 1) ≈ O(V d).
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5. Proof of Theorem I
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The setup
Let P be an n-dimensional lattice simplex of degree d.

P := conv(v0, . . . , vn) ⊆MR × {1}, M := M ⊕ Z.

Definition: (half-open) parallelepiped

Π(P ) := {
n∑

i=0

λivi : 0 ≤ λi < 1}.

0

1

2

0 1

0 2

1 2

1 2

0

+

+

+

+

+

Pv

v

v

v v

v v

v v

v v

v
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The support

1. Let m ∈MR ⊕ R. Then

m =

n∑
i=0

λivi for λi ∈ R,

supp(m) := {i ∈ {0, . . . , n} : λi 6= 0}.

2. supp(P ) :=
⋃

m∈Π(P )∩M

supp(m).
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A simple reformulation

Lemma:

P lattice pyramid ⇔ supp(P ) ( {0, . . . , n}

Proof: Follows from

Vol(P ) = |Π(P ) ∩M |.

T.f.a.e. for P ′ := conv(v0, . . . , vn−1):

• P is a lattice pyramid over P ′ (with apex vn)

• Vol(P ) = Vol(P ′)

• Π(P ) ∩M = Π(P ′) ∩M .

• supp(P ) ⊆ {0, . . . , n− 1}

�
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Line of argument
Goal:

| supp(P ) | ≤ 4d− 1.

Idea: Cover the support of P in a greedy manner.

Choose recursively lattice points

m0,m1,m2, . . . ∈ Π(P ) ∩M

such that
| supp(m0) | maximal,

| supp(m0) ∪ supp(m1) | maximal,

| supp(m0) ∪ supp(m1) ∪ supp(m2) | maximal,

...
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Claim:
| supp(m0) | ≤ 1 · 2d,

| supp(m0) ∪ supp(m1) | ≤ (1 +
1

2
) · 2d,

| supp(m0) ∪ supp(m1) ∪ supp(m2) | ≤ (1 +
1

2
+

1

4
) · 2d,

...

Finiteness yields

| supp(P ) | = |
∞⋃

j=0

supp(mj) | < 2 · 2d = 4d.

Therefore
| supp(P ) | ≤ 4d− 1.

�

Proof of claim by induction.
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A well-known observation
In the case of a simplex the following equation holds:

h∗i = |{m ∈ Π(P ) ∩M : ht(m) = i}|,

where ht(m) equals its last coordinate.

Example: P = S the exceptional triangle, h∗ = 1 + 3t.
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1 2

0
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Proof of claim for m0

We have to show

m ∈ Π(P ) ∩M ⇒| supp(m) | ≤ 2d.

The previous slide yields

d = deg(P ) ≥ ht(m).

Let
supp(m) = {0, . . . , s},
P ′ := conv(v0, . . . , vs)

⇒ m ∈ int(Π(P ′)) ∩M.

This yields

d ≥ ht(m) ≥ codeg(P ′) = s + 1− deg(P ′)

≥ s + 1− deg(P ) = s + 1− d.
Hence

| supp(m) | = s + 1 ≤ 2d.

�
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Proof of induction step m0→ m1

Schematic figure of supp(m0) ∪ supp(m1) ⊆ {0, . . . , n}:

a b c

m0

m1

b + c = | supp(m1) | ≤ | supp(m0) | = a + b. (1)

We are going to show

c ≤ d = deg(P ).

Since then

| supp(m0) ∪ supp(m1) | = a+ b+ c ≤ 2d+d = (1 +
1

2
)2d.
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m0 =

n∑
i=0

λivi, m1 =

n∑
i=0

µivi.

Then

m′1 :=

n∑
i=0

{λi + µi}vi ∈ Π(P ) ∩M,

where {γ} ∈ [0, 1[ is the fractional part of a real number γ.

� �� �

a b c

m 0

m 1

m’1

a + c ≤ supp(m′1) ≤ supp(m0) = a + b,

so
c ≤ b. (2)
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Combining
b + c ≤ a + b (1)

and
c ≤ b (2)

yields
c ≤ b ≤ a + b− c,

so
2c ≤ a + b = supp(m0) ≤ 2d,

⇒ c ≤ d.

�

The general induction step works similarly.

This finishes the proof of Theorem I.
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6. Outlook
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The leading term conjecture

Conjecture: Let i ∈ {1, . . . , d}.
There exists a constant N such that any n-dimensional
lattice polytope of degree d and with coefficient h∗i is a
lattice pyramid, if

n > N.

For i = d the conjecture is equivalent to:

Conjecture II [Batyrev]:
There exists a uniform upper bound on the volume of lattice
polytopes of degree d and leading coefficient h∗d.

Holds for d ≤ 2 due to Treutlein (2007).
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The Cayley conjecture - refined

Conjecture I’: Let d be fixed.
There exists N such that any lattice polytope P of degree d
and dimension n ≥ N is a Cayley polytope P1 ∗ · · · ∗ Ps of
non-empty lattice polytopes for s = n + 2−N .

Holds for d = 1 with N = 3 by the classification.

Theorem. [Haase, N., Payne 2007]
Conjecture I’ implies Conjecture II.

Conjecture I’ also implies the qualitative statements of
Batyrev’s result and its generalization Theorem II.
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Gorenstein polytopes
Definition: P is Gorenstein, if h∗P is symmetric.
In particular, h∗d = h∗0 = 1.

Proposition [N.]:
Conjecture I’ holds for Gorenstein polytopes.

Corollary:
There exists a uniform bound on the volume
of Gorenstein polytopes of degree d.

Proposition follows from combining

• [Batyrev, Borisov 1997] criterion for Gorenstein poly-
topes in terms of Gorenstein cones,

• [Batyrev, N. 2007] characterization of Cayley polytopes
by special simplices.
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