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1. Introduction




The h*-polynomial
Throughout:
o M = 7" is a lattice, Mr = M ®;, R=R".

e P C My is n-dimensional lattice polytope.

Degree one
Fixed h-polynomial Theorem. [Stanley 1980]
i There is a polynomial h*(t) € Z[t] of degree < n with
e nonnegative integer coefficients such that
Outlook . h*(t)
d kPN M|t = Aot

k>0



Definition:
® hi(t) ;== h*(t) is called h*-polynomial of P.
o hi, .= (hj,...,h) is called h*-vector of P.

Observations:
e h)=1.
e hi=|PNM|—(n+1).
o h' = |int(P)N M|
® h)+ -+ -+ h' = Vol(P) = n! vol(P).

(from now on: volume = normalized volume)



Example: n =2

1+13t+8t2

ho(t)=1+(|PNM|—3)t+|int(P)Nn M|t

Pick’s formula:

Vol(P) = hi(1) = |8(P) N M| + 2|int(P) N M| — 2.



The degree

Definition: The degree of P is defined as the degree of
the A*-polynomial.

deg(P) :=max(: : h #0).

Introduction

Degree one

_ _ Hence
Fixed h*-polynomial

0 < deg(P) < n = dim(P).

Fixed degree

Proof of Theorem |

Philosophy: The degree of a lattice polytope may be
regarded as its "true” dimension.

Outlook



The codegree

Definition: The codegree of P is defined as:

codeg(P) := min{k € Z-, : int(kP)N M # 0}

Reciprocity-Theorem =-

1 < |codeg(P)=n+1—deg(P)| <n+1,

hileg(

p) = |int(codeg(P)P) N M |.
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Fixed h*-polynomial
Fixed degree

Proof of Theorem |

Outlook

Example: n =2

Con b

codeg 3 codeg 2 codeg 1 codeg 1

1 1+3t 1+7t+2  1+12t+3¢2
Observations:
e codeg(P) =1 & deg(P)=n < int(P)NM#0
o codeg(P)=n+1 < deg(P)=0 < Pis
unimodular

simplex.



2. Classification of lattice
polytopes of degree one




Dimension two

Let P C My be a lattice polygon.

Introduction deg(P) <1 < P has no interior lattice points.
Fixed h*-polynomial Theorem. [Arkinstall 1980; Koelman 1991; Kho-
Fixed degree vanskii 1997; Schicho 2003]

There are precisely two cases, in which P has no interior
lattice points:

Proof of Theorem |

Outlook



Degree one

either

P is the exceptional triangle S

S i;\_ 1+3t

P lies between two parallel hyperplanes of integral
distance one:

or



Lattice pyramid construction

Definition: The lattice pyramid over P is defined as
Pyr(P) := conv({0}, P x {1}) C My & R.

Recursively: k-fold pyramid over P:
Pyr*(P) = Pyr(Pyr" (P)).

Proposition: | P and Pyr(P) have same h*-polynomial. |
= Degree and volume is unchanged!




Higher dimensions

Definition: An n-dimensional exceptional simplex is an
(n — 2)-fold lattice pyramid over S.

Pyr(S)
%_ 1+3t

Example: n =3




Definition: An n-dimensional Lawrence prism with
heights h, ..., h,:

h=2

h=1
n
=
Introduction
& Lo
Fixed h*-polynomial e 1
2
0

Fixed degree

Proof of Theorem | 4

3
Outlook
2
0 0 1
1

1+2t 1+3t 1+5t
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Proof of Theorem |

Outlook

Classification result

Theorem. [Batyrev, N. 2006]
A lattice polytope has degree < 1 if and only if
it is an exceptional simplex or a Lawrence prism.

Proof by induction on the number of lattice points,
using the monotonicity property of the degree:

Theorem. [Stanley 1993]
() C P lattice polytopes = hy, < h} coefficientwise.



Fixed h*-polynomial

E—: } Hf)w many lattice polxtopes
TR with given A*™-polynomial?
Ouook
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Fixed degree

Proof of Theorem |

Outlook

Case of degree one

Example: h* =1+t (deg=1 and Vol =2):

on =1:

e S A i

Proposition: An n-dimensional lattice polytope P of
degree one is a lattice pyramid, if n > Vol(P).



The general case

Theorem. [Batyrev 2006]

ificedhstey A lattice polytope of dimension n, volume V', and degree d
is a lattice pyramid, if

Degree one
2d+V — 1

_ n > 4d :
Fixed degree - 2d

Proof of Theorem |

Outlook . . c
Proof relies heavily on commutative algebra.
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Fixed h*-polynomial
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Outlook

Definition: C(V,d,n) := number of isomorphism classes
of lattice polytopes of volume V', degree d, dimension n.

e finite (theorem of Lagarias and Ziegler),
e upper monotone in n (pyramid construction),

e cventually become constant (Batyrev's result).

Corollary: There are only finitely many lattice polytopes
with the same h*-polynomial up to isomorphisms and pyra-
mid constructions.



4. What about Ilattice poly-
topes of given degree?




The Cayley polytope conjecture

Definition: A lattice polytope P is a Cayley polytope

P=P P, |if

-
laticsee
one

Proof of Theorem |
T — On the other hand, let P, ..., P, C My be given.

Definition: P, x - -- x P, is defined as
conv(P; x {e1},..., P, x{e,}) C Mg & 7Z°,

where e, ..., e, is a lattice basis of Z°.
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Outlook

Conjecture | [Batyrev, N.]: Let d be fixed.
There exists NV such that any lattice polytope of degree d and
dimension n is a Cayley polytope, if

n > N.

Example: Conjecture | holds for d = 1 with N = 3.
e Pyramids are Cayley polytopes.

e Lawrence prisms are Cayley polytopes of segments.

[0.2]*[0,3]*[0,1]




A surprise ...

Theorem 1. [N. 2007]

A lattice simplex of degree d and dimension n is a
lattice pyramid, if

n>4d — 1.
Introduction
Degree one
Fixed h*-polynomial Example: A lattice simplex of degree d = 1 is a lattice
pyramid, if n > 3.
FroofofTheereml e Exceptional simplices are lattice pyramids for n > 3.

Outlook . . . . .
e Simplices that are Lawrence prisms are lattice pyramids

forn > 2.



... and its generalization

Theorem Il. [N. 2007]
A lattice polytope of degree d and dimension n is a

lattice pyramid, if

Introduction
Degree one
Fixed h*-polynomial n Z (fo — N — 1)(2d —I_ 1) + 4d — 1,

Proof of Theorem |

where f, equals the number of vertices of P.

Outlook

Proofs of Theorems | and Il are purely combinatorial.
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Outlook

Back to h*-polynomial

fomn—1<|PAM|-n—-1=h =

Corollary: A lattice polytope of degree d and dimension n
is a lattice pyramid, if

n>h2d+1)+4d — 1.

Fine tuning of Theorem Il ~~

Corollary: A lattice polytope of dimension n, volume V/,
and degree d is a lattice pyramid, if

n>(V—1)2d+1) ~ OV d).



5. Proof of Theorem 1




The setup

Let P be an n-dimensional lattice simplex of degree d.
P = conv(vg,...,v,) C Mg x {1}, M =M @ Z.

Definition: (half-open) parallelepiped

i=0

@ VotV +V;

Proof of Theorem |




The support

1. Let m € Myr @& R. Then

m = Z)‘ivi for \; € R,

1=0

supp(m) :={i € {0,...,n} : X\ #0}.

Proof of Theorem |

2. supp(P) := U supp(m).

mell(P)NM




A simple reformulation

Lemma:

P lattice pyramid < supp(P) € {0,...,n}

Proof: Follows from

Introduction

Vol(P) = |TI(P) N M |.

Degree one

Fixed h*-polynomial T.fa.e. for P':=conv(vy, ..., v, 1):

Fixed degree

Outlook e VO1(P) — VOI(PI)

e [I(P)NM =TI(P)N M.
e supp(P) C{0,...,n—1}

e P is a lattice pyramid over P’ (with apex v,,)
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Line of argument
Goal:

|supp(P)| < 4d — 1.

Idea: Cover the support of P in a greedy manner.

Choose recursively lattice points

Mg, M1, Ma, ... € [I(P) N M
such that
| supp(my) | maximal,
| supp(mg) U supp(m;) | maximal,

| supp(myg) U supp(my) U supp(my) | maximal,



Proof of Theorem |

Claim:
|supp(mg) | < 1-2d,

1
| supp(mg) U supp(my)| < (1 + 5) - 2d,

1 1
|supp(1120) U supp(ima) U supp(ms) | < (1 + 5 + 7) - 2d,

Finiteness yields

[supp(P) | = |(Jsupp(m;)| < 2-2d = 4d.

J=0

Therefore
|supp(P)| < 4d — 1.

Proof of claim by induction.
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Outlook

A well-known observation

In the case of a simplex the following equation holds:
hi=|{m ell(P)NM : ht(m) =1}|,

where ht(m) equals its last coordinate.

Example: P = S the exceptional triangle, h* = 1 + 3t.

ht=3

@ Vo tV1 +V;

ht=2

ht=1

ht=0




Proof of claim for m

We have to show

m € [I(P)NM = |supp(m)]| < 2d.

The previous slide yields

d = deg(P) > ht(m).

Introduction Let
Degree one Supp(m) — {07 tt ) 8}7
Fixed h*-polynomial P/ = COHV('UO, st 7/05)
Fixed degree é m E lnt(H(Pl)) ﬂ M
This yields
Outlook
d > ht(m) > codeg(P') = s + 1 — deg(P’)
>s+1—deg(P)=s+1—d.
Hence

|supp(m)| =s+1 < 2d.



Proof of induction step my — my

Schematic figure of supp(mg) U supp(my) C {0,...,n}:

My
my

Introduction
1 1 1

1 1 1 1

«—g— ' «—phHh>» «—Cc—

Degree one ' a ' b ' c '

Fixed h*-polynomial b _|_ c = ’SUPP(m1> ‘ S ‘supp(mo) ’ = Q —|— b (1)

Fixed degree

Outlook C S d — deg(P)

We are going to show

Since then

1
|supp(myg) Usupp(my)| =a+b+c < 2d+d = (1+§)2d.



1 1 1
 —a —> b+ —>
1 1 1

a + ¢ < supp(m}) < supp(mg) = a + b,

)
c <b. (2)



Combining

b+c<a+b (1)
and
c<b (2)
yields
c<b<a+b-—c,
so

2¢ < a+ b= supp(my) < 2d,

= c¢<d.

The general induction step works similarly.

This finishes the proof of Theorem I.



6. Outlook
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The leading term conjecture

Conjecture: Leti € {1,...,d}.
There exists a constant N such that any n-dimensional
lattice polytope of degree d and with coefficient A] is a
lattice pyramid, if

n > N.

For © = d the conjecture is equivalent to:

Conjecture |l [Batyrev]:
There exists a uniform upper bound on the volume of lattice
polytopes of degree d and leading coefficient ).

Holds for d < 2 due to Treutlein (2007).
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The Cayley conjecture - refined

Conjecture I': Let d be fixed.

There exists /N such that any lattice polytope P of degree d
and dimension n > N is a Cayley polytope P, x - -- x P, of
non-empty lattice polytopes for s =n +2 — V.

Holds for d = 1 with N = 3 by the classification.

Theorem. [Haase, N., Payne 2007]

Conjecture |' implies Conjecture Il.

Conjecture I' also implies the qualitative statements of
Batyrev's result and its generalization Theorem |I.
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Gorenstein polytopes

*

Definition: P is Gorenstein, if A}, is symmetric.
In particular, b}, = hj = 1.

Proposition [N.]:
Conjecture |' holds for Gorenstein polytopes.

Corollary:
There exists a uniform bound on the volume
of Gorenstein polytopes of degree d.

Proposition follows from combining

e [Batyrev, Borisov 1997] criterion for Gorenstein poly-
topes in terms of Gorenstein cones,

e [Batyrev, N. 2007| characterization of Cayley polytopes
by special simplices.
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