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Goals of this talk:
Convince you that (reflexive &) Gorenstein polytopes

© turn up naturally
@ consist of interesting examples

© have fascinating and not yet understood properties
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Combinatorial types of polytopes
Isomorphisms: combinatorially isomorphic face posets
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Realized polytopes and duality

Embedded polytopes: P C R

Isomorphisms: affine isomorphisms
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Realized polytopes and duality

Embedded polytopes: P C R
Isomorphisms: affine isomorphisms

P c R? d-polytope with interior point 0 =

P*:={yec@®)* : (y,x)>-1VxeP}

f
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Lattice polytopes and duality

Lattice polytopes: P = conv(my, ..., my) for m; € Z9
isomorphisms: affine lattice isomorphisms of Z¢ (unimodular equivalence)
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Lattice polytopes and duality

Lattice polytopes: P = conv(my, ..., my) for m; € Z9

isomorphisms: affine lattice isomorphisms of Z¢ (unimodular equivalence)
Definition (Batyrev '94)

A reflexive polytope is a lattice polytope P with 0 € int(P) such that
P* is also a lattice polytope.
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Lattice polytopes and duality

Lattice polytopes: P = conv(my, ..., my) for m; € Z9

isomorphisms: affine lattice isomorphisms of Z¢ (unimodular equivalence)
Definition (Batyrev '94)

A reflexive polytope is a lattice polytope P with 0 € int(P) such that
P* is also a lattice polytope.

~ origin only interior lattice point.
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Reflexive polytopes

Facts

Q [Lagarias/Ziegler '91]: In each dimension only finitely many reflexive
polytopes up to lattice isomorphisms.
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Reflexive polytopes

Facts

Q [Lagarias/Ziegler '91]: In each dimension only finitely many reflexive
polytopes up to lattice isomorphisms.
@ [Haase/Melnikov '06]: Any lattice polytope is a face of a
(higher-dimensional) reflexive polytope.
@ [Kreuzer/Skarke '98-00]: Tons of them:
d| 2] 3 | 4
# | 16 | 4,319 | 473,800,776
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Reflexive polytopes

Facts

Q [Lagarias/Ziegler '91]: In each dimension only finitely many reflexive
polytopes up to lattice isomorphisms.
@ [Haase/Melnikov '06]: Any lattice polytope is a face of a
(higher-dimensional) reflexive polytope.
@ [Kreuzer/Skarke '98-00]: Tons of them:
d| 2] 3 | 4
# | 16 | 4,319 | 473,800,776

@ Even basic questions are open: maximal number of vertices?

d [2]3 4
vertices < [6) 14|60,  » o ] H ,
L/

YMx W
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Reflexive polytopes
Let P be a lattice polytope with O in its interior.
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Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.
Definition

P is reflexive if and only if

@ each facet F has lattice distance 1 from the origin,

@ each vertex is a primitive lattice point.
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Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.
Definition
P is reflexive of Gorenstein index 1 if and only if

@ each facet F has lattice distance 1 from the origin,

@ each vertex is a primitive lattice point.
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Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)
Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. '10)

P is reflexive of Gorenstein index ¢ if and only if

@ each facet F has lattice distance ¢ from the origin,

@ each vertex is a primitive lattice point.

W
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Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)
Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. '10)

P is reflexive of Gorenstein index ¢ if and only if

@ each facet F has lattice distance ¢ from the origin,

@ each vertex is a primitive lattice point.

{P* {-reflexive
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Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)
Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. '10)

P is reflexive of Gorenstein index ¢ if and only if

@ each facet F has lattice distance ¢ from the origin,

@ each vertex is a primitive lattice point.

(P* l-reflexive and P ={({P*)".

Duality of f-reflexive polytopes!
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Examples of /-reflexive polygons?!

2-2:  Noll

| S
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Classification of /-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P (-reflexive polygon; A=< 0P NZ?>; —
P is 1-reflexive w.r.t. A.

o
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Theorem
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Applications
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Classification of (-reflexive polygons (Joint work with A. Kasprzyk)
Theorem

P (-reflexive polygon; A =< 0P NZ?>; —
P is 1-reflexive w.r.t. A.

Applications

@ No /-reflexive polygons for ¢ odd.

@ Yields fast classification algorithm:
¢l 1]3|5 |7 |9]11]13|15] 17 |-
# (1611220 1]61 |81 | 1 |113]--
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The “number 12"
12-Property

P reflexive polygon —>

|0P N Z?| + |0P* N Z?| = 12.
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The “number 12" generalizes! (Joint work with A. Kasprzyk)
12-Property

P (-reflexive polygon —>

|0P N Z?| + |0P* N Z?| = 12.
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The “number 12" generalizes! (Joint work with A. Kasprzyk)

12-Property
P (-reflexive polygon —>

|OP N 72| + |0P* N Z2| = 12.

What else can be generalized?
What about higher dimensions?
What about algebro-geometric implications?
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Definition and duality

Def.[Batyrev/Borisov '97] A Gorenstein polytope of codegree r is a
lattice polytope P such that rP is a reflexive polytope (up to lattice
translation).

=)

GP 1¢
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Definition and duality
Let Cp := Rzo(P X 1).

Proposition (Batyrev/Borisov '97)
P is a Gorenstein polytope if and only if

(Cp)" = Cq

for some lattice polytope Q.
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Definition and duality
Let Cp := Rzo(P X 1).
Proposition (Batyrev/Borisov '97)
P is a Gorenstein polytope if and only if
(G =Cp

for some lattice polytope Q.
Then Q is called dual Gorenstein polytope P*.

codeg(P) = codeg(P™).
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Definition and duality
Let Cp := Rzo(P X 1).
Proposition (Batyrev/Borisov '97)
P is a Gorenstein polytope if and only if
(G =Cp

for some lattice polytope Q.
Then Q is called dual Gorenstein polytope P*.

codeg(P) = codeg(P™).

~~ Natural duality of Gorenstein polytopes!
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Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then Sp := C[Cp N Z9*] is a positively
graded normal Cohen-Macaulay ring,
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-
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then Sp := C[Cp N Z9*] is a positively
graded normal Cohen-Macaulay ring, and R has a canonical module wg:

ws, =< x™ : m € int(Cp) N ZIT >

T.f.a.e.
@ P Gorenstein polytope
o there exists x € int(Cp) N Z9*1 s.t.

x+ CpNZ9TY = int(Cp) Nz,

@ Sp Gorenstein ring
o the Hilbert series Hs,(t) satisfies

Hsp(t) = (—1)" ' Hs, (¢71).
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Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

h*(t)

d K _
Y I n(z9 x k)| t = A= a

k>0

where h*(t) is a polynomial with nonnegative integer coefficients of
degree < d.
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N —
Characterization via Lattice-Point-Enumeration
P lattice d-polytope.
h*(t)
d k _
S kP Nz th = e
k>0

where h*(t) is a polynomial with nonnegative integer coefficients of degree
<d.

Ehrhart theory: k — kP N Z9 is a polynomial of degree d.
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Characterization via Lattice-Point-Enumeration
P lattice d-polytope.
h*(t)
d k _
S kP Nz th = e
k>0

where h*(t) is a polynomial with nonnegative integer coefficients of degree
<d.

Def.: The degree of P is defined as the degree of its h*-polynomial.
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N —
Characterization via Lattice-Point-Enumeration
P lattice d-polytope.

h*(t
ZykPmZdytk_ (2,
(1-1)

k>0

where h*(t) is a polynomial with nonnegative integer coefficients of degree
<d.

+1

Def.: The degree of P is defined as the degree of its h*-polynomial.
Def.: The codegree of P is the minimal k such that kP N Z9 # ().
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N —
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

h(t)
kPNZI| th =
B e

where h*(t) is a polynomial with nonnegative integer coefficients of degree
<d.

Def.: The degree of P is defined as the degree of its h*-polynomial.
Def.: The codegree of P is the minimal k such that kP N Z9 # ().

= deg(P) = d + 1 — codeg(P).
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Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

h*
S kP Nz th = )

t
= (1-1)

where h*(t) is a polynomial with nonnegative integer coefficients of degree
<d.

)
(1 — p)d+t

+1

Proposition (Stanley)
T.fa.e.

@ P Gorenstein polytope (of codegree codeg(P))
@ h*-polynomial of P is symmetric (of degree deg(P))
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DESSS———....
Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h*-polynomial.

1
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Finiteness of Gorenstein polytopes
Observation: Lattice pyramids don't change the h*-polynomial.

Theorem (Batyrev/N. '08; Haase/N./Payne '09; Batyrev/Juny '09)

There exist only finitely many Gorenstein polytopes of degree s that are

not lattice pyramids. y ¥
S ) "‘g‘-"- L.ﬁ\
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Finiteness of Gorenstein polytopes
Observation: Lattice pyramids don't change the h*-polynomial.

Theorem (Batyrev/N. '08; Haase/N./Payne '09; Batyrev/Juny '09)

There exist only finitely many Gorenstein polytopes of degree s that are
not lattice pyramids.

s |0]1]2
#|1]1]37

- U
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Gorenstein polytopes in algebraic and polyhedral
combinatorics

@ Toric ideals of Gorenstein polytopes are “classical”;
“Nice initial complexes on some classical ideals”
(Conca/Hosten/Thomas '06).
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Def.: An n x n matrix is called doubly stochastic, if any entry is > 0 and
the row and column sums equal 1.
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Def.: An n x n matrix is called doubly stochastic, if any entry is > 0 and
the row and column sums equal 1.
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Def.: An n x n matrix is called doubly stochastic, if any entry is > 0 and
the row and column sums equal 1.

0.5 025 0.25
025 05 0.25
025 0.25 05

Birkhoff-von Neumann theorem

The set of n x n matrix of doubly stochastic matrices is the convex hull of
the n! permutation matrices:

Benjamin Nill (U Georgia) Gorenstein polytopes 25 / 46



'The' example of a Gorenstein polytope: the Birkhoff
polytope

Def.: An n x n matrix is called doubly stochastic, if any entry is > 0 and
the row and column sums equal 1.

0.5 025 0.25
025 05 0.25
025 0.25 05

Birkhoff-von Neumann theorem

The set of n x n matrix of doubly stochastic matrices is the convex hull of
the n! permutation matrices: the Birkhoff polytope B,.
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Facts

B, C R™ is a lattice polytope
e dimension: (n —1)?
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Facts
B, C R™ is a lattice polytope
e dimension: (n — 1)?

@ number of facets: n? (inequalities: xij > 0)
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'The' example of a Gorenstein polytope: the Birkhoff
polytope

Facts
B, C R™ is a lattice polytope
e dimension: (n — 1)?
@ number of facets: n? (inequalities: xij > 0)

A point in kB, N 7" is n x n-matrix with entries in {0,... ,té and row
and column sum k: semi-magic square with magic number k.
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'"The' example of a Gorenstein polytope: the Birkhoff
polytope

Facts
B, C R™ is a lattice polytope
e dimension: (n — 1)?

@ number of facets: n? (inequalities: xij > 0)

A point in kB, NZ™ is n x n-matrix with entries in {0,...,n} and row
and column sum k: semi-magic square with magic number k.

A semi-magic square is in the interior of kB, if and only if any entry is # 0.
Semi-magic square x in interior with smallest magic number:
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A point in kB, NZ™ is n x n-matrix with entries in {0,...,n} and row
and column sum k: semi-magic square with magic number k.
A semi-magic square is in the interior of kB, if and only if any entry is # 0.

Semi-magic square x in interior with smallest magic number:
111

111
111
Lattice distance of x equals 1 from any facet = nB,, is reflexive.
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'"The' example of a Gorenstein polytope: the Birkhoff
polytope

Facts
B, C R™ is a Gorenstein polytope of codegree n
e dimension: (n — 1)?

@ number of facets: n? (inequalities: xij > 0)

A point in kB, NZ™ is n x n-matrix with entries in {0,...,n} and row
and column sum k: semi-magic square with magic number k.
A semi-magic square is in the interior of kB, if and only if any entry is # 0.

Semi-magic square x in interior with smallest magic number:
111
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Lattice distance of x equals 1 from any facet = nB,, is reflexive.
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Athanasiadis’ proof of Stanley's conjecture

Def.: The coefficient vector (h§, ..., h%) is unimodal, if

hy < hi<--->...>h%

Theorem(Athanasiadis '03)
The h*-vector of the Birkhoff polytope is unimodal. J
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Def.: The coefficient vector (h§, ..., h%) is unimodal, if

hy < hi<--->...>h%

Theorem(Athanasiadis '03)
The h*-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.
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-
Athanasiadis’ proof of Stanley's conjecture

Def.: The coefficient vector (h§, ..., h%) is unimodal, if

hy < hi<--->...>h%

Theorem(Athanasiadis '03)
The h*-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.

Proof relies on the notion of special simplices.
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Special simplices
Let P be a Gorenstein d-polytope of codegree r.
Proposition (Batyrev/N. '07)

S is a special (r — 1)-simplex, if the vertices of S are r affinely
independent lattice points of P such that
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Special simplices
Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. '07)
S is a special (r — 1)-simplex, if the vertices of S are r affinely
independent lattice points of P such that

@ any facet of P contains precisely r — 1 vertices of S, or

@ S is not contained in the boundary of P, or

@ the sum of the vertices of S sum up to unique interior lattice point x
of rP.

oX
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Let P be a Gorenstein d-polytope of codegree r.
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S is a special (r — 1)-simplex, if the vertices of S are r affinely
independent lattice points of P such that

@ any facet of P contains precisely r — 1 vertices of S, or

@ S is not contained in the boundary of P, or

@ the sum of the vertices of S sum up to unique interior lattice point x
of rP.

Then S is unimodular.
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Special simplices
Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. '07)
S is a special (r — 1)-simplex, if the vertices of S are r affinely
independent lattice points of P such that

@ any facet of P contains precisely r — 1 vertices of S, or

@ S is not contained in the boundary of P, or

@ the sum of the vertices of S sum up to unique interior lattice point x
of rP.

Then S is unimodular.

Example: B, contains special (n — 1)-simplex: permutation matrices
corresponding to elements in cyclic subgroup generated by (12 --- n).
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Special simplices

Proposition (Bruns/Roemer '05; Batyrev/N.'07)

Projecting P along a special (r — 1)-simplex yields a reflexive polytope
with the same h*-polynomial.

& - [

S fwal Ilecve

S lhfL"\
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Main open question
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Main open question

Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.

[m] = = =
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Main open question

Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.

Theorem (Mustata/Payne '05)

There exist reflexive 6-polytopes with non-unimodal h*-vector.
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Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.

Theorem (Mustata/Payne '05)

There exist reflexive 6-polytopes with non-unimodal h*-vector.

Def.: P is normal, if Cp N Z9+1 is generated by lattice points in P.
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Main open question

Theorem (Bruns-Roemer '05)

The h*-vector of a Gorenstein polytope P is unimodal, if P admits a
regular unimodular triangulation.

Theorem (Mustata/Payne '05)

There exist reflexive 6-polytopes with non-unimodal h*-vector.

Def.: P is normal, if Cp N Z9+1 is generated by lattice points in P.

Question: P normal Gorenstein polytope = h} unimodal ?
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Philosophy

Gorenstein polytopes are combinatorial models of Calabi-Yau varieties.
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Mirror symmetry
Y Calabi-Yau n-fold, if its canonical divisor is trivial.
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Mirror symmetry

Y Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients ¢, 5y € C*

Yi={(xy)€(C)Y : > canxy® =0}
(a,b)ePNZ?
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Mirror symmetry

Y Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients ¢, 5y € C*

Y = {(x,y) € (C*)? : Z Cap) X2yP = 0}
(a,b)ePNZ?

is an elliptic curve (Calabi-Yau 1-fold).
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Mirror symmetry
String Theory proposes mirror pairs of CY-n-folds Y, Y*!

Topological mirror symmetry test

hPa(Y) = hPn=9(Y*)
for Hodge numbers hP9 = h9(Y,QF).
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Batyrev's construction

Theorem (Batyrev '94)

P, P* dual reflexive polytopes ~~ Calabi-Yau hypersurfaces Yp, Yp« in
Gorenstein toric Fano varieties whose stringy Hodge numbers satisfy the
topological mirror symmetry test.
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Batyrev-Borisov-construction

Theorem (Batyrev/Borisov '96)

Dual nef-partitions ~~ Calabi-Yau complete intersections in Gorenstein

toric Fano varieties whose stringy Hodge numbers satisfy the topological
mirror symmetry test.

Benjamin Nill (U Georgia) Gorenstein polytopes 36 / 46



I
Nef-partitions
Families of lattice polytopes ~~ complete intersections Y.
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Nef-partitions
Families of lattice polytopes ~~ complete intersections Y.

Y is Calabi-Yau, if Q1 + -+ + @y is reflexive.
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Nef-partitions

Families of lattice polytopes ~» complete intersections Y.
Y is Calabi-Yau, if Q1 + -+ + @y is reflexive.

Q1, ..., Q, nef-partition, if 0 € Q1, ..., 0 € Q,.

0

0."" v
Q.
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DESSS———....
Gorenstein polytopes enter the picture
Q1+ - + Q, reflexive

od

Cayley-polytope is Gorenstein of codegree r!

(QI Q3 44

o F
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Gorenstein polytopes enter the picture

Prop. (Batyrev/N. '08)

P Gorenstein polytope of codegree r:

Cayley structures of length r on P <— Special (r — 1)-simplices of P*
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Gorenstein polytopes enter the picture

Prop. (Batyrev/N. '08)

P Gorenstein polytope of codegree r:

Cayley structures of length r on P <— Special (r — 1)-simplices of P*
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DESSS———....
Duality of nef-partitions
P Cayley polytope of nef-partition
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Duality of nef-partitions

P Cayley polytope of nef-partition

—

P and P* have special (r — 1)-simplex

o F
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Duality of nef-partitions
P Cayley polytope of nef-partition

—

P and P* have special (r — 1)-simplex
<~

P* Cayley polytope of nef-partition

Benjamin Nill (U Georgia) Gorenstein polytopes



I
The stringy E-polynomial of Y
Def.: Stringy E-polynomial:

Es(Y;u,v) = Z(—l)‘”‘tht’q(Y) uP va.

p.q
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The stringy E-polynomial of Y
Def.: Stringy E-polynomial:

Es(Y;u,v) = Z(—l)p*'tht’q(Y) uP vA.
P.q

Theorem (Batyrev/Borisov '96; Borisov/Mavlyutov '03)

Given Gorenstein polytope P as Cayley polytope of length r and CY
complete intersection Y:

Es(Y;u,v)=(uv)™" Z (—u)dmAFL S(F u=tv) §(F*, uv)
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The stringy E-polynomial of Y
Def.: Stringy E-polynomial:

Es(Y;u,v) = Z(—l)p*'tht’q(Y) uP va.
P.q

Theorem (Batyrev/Borisov '96; Borisov/Mavlyutov '03)

Given Gorenstein polytope P as Cayley polytope of length r and CY
complete intersection Y:

Ee(Yiuv) = (uv)™" > (—u)®™FOFS(F u~tv) 5(F*, uv)
P<F<A

where : _ .
S(Fot):= Y (=1)mO=dm(®) pe (1) gig m(2).
0<G<F
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The stringy E-polynomial of Y
Def.: Stringy E-polynomial:

Es(Y;u,v) = Z(—l)p*'tht’q(Y) uP va.
P.q

Theorem (Batyrev/Borisov '96; Borisov/Mavlyutov '03)

Given Gorenstein polytope P as Cayley polytope of length r and CY
complete intersection Y:

Ee(Yiuv) = (uv)™" > (—u)®™FOFS(F u~tv) 5(F*, uv)
P<F<A

where

S(F t):= Y (—1)fmA)=dmlC) pe (1) gig p1(t) € Zsolt]-
0<G<F
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The stringy E-polynomial of P

Definition (Batyrev/N. '08)
P Gorenstein d-polytope of codegree r. Then define

Est(P;u,v) = (uv)™" Z (—u)dim(’:)"'1 S(F,u™v) S(F*,uv).
P<F<A
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The stringy E-polynomial of P

Definition (Batyrev/N. '08)
P Gorenstein d-polytope of codegree r. Then define

Est(P;u,v) = (uv)™" Z (—u)dim(’:)"'1 S(F,u™v) S(F*,uv).
P<F<A

Let us call n:= d 4+ 1 — 2r the Calabi-Yau dimension of P.
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The stringy E-polynomial of P

Definition (Batyrev/N. '08)
P Gorenstein d-polytope of codegree r. Then define

Est(P;u,v) = (uv)™" Z (—u)dim(’:)'i'1 S(F,u™v) S(F*,uv).
P<F<A

Let us call n:= d 4+ 1 — 2r the Calabi-Yau dimension of P.

Beautiful facts (Batyrev/Borisov '96; Borisov/Mavlyutov '03)
e "Hodge duality”: Es(P; u,v) = Es(P; v, u).
@ "Poincare duality”: Es(P; u,v) = (uv)" E¢(P;u—1,v —1).
@ "Mirror symmetry”: Eg(P; u,v) = (—u)" Est(P*;u—1,v).
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The stringy E-polynomial of P

Definition (Batyrev/N. '08)
P Gorenstein d-polytope of codegree r. Then define

Est(P;u,v) = (uv)™" Z (—u)dim(’:)"'1 S(F,u™v) S(F*,uv).
P<F<A
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The stringy E-polynomial of P

Definition (Batyrev/N. '08)
P Gorenstein d-polytope of codegree r. Then define

Est(P;u,v) = (uv)™" Z (—u)dim(’:)"'1 S(F,u™v) S(F*,uv).
P<F<A

A priori just a Laurent polynomial!
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The stringy E-polynomial of P
Theorem (N./Schepers '10)
Est(P; u,v) is a polynomial.
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The stringy E-polynomial of P

Theorem (N./Schepers '10)

Es:(P; u,v) is a polynomial. Therefore, there are h7 € N s.t.

Et(Piu,v) = > (—=1)PT9 h5(P) uP v9.
P.q
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The stringy E-polynomial of P

Theorem (N./Schepers '10)

Es:(P; u,v) is a polynomial. Therefore, there are h7 € N s.t.

Et(Piu,v) = > (—=1)PT9 h5(P) uP v9.
P.q

Proof relies on
deg(F) < deg(P)
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The stringy E-polynomial of P

Theorem (N./Schepers '10)

Es:(P; u,v) is a polynomial. Therefore, there are h7 € N s.t.

Et(Piu,v) = > (—=1)PT9 h5(P) uP v9.
P.q

Proof relies on
deg(F) + deg(F*) < deg(P)
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The stringy E-polynomial of P

Theorem (N./Schepers '10)

Es:(P; u,v) is a polynomial. Therefore, there are h7 € N s.t.

Et(Piu,v) = > (—=1)PT9 h5(P) uP v9.
P,q

Proof relies on

deg(F) + deg(F*) < deg(P)

Open: Is the degree of E(P; u,v) # 0 equal to 2n ?
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Finally, the main challenge

Conjecture (Batyrev/N. '08)

There exist only finitely many stringy E-polynomials of Gorenstein
polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.
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Finally, the main challenge

Conjecture (Batyrev/N. '08)

There exist only finitely many stringy E-polynomials of Gorenstein
polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifolds
constructed via the Batyrev-Borisov-procedure.
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Finally, the main challenge

Conjecture (Batyrev/N. '08)

There exist only finitely many stringy E-polynomials of Gorenstein
polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifolds
constructed via the Batyrev-Borisov-procedure.

Question (Yau):
Only finitely many topological types of irreducible CY-3-folds?
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