Dual defect toric manifolds and the Cayley polytope conjecture

Benjamin Nill (joint work with Alicia Dickenstein)

University of Sydney 10/06/10

• • = • • = •

I. The Cayley polytope conjecture

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Building blocks: lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

- 4 目 ト - 4 日 ト

Building blocks: lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

Known: 2-dimensional lattice polytopes without interior lattice points.

< 回 ト < 三 ト < 三 ト

lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without interior lattice points is at most $O(n^{3/2})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without interior lattice points is at most $O(n^{3/2})$.

Main question: Do all but *finitely* many lattice polytopes without interior lattice points project lattice-preserving onto lower-dimensional ones?

|山下 |田下 |田下

lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without interior lattice points is at most $O(n^{3/2})$.

Main question: Do all but *finitely* many lattice polytopes without interior lattice points project lattice-preserving onto lower-dimensional ones?

Proven by Treutlein in dimension 3; recent work by Weissmantel et al.

(日) (同) (三) (三) (三)

lattice polytopes without interior lattice points

A *lattice polytope* is the convex hull of lattice points (in \mathbb{Z}^n).

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without interior lattice points is at most $O(n^{3/2})$.

Main question: Do all but *finitely* many lattice polytopes without interior lattice points project lattice-preserving onto lower-dimensional ones?

Proven by Treutlein in dimension 3; recent work by Weissmantel et al.

Our focus: When do these polytopes have width 1 ("Pancake")?

ヘロト 人間ト 人間ト 人間ト

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Examples:

★聞▶ ★ 国▶ ★ 国▶

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Examples:

イロト イポト イヨト イヨト

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Facts:

• $1 \leq \operatorname{codeg}(P) \leq n+1$.

イロト 不得下 イヨト イヨト 二日

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Facts:

- $1 \leq \operatorname{codeg}(P) \leq n+1$.
- $\operatorname{codeg}(P) = 1 \iff \operatorname{int}(P) \cap \mathbb{Z}^n \neq \emptyset.$

イロト 不得 トイヨト イヨト 二日

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Facts:

- $1 \leq \operatorname{codeg}(P) \leq n+1$.
- $\operatorname{codeg}(P) = 1 \iff \operatorname{int}(P) \cap \mathbb{Z}^n \neq \emptyset.$
- $\operatorname{codeg}(P) = n + 1 \iff P \cong S_n$ (convex hull of affine lattice basis).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Facts:

- $1 \leq \operatorname{codeg}(P) \leq n+1$.
- $\operatorname{codeg}(P) = 1 \quad \Longleftrightarrow \quad \operatorname{int}(P) \cap \mathbb{Z}^n \neq \emptyset.$
- $\operatorname{codeg}(P) = n + 1 \iff P \cong S_n$ (convex hull of affine lattice basis).

Question: Can we classify lattice polytopes of high codegree?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope.

Def. The *codegree* of *P* is defined as

 $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}.$

Facts:

- $1 \leq \operatorname{codeg}(P) \leq n+1$.
- $\operatorname{codeg}(P) = 1 \quad \Longleftrightarrow \quad \operatorname{int}(P) \cap \mathbb{Z}^n \neq \emptyset.$
- $\operatorname{codeg}(P) = n + 1 \iff P \cong S_n$ (convex hull of affine lattice basis).

Question: Can we classify lattice polytopes of high codegree? [Batyrev, N. 07]: Done for codeg(P) = n.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Def. *P* is a *Cayley polytope* of length $k \ge 2$, if *P* projects lattice-preserving onto a unimodular simplex with *k* vertices.

イロト 不得下 イヨト イヨト

Def. *P* is a *Cayley polytope* of length $k \ge 2$, if *P* projects lattice-preserving onto a unimodular simplex with *k* vertices. In other words, $P = P_1 * \cdots * P_k$ is decomposed into the "fibers" P_1, \ldots, P_k .

イロト 不得下 イヨト イヨト 二日

Def. *P* is a *Cayley polytope* of length $k \ge 2$, if *P* projects lattice-preserving onto a unimodular simplex with *k* vertices. In other words, $P = P_1 * \cdots * P_k$ is decomposed into the "fibers" P_1, \ldots, P_k .

Examples: $P = P_1 * P_2 * P_3$ for P_1, P_2, P_3 intervals:

Ρ

Def. *P* is a *Cayley polytope* of length $k \ge 2$, if *P* projects lattice-preserving onto a unimodular simplex with *k* vertices. In other words, $P = P_1 * \cdots * P_k$ is decomposed into the "fibers" P_1, \ldots, P_k .

Examples: $P = P_1 * P_2$ for P_1, P_2 polygons:

Def. *P* is a *Cayley polytope* of length $k \ge 2$, if *P* projects lattice-preserving onto a unimodular simplex with *k* vertices. In other words, $P = P_1 * \cdots * P_k$ is decomposed into the "fibers" P_1, \ldots, P_k .

 \rightsquigarrow codeg(P) $\geq k$ and width(P) = 1.

イロト 不得下 イヨト イヨト 二日

High codegree \implies Cayley polytope?

Thm. [Haase, N., Payne 08] If

$$\operatorname{codeg}(P) \ge n + 1 - \frac{\sqrt{n}}{4}$$

3

イロト 不得 トイヨト イヨト

High codegree \implies Cayley polytope!

Thm. [Haase, N., Payne 08] If

$$\operatorname{codeg}(P) \ge n + 1 - \frac{\sqrt{n}}{4}$$

 $\overline{}$

イロト 不得下 イヨト イヨト

then P is a Cayley polytope

3

High codegree \implies Cayley polytope!

Thm. [Haase, N., Payne 08] If

$$\operatorname{codeg}(P) \ge n + 1 - \frac{\sqrt{n}}{4}$$

then P is a Cayley polytope of lattice polytopes in dimension $\leq 16 \ (n+1-\mathrm{codeg}(P))^2$.

イロト 不得下 イヨト イヨト 二日

High codegree \implies Cayley polytope!

Thm. [Haase, N., Payne 08] If

$$\operatorname{codeg}(P) \ge n + 1 - \frac{\sqrt{n}}{4}$$

then P is a Cayley polytope of lattice polytopes in dimension $\leq 16 \ (n+1-\mathrm{codeg}(P))^2$.

Not sharp?! $2S_n$ has codegree $\lceil \frac{n+1}{2} \rceil$ and is not a Cayley polytope.

The Cayley polytope conjecture

Cayley polytope conjecture: If

$$\operatorname{codeg}(P) \geq \frac{n+3}{2},$$

then P is a Cayley polytope of lattice polytopes in dimension $\leq 2(n+1-\operatorname{codeg}(P)).$

The Cayley polytope conjecture

Cayley polytope conjecture: If

$$\operatorname{codeg}(P) \geq \frac{n+3}{2},$$

then P is a Cayley polytope of lattice polytopes in dimension $\leq 2(n+1-\operatorname{codeg}(P)).$

Thm. [Di Rocco 03; Di Rocco, Dickenstein, Piene 08; Dickenstein, N. 09] The Cayley polytope conjecture holds for *smooth* lattice polytopes.

- 4 週 ト - 4 三 ト - 4 三 ト -

II. A-discriminants and dual defect toric manifolds

э

(日) (周) (三) (三)

The dual variety

There is a natural duality of subvarieties of $\mathbb{P}(\mathbb{C}^N) = \mathbb{P}^{N-1}$ extending

points \longleftrightarrow hyperplanes

イロト 不得下 イヨト イヨト 二日

The dual variety

There is a natural duality of subvarieties of $\mathbb{P}(\mathbb{C}^N) = \mathbb{P}^{N-1}$ extending

points \longleftrightarrow hyperplanes

Given $X \subseteq \mathbb{P}(\mathbb{C}^N) = \mathbb{P}^{N-1}$ subvariety, then the *dual variety* is defined as

$$X^{\vee} \subseteq \mathbb{P}((\mathbb{C}^N)^*) = (\mathbb{P}^{N-1})^*$$

the Zariski closure of all hyperplanes tangent to a smooth point of X

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The dual variety

There is a natural duality of subvarieties of $\mathbb{P}(\mathbb{C}^N) = \mathbb{P}^{N-1}$ extending

points \longleftrightarrow hyperplanes

Given $X \subseteq \mathbb{P}(\mathbb{C}^N) = \mathbb{P}^{N-1}$ subvariety, then the *dual variety* is defined as

$$X^{\vee} \subseteq \mathbb{P}((\mathbb{C}^N)^*) = (\mathbb{P}^{N-1})^*$$

the Zariski closure of all hyperplanes tangent to a smooth point of X

Thm.(Biduality-Theorem)[GKZ 94]

$$(X^{\vee})^{\vee}=X.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Cor. If X^{\vee} has codimension r + 1, then X is a union of r-dimensional projective subspaces.

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Cor. If X^{\vee} has codimension r + 1, then X is a union of r-dimensional projective subspaces.

 \rightsquigarrow generically we expect X^{\vee} to be a *hypersurface*!

3

イロト 不得下 イヨト イヨト

Cor. If X^{\vee} has codimension r + 1, then X is a union of r-dimensional projective subspaces.

- \rightsquigarrow generically we expect X^{\vee} to be a *hypersurface*!
- **Def.** $r \ge 0$ is called the *dual defect* of *X*.

- 4 週 ト - 4 三 ト - 4 三 ト -

Cor. If X^{\vee} has codimension r + 1, then X is a union of r-dimensional projective subspaces.

 \rightsquigarrow generically we expect X^{\vee} to be a *hypersurface*!

Def. $r \ge 0$ is called the *dual defect* of *X*.

We say, $X \subseteq \mathbb{P}^{N-1}$ has has dual defect, if r > 0.

Much work on the classification of dual defect varieties!

イロト 不得下 イヨト イヨト 二日

A-discriminants

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$.

(日) (四) (三) (三) (三)
Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$.

Def. Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*,

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$.

Def. Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*, X_A is the Zariski closure of the image of all $t \in (\mathbb{C}^*)^n$ under the map

$$t\mapsto (t^{a_1}:\cdots:t^{a_N}).$$

イロン イ団と イヨン ト

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$. **Def.** Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*, X_A is the Zariski closure of the image of all $t \in (\mathbb{C}^*)^n$ under the map

$$t\mapsto (t^{a_1}:\cdots:t^{a_N}).$$

Def. The A-discriminant $\Delta_A \in \mathbb{C}[x_1, \dots, x_N]$ is an irreducible integral polynomial such that

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$. **Def.** Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*, X_A is the Zariski closure of the image of all $t \in (\mathbb{C}^*)^n$ under the map

$$t\mapsto (t^{a_1}:\cdots:t^{a_N}).$$

Def. The A-discriminant $\Delta_A \in \mathbb{C}[x_1, \dots, x_N]$ is an irreducible integral polynomial such that

• if $(X_A)^{\vee}$ is a hypersurface, then Δ_A is the defining polynomial;

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$. **Def.** Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*, X_A is the Zariski closure of the image of all $t \in (\mathbb{C}^*)^n$ under the map

$$t\mapsto (t^{a_1}:\cdots:t^{a_N}).$$

Def. The A-discriminant $\Delta_A \in \mathbb{C}[x_1, \dots, x_N]$ is an irreducible integral polynomial such that

- if $(X_A)^{\vee}$ is a hypersurface, then Δ_A is the defining polynomial;
- otherwise, $\Delta_A := 1$.

イロト 不得下 イヨト イヨト 二日

Let $A = \{a_1, \ldots, a_N\} \subseteq \mathbb{Z}^n$. **Def.** Let $X_A \subseteq \mathbb{P}^{N-1}$ be the associated *projective toric variety*, X_A is the Zariski closure of the image of all $t \in (\mathbb{C}^*)^n$ under the map

$$t\mapsto (t^{a_1}:\cdots:t^{a_N}).$$

Def. The A-discriminant $\Delta_A \in \mathbb{C}[x_1, \dots, x_N]$ is an irreducible integral polynomial such that

- if $(X_A)^{\vee}$ is a hypersurface, then Δ_A is the defining polynomial;
- otherwise, $\Delta_A := 1$.

Example: $A := \{(d, 0), (d - 1, 1), \dots, (0, d)\}$ $\rightsquigarrow \Delta_A$ classical discriminant of degree d.

イロト 不得 トイヨト イヨト 二日

Lattice polytopes

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope, $A := P \cap \mathbb{Z}^n$, $X_P := X_A$.

(日) (四) (王) (王) (王)

Lattice polytopes

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope, $A := P \cap \mathbb{Z}^n$, $X_P := X_A$.

What is the degree of Δ_A ?

3

(日) (同) (日) (日) (日)

Lattice polytopes

Let $P \subseteq \mathbb{R}^n$ be an *n*-dimensional lattice polytope, $A := P \cap \mathbb{Z}^n$, $X_P := X_A$.

What is the degree of Δ_A ?

[Gelfand, Kapranov, Zelivinsky 94], [Dickenstein, Feichtner, Sturmfels 05], [Matsui, Takeuchi 08], [Esterov 08].

3

イロト イポト イヨト イヨト

Our situation of interest: *P* is *smooth*, if the tangent cone at each vertex is unimodular (i.e., spanned by a lattice basis).

(日) (周) (三) (三)

Our situation of interest: *P* is *smooth*, if the tangent cone at each vertex is unimodular (i.e., spanned by a lattice basis).

In this case, X_P smooth.

(日) (周) (三) (三)

Our situation of interest: *P* is *smooth*, if the tangent cone at each vertex is unimodular (i.e., spanned by a lattice basis).

In this case, X_P smooth.

Examples:

A B A A B A

Our situation of interest: *P* is *smooth*, if the tangent cone at each vertex is unimodular (i.e., spanned by a lattice basis).

In this case, X_P smooth.

Examples:

 P_1, P_2 smooth, P_3 not smooth.

A E > A E >

Def. Let $\operatorname{Vol}_{\mathbb{Z}}(F)$ be the *normalized volume* of *F*

3

イロト 不得 トイヨト イヨト

Def. Let $\operatorname{Vol}_{\mathbb{Z}}(F)$ be the *normalized volume* of F, i.e., the unimodular *n*-simplex S_n has volume 1.

Def. Let $\operatorname{Vol}_{\mathbb{Z}}(F)$ be the *normalized volume* of F, i.e., the unimodular *n*-simplex S_n has volume 1. **Examples:**

A B < A B </p>

Def. Let $\operatorname{Vol}_{\mathbb{Z}}(F)$ be the *normalized volume* of F, i.e., the unimodular *n*-simplex S_n has volume 1. **Examples:**

- 4 個 ト - 4 三 ト - 4 三 ト

Def. $F \leq P$ means F is a face of P.

イロト 不得下 イヨト イヨト 二日

Def. $F \leq P$ means F is a face of P.

Def.:

$$c(P) := \sum_{\emptyset \neq F \leq P} (-1)^{\operatorname{codim}(F)} (\dim(F) + 1) \operatorname{Vol}_{\mathbb{Z}}(F).$$

3

イロト 不得 トイヨト イヨト

Def. $F \leq P$ means F is a face of P.

Def.:
$$c(P) := \sum_{\emptyset
eq F \leq P} (-1)^{\operatorname{codim}(F)} (\dim(F) + 1) \operatorname{Vol}_{\mathbb{Z}}(F).$$

Thm. [GKZ 94] Let *P* be smooth. Then c(P) is the degree of Δ_A .

イロト イヨト イヨト イヨト

Def. $F \leq P$ means F is a face of P.

Def.:
$$c(P) := \sum_{\emptyset
eq F \leq P} (-1)^{\operatorname{codim}(F)} (\dim(F) + 1) \operatorname{Vol}_{\mathbb{Z}}(F).$$

Thm. [GKZ 94] Let *P* be smooth. Then c(P) is the degree of Δ_A .

 $\rightsquigarrow c(P) \geq 0.$

イロト イポト イヨト イヨト

Def. $F \leq P$ means F is a face of P.

Def.:
$$c(P) := \sum_{\emptyset
eq F \leq P} (-1)^{\operatorname{codim}(F)} (\dim(F) + 1) \operatorname{Vol}_{\mathbb{Z}}(F).$$

Thm. [GKZ 94] Let P be smooth. Then c(P) is the degree of Δ_A .

$$ightarrow c(P) \ge 0.$$

 $ightarrow c(P) = 0$ if and only if X_P has dual defect.

イロト 不得下 イヨト イヨト

Examples:

3

(日) (周) (三) (三)

Examples:

 $c(P_1) = 0$ $c(P_2) = 11$ $c(P_3) = 6$

3

Examples:

 $c(P_1) = 0$ $c(P_2) = 11$ $c(P_3) = 6$

 P_3 not smooth, still $c(P_3) \ge 0$.

Examples:

 $c(P_1) = 0$ $c(P_2) = 11$ $c(P_3) = 6$

 P_3 not smooth, still $c(P_3) \ge 0$.

Open question (Di Rocco): $c(P) \ge 0$ in general?

ヘロト 人間 ト 人 ヨト 人 ヨトー

Examples:

 $c(P_1) = 0$ $c(P_2) = 11$ $c(P_3) = 6$

 P_3 not smooth, still $c(P_3) \ge 0$.

Open question (Di Rocco): $c(P) \ge 0$ in general?

[Dickenstein, N. 10]: True for lattice simplices.

イロト イポト イヨト イヨト

Let S_n be the *n*-dimensional unimodular simplex.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$ Then

$$c(P) = \sum_{i=1}^{m} \sum_{j=1}^{l} (-1)^{m+l-i-j} (i+j-1) \binom{m}{i} \binom{l}{j} \binom{i+j-2}{i-1}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$ Then

$$c(P) = \sum_{i=1}^{m} \sum_{j=1}^{l} (-1)^{m+l-i-j} (i+j-1) \binom{m}{i} \binom{l}{j} \binom{i+j-2}{i-1}.$$

A clever lemma yields:

$$c(P) = 0 \iff m \neq I.$$

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$ Then

$$c(P) = \sum_{i=1}^{m} \sum_{j=1}^{l} (-1)^{m+l-i-j} (i+j-1) \binom{m}{i} \binom{l}{j} \binom{i+j-2}{i-1}.$$

A clever lemma yields:

$$c(P) = 0 \iff m \neq I.$$

We will give an easier argument at the end.

< 回 ト < 三 ト < 三 ト

III. The relation between c(P) and codeg(P)

э

イロト イ理ト イヨト イヨトー

Main thm. [Di Rocco 06, Dickenstein, N. 10] Let $P \subseteq \mathbb{R}^n$ be a *smooth* lattice polytope of dimension *n*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main thm. [Di Rocco 06, Dickenstein, N. 10] Let $P \subseteq \mathbb{R}^n$ be a *smooth* lattice polytope of dimension *n*. Then

$$\operatorname{codeg}(P) \geq rac{n+3}{2} \iff c(P) = 0.$$

Benjamin Nill (UGA)

18 / 22

(日) (周) (三) (三)

Main thm. [Di Rocco 06, Dickenstein, N. 10] Let $P \subseteq \mathbb{R}^n$ be a *smooth* lattice polytope of dimension *n*. Then

$$\operatorname{codeg}(P) \geq rac{n+3}{2} \iff c(P) = 0.$$

Thm. [Di Rocco 06] In this case, P is a (strict) Cayley polytope.

イロト イポト イヨト イヨト
Let $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

3

・ロト ・聞ト ・ヨト ・ヨト

Let $\operatorname{codeg}(P) \geq \frac{n+3}{2}$. Define $d := n+1 - \operatorname{codeg}(P)$.

Let
$$\operatorname{codeg}(P) \geq \frac{n+3}{2}$$
. Define $d := n+1 - \operatorname{codeg}(P)$.

Bold guess:

$$c(P) = \sum_{p=d+1}^{n} \sum_{i=1}^{p-d} \quad \ref{eq:second} \left(\sum_{G \leq P, \dim(G) = p} |\operatorname{int}(iG) \cap \mathbb{Z}^n| \right).$$

3

イロン イ理 とくほと くほとう

Let
$$\operatorname{codeg}(P) \geq \frac{n+3}{2}$$
. Define $d := n+1 - \operatorname{codeg}(P)$.

By Stanley's monotonicity theorem:

$$c(P) = \sum_{p=d+1}^{n} \sum_{i=1}^{p-d} \quad \ref{eq:constraint} \left(\sum_{G \leq P, \dim(G) = p} |\mathrm{int}(iG) \cap \mathbb{Z}^n|
ight) = 0.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$\operatorname{codeg}(P) \geq \frac{n+3}{2}$$
. Define $d := n+1 - \operatorname{codeg}(P)$.

Based on lower-dimensional computer calculations we guessed:

$$c(P) = \sum_{p=d+1}^{n} \sum_{i=1}^{p-d} (-1)^{d-i} i \binom{p+1}{p-d-i} \left(\sum_{G \le P, \dim(G)=p} |\operatorname{int}(iG) \cap \mathbb{Z}^n| \right)$$

- 4 週 ト - 4 三 ト - 4 三 ト

Ehrhart theory reduces proof to:

Lemma. For k < n - d and $j \in \{k, \ldots, n\}$:

$$\sum_{i=0}^{n-d} (-1)^{n-d-i} i \binom{i+j-k}{j} \binom{j+1}{n-d-i} = j+1.$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Ehrhart theory reduces proof to:

Lemma. For k < n - d and $j \in \{k, \ldots, n\}$:

$$\sum_{i=0}^{\infty} (-1)^{n-d-i} i \binom{i+j-k}{j} \binom{j+1}{n-d-i} = j+1.$$

3

イロト 不得 トイヨト イヨト

Ehrhart theory reduces proof to:

Lemma. For k < n - d and $j \in \{k, \ldots, n\}$:

Α

$$\sum_{i=0}^{\infty} (-1)^{n-d-i} i \binom{i+j-k}{j} \binom{j+1}{n-d-i} = j+1.$$

=

В

< ロ > < 同 > < 回 > < 回 > < 回 > <

Luckily,

3

Ehrhart theory reduces proof to:

Lemma. For k < n - d and $j \in \{k, \ldots, n\}$:

$$\sum_{i=0}^{\infty} (-1)^{n-d-i} i \binom{i+j-k}{j} \binom{j+1}{n-d-i} = j+1.$$

Luckily,

$$A = B$$

 \rightsquigarrow Zeilberger's algorithm comes to the rescue!

3

- 4 同 ト 4 三 ト - 4 三 ト

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

3

イロト 不得 トイヨト イヨト

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{I-1}) = I$ and $\operatorname{codeg}(S_{m-1}) = m$.

3

ヘロト 人間ト 人間ト 人間ト

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

3

ヘロト 人間ト 人間ト 人間ト

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

Let us assume $m \ge I$.

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

Let us assume $m \ge l$.

$$\operatorname{codeg}(P) \geq \frac{\dim(P) + 3}{2}$$

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

Let us assume $m \ge l$.

$$\operatorname{codeg}(P) \ge \frac{\dim(P) + 3}{2} \iff m \ge \frac{l + m - 2 + 3}{2}$$

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

Let us assume $m \ge l$.

$$\operatorname{codeg}(P) \ge \frac{\dim(P) + 3}{2} \iff m \ge \frac{l + m - 2 + 3}{2}$$
 $\iff m \ge l + 1$

Let S_n be the *n*-dimensional unimodular simplex. Let $P := S_{l-1} \times S_{m-1}$.

Recall: $\operatorname{codeg}(S_{l-1}) = l$ and $\operatorname{codeg}(S_{m-1}) = m$. $\Longrightarrow \operatorname{codeg}(P) = \max(l, m)$.

Let us assume $m \ge l$.

$$\operatorname{codeg}(P) \ge \frac{\dim(P) + 3}{2} \iff m \ge \frac{l + m - 2 + 3}{2}$$
$$\iff m \ge l + 1 \iff m \ne l.$$

The adjunction theory of complex projective varieties.

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension n. Then
μ := sup{t ≥ 0 : h⁰(t L + K_X) = 0} spectral-value,

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension n. Then

- $\mu := \sup\{t \ge 0 : h^0(t L + K_X) = 0\}$ spectral-value,
- $\tau := \inf\{t \ge 0 : tL + K_X \text{ not nef}\}$ nef-value.

(4回) (4回) (4回)

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension n. Then
μ := sup{t ≥ 0 : h⁰(t L + K_X) = 0} spectral-value,
τ := inf{t ≥ 0 : t L + K_X not nef} nef-value.

Conjecture. [BS'95]

$$\mu > \frac{n+1}{2} \implies \mu = \tau.$$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension *n*. Then

- $\mu := \sup\{t \ge 0 : h^0(t L + K_X) = 0\}$ spectral-value,
- $\tau := \inf\{t \ge 0 : tL + K_X \text{ not nef}\}$ nef-value.

Conjecture. [BS'95]

$$\mu > \frac{n+1}{2} \implies \mu = \tau.$$

Corollary (X, L) toric polarized manifold of dimension *n*. Then

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension *n*. Then

- $\mu := \sup\{t \ge 0 : h^0(t L + K_X) = 0\}$ spectral-value,
- $\tau := \inf\{t \ge 0 : tL + K_X \text{ not nef}\}$ nef-value.

Conjecture. [BS'95]

$$\mu > \frac{n+1}{2} \quad \Longrightarrow \quad \mu = \tau.$$

Corollary (X, L) toric polarized manifold of dimension *n*. Then

$$\mu > \frac{n+2}{2}$$

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension *n*. Then

- $\mu := \sup\{t \ge 0 : h^0(t L + K_X) = 0\}$ spectral-value,
- $\tau := \inf\{t \ge 0 : tL + K_X \text{ not nef}\}$ nef-value.

Conjecture. [BS'95]

$$\mu > \frac{n+1}{2} \implies \mu = \tau.$$

Corollary (X, L) toric polarized manifold of dimension *n*. Then

$$\mu > rac{n+2}{2} \iff X_P$$
 dual defective

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension *n*. Then

- $\mu := \sup\{t \ge 0 : h^0(t L + K_X) = 0\}$ spectral-value,
- $\tau := \inf\{t \ge 0 : tL + K_X \text{ not nef}\}$ nef-value.

Conjecture. [BS'95]

$$\mu > \frac{n+1}{2} \implies \mu = \tau.$$

Corollary (X, L) toric polarized manifold of dimension *n*. Then

$$\mu > rac{n+2}{2} \iff X_P$$
 dual defective $\implies \mu = au.$