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Building blocks:
lattice polytopes without interior lattice points

A lattice polytope is the convex hull of lattice points (in Z").
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A lattice polytope is the convex hull of lattice points (in Z").
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Building blocks:
lattice polytopes without interior lattice points

A lattice polytope is the convex hull of lattice points (in Z").
Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without
interior lattice points is at most O(n%/2).
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A lattice polytope is the convex hull of lattice points (in Z").

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without
interior lattice points is at most O(n%/2).

Main question: Do all but finitely many lattice polytopes without interior
lattice points project lattice-preserving onto lower-dimensional ones?

Proven by Treutlein in dimension 3; recent work by Weissmantel et al.
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Building blocks:
lattice polytopes without interior lattice points

A lattice polytope is the convex hull of lattice points (in Z").
Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48'-99'] The width of compact convex sets without
interior lattice points is at most O(n%/2).

Main question: Do all but finitely many lattice polytopes without interior
lattice points project lattice-preserving onto lower-dimensional ones?

Proven by Treutlein in dimension 3; recent work by Weissmantel et al.

Our focus: When do these polytopes have width 1 (“Pancake”)?
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N
Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Benjamin Nill (UGA) Dual defect and codegree 4/22



N
Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.
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N
Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Examples:
Pl P2 P3
codeg(P1) =3 codeg(P,) =2 codeg(P3) =1
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N
Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Facts:
o 1 <codeg(P)<n+1.
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N
Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Facts:
e 1 <codeg(P)<n+1.
o codeg(P)=1 <= int(P)NZ"#0.
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Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Facts:
o 1 <codeg(P)<n+1.
o codeg(P) =1 <= int(P)NZ" #0.
o codeg(P)=n+1 <= P =S, (convex hull of affine lattice basis).
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Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Facts:
o 1 <codeg(P)<n+1.
o codeg(P) =1 <= int(P)NZ" #0.
o codeg(P)=n+1 <= P =S, (convex hull of affine lattice basis).

Question: Can we classify lattice polytopes of high codegree?
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Invariant No. I: codeg(P) (measuring “hollowness”)

Let P C R" be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k € Z>o : int(kP)NZ" # 0}.

Facts:
o 1 <codeg(P)<n+1.
o codeg(P) =1 <= int(P)NZ" #0.
o codeg(P)=n+1 <= P =S, (convex hull of affine lattice basis).

Question: Can we classify lattice polytopes of high codegree?
[Batyrev, N. 07]: Done for codeg(P) = n.
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-
Cayley polytope = high codegree

Def. P is a Cayley polytope of length k > 2, if P projects
lattice-preserving onto a unimodular simplex with k vertices.
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-
Cayley polytope = high codegree

Def. P is a Cayley polytope of length k > 2, if P projects
lattice-preserving onto a unimodular simplex with k vertices.

In other words, P = Py * - - - x Py is decomposed into the “fibers”
Pi,...,Py.
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-
Cayley polytope = high codegree

Def. P is a Cayley polytope of length k > 2, if P projects
lattice-preserving onto a unimodular simplex with k vertices.

In other words, P = Py * - - - x Py is decomposed into the “fibers”
Pi,...,Py.

Examples: 13
P = Py % P x P53 for Py, P>, P5 intervals:

Sigv]
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R ——
Cayley polytope = high codegree
Def. P is a Cayley polytope of length k > 2, if P projects

lattice-preserving onto a unimodular simplex with k vertices.

In other words, P = Py * - - - x Py is decomposed into the “fibers”
Pi,..., Py

Examples:

P = P; x P, for P1, P, polygons:

lattice
(ﬁstlance
one
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-
Cayley polytope = high codegree

Def. P is a Cayley polytope of length k > 2, if P projects
lattice-preserving onto a unimodular simplex with k vertices.

In other words, P = Py * - - - x Py is decomposed into the “fibers”
Pi,...,Py.

~~ codeg(P) > k and width(P) = 1.
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I
High codegree = Cayley polytope?
If

Thm. [Haase, N., Payne 08]
codeg(P) >n+1—

vn
4
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High codegree =—> Cayley polytope!

Thm. [Haase, N., Payne 08]
If

codeg(P) >n+1— 4
then P is a Cayley polytope
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High codegree — Cayley polytope!

Thm. [Haase, N., Payne 08]
If

codeg(P) > n+1— 4

then P is a Cayley polytope of lattice polytopes in dimension
<16 (n+ 1 — codeg(P))?.
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High codegree — Cayley polytope!

Thm. [Haase, N., Payne 08]
If

codeg(P) > n+1— 4

then P is a Cayley polytope of lattice polytopes in dimension
<16 (n+ 1 — codeg(P))?.

Not sharp?! 25, has codegree [%11 and is not a Cayley polytope.
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-
The Cayley polytope conjecture

Cayley polytope conjecture: If

n+3

codeg(P) > 5

<2(n+ 1 — codeg(P)).

)

then P is a Cayley polytope of lattice polytopes in dimension
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-
The Cayley polytope conjecture

Cayley polytope conjecture: If

n+3

codeg(P) > 5

<2(n+ 1 — codeg(P)).

)

then P is a Cayley polytope of lattice polytopes in dimension

Thm. [Di Rocco 03; Di Rocco, Dickenstein, Piene 08; Dickenstein, N. 09]

The Cayley polytope conjecture holds for smooth lattice polytopes.
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1. A-discriminants and dual defect toric manifolds
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I
The dual variety

There is a natural duality of subvarieties of P(CV) = PN~! extending

points <— hyperplanes
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N
The dual variety
There is a natural duality of subvarieties of P(CV) = PN~! extending
points <— hyperplanes
Given X C P(CV) = PV=1 subvariety, then the dual variety is defined as
XY CB(CYy) = V)

the Zariski closure of all hyperplanes tangent to a smooth point of X
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N
The dual variety
There is a natural duality of subvarieties of P(CV) = PN~! extending
points <— hyperplanes
Given X C P(CV) = PV=1 subvariety, then the dual variety is defined as
XY CB((Cy) = BV
the Zariski closure of all hyperplanes tangent to a smooth point of X

Thm.(Biduality-Theorem)[GKZ 94]

(XV)Y = X.
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e
Defectiveness
Cor. If XV has codimension r + 1, then X is a union of r-dimensional
projective subspaces.
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Defectiveness

Cor. If XV has codimension r + 1, then X is a union of r-dimensional
projective subspaces.

~+  generically we expect XV to be a hypersurface!
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Defectiveness

Cor. If XV has codimension r + 1, then X is a union of r-dimensional
projective subspaces.

~+  generically we expect XV to be a hypersurface!

Def. r > 0 is called the dual defect of X.
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Defectiveness

Cor. If XV has codimension r + 1, then X is a union of r-dimensional
projective subspaces.

~+  generically we expect XV to be a hypersurface!

Def. r > 0 is called the dual defect of X.
We say, X C PN=1 has has dual defect, if r > 0.

Much work on the classification of dual defect varieties!
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A-discriminants
LetA:{al,...,aN} CcZ".
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Def. Let X4 C PV=1 be the associated projective toric variety,
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A-discriminants

LetA:{al,...,aN} cz".
Def. Let X4 C PV=1 be the associated projective toric variety,
Xa is the Zariski closure of the image of all t € (C*)" under the map

t (™ ),
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N —
A-discriminants

LetA:{al,...,aN} cz".
Def. Let X4 C PV=1 be the associated projective toric variety,
Xa is the Zariski closure of the image of all t € (C*)" under the map

t (™ ),

Def. The A-discriminant Ap € C[xy, ..., xn] is an irreducible integral
polynomial such that
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N —
A-discriminants

Let A={a1,...,an} C Z".
Def. Let X4 C PV=1 be the associated projective toric variety,
Xa is the Zariski closure of the image of all t € (C*)" under the map

t (™ ),

Def. The A-discriminant Ap € C[xy, ..., xn] is an irreducible integral
polynomial such that

e if (Xa)V is a hypersurface, then A4 is the defining polynomial;
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N —
A-discriminants

Let A={a1,...,an} C Z".
Def. Let X4 C PV=1 be the associated projective toric variety,
Xa is the Zariski closure of the image of all t € (C*)" under the map

t (™ ),

Def. The A-discriminant Ap € C[xy, ..., xn] is an irreducible integral
polynomial such that

e if (Xa)V is a hypersurface, then A4 is the defining polynomial;

@ otherwise, Ay = 1.
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N —
A-discriminants

Let A={a1,...,an} C Z".
Def. Let X4 C PV=1 be the associated projective toric variety,
Xa is the Zariski closure of the image of all t € (C*)" under the map

t (™ ),

Def. The A-discriminant Ap € C[xi,...,xy] is an irreducible integral
polynomial such that

e if (Xa)V is a hypersurface, then A4 is the defining polynomial;

@ otherwise, Ay = 1.

Example: A= {(d,0),(d —1,1),...,(0,d)}
~ A classical discriminant of degree d.
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DESSS———....
Lattice polytopes
XP = XA.

Let P C R" be an n-dimensional lattice polytope, A:= PNZ",
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DESSS———....
Lattice polytopes

Let P C R" be an n-dimensional lattice polytope, A:= PNZ",
XP = XA.

What is the degree of Ay ?
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R ——
Lattice polytopes

Let P C R" be an n-dimensional lattice polytope, A:= PNZ",
XP = XA.

What is the degree of A,y ?

[Gelfand, Kapranov, Zelivinsky 94], [Dickenstein, Feichtner, Sturmfels 05],
[Matsui, Takeuchi 08], [Esterov 08].
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R ——
Smooth lattice polytopes

Our situation of interest: P is smooth, if the tangent cone at each
vertex is unimodular (i.e., spanned by a lattice basis).
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vertex is unimodular (i.e., spanned by a lattice basis).
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Smooth lattice polytopes

Our situation of interest: P is smooth, if the tangent cone at each
vertex is unimodular (i.e., spanned by a lattice basis).

In this case, Xp smooth.

Examples:

W
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R ——
Smooth lattice polytopes

Our situation of interest: P is smooth, if the tangent cone at each
vertex is unimodular (i.e., spanned by a lattice basis).

In this case, Xp smooth.

Examples:

W

P1, P> smooth, P3 not smooth.
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Invariant No. Il: ¢(P) (measuring “dual defect”)
Def. Let Volz(F) be the normalized volume of F
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BN
Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. Let Volz(F) be the normalized volume of F,

i.e., the unimodular n-simplex S, has volume 1.
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N
Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. Let Volz(F) be the normalized volume of F,
i.e., the unimodular n-simplex S, has volume 1.

W

Examples:
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. Let Volz(F) be the normalized volume of F,
i.e., the unimodular n-simplex S, has volume 1.

Examples:
Pl P2 P3

Volz(Pl) =1 Volz(Pz) =5 Volz(P3) = 3
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BN
Invariant No. Il: ¢(P) (measuring “dual defect”)
Def. F < P means F is a face of P.
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BN
Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. F < P means F is a face of P.

Def.:

c(P):= Y (~1)°t™F) (dim(F)+ 1) Volz(F).
PAF<P
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. F < P means F is a face of P.
Def.:

c(P):= Y (~1)°t™F) (dim(F)+ 1) Volz(F).
0£F<P

Thm. [GKZ 94]
Let P be smooth. Then c(P) is the degree of Ap.
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. F < P means F is a face of P.
Def.:

c(P):= Y (~1)°t™F) (dim(F)+ 1) Volz(F).
0£F<P

Thm. [GKZ 94]
Let P be smooth. Then c(P) is the degree of Ap.

~  ¢(P)>0.

Benjamin Nill (UGA) Dual defect and codegree 14 / 22



Invariant No. Il: ¢(P) (measuring “dual defect”)

Def. F < P means F is a face of P.
Def.:

c(P):= Y (~1)°t™F) (dim(F)+ 1) Volz(F).
0£F<P

Thm. [GKZ 94]
Let P be smooth. Then c(P) is the degree of Ap.

~  ¢(P)>0.
~»  ¢(P)=0if and only if Xp has dual defect.
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Examples:

W
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Examples:

W

C(Pl) =0 C(Pg) =11 C(P3) =6
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Examples:

W

C(Pl) =0 C(Pg) =11 C(P3) =6

P53 not smooth, still ¢(P3) > 0.
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Examples:

W

C(Pl) =0 C(Pg) =11 C(P3) =6

P53 not smooth, still ¢(P3) > 0.

Open question (Di Rocco): c¢(P) > 0 in general?
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Invariant No. Il: ¢(P) (measuring “dual defect”)

Examples:

W

C(Pl) =0 C(Pg) =11 C(P3) =6

P53 not smooth, still ¢(P3) > 0.
Open question (Di Rocco): c¢(P) > 0 in general?

[Dickenstein, N. 10]: True for lattice simplices.

Benjamin Nill (UGA) Dual defect and codegree 15 / 22
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An example from GKZ 94
Let S, be the n-dimensional unimodular simplex.
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BN
An example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:=5/_1 X S;_1
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An example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:=5,_1 X 5m_1

Then
ST () (1)

1
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R ——
An example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:=5,_1 X 5m_1

Then
/
S @)
i=1 j=1 ! =

A clever lemma yields:

c(P)=0 <= m#l.
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R ——
An example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:=5,_1 X 5m_1
Then

om0 )

i=1 j=1
A clever lemma yields:

c(P)=0 <= m#l.

We will give an easier argument at the end.

Benjamin Nill (UGA) Dual defect and codegree
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I1l. The relation between ¢(P) and codeg(P)
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DESSS———....
The main equivalence

Main thm. [Di Rocco 06, Dickenstein, N. 10]
Let P C R" be a smooth lattice polytope of dimension n.
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The main equivalence

Main thm. [Di Rocco 06, Dickenstein, N. 10]

Let P C R" be a smooth lattice polytope of dimension n. Then

codeg(P) > %3 < ¢(P)=0.

Benjamin Nill (UGA)

Dual defect and codegree

18 / 22



The main equivalence

Main thm. [Di Rocco 06, Dickenstein, N. 10]
Let P C R" be a smooth lattice polytope of dimension n. Then

codeg(P) > %3 < ¢(P)=0.

Thm. [Di Rocco 06] In this case, P is a (strict) Cayley polytope.
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DESSS———....
Sketch of the proof
Let codeg(P) > 253.
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Sketch of the proof
Let codeg(P) > ™52, Define d := n + 1 — codeg(P).
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Sketch of the proof
Let codeg(P) > 3. Define d := n+ 1 — codeg(P).

Bold guess:

n p—d
c(Py=> > > int(iG) N Z”|

p=d+1 i=1 G<P dim(G)=p
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|
Sketch of the proof
Let codeg(P) > 3. Define d := n+ 1 — codeg(P).

By Stanley’'s monotonicity theorem:

n p—d
c(Py=>_ > > int(iG)NZ"| | =0.

p=d—+1 i=1 G<P,dim(G)=p
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|
Sketch of the proof
Let codeg(P) > 3. Define d := n+ 1 — codeg(P).

Based on lower-dimensional computer calculations we guessed:

n, g - +1
P =S 3 (—1)d—'/<pfd_i> S lint(iG) Nz

p=d+1 i=1 G<P,dim(G)=p
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I
A magic identity

Ehrhart theory reduces proof to:

Lemma. For k <n—dandj € {k,...,n}
n—d

2o ()

n—d—i

=j+1.
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I
A magic identity

Ehrhart theory reduces proof to:

Lemma. For k <n—dandj € {k,...,n}

i(—l)"—d_,-i(,' ik

j+1 :
=j+1
G

Benjamin Nill (UGA)

o F
Dual defect and codegree



|
A magic identity
Ehrhart theory reduces proof to:

Lemma. For k <n—dandj e {k,...,n}:

[eo]

Z(—l)”_d_ii(i J”J.,_ k) <n J_Zl_ i) =j+1L

i=0

Luckily,
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-
A magic identity

Ehrhart theory reduces proof to:

Lemma. For k <n—dandj e {k,...,n}:

o . . .
g i+ —k Jj+1 .
—1)" d—i:f! — 1.
S (L) -
Luckily,
A = B
~ Zeilberger's algorithm comes to the rescue! O
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DESSS———....
Revisited: the example from GKZ 94
Let P:=5/_1 X Sp_1.

Let S, be the n-dimensional unimodular simplex.
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DESSS———....
Revisited: the example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:=5/_1 X Sp_1.

Recall: codeg(S,—1) = I and codeg(Sm—1) = m.

o F
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Revisited: the example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:= 5,1 X 5,,_1.

Recall: codeg(S,—1) = I and codeg(Sm—1) = m.
= codeg(P) = max(/, m).
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Revisited: the example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:= 5,1 X 5,,_1.

Recall: codeg(S,—1) = I and codeg(Sm—1) = m.
= codeg(P) = max(/, m).

Let us assume m > /.
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R ——
Revisited: the example from GKZ 94
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Let S, be the n-dimensional unimodular simplex.
Let P:= 5,1 X 5,,_1.

Recall: codeg(S,—1) = I and codeg(Sm—1) = m.
= codeg(P) = max(/, m).

Let us assume m > /.
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Revisited: the example from GKZ 94

Let S, be the n-dimensional unimodular simplex.
Let P:= 5,1 X 5,,_1.

Recall: codeg(S,—1) = I and codeg(Sm—1) = m.
= codeg(P) = max(/, m).

Let us assume m > /.

dim(P)+3 / —24+3

— m>I1+1 < m#/|.
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Application: A conjecture in adjunction theory
Two invariants from [Beltrametti, Sommese 95]

The adjunction theory of complex projective varieties.
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n+1
2

w > = u=T.
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Application: A conjecture in adjunction theory
Two invariants from [Beltrametti, Sommese 95]

The adjunction theory of complex projective varieties.

Def. (X, L) polarized manifold of dimension n. Then
o p:=sup{t >0 : hO(tL+ Kx) = 0} spectral-value,
o 7:=inf{t >0 : tL+ Kx not nef} nef-value.
Conjecture. [BS'95]

w > 5 = u=T.

Corollary (X, L) toric polarized manifold of dimension n. Then

n—+2
2

> <= Xp dual defective = pu=r7.
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