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I. The Cayley polytope conjecture
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Building blocks:
lattice polytopes without interior lattice points

A lattice polytope is the convex hull of lattice points (in Zn).

Known: 2-dimensional lattice polytopes without interior lattice points.

Flatness-Thm. [48’-99’] The width of compact convex sets without
interior lattice points is at most O(n3/2).

Main question: Do all but finitely many lattice polytopes without interior
lattice points project lattice-preserving onto lower-dimensional ones?

Proven by Treutlein in dimension 3; recent work by Weissmantel et al.

Our focus: When do these polytopes have width 1 (“Pancake”)?
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Invariant No. I: codeg(P) (measuring “hollowness”)

Let P ⊆ Rn be an n-dimensional lattice polytope.

Def. The codegree of P is defined as

codeg(P) := min{k ∈ Z≥0 : int(kP) ∩ Zn 6= ∅}.

Facts:

1 ≤ codeg(P) ≤ n + 1.

codeg(P) = 1 ⇐⇒ int(P) ∩ Zn 6= ∅.
codeg(P) = n + 1 ⇐⇒ P ∼= Sn (convex hull of affine lattice basis).

Question: Can we classify lattice polytopes of high codegree?

[Batyrev, N. 07]: Done for codeg(P) = n.
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Cayley polytope =⇒ high codegree

Def. P is a Cayley polytope of length k ≥ 2, if P projects
lattice-preserving onto a unimodular simplex with k vertices.

In other words, P = P1 ∗ · · · ∗ Pk is decomposed into the “fibers”
P1, . . . ,Pk .

 codeg(P) ≥ k and width(P) = 1.
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distancelattice
one

P

P2

P1
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High codegree =⇒ Cayley polytope?

Thm. [Haase, N., Payne 08]
If

codeg(P) ≥ n + 1−
√

n

4

then P is a Cayley polytope of lattice polytopes in dimension
≤ 16 (n + 1− codeg(P))2.

Not sharp?! 2Sn has codegree dn+1
2 e and is not a Cayley polytope.
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The Cayley polytope conjecture

Cayley polytope conjecture: If

codeg(P) ≥ n + 3

2
,

then P is a Cayley polytope of lattice polytopes in dimension
≤ 2(n + 1− codeg(P)).

Thm. [Di Rocco 03; Di Rocco, Dickenstein, Piene 08; Dickenstein, N. 09]
The Cayley polytope conjecture holds for smooth lattice polytopes.
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II. A-discriminants and dual defect toric manifolds
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The dual variety

There is a natural duality of subvarieties of P(CN) = PN−1 extending

points ←→ hyperplanes

Given X ⊆ P(CN) = PN−1 subvariety, then the dual variety is defined as

X∨ ⊆ P((CN)∗) = (PN−1)∗

the Zariski closure of all hyperplanes tangent to a smooth point of X

Thm.(Biduality-Theorem)[GKZ 94]

(X∨)∨ = X .
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Defectiveness

Cor. If X∨ has codimension r + 1, then X is a union of r -dimensional
projective subspaces.

 generically we expect X∨ to be a hypersurface!

Def. r ≥ 0 is called the dual defect of X .

We say, X ⊆ PN−1 has has dual defect, if r > 0.

Much work on the classification of dual defect varieties!
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A-discriminants

Let A = {a1, . . . , aN} ⊆ Zn.

Def. Let XA ⊆ PN−1 be the associated projective toric variety,
XA is the Zariski closure of the image of all t ∈ (C∗)n under the map

t 7→ (ta1 : · · · : taN ).

Def. The A-discriminant ∆A ∈ C[x1, . . . , xN ] is an irreducible integral
polynomial such that

if (XA)∨ is a hypersurface, then ∆A is the defining polynomial;

otherwise, ∆A := 1.

Example: A := {(d , 0), (d − 1, 1), . . . , (0, d)}
 ∆A classical discriminant of degree d .
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Lattice polytopes

Let P ⊆ Rn be an n-dimensional lattice polytope, A := P ∩ Zn,
XP := XA.

What is the degree of ∆A ?

[Gelfand, Kapranov, Zelivinsky 94], [Dickenstein, Feichtner, Sturmfels 05],
[Matsui, Takeuchi 08], [Esterov 08].
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Smooth lattice polytopes

Our situation of interest: P is smooth, if the tangent cone at each
vertex is unimodular (i.e., spanned by a lattice basis).

In this case, XP smooth.

Examples:

P2
P3P1

P1,P2 smooth, P3 not smooth.
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Invariant No. II: c(P) (measuring “dual defect”)

Def. Let VolZ(F ) be the normalized volume of F

Def. F ≤ P means F is a face of P.

Def.:

c(P) :=
∑
∅6=F≤P

(−1)codim(F ) (dim(F ) + 1) VolZ(F ).

Thm. [GKZ 94]
Let P be smooth. Then c(P) is the degree of ∆A.

 c(P) ≥ 0.

 c(P) = 0 if and only if XP has dual defect.
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Invariant No. II: c(P) (measuring “dual defect”)

Examples:

P2
P3P1

c(P1) = 0 c(P2) = 11 c(P3) = 6

P3 not smooth, still c(P3) ≥ 0.

Open question (Di Rocco): c(P) ≥ 0 in general?

[Dickenstein, N. 10]: True for lattice simplices.
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An example from GKZ 94

Let Sn be the n-dimensional unimodular simplex.

Let P := Sl−1 × Sm−1
Then

c(P) =
m∑
i=1

l∑
j=1

(−1)m+l−i−j(i + j − 1)

(
m

i

)(
l

j

)(
i + j − 2

i − 1

)
.

A clever lemma yields:

c(P) = 0 ⇐⇒ m 6= l .

We will give an easier argument at the end.
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III. The relation between c(P) and codeg(P)

Benjamin Nill (UGA) Dual defect and codegree 17 / 22



The main equivalence

Main thm. [Di Rocco 06, Dickenstein, N. 10]
Let P ⊆ Rn be a smooth lattice polytope of dimension n.

Then

codeg(P) ≥ n + 3

2
⇐⇒ c(P) = 0.

Thm. [Di Rocco 06] In this case, P is a (strict) Cayley polytope.
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Sketch of the proof

Let codeg(P) ≥ n+3
2 .

Define d := n + 1− codeg(P).
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Sketch of the proof

Let codeg(P) ≥ n+3
2 . Define d := n + 1− codeg(P).

Bold guess:

c(P) =
n∑

p=d+1

p−d∑
i=1

???

 ∑
G≤P,dim(G)=p

|int(iG ) ∩ Zn|

 .
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Sketch of the proof

Let codeg(P) ≥ n+3
2 . Define d := n + 1− codeg(P).

By Stanley’s monotonicity theorem:

c(P) =
n∑

p=d+1

p−d∑
i=1

???

 ∑
G≤P,dim(G)=p

|int(iG ) ∩ Zn|

 = 0.
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Sketch of the proof

Let codeg(P) ≥ n+3
2 . Define d := n + 1− codeg(P).

Based on lower-dimensional computer calculations we guessed:

c(P) =
n∑

p=d+1

p−d∑
i=1

(−1)d−i i

(
p + 1

p − d − i

)  ∑
G≤P,dim(G)=p

|int(iG ) ∩ Zn|

 .
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A magic identity

Ehrhart theory reduces proof to:

Lemma. For k < n − d and j ∈ {k, . . . , n}:

n−d∑
i=0

(−1)n−d−i i

(
i + j − k

j

)(
j + 1

n − d − i

)
= j + 1.

Luckily,
A = B

 Zeilberger’s algorithm comes to the rescue!
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Revisited: the example from GKZ 94

Let Sn be the n-dimensional unimodular simplex.
Let P := Sl−1 × Sm−1.

Recall: codeg(Sl−1) = l and codeg(Sm−1) = m.
=⇒ codeg(P) = max(l ,m).

Let us assume m ≥ l .

codeg(P) ≥ dim(P) + 3

2
⇐⇒ m ≥ l + m − 2 + 3

2

⇐⇒ m ≥ l + 1 ⇐⇒ m 6= l .
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Application: A conjecture in adjunction theory
Two invariants from [Beltrametti, Sommese 95]

The adjunction theory of complex projective varieties.

Def. (X , L) polarized manifold of dimension n. Then

µ := sup{t ≥ 0 : h0(t L + KX ) = 0} spectral-value,

τ := inf{t ≥ 0 : t L + KX not nef} nef-value.

Conjecture. [BS’95]

µ >
n + 1

2
=⇒ µ = τ.

Corollary (X , L) toric polarized manifold of dimension n. Then

µ >
n + 2

2
⇐⇒ XP dual defective =⇒ µ = τ.
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