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examples
experiments
databases
conjectures
intuition
proof ideas

» Hammer for geometric combinatorialists to nail proofs
(and to provide new viewpoints and interesting headaches!)
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Toric Geometry is MEGA! e

Benjamin Nill

Toric varieties allow for

Intro

» explicit combinatorial description
» often complete classification results

> effective computation of invariants

This talk:
LATTICE POLYTOPES AND TORIC GEOMETRY
Focus on

Classifications and invariants of toric Fano varieties
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Polytopes enter the picture ... Ll
Benjamin Nill
Definition
A polytope Q is called lattice polytope, if its vertices are lattice Fano polytopes
points.
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Different lattice polytopes may define same toric variety!



Latt\’c.e polytopes &
... Fano polytopes ... Torc seometry

Benjamin Nill

Fano polytopes

Definition
A polytope Q is called Fano polytope, if
» the origin is in the interior

> every vertex is a primitive lattice point
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and toric Fano varieties!

Definition

Projective X is Fano variety, if —K)x is ample Q-Cartier divisor.

Correspondence:

toric Fano varieties Xy, <—  Fano polytopes Q

Reality check: Is Xy Fano? No!

Lattice polytopes &
Toric geometry

Benjamin Nill

Fano polytopes



The M-side of things

Let M be the dual lattice of N.
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The M-side of things

Let M be the dual lattice of N.
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The dual polytope of a Fano polytope Q is defined as

Q" =1{y : (xy)=-1VYx€Q}

Vertices of @* don’t have to be lattice points anymore!
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Let M be the dual lattice of N.

Fano polytopes
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Correspondence
Q is reflexive — Xz, is Gorenstein
(Q* is lattice polytope) — (—Kx is Cartier divisor)

In this case, H(Xx,, O(—Kx)) has Q* N M as C-basis.



Lattice polytopes &

What's the point about Fano varieties? Toricgeomstry

Benjamin Nill

» of fundamental importance in the Minimal Model Program

Fano polytopes



Lattice polytopes &

What's the point about Fano varieties? Toricgeomstry

Benjamin Nill

» of fundamental importance in the Minimal Model Program

» have beautiful algebro-geometric properties Fano polytopes



What's the point about Fano varieties?

» of fundamental importance in the Minimal Model Program
» have beautiful algebro-geometric properties
» they are MEGA!

Conjecture (Alexeev-Batyrev-Borisov-- - -)

For fixed n € N, € > 0, there are finitely many families of
n-dimensional Fano varieties with e-logterminal singularities.
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What's the point about Fano varieties? Toricgeomstry

Benjamin Nill

» of fundamental importance in the Minimal Model Program
» have beautiful algebro-geometric properties Fano polytopes
» they are MEGA!

Conjecture (Alexeev-Batyrev-Borisov-- - -)

For fixed n € N, € > 0, there are finitely many families of
n-dimensional Fano varieties with e-logterminal singularities.

Known to hold for
» Fano manifolds
» toric Fano varieties
> ...

Complete classification exists for Fano manifolds up to dimension 3

Let’s have a look at the toric case ...



THE TABLE of toric Fano varieties X of dim. n

n canonical | Gorenstein smooth
2 16 16 5
3 674,688 4,319 18
4 473,800,776 124
5 866
6 7,622
7 72,256
8 749,892
9 8,229,721
due to Kasprzyk Kreuzer, Skarke Watanabe, Watanabe; Batyrev; Sato; Kreuzer, Nill; @bro

—  Graded Ring Database (GRDB)
—  Homepage of Maximilian Kreuzer (1)
—  Homepage of Andreas Paffenholz
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THE TABLE of toric Fano varieties X of dim. n

canonical

Gorenstein

smooth

16
674,688

© 00 ~NO O~ WNS

due to Kasprzyk

16
4,319
473,800,776

Kreuzer, Skarke

5

18

124

866

7,622
72,256
749,892
8,229,721

Watanabe, Watanabe; Batyrev; Sato; Kreuzer, Nill; @bro

—  Graded Ring Database (GRDB)
—  Homepage of Maximilian Kreuzer (1)
—  Homepage of Andreas Paffenholz

Current development [Coates, Corti, Galkin, Golyshev, Kasprzyk]

Many (all?) Fano manifolds may be reconstructed from ‘mirror’
Laurent polynomials found using these polytopes
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LOTS of Fano polytopes, how to check, if they are isomorphic?

Solution: Normal form for list of vertices of lattice polytope Q:

[

Normal form

1-1

10
1 1

oo+
oo
OO

_21 E%J = NF(Q)=|

[=X=N o0
oo
—OoOOo

- 10-1-10
0 101 1 -1
1 -1 01-10 0
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Normal form
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[o 100 1
001 1 —

Jury

Keyword: Hermite-normal form (of permutations of the columns)

Max Kreuzer
(1960-2010)

Implementation in PALP
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Excursion: Normal form algorithm e

Benjamin Nill

LOTS of Fano polytopes, how to check, if they are isomorphic?

Solution: Normal form for list of vertices of lattice polytope Q:
Normal form
100-1 0
[o 100 1
001 1 —

Jury

Keyword: Hermite-normal form (of permutations of the columns)

Max Kreuzer
(1960-2010)

Implementation in PALP; MAGMA, SAGE [Grinis, Kasprzyk '13]
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Two classification approaches in a nutshell

Growing [Kasprzyk]
Step 1: Classifying minimal Fano's (of certain type)

h\'vnm& @\

at wot L Verhies

Step 2: Recursively add vertices

A‘.\ hln

lcrown
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Duality [Kreuzer, Skarke]

Q reflexive & Q* reflexive

Two approaches

Q vellesive Q* n&[m'n
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Two classification approaches Torc seometry
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Duality [Kreuzer, Skarke]

Q reflexive & Q* reflexive

Two approaches
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A Fano polytope Q is called canonical polytope, if the origin is

the only lattice point in the interior.

Volume bounds

Theorem [Hensley '83; Lagarias, Ziegler '91; Pikhurko '01]
The volume of n-dimensional canonical polytopes is at most

2n+1

14"
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Volume bounds on canonical polytopes Toricgeomstry
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Definition
A Fano polytope Q is called canonical polytope, if the origin is
the only lattice point in the interior.

Volume bounds

Theorem [Hensley '83; Lagarias, Ziegler '91; Pikhurko '01]
The volume of n-dimensional canonical polytopes is at most

2n+1

14"

Theorem [Averkov, Kriimpelmann, Nill '13]
The volume of n-dimensional canonical polytopes is at most

2n2"
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Volume bounds on canonical polytopes Toricgeomstry

Benjamin Nill

Sharp bounds on the maximal volume

» n=2: 4.5, attained only by

Volume bounds

» n = 3 [Kasprzyk '08]: 12, attained by two canonical tetrahedra
» n > 4: Conjecture [Zaks, Perles, Wills '82; Hensley '83]:

2(s, — 1)?/n!,
where
s1=2, s55=3, s3=7, s,=43,..., Sk =51 Sk—1+1.
Bound attained only for canonical simplex

Qn :=conv(0,s1€1,...,5,-1€5—1,2(sn — 1)e,)
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Volume bounds on canonical polytopes Toricgeomstry
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Theorem [Averkov, Kriimpelmann, Nill '13]
Conjecture holds for canonical simplices.

Applications Volume bounds

> [Kasprzyk '13] 35,947 4-dimensional canonical simplices

» [Kasprzyk, N. '13] Conjecture holds for reflexive polytopes
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Volume bounds on canonical polytopes Toricgeomstry
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Theorem [Averkov, Kriimpelmann, Nill '13]
Conjecture holds for canonical simplices.

Applications Volume bounds

> [Kasprzyk '13] 35,947 4-dimensional canonical simplices

» [Kasprzyk, N. '13] Conjecture holds for reflexive polytopes

Challenging problems:
» Conjecture still open for canonical polytopes
» Sharp bounds on number of lattice points?!

NEXT:
» Proof sketch

» Translation into algebraic geometry
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Let Bg > -+ > B, > 0 be the barycentric coordinates of 0:

Zﬁivi =0, Zﬂi =1
i—0 i—0

Volume bounds
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Let Bg > -+ > B, > 0 be the barycentric coordinates of 0:

n n
> Bivi=0, > Bi=1

Volume bounds
i=0 i=0

Lemma [Pikhurko '01]

1

ntvol(Q) < 53—
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Proof of volume bound Toric geometry

Benjamin Nill
Let Q be simplex with origin only interior lattice point.
Let Bg > -+ > B, > 0 be the barycentric coordinates of 0:

n n
> Bvi=0, > Bi=1

Volume bounds
i=0 i=0

Lemma [Pikhurko '01]

1

ntvol(Q) < 53—

Theorem [Averkov '11]
Let Q be /attice simplex. Then

forj=0,...,n—1 we have

Bo-+Bj < Bjy1+ -+ Bn
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Lemma [N.'07]
Let xg > --- > x, > 0suchthat xg +---+x, =1 and

X0 X S Xjp1 e X

Volume bounds

forj=0,...,n—1.
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Proof of volume bound Toric geometry
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Lemma [N.'07]
Let xg > --- > x, > 0suchthat xg +---+x, =1 and

X0 X S Xjp1 e X

Volume bounds

forj=0,...,n—1. If n >4, then

1
BRI VAT T e —
X0 Xp—1 = 2(5,, 1)2
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Proof of volume bound Toric geometry
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Lemma [N.'07]
Let xg > --- > x, > 0suchthat xg +---+x, =1 and

X0 X S Xjp1 e X

Volume bounds

forj=0,...,n—1. If n >4, then

1
> -
0Tl = s, — 1)
Proof finish
Q canonical simplex —
Mvol(Q) < — 1 < o(s, — 1)?
v e e— n —
- BO T /anl -
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Bo + b + B 4+ B 4+ B =1

Bo > A > B > B3 > fa >0 Volume bounds
Bo < B + B + B3 + fBa

Bo it < B + B3 + B

Bo - B - B X B3+ B

Bo - B - B - B3 < B

with minimal

Bo - B - B - B3
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Why does the sequence 2,3,7,43, ... appear? T o
Assume

Bo + A + P+ B3+ [Ba =1

Bo > A > B > B3 > fa >0 Volume bounds
Bo < B + P+ B3+ Ba

Bo : B1 < B + B3 4+ B

Bo vt - B < B+

Bo : B1 : B2 ’ Bz < Pa

with minimal

Bo - B - B - B3
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Why does the sequence 2,3,7,43, ... appear? L
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Bo+te + Pr—e + Lo 4+ B3 + Ba =1

BO +e€ > ﬂl — € > ﬂz > 53 > /84 >0 Volume bounds
Bote < Pr—e + P + B3+ P

(Bot+e) - (Bi—€¢ < P 4+ Bz + [

(Bote) - (Bi—¢€¢) - B < B3 + B

(Bo+e) - (Pi—€) - Lo - Pz < [a

with

(Bote) - (Br—€¢ - B - B
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Why does the sequence 2,3,7,43, ... appear? Toric geametry
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Bo+te + Pr—e + Lo 4+ B3 + Ba =1

BO +e€ > Bl — € > ﬂz > 53 > /84 >0 Volume bounds
Bo+e < Bi—e + Bo + Bz 4+ B

(Bot+e) - (Bi—€¢ < P 4+ Bz + [

(Bote) - (Bi—¢€¢) - B < B3 + B

(Bo+e) - (Pi—€) - Lo - Pz < [a

with
(Bote) - (Br—€¢ - B - B

contradiction, since

(Bo+ €)(B1 — €) = BoB1 — €(Bo — B1) — € < Boba.
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Why does the sequence 2,3,7,43, ... appear? T o
Bo + 5 + B 4+ B3 + fa =1
Bo > b > B > B3 > s >0 Volume bounds
Bo = A + B + B3 + [Ba
Bo - B < B + B3 + B
Bo - B - B L B3+ B
Bo - B B o B3 < B

with minimal

Bo - B - B B



Why does the sequence 2,3,7,43, ... appear?

Bo +
Bo >
Bo =
Bo :

Bo
Bo

with minimal

Ao

&3}
A
A
63}

63}
&}

&3}

f2
f2
P2
f2

P2
B2

2

\%

S+t

B3
B3
B3
B3

Bs
B3

Ba

\%

A+ + +

Pa
Ba

Ba
Ba
fa
Pa

>0
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Why does the sequence 2,3,7,43, ... appear?

Bo +
Bo >
Bo =
Bo :

Bo
Bo

with minimal

Ao

&3}
A
A
A

63}
&}

&3}

f2
f2
P2
f2

P2
B2

2

\%

S+t

B3
B3
B3
B3

Bs
B3

Ba

\%

A+ + +

Pa
Ba

Ba
Ba
fa
Pa

>0

=1—"1o
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Why does the sequence 2,3,7,43, ... appear?

: +
: >
1 —
i
7
i
2

with minimal

1
2

Wl

Wl

W] W [ W =W | =

Wl

P2

N+ +

B3

fs

\%

A+ + +

Ba

>0
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Why does the sequence 2,3, 7,43,

: +
: >
1 —
i
7
i
2

with minimal

1
2

Wl

Wl

W] W [ W =W | =

Wl

~Ni=

~Ni=

NN =N =N =

~Ni=

V

N+ +

fs

V

A+ + +

... appear?

Ba

>0
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What about algebraic geometry? e

Benjamin Nill

(=Kx)" = n! vol(Q").
Proof arguments imply (with a slight tweak)

Corollary Volume bounds
Let X := X5, toric Fano variety for canonical simplex Q.

n n=2 n=3 n>4

(—Kx)"< || 9 72 2(sy — 1)2

equality P2 | P(3,1,1,1), IP’<2(5;1’1),...,2(55:_’11),1,1>
P(6,4,1,1)

P(qo, - - -, qn) is weighted projective space, given as quotient of
(C*)™*1 via

Aoy oy An) - (X0s -y Xn) = (A X0, - - s AT X,).
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Definition
A Fano polytope Q is called unimodular polytope, if the vertex
set of every facet of @ forms a lattice basis.

Correspondence:

Unimodular polytopes

toric Fano manifolds X, <—  unimodular polytopes Q
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Back on track: Toric Fano manifolds

Benjamin Nill

Definition

A Fano polytope Q is called unimodular polytope, if the vertex
set of every facet of @ forms a lattice basis.

Correspondence:

Unimodular polytopes

toric Fano manifolds X, <—  unimodular polytopes Q

Up to lattice isomorphisms only ONE unimodular simplex:
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Picard number of toric Fano manifolds Torc geometry
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Picard number is most important invariant:

px = rank Pic(X) = |Verts(Q)| — n

px =1 = X=ZP"

Unimodular polytopes
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px = rank Pic(X) = |Verts(Q)| — n

Sharp bounds on Picard number
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px <2+24/(nP—1)(2n—1) [Debarre 03]
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Picard number is most important invariant:
px = rank Pic(X) = |Verts(Q)| — n

Sharp bounds on Picard number
px <2n® —n [Voskresenskii, Klyachko '84]

Unimodular polytopes

px <2+24/(nP—1)(2n—1) [Debarre 03]

px <2n  OPTIMAL! [Casagrande '05]
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Picard number of toric Fano manifolds Torc geometry
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Picard number is most important invariant:

px = rank Pic(X) = |Verts(Q)| — n

Sharp bounds on Picard number

Unimodular polytopes

px <2n*> —n [Voskresenskii, Klyachko '84]
px <2+24/(nP—1)(2n—1) [Debarre 03]
px <2n  OPTIMAL! [Casagrande '05]

Mikkel @bro’s breakthrough thesis '07

» Short proof of Casagrande's bound
» Introduced total ordering of unimodular polytopes

» Gave direct, fast enumeration algorithm
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Picard number of toric Fano manifolds Torc geometry
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Picard number is most important invariant:

px = rank Pic(X) = |Verts(Q)| — n

Sharp bounds on Picard number

px <2n*> —n [Voskresenskii, Klyachko '84] e eeiers
px <2+24/(nP—1)(2n—1) [Debarre 03]
px <2n  OPTIMAL! [Casagrande '05]

Mikkel @bro’s breakthrough thesis '07

» Short proof of Casagrande's bound
» Introduced total ordering of unimodular polytopes

» Gave direct, fast enumeration algorithm

Still open: Sharp upper bound on x(X) = |facets(Q)|
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Let S, be P2 blown-up in two torus-invariant points:
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X toric Fano manifold with px = 2n — k

» k=0: [N. 05; Casagrande '07] n even, S; X --- X S



Toric Fano manifolds with large Picard number

Let S, be P2 blown-up in two torus-invariant points:

X toric Fano manifold with px = 2n — k
» k=0: [N. 05; Casagrande '07] n even, S; X --- X S
» k=1: [@bro '07] 1 type, if nis even; 2 types, if n is odd

» k=2: [Assarf, Joswig, Paffenholz '13] 11 types, if n > 6 is
even; 5 types, if n > 6 is odd
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Toric Fano manifolds with large Picard number

Let S, be P2 blown-up in two torus-invariant points:

X toric Fano manifold with px = 2n — k
» k=0: [N. 05; Casagrande '07] n even, S; X --- X S
» k=1: [@bro '07] 1 type, if nis even; 2 types, if n is odd

» k=2: [Assarf, Joswig, Paffenholz '13] 11 types, if n > 6 is
even; 5 types, if n > 6 is odd

Conjecture [Assarf, Joswig, Paffenholz '13]
If kK < n/3, then
X%X’XSQX“’XS&

for X' < 3k + 1-dimensional toric Fano manifold.
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Excursion: Einstein-Kahler-Manifolds (EKM)
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Minkowski's lattice point theorem
If K is n-dimensional convex body such that
1. origin is only interior lattice point,
2. K is centrally-symmetric with respect to origin,
then vol(K) < 2".

EKM's
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Ehrhart's conjecture ['64]

If K is n-dimensional convex body such that
1. origin is only interior lattice point,
2. origin is barycenter of K,

then vol(K) < (n+1)"/n!,

EKM's
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Ehrhart's conjecture ['64]
If K is n-dimensional convex body such that
1. origin is only interior lattice point,
2. origin is barycenter of K,
then vol(K) < (n+1)"/n!, with equality if and only if

EKM's
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Ehrhart's conjecture ['64]
If K is n-dimensional convex body such that
1. origin is only interior lattice point,
2. origin is barycenter of K,
then vol(K) < (n+1)"/n!, with equality if and only if

EKM's




. . . . . Lattice polytopes &
Excursion: Einstein-Kahler-Manifolds (EKM) Toric eometry

Benjamin Nill
Ehrhart's conjecture ['64]
If K is n-dimensional convex body such that
1. origin is only interior lattice point,
2. origin is barycenter of K,
then vol(K) < (n+1)"/n!, with equality if and only if

EKM's

Criterion [Wang, Zhu '03]

2. holds for dual of unimodular polytope @ <= Xs, is EKM
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[N., Paffenholz '09]:
Found counterexample to conjecture on EKM's in @bro's database
in dimension 6.

EKM's
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[N., Paffenholz '09]:
Found counterexample to conjecture on EKM's in @bro's database

in dimension 6.

Theorem [Berman, Berndtsson '12]
» P" has largest anticanonical degree among toric EKM's. e

» Ehrhart's conjecture holds for duals of Fano polytopes.

—  [N., Paffenholz, '12]:

‘On the equality case in Ehrhart’s volume conjecture’



What about higher dimensions?

n canonical Gorenstein smooth
2 16 16 5
3 674,688 4,319 18
4 473,800,776 124
5 Guess: ~ 1018 866
6 7,622
7 72,256
8 749,892
9 8,229,721
due to Kasprzyk Kreuzer, Skarke Watanabe, Watanabe; Batyrev; Sato; Kreuzer, Nill; @bro
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What about higher dimensions? e
Benjamin Nill
n canonical Gorenstein smooth
2 16 16 5
3 674,688 4,319 18
4 473,800,776 124
5 Guess: ~ 10'8 866
6 7,622 High index
7 72,256
8 749,892
9 8,229,721
due to Kasprzyk Kreuzer, Skarke Watanabe, Watanabe; Batyrev; Sato; Kreuzer, Nill; @bro
Definition

Index of Gorenstein toric Fano variety X:

ix := max(r : —Kx/r Cartier divisor)
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Index of X5, is maximal r such that exists such

Example: ip2 = 3.
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High index

‘ Index of X5, is maximal r such that exists such

Example: ip2 = 3.
Definition
lattice polytope.
» P is called Gorenstein polytope of index r, if rP is reflexive
(up to affine-lattice isomorphisms)

» P is called smooth Gorenstein polytope, if rP is dual of
unimodular polytope (up to affine-lattice isomorphisms)
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Toric Fano manifolds with large index [Lorenz, N. '13]

Algorithm for smooth Gorenstein polytopes of large index yields

n \ix 1 2 3 4 5 6 7 8 910111213 14
2 3 1 1

3 15 2 1

4 118 4 1 1 High index
5 853 11 1 1

6 7,590 27 3 1 1

7 72,167 83 4 1 1

8 749,620 256 12 2 1 1

9 8,228,801 891 23 4 1 1

10 * * 63 6 2 1 1

11 * * *x 13 3 1 1

12 * * *x x 6 2 1 1

13 * * * x x 3 1 1




A pattern explained ...

Let ix > %3
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Let ix > "TH

Mukai-Conjecture [Casagrande '05]
px(ix =1)<n

implies
px <2

High index
[Kleinschmidt '88] implies
» X =P" (ix =n+1)or
> X 2 P3 x P? (ix = =52, neven) or
>

X 2= Ppoir—(O(ar) & --- @ O(ar) ® 07F),
foray+---+ar=n+2-2r>0.
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Let
X = Ppoi—(O(ar) ® - @ O(ar) ® OF),

fora;+---+a;=n+2-2r.

High index



. and there's more to this than meets the eye

Let
X = P]pwrl—r(o(al) DD O(at) D Or_t),

forai+---+a=n+2-2r.
Then the smooth Gorenstein polytope P is the
\blackbox{Cayley polytope associated to}

(n+ 1 — 2r)-dimensional
generic Calabi-Yau complete intersection Y
of r hypersurfaces of degrees
aa+1,...,a+11 ...,1

in prti-r
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. and there's more to this than meets the eye Vet

Benjamin Nill

Let
X = P]pwrl—r(o(al) DD O(at) D Or_t),

forai+---+a=n+2-2r.
Then the smooth Gorenstein polytope P is the
\blackbox{Cayley polytope associated to} High index

(n+ 1 — 2r)-dimensional
generic Calabi-Yau complete intersection Y
of r hypersurfaces of degrees
aa+1,...,a+11 ...,1

in prti-r

Isomorphism type of Y only depends on a1, ..., a:, so only finitely
many choices of such Y for fixed dim(Y').
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THE TABLE of the ‘Stringy Landscape’ e
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Hodge numbers of (so far found) Calabi-Yau 3-folds

[Ashmore, He '11, Jurke '13]

High index

' L L L L L
750 500 250 0 250 500 750
20" 47

More than 90% found as Calabi-Yau complete intersections in
Gorenstein toric Fano varieties [Batyrev-Borisov construction].



Publications (with more references)

>

Nill, Kasprzyk: Fano polytopes, in: Strings, Gauge Fields,
and the Geometry Behind - The Legacy of Maximilian
Kreuzer, World Scientific, 2012

Coates, Corti, Galkin, Golyshev, Kasprzyk: Fano Search
Blog, http://coates.ma.ic.ac.uk/fanosearch/

Grinis, Kasprzyk: Normal forms of convex lattice polytopes,
arXiv:1301.6641

Nill:  Volume and lattice points of reflexive simplices, DCG
37, 301-320, 2007.

@bro:  Classification of smooth Fano polytopes, thesis, 2007

» Assarf, Joswig, Paffenholz: Smooth Fano Polytopes With

Many Vertices, arXiv:1209.3186

Nill, Paffenholz: On the equality case in Ehrhart’s volume
conjecture, arXiv:1205.1270

Nill, Lorenz:  On smooth Gorenstein polytopes,
arXiv:1303.2138
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