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I. Classical Adjunction Theory
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Polarized varieties

Polarized variety

(X , L) where

X is a normal projective variety of dimension n

L ample line bundle on X

Adjunction theory = study of adjoint bundles
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Polarized varieties

Polarized variety

(X , L) where

X is a normal projective variety of dimension n

L ample line bundle on X

Adjunction theory = study of adjoint bundles L + c KX

Minimal assumption

X is Q-Gorenstein, i.e., KX is Q-Cartier.
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Two algebro-geometric invariants

The unnormalized spectral value µ

µ = sup{c ∈ R : L + c KX big}−1

−µ is also called Kodaira energy.

The nef-value τ

τ = sup{c ∈ R : L + c KX nef}−1
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Two algebro-geometric invariants
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Results and conjectures

Most work on polarized manifolds:

τ 6 n + 1,

with equality only for (Pn,O(1)).

Fujita, Beltrametti/Sommese, et. al: Classification for τ > n − 3.

Conjectures on polarized manifolds

Q-normality conjecture:

µ >
n + 1

2
=⇒ µ = τ

Spectrum conjecture:
For ε > 0, there are only finitely many µ > ε.
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II. Polyhedral Adjunction Theory
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The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].

Let P ⊆ Rn be n-dimensional lattice polytope

Adjoint polytope

P(c) is the set of points in P having lattice distance > c from each facet.

If P is given by m facet-inequalities

P = {x ∈ Rn : Aix > bi for i = 1, . . . ,m}

where Ai ∈ Zn primitive and bi ∈ Z, then

P(c) = {x ∈ Rn : Aix > bi + c for i = 1, . . . ,m}.

Polyhedral adjunction: ”Move facets simultaneously inwards”
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The adjoint polytope

P = P(0)
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The adjoint polytope

P(0.1)
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The adjoint polytope

P(0.2)
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The adjoint polytope

P(0.3)
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The adjoint polytope

P(0.4)
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The adjoint polytope

P(0.5)
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The adjoint polytope

P(0.6)
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The adjoint polytope

P(0.7)
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The adjoint polytope

P(0.8)
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The adjoint polytope

P(0.9)

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 11 / 24



The adjoint polytope

P(1) point
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The adjoint polytope

P(c) = ∅ for c > 1
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The adjoint polytope

P = P(0)
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The adjoint polytope

P(0.2)
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The adjoint polytope

P(0.4)
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The adjoint polytope

P(0.6)
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The adjoint polytope

P(0.8)
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The adjoint polytope

P(1) combinatorics changes!
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The adjoint polytope

P(1.2)
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The adjoint polytope

P(1.4)
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The adjoint polytope

P(1.6)
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The adjoint polytope

P(1.8)
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The adjoint polytope

P(2) interval
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The adjoint polytope

P(c) = ∅ for c > 2
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µ, τ for polarized toric varieties

(XP , LP) polarized toric variety.

Assume XP Q-Gorenstein. Then

(multiples of)

P(c) ∩ Zn ⇐⇒ global sections of

(multiples of)

LP + cKXP
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µ, τ for polarized toric varieties

(XP , LP) polarized toric variety. Assume XP Q-Gorenstein. Then

(multiples of) P(c) ∩ Zn ⇐⇒ global sections of (multiples of) LP + cKXP

µ

µ = (sup{c ∈ R : LP + c KXP
big})−1
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µ, τ for polarized toric varieties

(XP , LP) polarized toric variety. Assume XP Q-Gorenstein. Then

(multiples of) P(c) ∩ Zn ⇐⇒ global sections of (multiples of) LP + cKXP

µ

µ =
(
sup{c > 0 : P(c) full-dimensional}

)−1

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 13 / 24
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µ, τ for polarized toric varieties

(XP , LP) polarized toric variety. Assume XP Q-Gorenstein. Then

(multiples of) P(c) ∩ Zn ⇐⇒ global sections of (multiples of) LP + cKXP

µ

µ =
(
sup{c > 0 : P(c) 6= ∅}

)−1

ν

τ =
(
sup{c > 0 : P(c) combinatorially equal to P}

)−1
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Two polyhedral invariants

Definition makes sense for general lattice polytopes!

Definition

µP :=
(
sup{c > 0 : P(c) 6= ∅}

)−1

τP :=
(
sup{c > 0 : P(c) combinatorially equal to P}

)−1

,
with (sup{})−1 :=∞.
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Two polyhedral invariants

P = P(0)
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Two polyhedral invariants

P(0.2)
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Two polyhedral invariants

P(0.4)
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Two polyhedral invariants

P(0.6)
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Two polyhedral invariants

P(0.8)
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Two polyhedral invariants

P(1) combinatorics changes =⇒ τP = 1−1 = 1
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Two polyhedral invariants

P(1.2)
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Two polyhedral invariants

P(1.4)
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Two polyhedral invariants

P(1.6)
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Two polyhedral invariants

P(1.8)
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Two polyhedral invariants

P(2) point =⇒ µP = 2−1 = 1
2
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Two polyhedral invariants

P = P(0) combinatorics changes immediately =⇒ τ =∞
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Two polyhedral invariants

P(0.05)
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Two polyhedral invariants

P(0.1)
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Two polyhedral invariants

P(0.15)
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Two polyhedral invariants

P(0.2)
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Two polyhedral invariants

P(0.25)
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Two polyhedral invariants

P(0.3)
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Two polyhedral invariants

P(0.35)
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Two polyhedral invariants

P(0.4)
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Two polyhedral invariants

P(0.45)
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Two polyhedral invariants

P(0.5) polygon =⇒ µP = 0.5−1 = 2
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Two polyhedral invariants

Criterion

τP <∞

⇐⇒ XP is Q-Gorenstein
(i.e., generators of each maximal cone lie in affine hyperplane)

Polyhedral approach allows to deal with µP even if τP =∞.

Polyhedral adjunction theory
)

Adjunction theory of polarized toric varieties
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III. The Main Theorem
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Large µP implies P flat

Theorem [Di Rocco, Haase, N., Paffenholz ’11]

µP >
n + 2

2
=⇒ P has lattice width one.

“If you cannot move the facets of P very far, then P has to be flat.”

Theorem is sharp: (Pn,O(2)), µ = n+1
2 , lattice width > 1
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Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: µP is called Q-codegree of P.

Codegree

codeg(P) := min{k ∈ N : int(kP) ∩ Zn 6= ∅}

codeg(P) 6 n + 1,

with equality only for unimodular n-simplex.

Relation to Q-codegree

µP 6 codeg(P)

Proof follows from

int(kP) ∩ Zn ⊂ (kP)(1) = kP( 1
k
).
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Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

codeg(P) > n+2
2 =⇒ P lattice width one.

Proofs for

[Haase, N., Payne ’09] general P, but weaker bound

[Dickenstein, Di Rocco, Piene ’09] XP smooth with µ = τ

[Dickenstein, N. ’10] XP smooth

[Main theorem] XP Gorenstein and µ = τ

Philosophy: Q-codegree is more tractable than codegree!
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Relation to dual defective polarized manifolds

Dual defectivity

(X , L) is dual defective, if X ∗ is not a hypersurface.

[Beltrametti, Fania, Sommese ’92] =⇒

µ = τ >
n + 2

2
.

[Dickenstein, N. ’10]

Let XP be smooth.

µP >
n + 2

2
⇐⇒ XP dual defective.

µP >
n + 2

2
=⇒ µP = τP .

This is (nearly) the Q-normality conjecture!
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Relation to dual defective polarized manifolds

What about the singular situation?

Question

µP >
n + 2

2
=⇒ XP dual defective ?

Main theorem shows that this may be true!

[Curran/Cattani’07, Esterov’08]

XP dual defective =⇒ P lattice width one.

Main conjecture

codeg(P) > n+2
2 =⇒ XP dual defective.
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Proof sketch

Let µP >
n+2
2 .

1 The core of P: P( 1
µ
) is lower-dimensional.

Projecting along the core non-decreases µ.
 may assume core is a point.

2 Look at big facets of P that define the core.
Let C ⊂ (Rn+1)∗ be cone spanned by the big primitive normals.
Tricky part: in C the point (0, 1) is a non-trivial sum of lattice points.

3 [Batyrev, N. ’07] P has lattice width one.

Do methods also help to attack the Spectrum Conjecture ?
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