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(X, L) where

@ X is a normal projective variety of dimension n
@ L ample line bundle on X
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Polarized varieties

Polarized variety

(X, L) where
@ X is a normal projective variety of dimension n
@ L ample line bundle on X

Adjunction theory = study of adjoint bundles L + ¢ Kx

Minimal assumption
X is Q-Gorenstein, i.e., Kx is Q-Cartier. J
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Two algebro-geometric invariants

The unnormalized spectral value p

p=sup{c €ER : L+ c Kx big}™! }

The nef-value 7

T=sup{c €R : L+ c Kx nef} 1 J
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The unnormalized spectral value p

p=sup{c €ER : L+ c Kx big}™! }
—u is also called Kodaira energy.
The nef-value 7
r=sup{c €R : L+ c Kx nef} 1 J
psT

Benjamin Nill (U Georgia)

o F
Polyhedral Adjunction Theory



I
Two algebro-geometric invariants

r—

A‘"pl{(xl

Benjamin Nill (U Georgia)

o F
Polyhedral Adjunction Theory



Two algebro-geometric invariants

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 6 /24



Two algebro-geometric invariants

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 7/ 24



DESSS———....
Results and conjectures
Most work on polarized manifolds:
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Results and conjectures

Most work on polarized manifolds:

T<n+1,
with equality only for (P, O(1)).

Fujita, Beltrametti/Sommese, et. al: Classification for 7 > n — 3.
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Results and conjectures

Most work on polarized manifolds:
T<n+1,
with equality only for (P, O(1)).
Fujita, Beltrametti/Sommese, et. al: Classification for 7 > n — 3.

Conjectures on polarized manifolds

o QQ-normality conjecture:

n+1
w> 5 — uw=r

@ Spectrum conjecture:
For € > 0, there are only finitely many p > €.
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Let P C R" be n-dimensional lattice polytope
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Study initiated by [Dickenstein, Di Rocco, Piene '09].
Let P C R"” be n-dimensional lattice polytope
Adjoint polytope

P(€) is the set of points in P having lattice distance > ¢ from each facet. J

If P is given by m facet-inequalities
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where A; € Z" primitive and b; € Z
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The adjoint polytope
Study initiated by [Dickenstein, Di Rocco, Piene '09].
Let P C R"” be n-dimensional lattice polytope
Adjoint polytope

P(€) is the set of points in P having lattice distance > ¢ from each facet. }

If P is given by m facet-inequalities
P={xeR": Aix>bj fori=1,...,m}
where A; € Z" primitive and b; € Z, then

P = {xeR": Aix = bj+c fori=1,...,m}.
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The adjoint polytope
Study initiated by [Dickenstein, Di Rocco, Piene '09].
Let P C R"” be n-dimensional lattice polytope
Adjoint polytope

P(€) is the set of points in P having lattice distance > ¢ from each facet. }

If P is given by m facet-inequalities
P={xeR": Aix>=b; fori=1,...,m}
where A; € Z" primitive and b; € Z, then
P ={xcR": Aix>bj+c fori=1,...,m}.

Polyhedral adjunction: " Move facets simultaneously inwards”
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The adjoint polytope

P®) point
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The adjoint polytope

Pl = & forc>1
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The adjoint polytope

p = p0)
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The adjoint polytope
p(0.2)
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The adjoint polytope
P(0.4)
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The adjoint polytope
p(0.6)
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The adjoint polytope
p(0.8)
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The adjoint polytope

P() combinatorics changes!
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The adjoint polytope
p(1.2)
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The adjoint polytope
P(1.4)

o & E A
Benjamin Nill (U Georgia) Polyhedral Adjunction Theory



I
The adjoint polytope
p(1.6)
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The adjoint polytope
p(1.8)
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The adjoint polytope
P2 interval
=] (= = E DAy
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The adjoint polytope

P(©) = & for ¢ > 2

o & E A
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(multiples of) P(6) N Z" <= global sections of (multiples of) Lp + cKx,
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i, 7 for polarized toric varieties

(Xp, Lp) polarized toric variety. Assume Xp Q-Gorenstein. Then

(multiples of) P(6) N Z" <= global sections of (multiples of) Lp + cKx,

i
p= (sup{c >0 : P) £ @})_1

v

7= (sup{c > 0 : P(9) combinatorially equal to P})_1
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Two polyhedral invariants
Definition makes sense for general lattice polytopes!
Definition
o pp = (sup{c >0 : PO +£ Q})_l
o Tp = (sup{c >0 : P9 combinatorially equal to P})_:l
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Two polyhedral invariants
Definition makes sense for general lattice polytopes!
Definition
o pp = (sup{c >0 : PO +£ Q})_l

o Tp = (sup{c >0 : P9 combinatorially equal to P})_l,

with (sup{})™! := oc.
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Two polyhedral invariants
p = p(0)
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Two polyhedral invariants
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Two polyhedral invariants
p(1.6)

Benjamin Nill (U Georgia) Polyhedral-,&djl.:n::tion Theory 15 / 24



Two polyhedral invariants
p(L.8)
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Two polyhedral invariants

2) hoi _9-1_1
P®) point = pup =2 =3
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Two polyhedral invariants

P = P(®) combinatorics changes immediately = 7 = oo
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Two polyhedral invariants
p(0.05)
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Two polyhedral invariants
p(0.1)
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Two polyhedral invariants
p(0.15)
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Two polyhedral invariants
p(0.2)
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Two polyhedral invariants
p(0.25)
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Two polyhedral invariants
p(0.3)
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Two polyhedral invariants
p(0.35)

Benjamin Nill (U Georgia) Poii/hedral Adjunction Theory 16 / 24



Two polyhedral invariants
p(0.4)
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Two polyhedral invariants
p(0.45)
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Two polyhedral invariants

P(©3) polygon = pup =05"1=2
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Two polyhedral invariants
Criterion

TP < OO
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Two polyhedral invariants
Criterion

TP < 00 <= Xp is Q-Gorenstein

(i.e., generators of each maximal cone lie in affine hyperplane)
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Criterion

Tp < 00 <= Xp is Q-Gorenstein
(i.e., generators of each maximal cone lie in affine hyperplane)

Polyhedral approach allows to deal with pp even if 7p = c0.
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Two polyhedral invariants

Criterion

Tp < 00 <= Xp is Q-Gorenstein
(i.e., generators of each maximal cone lie in affine hyperplane)

Polyhedral approach allows to deal with pp even if 7p = c0.

Polyhedral adjunction theory
D)

=

Adjunction theory of polarized toric varieties
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Large pp implies P flat

Theorem [Di Rocco, Haase, N., Paffenholz '11]

2
wp = n-2|- — P has lattice width one.
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2

wp = = P has lattice width one.

“If you cannot move the facets of P very far, then P has to be flat.”
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Relation to Ehrhart theory
[Dickenstein, Di Rocco, Piene '09]: up is called Q-codegree of P.
Codegree
codeg(P) := min{k € N : int(kP)NZ" # &}
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Relation to Ehrhart theory
[Dickenstein, Di Rocco, Piene '09]: up is called Q-codegree of P.

Codegree

codeg(P) := min{k € N : int(kP)NZ" # &}

codeg(P) < n+1,

with equality only for unimodular n-simplex.

Relation to (Q-codegree

pp < codeg(P)

Proof follows from
int(kP) N Z" C (kP)) = kP,
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Relation to Ehrhart theory
Cayley conjecture [Batyrev, N. '07]

codeg(P) > 52— P lattice width one.

Benjamin Nill (U Georgia)

Polyhedral Adjunction Theory



Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. '07]

codeg(P) > 52— P lattice width one. J
Proofs for
e [Haase, N., Payne '09] general P, but weaker bound
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codeg(P) > 52— P lattice width one.

Proofs for

e [Haase, N., Payne '09] general P, but weaker bound
o [Dickenstein, Di Rocco, Piene '09] Xp smooth with p =7
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Cayley conjecture [Batyrev, N. '07]

codeg(P) > 52— P lattice width one.

Proofs for

e [Haase, N., Payne '09] general P, but weaker bound

o [Dickenstein, Di Rocco, Piene '09] Xp smooth with p =7
o [Dickenstein, N. '10] Xp smooth
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[Main theorem] Xp Gorenstein and u =7
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Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. '07]

codeg(P) > 52— P lattice width one.

Proofs for

e [Haase, N., Payne '09] general P, but weaker bound

o [Dickenstein, Di Rocco, Piene '09] Xp smooth with p =7
o [Dickenstein, N. '10] Xp smooth
()

[Main theorem] Xp Gorenstein and u =7

Philosophy: Q-codegree is more tractable than codegree!
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Relation to dual defective polarized manifolds

Dual defectivity

(X, L) is dual defective, if X* is not a hypersurface.
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Relation to dual defective polarized manifolds

Dual defectivity
(X, L) is dual defective, if X* is not a hypersurface.
[Beltrametti, Fania, Sommese '92] —

- n—+2
=7 .
H 2
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Relation to dual defective polarized manifolds

Dual defectivity
(X, L) is dual defective, if X* is not a hypersurface.
[Beltrametti, Fania, Sommese '92] —

- n—+2
=7 .
H 2

[Dickenstein, N. '10]
Let Xp be smooth.

n—+2

wp > — <= Xp dual defective.

n+2
MP>T = Wp=Tp.

This is (nearly) the @Q-normality conjecture!
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Relation to dual defective polarized manifolds

What about the singular situation?
Question

n+2
Hp >

> — Xp dual defective ?
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Relation to dual defective polarized manifolds
What about the singular situation?
Question

n+2
2

wp > —> Xp dual defective ?

Main theorem shows that this may be true!

[Curran/Cattani'07, Esterov'08]
Xp dual defective = P lattice width one. J
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Relation to dual defective polarized manifolds
What about the singular situation?

Question

n+2
2

wp > —> Xp dual defective ?

Main theorem shows that this may be true!

[Curran/Cattani'07, Esterov'08]
Xp dual defective = P lattice width one.

Main conjecture

codeg(P) > 52 = Xp dual defective.

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 23 /24



.
Proof sketch
Let up > "—2'—2.

Benjamin Nill (U Georgia)

Polyhedral Adjunction Theory



BN
Proof sketch

Let up > "—2'—2.

@ The core of P: P(%) is lower-dimensional.

Benjamin Nill (U Georgia)

Polyhedral Adjunction Theory



BN
Proof sketch

Let up > n—2|—2_

@ The core of P: P(i) is lower-dimensional.

Projecting along the core non-decreases [i.
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Proof sketch

Let up > n—2|—2_

1y . .
© The core of P: PUi) is lower-dimensional.
Projecting along the core non-decreases [i.
~> may assume core is a point.
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Proof sketch

n+2

Let up > 5 -

1
© The core of P: P') is lower-dimensional.
Projecting along the core non-decreases .
~> may assume core is a point.
@ Look at big facets of P that define the core.
Let C C (R™1)* be cone spanned by the big primitive normals.

Benjamin Nill (U Georgia) Polyhedral Adjunction Theory 24 / 24



]
Proof sketch

Let up > n—2i-2_

© The core of P: P(%) is lower-dimensional.
Projecting along the core non-decreases .
~> may assume core is a point.
@ Look at big facets of P that define the core.
Let C C (R"™1)* be cone spanned by the big primitive normals.
Tricky part: in C the point (0,1) is a non-trivial sum of lattice points.
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Proof sketch

Let up > n—2i-2_

1

@ The core of P: PG) is lower-dimensional.

Projecting along the core non-decreases .

~> may assume core is a point.
@ Look at big facets of P that define the core.

Let C C (R"™1)* be cone spanned by the big primitive normals.

Tricky part: in C the point (0,1) is a non-trivial sum of lattice points.
@ [Batyrev, N. '07] P has lattice width one.

Do methods also help to attack the Spectrum Conjecture ?
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