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Outline of talk

Lattice polytope = d-polytope in Rd with vertices in Zd

Isomorphisms = affine lattice automorphisms

I. Lattice polytopes with no interior lattice points

II. Lattice polytopes with k ≥ 1 interior lattice points

III. Unifying approach via the notion of (co)degree
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I. NO interior lattice points - Dimension two

One infinite class

and one exceptional triangle S
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I. NO interior lattice points - Main theorem

Def. hollow = NO interior lattice points

Theorem [Treutlein ’08; Averkov, Wagner, Weismantel ’10; N., Ziegler ’11]

All but finitely many hollow lattice d-polytopes admit a lattice projection
onto a hollow lattice polytope of smaller dimension.

Any hollow lattice polytope

either projects onto hollow lattice polytope

or is contained in one of finitely many inclusion-maximal hollow
lattice polytopes
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I. NO interior lattice points - Dimension 3 is already hard

Proposition [N., Ziegler ’11]

Any inclusion-maximal hollow lattice polytope of dimension d = 3 has
volume ≤ 4, 106.

Expected maximal volume: 6.
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I. NO interior lattice points - Dimension 3 is already hard

Theorem [Andersen, Averkov, Wagner, Weismantel ’09, ’10]

There are 12 inclusion-maximal hollow lattice polytope of dimension d = 3
where any facet has an interior lattice point.

Is this assumption neglectable?

d = 2: Yes.

d ≥ 4: No! [N., Ziegler ’11]

d = 3: Open.
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II. Lattice d-polytopes P with k ≥ 1 interior lattice points

Theorem [Hensley ’83; Lagarias&Ziegler ’91; Pikhurko ’01]

vol(P) ≤ (8d)d15d2
2d+1

k

Proposition [Zaks, Perles, Wills ’82]

max
P

vol(P) ≥ vol(Sd ,k) ≥ 22
d−1

(k + 1)/d!

where

Sd ,k := conv(0, s1e1, . . . , sd−1ed−1, (k + 1)(sd − 1)ed)

and
s1 = 2, s2 = 3, s3 = 7, s4 = 43, . . . , sk := s1 · · · sk−1 + 1
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II. Lattice d-polytopes P with k ≥ 1 interior lattice points

[Pikhurko ’01]:

“... we have the correct type of dependence of d,k ... but the gap
between the known bounds is huge. The ultimate aim would be to find

exact values, which is probably not hopeless, because the above
constructions, believed to be extremal, are rather simple.”
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II. Lattice d-polytopes P with ONE interior lattice point

Maximal volume of lattice d-polytopes P
with ONE interior lattice point

d = 2: 4.5,

d = 3 [Kasprzyk ’08]: 12, attained by two simplices

d ≥ 4: Conjecture [Zaks, Perles, Wills ’82]: vol(Sd ,1) = 2(sd − 1)2/d!,
only attained by Sd ,1.

Benjamin Nill (CWRU) Geometry of numbers of lattice polytopes 9 / 15



II. Lattice d-polytopes P with ONE interior lattice point

Maximal volume of lattice d-polytopes P
with ONE interior lattice point

d = 2: 4.5,

d = 3 [Kasprzyk ’08]: 12, attained by two simplices

d ≥ 4: Conjecture [Zaks, Perles, Wills ’82]: vol(Sd ,1) = 2(sd − 1)2/d!,
only attained by Sd ,1.

Benjamin Nill (CWRU) Geometry of numbers of lattice polytopes 9 / 15



II. Lattice d-polytopes P with ONE interior lattice point

Maximal volume of lattice d-polytopes P
with ONE interior lattice point

d = 2: 4.5,

d = 3 [Kasprzyk ’08]: 12, attained by two simplices

d ≥ 4: Conjecture [Zaks, Perles, Wills ’82]: vol(Sd ,1) = 2(sd − 1)2/d!,
only attained by Sd ,1.

Benjamin Nill (CWRU) Geometry of numbers of lattice polytopes 9 / 15



II. Lattice d-polytopes P with ONE interior lattice point

Maximal volume of lattice d-polytopes P
with ONE interior lattice point

d = 2: 4.5,

d = 3 [Kasprzyk ’08]: 12, attained by two simplices

d ≥ 4: Conjecture [Zaks, Perles, Wills ’82]: vol(Sd ,1) = 2(sd − 1)2/d!,
only attained by Sd ,1.

Theorem [Nill ’07]

Conjecture holds for reflexive simplices.
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II. Lattice d-polytopes P with ONE interior lattice point

Maximal volume of lattice d-polytopes P
with ONE interior lattice point

d = 2: 4.5,

d = 3 [Kasprzyk ’08]: 12, attained by two simplices

d ≥ 4: Conjecture [Zaks, Perles, Wills ’82]: vol(Sd ,1) = 2(sd − 1)2/d!,
only attained by Sd ,1.

Theorem [Averkov ’11]

Upper bound in conjecture holds for lattice simplices.

Uniqueness of equality case still open!
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II. Proof of volume bound

Let P be lattice simplex with 0 only interior lattice point.
Let β0 ≥ · · · ≥ βd be the barycentric coordinates of 0.

Lemma [Pikhurko ’01]

d! vol(P) ≤ 1

β0 · · ·βd−1

Theorem [Averkov ’11]

For j = 0, . . . , d − 1 we have

β0 · · ·βj ≤ βj+1 + · · ·+ βd
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II. Proof of volume bound

For j = 0, . . . , d − 1 we have

β0 · · ·βj ≤ βj+1 + · · ·+ βd

Lemma [N.’07]

Let x0 ≥ · · · ≥ xd > 0 such that x0 + · · ·+ xd = 1 and

x0 · · · xj ≤ xj+1 + · · ·+ xd

for j = 0, . . . , d − 1. If d ≥ 4, then

x0 · · · xd−1 ≥
1

2(sd − 1)2

d! vol(P) ≤ 1

β0 · · ·βd−1
≤ 2(sd − 1)2
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II. Faces of lattice simplices with ONE interior lattice point

Let P be lattice simplex with 0 only interior lattice point.

Theorem [Averkov, N., Krümpelmann ’12]

Let d ≥ 4, F be a face of P dimension `. Then

`!vol(F ) ≤ 2(sd − 1)2

sd+1−` − 1

Uniqueness in equality case open for ` = 2, . . . , d .

Theorem [Averkov, N., Krümpelmann ’12]

For d ≥ 4, if P has edge with maximal number of lattice points
2(sd − 1) + 1, then P ∼= Sd ,1.
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III. Unifying - The degree

P ⊂ Rd lattice polytope of dimension d .

The codegree:

codeg(P) := min{k ∈ N≥1 : int(kP) ∩ Zd 6= ∅}

=⇒ codeg(P) ∈ {1, . . . , d + 1}

The degree:

deg(P) := d + 1− codeg(P) ∈ {0, . . . , d}

• deg(P) = d ⇔ codeg(P) = 1 ⇔ int(P) ∩ Zd 6= ∅
• deg(P) = 0 ⇔ codeg(P) = d + 1 ⇔ P ∼= conv(0, e1, . . . , en)
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III. Unifying - Volume bounds (Section II)

Ehrhart theory: deg(P) = max(i : h∗i 6= 0) for

∞∑
k=0

|kP ∩ Zd |tk =

∑d
i=0 h∗i t i

(1− t)d+1
.

Here,

h∗deg(P) = number of interior lattice points in codeg(P)P.

Theorem [Haase, N., Payne ’09]

Upper bound on d!vol(P) for lattice d-polytopes P in terms of
deg(P) and h∗deg(P).
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III. Unifying - Projections (Section I)

Corollary to main theorem on hollow lattice polytopes

In fixed dimension d all but finitely many lattice polytopes admit a lattice
projection onto a lattice polytope of same codegree.

Daring conjecture [N., Padrol ’12]

There exists finite list Ps of lattice polytopes of degree s and dimension
≤ 2s s.t. if a lattice polytope has degree s then

either it projects onto a lattice polytope of same codegree

or it is a lattice join of polytopes in P0 ∪ · · · ∪ Ps .

Some evidence:

True for s ≤ 1 [Batyrev, N. ’07]

If true: d > 2s =⇒ lattice width one
(conjectured; holds for d > 20s2 [Haase, N., Payne ’09])
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