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I. The degree of lattice polytopes - Ehrhart theory

Let P ⊂ Rd be a d-dimensional lattice polytope
(i.e., the vertex set V(P) ⊂ Zd).

Main problem: Classify Ehrhart polynomials of lattice polytopes:

k 7→ |kP ∩ Zd |

Theorem [Stanley ’80]∑
k≥0
|kP ∩ Zd | tk =

h∗P(t)

(1− t)d+1
,

where h∗P is a polynomial of degree ≤ d with coefficients in N.
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I. The degree of lattice polytopes - Definition

Theorem [Stanley ’80]∑
k≥0
|kP ∩ Zd | tk =

h∗P(t)

(1− t)d+1
,

where h∗P is a polynomial of degree ≤ d with coefficients in N.

Definition: The degree of h∗P is called the degree of P.

Main problem (dimension-free version):
Classify h∗-polynomials of lattice polytopes of given degree.

 Degree fixed, dimension arbitrary!
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I. The degree of lattice polytopes - Properties

Basic properties of the degree

deg(P) = 0 ⇔ h∗P = 1 ⇔ P ∼= ∆d = conv(0, e1, . . . , ed)

deg(P) does not change by taking lattice pyramids.

degree is monotone with respect to inclusion.
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I. The degree of lattice polytopes - Meaning

Definition: The codegree of P:

codeg(P) := min{k ∈ Z>0 : int(kP) ∩ Zd 6= ∅}

1 ≤ codeg(P) = d + 1− deg(P) ≤ d + 1

codeg(P) = 1 ⇔ deg(P) = d ⇔ int(P) ∩ Zd 6= ∅

codeg(P) = d + 1 ⇔ deg(P) = 0 ⇔ P ∼= ∆d
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I. The degree of lattice polytopes - Degree 1

Examples of high dimension but degree 1 ?

Definition/Lemma (Batyrev, N. ’07)

P is a Lawrence prism, if exists

φ : Zd � Zd−1, φ(P) = ∆d−1.

Then
deg(P) ≤ 1 ⇔ codeg(P) ≥ d .
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I. The degree of lattice polytopes - Degree 1

Example: Dimension d = 2 (no interior lattice points)

Lawrence prisms

and one exceptional triangle S

Theorem [Batyrev, N. ’07]

deg(P) ≤ 1 if and only if P is

Lawrence prism or

(d − 2)-fold lattice pyramid over S .
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I. The degree of lattice polytopes - Cayley polytopes

Examples of high dimension but small degree?

Definition/Lemma [Batyrev, N. ’07]

P is a Cayley polytope of lattice polytopes in Rs , if exists

φ : Zd � Zd−s , φ(P) = ∆d−s .

Then
deg(P) ≤ s ⇔ codeg(P) ≥ d + 1− s.

Observe: Let deg(P) ≤ 1. Then d ≥ 3 ⇒ P Cayley polytope

Benjamin Nill (CWRU) Generalizing the degree 8 / 19



I. The degree of lattice polytopes - Cayley polytopes

Examples of high dimension but small degree?

Definition/Lemma [Batyrev, N. ’07]

P is a Cayley polytope of lattice polytopes in Rs , if exists

φ : Zd � Zd−s , φ(P) = ∆d−s .

Then
deg(P) ≤ s ⇔ codeg(P) ≥ d + 1− s.

Observe: Let deg(P) ≤ 1. Then d ≥ 3 ⇒ P Cayley polytope

Benjamin Nill (CWRU) Generalizing the degree 8 / 19



I. The degree of lattice polytopes - Cayley polytopes

Examples of high dimension but small degree?

Definition/Lemma [Batyrev, N. ’07]

P is a Cayley polytope of lattice polytopes in Rs , if exists

φ : Zd � Zd−s , φ(P) = ∆d−s .

Then
deg(P) ≤ s ⇔ codeg(P) ≥ d + 1− s.

Observe: Let deg(P) ≤ 1. Then d ≥ 3 ⇒ P Cayley polytope

Benjamin Nill (CWRU) Generalizing the degree 8 / 19



I. The degree of lattice polytopes - Structure result

Theorem [Haase, N., Payne ’09]

If d > 20(deg(P))2, then

P is a Cayley polytope of lattice polytopes in Rs for s ≤ 20(deg(P))2.

Theorem [Haase, N., Payne ’09]

There exists a function f such that

VolZ(P) = 1 + h∗1 + · · ·+ h∗deg(P) ≤ f (deg(P), h∗deg(P)).

Benjamin Nill (CWRU) Generalizing the degree 9 / 19



I. The degree of lattice polytopes - Structure result

Theorem [Haase, N., Payne ’09]

If d > 20(deg(P))2, then

P is a Cayley polytope of lattice polytopes in Rs for s ≤ 20(deg(P))2.

Theorem [Haase, N., Payne ’09]

There exists a function f such that

VolZ(P) = 1 + h∗1 + · · ·+ h∗deg(P) ≤ f (deg(P), h∗deg(P)).

Benjamin Nill (CWRU) Generalizing the degree 9 / 19



I. The degree of lattice polytopes - Cayley conjecture

Cayley conjecture

If

d > 2deg(P) ⇔ codeg(P) >
d + 2

2
,

then P is a Cayley polytope.

Refined Cayley conjecture

If codeg(P) > d+r
2 , then P is a Cayley polytope of r lattice polytopes.

Refined conjecture holds, if P is smooth [Dickenstein, N. ’10].
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II. The combinatorial degree of polytopes - Observation

Observation

Let P be d-dimensional lattice polytope.

codeg(P) > k =⇒

no interior face of P with k vertices

i.e., any subset of k vertices lies in common facet

i.e, P is k-almost neighborly.

Recall:
P is k-neighborly, if any subset of k vertices is vertex set of a face.

Goal: Study (d − s)-almost neighborly polytopes for s fixed and d large!
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II. The combinatorial degree of polytopes - Definition

Definition

The combinatorial codegree of d-dimensional polytope P is

codegc(P) := min{|V | : V ⊆ V(P), conv(V ) ( ∂P}.

Then the combinatorial degree is

degc(P) := d + 1− codegc(P)

which is the maximal codimension of an interior face of P.

If P is a lattice polytope, then

degc(P) ≤ deg(P).

Benjamin Nill (CWRU) Generalizing the degree 12 / 19



II. The combinatorial degree of polytopes - Definition

Definition

The combinatorial codegree of d-dimensional polytope P is

codegc(P) := min{|V | : V ⊆ V(P), conv(V ) ( ∂P}.

Then the combinatorial degree is

degc(P) := d + 1− codegc(P)

which is the maximal codimension of an interior face of P.

If P is a lattice polytope, then

degc(P) ≤ deg(P).

Benjamin Nill (CWRU) Generalizing the degree 12 / 19



II. The combinatorial degree of polytopes - Definition

Definition

The combinatorial codegree of d-dimensional polytope P is

codegc(P) := min{|V | : V ⊆ V(P), conv(V ) ( ∂P}.

Then the combinatorial degree is

degc(P) := d + 1− codegc(P)

which is the maximal codimension of an interior face of P.

If P is a lattice polytope, then

degc(P) ≤ deg(P).

Benjamin Nill (CWRU) Generalizing the degree 12 / 19



II. The combinatorial degree of polytopes - Properties

Basic properties of the combinatorial degree

degc(P) = 0 ⇔ P is d-simplex

degc(P) does not change by taking pyramids.

Comb. degree is monotone with respect to inclusion (of vertex sets).
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II. The combinatorial degree of polytopes - degc(P) = 1

Theorem [Batyrev, N. ’07]

P d-dimensional lattice polytope which is not a lattice pyramid.
Then deg(P) ≤ 1 if and only if P is

Lawrence prism or

the exceptional triangle S .

Theorem [N., Padrol ’12]

P d-dimensional polytope which is not a pyramid.
Then degc(P) ≤ 1 if and only if P is

prism over (d − 1)-simplex or

polygon.
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II. The combinatorial degree of polytopes - Cayley

What is a combinatorial “Cayley polytope”?

Def. P is an affine Cayley polytope of r polytopes, if exists affine
projection mapping V(P) onto vertex set of (r − 1)-simplex.

Definition/Proposition [N., Padrol ’12]

P is a combinatorial Cayley polytope of r polytopes, if
P is combinatorially equivalent to affine Cayley polytope.

⇔

There exists partition V(P) = A1 ] · · · ] Ar such that

∀ I ( {1, . . . , r} : conv

(⋃
i∈I

Ai

)
is face of P.

In this case, codegc(P) ≥ r .
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II. The combinatorial degree of polytopes - Analogy?

Analogue to Cayley conjecture:

If codegc(P) > d+2
2 ,

then P is a combinatorial Cayley polytope.

Recall:

If P is k-neighborly with k > bd2 c,
then P is a simplex.
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II. The combinatorial degree of polytopes - Analogy?

Example: d = 5, codegc(P) = 4 > 5+2
2 , P not combinatorial Cayley

e3e1

2e4

2e1

2e2

2e3

e2

e4
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II. The combinatorial degree of polytopes - Analogy?

Example: d = 5, codegc(P) = 4 > 5+2
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e3 ± e5e1 ± e5

2e4

2e1

2e2

2e3

e2 ± e5

e4 ± e5
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II. The combinatorial degree of polytopes - Conjecture

Definition

P is a weak Cayley polytope of r polytopes, if
there exists cover V(P) = A1 ∪ · · · ∪ Ar such that

∀ I ( {1, . . . , r} : conv

(⋃
i∈I

Ai

)
is face of P.

Again, in this case, codegc(P) ≥ r .

Correct analogue to Refined Cayley Conjecture?

If codegc(P) > d+r
2 , then P is a weak Cayley polytope of r polytopes.
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II. The combinatorial degree of polytopes - Degree?

degc(P) is maximal codimension of interior face of P.

Let τ be triangulation of P with vertex set V(P), then
deg(hτ ) is maximal codimension of interior face of τ .

Question:

degc(P) = max{deg(hτ ) : τ triangulation with vertex set V(P)} ?

Open part of Generalized Lower Bound Conjecture

P simplicial, then

deg(gP) = min{deg(hτ ) : τ triangulation with vertex set V(P)}

where gP is g -polynomial of face poset ∂P.
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