

Introduction Classification of . . . How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

The degree of lattice polytopes

Benjamin Nill - FU Berlin

University of Minnesota, October 2, 2007

Classification of . . .

How many lattice . . .

What about lattice...

Proof of Theorem I

Outlook

1. Introduction

Introduction
Classification of
How many lattice
What about lattice

Outlook

The h^* -polynomial

Throughout:

- $M \cong \mathbb{Z}^r$ is a lattice, $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^r$.
- $P \subseteq M_{\mathbb{R}}$ is *n*-dimensional lattice polytope.

Theorem. [Stanley 1980]

There is a polynomial $h^*(t) \in \mathbb{Z}[t]$ of degree $\leq n$ with nonnegative integer coefficients such that

$$\sum_{k \geq 0} | \, kP \cap M \, | \, t^k = \frac{h^*(t)}{(1-t)^{n+1}}$$

Introduction Classification of ... How many lattice ... What about lattice ...

Proof of Theorem I

Outlook

Definition:

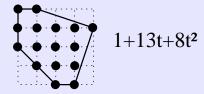
- $h_P^*(t) := h^*(t)$ is called h^* -polynomial of P.
- $h_P^* := (h_0^*, \dots, h_n^*)$ is called h^* -vector of P.

Observations:

- $h_0^* = 1$.
- $h_1^* = |P \cap M| (n+1).$
- $h_n^* = |\operatorname{int}(P) \cap M|.$
- $h_0^* + \dots + h_n^* = \operatorname{Vol}(P) = n! \operatorname{Vol}(P).$

(from now on: volume = normalized volume)

Example: n = 2



Introduction

How many lattice...

What about lattice...

Proof of Theorem I

Outlook

$$h_P^*(t) = 1 + (|P \cap M| - 3) t + |\operatorname{int}(P) \cap M| t^2.$$

Pick's formula:

$$\operatorname{Vol}(P) = h_P^*(1) = |\partial(P) \cap M| + 2|\operatorname{int}(P) \cap M| - 2.$$

Classification of . . .

How many lattice ...

What about lattice

Proof of Theorem I

Outlook

The degree

Definition: The **degree** of P is defined as the degree of the h^* -polynomial.

$$\deg(P) := \max(i : h_i^* \neq 0).$$

Hence

$$0 \le \deg(P) \le n = \dim(P)$$

Philosophy: The degree of a lattice polytope may be regarded as its "true" dimension.

Classification of . . .

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

The codegree

Definition: The codegree of P is defined as: $\operatorname{codeg}(P) := \min\{k \in \mathbb{Z}_{\geq 0} : \operatorname{int}(kP) \cap M \neq \emptyset\}$

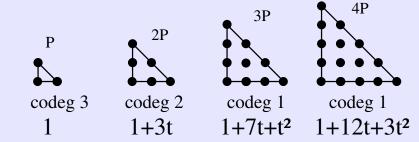
 ${\sf Reciprocity}{\text{-}}{\sf Theorem} \ \Rightarrow$

1

$$\leq \left[\operatorname{codeg}(P) = n + 1 - \operatorname{deg}(P)\right] \leq n + 1$$

 $h^*_{\deg(P)} = |\operatorname{int}(\operatorname{codeg}(P)P) \cap M|.$

Example: n = 2



Introduction

Classification of . . .

How many lattice . . .

What about lattice ...

Proof of Theorem I

Outlook

Observations:

Classification of . . .

How many lattice...

2.

What about lattice...

Proof of Theorem I

Outlook

Classification of lattice polytopes of degree one

Dimension two

Let $P \subseteq M_{\mathbb{R}}$ be a lattice polygon.

 $\deg(P) \leq 1 \Leftrightarrow P$ has no interior lattice points.

Theorem. [Arkinstall 1980; Koelman 1991; Khovanskii 1997; Schicho 2003]

There are precisely *two* cases, in which P has no interior lattice points:

Introduction

Classification of . . .

How many lattice . . .

What about lattice...

Proof of Theorem I

Outlook

either

or

P is the **exceptional triangle** S:

Introduction Classification of . . .

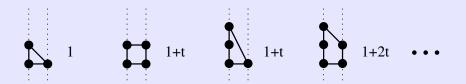
How many lattice . . .

What about lattice...

Proof of Theorem I

Outlook

 ${\cal P}$ lies between two parallel hyperplanes of integral distance one:



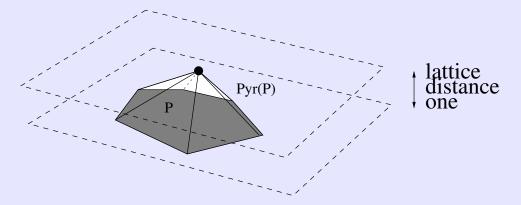
Introduction Classification of . . . How many lattice . . . What about lattice . . .

Proof of Theorem I

Outlook

Lattice pyramid construction

Definition: The **lattice pyramid** over P is defined as $Pyr(P) := conv(\{0\} \times \{0\}, P \times \{1\}) \subseteq M_{\mathbb{R}} \oplus \mathbb{R}.$



Recursively: *k*-fold pyramid over *P*:

 $\operatorname{Pyr}^{k}(P) := \operatorname{Pyr}(\operatorname{Pyr}^{k-1}(P)).$

Proposition: P and Pyr(P) have same h^* -polynomial. \Rightarrow Degree and volume is unchanged!

Higher dimensions

Introduction

Classification of . . .

How many lattice ...

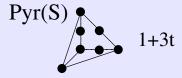
What about lattice . . .

Proof of Theorem I

Outlook

Definition: An *n*-dimensional **exceptional simplex** is an (n-2)-fold lattice pyramid over *S*.

Example: n = 3



Classification of . . . How many lattice . . .

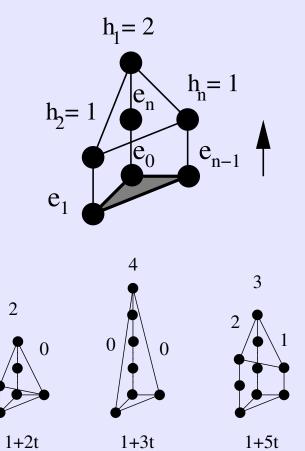
Introduction

What about lattice...

Proof of Theorem I

Outlook

Definition: An *n*-dimensional **Lawrence prism** with heights h_1, \ldots, h_n :



Classification result

Introduction
Classification of
How many lattice
What about lattice
Proof of Theorem I

Outlook

Theorem. [Batyrev, N. 2006] A lattice polytope has degree ≤ 1 if and only if it is an exceptional simplex or a Lawrence prism.

Proof by induction on the number of lattice points, using the monotonicity property of the degree:

Theorem. [Stanley 1993] $Q \subseteq P$ lattice polytopes $\Rightarrow h_Q^* \leq h_P^*$ coefficientwise.

Classification of . . .

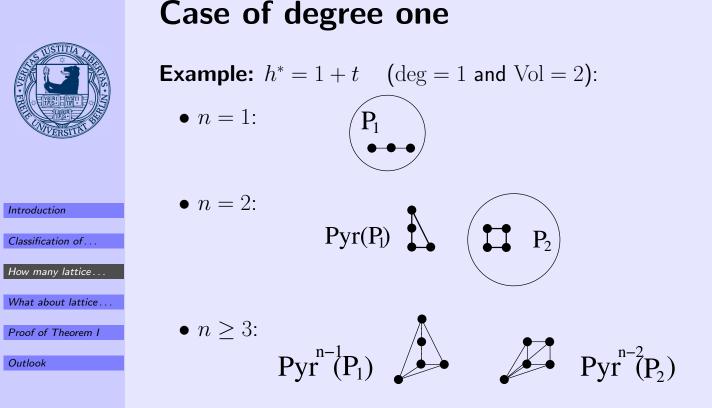
How many lattice . . .

What about lattice...

Proof of Theorem I

Outlook

3. How many lattice polytopes with given h^* -polynomial?



Proposition: An *n*-dimensional lattice polytope P of degree one is a lattice pyramid, if n > Vol(P).

The general case

Introduction

Classification of . . .

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

Theorem. [Batyrev 2006] A lattice polytope of dimension n, volume V, and degree d is a lattice pyramid, if

$$n \ge 4d \binom{2d+V-1}{2d}.$$

Proof relies heavily on commutative algebra.

Introduction
Classification of . . .
How many lattice . . .
What about lattice . . .

Proof of Theorem I

Outlook

Definition: C(V, d, n) := number of isomorphism classes of lattice polytopes of volume V, degree d, dimension n.

- finite (theorem of Lagarias and Ziegler),
- upper monotone in n (pyramid construction),
- eventually become constant (Batyrev's result).

Corollary: There are only **finitely** many lattice polytopes with the same h^* -polynomial up to isomorphisms and pyramid constructions.

Classification of . . .

How many lattice...

What about lattice...

Proof of Theorem I

Outlook

4. What about lattice polytopes of given degree?

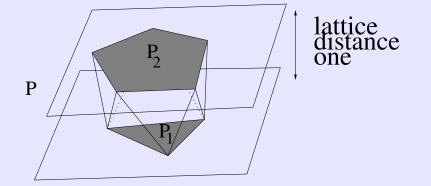
The Cayley polytope conjecture

Introduction Classification of... How many lattice... What about lattice... Proof of Theorem I

Outlook

Definition: A lattice polytope *P* is a **Cayley polytope**

$$P = P_1 * P_2, \quad \text{if}$$



On the other hand, let $P_1, \ldots, P_s \subseteq M_{\mathbb{R}}$ be given.

Definition: $P_1 * \cdots * P_s$ is defined as $\operatorname{conv}(P_1 \times \{e_1\}, \ldots, P_s \times \{e_s\}) \subseteq M_{\mathbb{R}} \oplus \mathbb{Z}^s$, where e_1, \ldots, e_s is a lattice basis of \mathbb{Z}^s .

Conjecture I [Batyrev, N.]: Let d be fixed. There exists N such that any lattice polytope of degree d and dimension n is a **Cayley polytope**, if

 $n \ge N$.

1	
Introd	liction

Classification of . . .

How many lattice . . .

What about lattice . . .

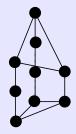
Proof of Theorem I

Outlook

Example: Conjecture I holds for d = 1 with N = 3.

- Pyramids are Cayley polytopes.
- Lawrence prisms are Cayley polytopes of segments.

[0,2]*[0,3]*[0,1]



A surprise ...

Introduction

Classification of . . .

How many lattice . . .

What about lattice . . .

Proof of Theorem I

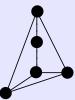
Outlook

Theorem I. [N. 2007] A lattice simplex of degree d and dimension n is a **lattice pyramid**, if

 $n \ge 4d - 1.$

Example: A lattice simplex of degree d = 1 is a lattice pyramid, if $n \ge 3$.

- Exceptional simplices are lattice pyramids for $n \ge 3$.
- Simplices that are Lawrence prisms are lattice pyramids for $n \ge 2$.



... and its generalization

Int	rod	ucti	on

Classification of . . .

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

Theorem II. [N. 2007] A lattice polytope of degree d and dimension n is a **lattice pyramid**, if

$$n \ge (f_0 - n - 1)(2d + 1) + 4d - 1,$$

where f_0 equals the number of vertices of P.

Proofs of Theorems I and II are purely combinatorial.

Classification of . . .

Introduction

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

Back to h^* -polynomial

$$f_0 - n - 1 \le |P \cap M| - n - 1 = h_1^* \quad \Rightarrow \quad$$

Corollary: A lattice polytope of degree d and dimension n is a **lattice pyramid**, if

$$n \ge h_1^*(2d+1) + 4d - 1.$$

Fine tuning of Theorem II \rightsquigarrow

Corollary: A lattice polytope of dimension n, volume V, and degree d is a **lattice pyramid**, if

 $n \ge (V-1)(2d+1) \approx O(V d).$

Classification of . . .

How many lattice . . .

What about lattice...

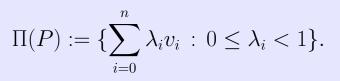
Proof of Theorem I

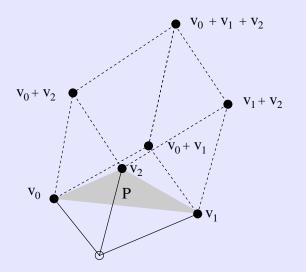
Outlook

5. Proof of Theorem I

The setup

Let P be an n-dimensional lattice simplex of degree d. $P := \operatorname{conv}(v_0, \ldots, v_n) \subseteq M_{\mathbb{R}} \times \{1\}, \quad \overline{M} := M \oplus \mathbb{Z}.$ Definition: (half-open) parallelepiped





Classification of . . . How many lattice . . . What about lattice . . .

Introduction

Proof of Theorem I

Outlook

The support

1. Let $m \in M_{\mathbb{R}} \oplus \mathbb{R}$. Then

$$m = \sum_{i=0}^{n} \lambda_{i} v_{i} \quad \text{for } \lambda_{i} \in \mathbb{R},$$

$$supp(m) := \{i \in \{0, \dots, n\} : \lambda_i \neq 0\}.$$

2.
$$\operatorname{supp}(P) := \bigcup_{m \in \Pi(P) \cap \overline{M}} \operatorname{supp}(m).$$

Introduction

Classification of . . .

How many lattice...

What about lattice...

Proof of Theorem I

Outlook

Introd	uction	

Classification of . . .

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

A simple reformulation

Lemma:

 $P \text{ lattice pyramid } \Leftrightarrow \operatorname{supp}(P) \subsetneq \{0, \dots, n\}$

Proof: Follows from

$$\operatorname{Vol}(P) = |\Pi(P) \cap \overline{M}|.$$

T.f.a.e. for
$$P' := conv(v_0, ..., v_{n-1})$$
:

• P is a lattice pyramid over P' (with apex v_n)

•
$$\operatorname{Vol}(P) = \operatorname{Vol}(P')$$

- $\Pi(P) \cap \overline{M} = \Pi(P') \cap \overline{M}.$
- $\bullet \; \operatorname{supp}(P) \subseteq \{0,\ldots,n-1\}$

Line of argument

 $|\operatorname{supp}(P)| \le 4d - 1.$

Introduction
Classification of
How many lattice
What about lattice
Proof of Theorem I
Outlook

Idea: Cover the support of P in a greedy manner. Choose recursively lattice points

$$m_0, m_1, m_2, \ldots \in \Pi(P) \cap \overline{M}$$

such that

Goal:

$$\begin{split} |\operatorname{supp}(m_0)| \ \operatorname{maximal}, \\ |\operatorname{supp}(m_0) \cup \operatorname{supp}(m_1)| \ \operatorname{maximal}, \\ |\operatorname{supp}(m_0) \cup \operatorname{supp}(m_1) \cup \operatorname{supp}(m_2)| \ \operatorname{maximal}, \end{split}$$

Classification of . . .

How many lattice . . .

What about lattice ...

Proof of Theorem I

Outlook

Claim: $\begin{aligned} |\operatorname{supp}(m_0)| &\leq \mathbf{1} \cdot 2d, \\ |\operatorname{supp}(m_0) \cup \operatorname{supp}(m_1)| &\leq (\mathbf{1} + \frac{\mathbf{1}}{\mathbf{2}}) \cdot 2d, \\ |\operatorname{supp}(m_0) \cup \operatorname{supp}(m_1) \cup \operatorname{supp}(m_2)| &\leq (\mathbf{1} + \frac{\mathbf{1}}{\mathbf{2}} + \frac{\mathbf{1}}{\mathbf{4}}) \cdot 2d, \\ &\dots \end{aligned}$

Finiteness yields

$$\operatorname{supp}(P)| = |\bigcup_{j=0}^{\infty} \operatorname{supp}(m_j)| < 2 \cdot 2d = 4d.$$

Therefore

 $|\operatorname{supp}(P)| \le 4d - 1.$

Proof of claim by induction.

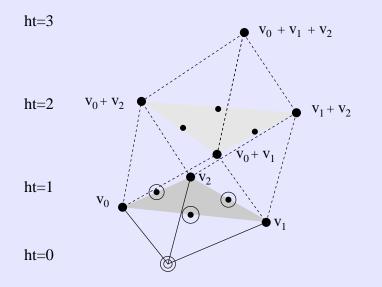
A well-known observation

In the case of a *simplex* the following equation holds:

$$h_i^* = |\{m \in \Pi(P) \cap \overline{M} : \operatorname{ht}(m) = i\}|,$$

where ht(m) equals its last coordinate.

Example: P = S the exceptional triangle, $h^* = 1 + 3t$.



Proof of claim for m_0

We have to show

$$m \in \Pi(P) \cap \overline{M} \quad \Rightarrow |\operatorname{supp}(m)| \leq 2d.$$

The previous slide yields

 $d = \deg(P) \ge \operatorname{ht}(m).$

Let

$$supp(m) = \{0, \dots, s\},\$$
$$P' := conv(v_0, \dots, v_s)$$
$$\Rightarrow \quad m \in int(\Pi(P')) \cap \overline{M}$$

This yields

Outlook

Introduction

Classification of ...

How many lattice . . .

What about lattice...

Proof of Theorem I

$$d \ge \operatorname{ht}(m) \ge \operatorname{codeg}(P') = s + 1 - \operatorname{deg}(P')$$
$$\ge s + 1 - \operatorname{deg}(P) = s + 1 - d.$$

Hence

 $|\operatorname{supp}(m)| = s + 1 \le 2d.$

Classification of . . .

How many lattice . . .

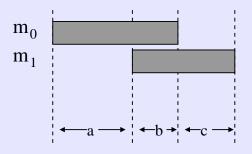
What about lattice . . .

Proof of Theorem I

Outlook

Proof of induction step $m_0 \rightarrow m_1$

Schematic figure of $supp(m_0) \cup supp(m_1) \subseteq \{0, \ldots, n\}$:



 $b+c = |\operatorname{supp}(m_1)| \le |\operatorname{supp}(m_0)| = a+b. \tag{1}$ We are going to show

$$c \le d = \deg(P).$$

Since then

 $|\operatorname{supp}(m_0) \cup \operatorname{supp}(m_1)| = a + b + c \le 2d + d = (1 + \frac{1}{2})2d.$

Then

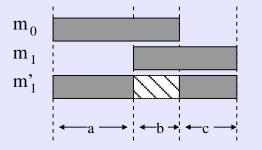
$$m_0 = \sum_{i=0}^n \lambda_i v_i, \quad m_1 = \sum_{i=0}^n \mu_i v_i.$$

$$m_1' := \sum_{i=0}^n \{\lambda_i + \mu_i\} v_i \quad \in \Pi(P) \cap \overline{M},$$

Introduction Classification of . . . How many lattice . . . What about lattice . . . Proof of Theorem I

Outlook

where $\{\gamma\} \in [0, 1]$ is the fractional part of a real number γ .



 $a + c \le \operatorname{supp}(m_1') \le \operatorname{supp}(m_0) = a + b,$

SO

 $c \le b. \tag{2}$

\boldsymbol{c}	1 A .	
Com	bin	ing

$b + c \le a + b$	(1)
—	

and

 $c \le b \tag{2}$

yields

SO

Introduction Classification of . . . How many lattice . . . What about lattice . . .

Proof of Theorem I

Outlook

 $2c \le a + b = \operatorname{supp}(m_0) \le 2d,$

c < b < a + b - c.

 $\Rightarrow \quad c \leq d.$

The general induction step works similarly.

This finishes the proof of Theorem I.

Classification of . . .

How many lattice...

What about lattice...

Proof of Theorem I

Outlook

6. Outlook

Classification of

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

The leading term conjecture

Conjecture: Let $i \in \{1, \ldots, d\}$.

There exists a constant N such that any n-dimensional lattice polytope of degree d and with coefficient h_i^* is a **lattice pyramid**, if

n > N.

For i = d the conjecture is equivalent to:

Conjecture II [Batyrev]:

There exists a **uniform upper bound** on the volume of lattice polytopes of degree d and leading coefficient h_d^* .

Holds for $d \leq 2$ due to Treutlein (2007).

Introduction
Classification of . . .
How many lattice . . .

What about lattice... Proof of Theorem I

Outlook

The Cayley conjecture - refined

Conjecture I': Let d be fixed. There exists N such that any lattice polytope P of degree d and dimension $n \ge N$ is a **Cayley polytope** $P_1 * \cdots * P_s$ of non-empty lattice polytopes for s = n + 2 - N.

Holds for
$$d = 1$$
 with $N = 3$ by the classification.

Theorem. [Haase, N., Payne 2007] Conjecture I' implies Conjecture II.

Conjecture I' also implies the qualitative statements of Batyrev's result and its generalization Theorem II.

meroduotion
Classification of

How many lattice...

What about lattice . . .

Proof of Theorem I

Outlook

Gorenstein polytopes

Definition: P is **Gorenstein**, if h_P^* is symmetric. In particular, $h_d^* = h_0^* = 1$.

Proposition [N.]: Conjecture l' holds for Gorenstein polytopes.

Corollary:

There exists a uniform bound on the volume of Gorenstein polytopes of degree d.

Proposition follows from combining

- [Batyrev, Borisov 1997] criterion for Gorenstein polytopes in terms of **Gorenstein cones**,
- [Batyrev, N. 2007] characterization of Cayley polytopes by **special simplices**.

Classification	of

How many lattice . . .

What about lattice . . .

Proof of Theorem I

Outlook

References

- V.V. Batyrev: Lattice polytopes with a given h*-polynomial. Preprint, math.CO/0602593, 2006. Appeared in: Contemp. Math. (Proceedings of Euroconference on combinatorics at Anogia 2005) **423**, 269–282, 2007.
- V.V. Batyrev, B. Nill: *Multiples of lattice polytopes without interior lattice points*. Preprint, math.CO/0602336, 2006. Appeared in: Moscow Math. J. 7, 195–207, 2007.
- V.V. Batyrev, B. Nill: *Combinatorial aspects of mirror symmetry*. Preprint, arXiv:math/0703456, 2007. To appear in Contemporary Mathematics (Proceedings of AMS-conference on integer points at Snowbird 2006).
- B. Nill: Lattice polytopes having h*-polynomials with given degree and linear coefficient. Preprint, arXiv:0705.1082, 2007.