
Mathematical Physics, Analysis and Geometry 5: 243–286, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

243

On the Essential Spectrum of a Class of Singular
Matrix Differential Operators. I: Quasiregularity
Conditions and Essential Self-adjointness

PAVEL KURASOV1 and SERGUEI NABOKO2

1Dept. of Mathematics, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden.
e-mail: kurasov@maths.lth.se
2Dept. of Mathematical Physics, St. Petersburg Univ., 198904 St. Petersburg, Russia.
e-mail: naboko@snoopy.phys.spbu.ru

(Received: 5 December 2001; in final form: 26 August 2002)

Abstract. The essential spectrum of singular matrix differential operator determined by the operator
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is studied. It is proven that the essential spectrum of any self-adjoint operator associated with this
expression consists of two branches. One of these branches (called regularity spectrum) can be
obtained by approximating the operator by regular operators (with coefficients which are bounded
near the origin), the second branch (called singularity spectrum) appears due to singularity of the
coefficients.
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1. Introduction

Systems of ordinary and partial differential and pseudodifferential equations is a
subject of interest for many mathematicians (see [19] and numerous references
therein). Matrix ordinary differential operators of mixed order appear in many
problems of theoretical physics: hydrodynamics, plasma physics, quantum field
theory, and others. Mathematically rigorous treatment of such problems has been
carried out by several authors: J. A. Adam, V. Adamyan, J. Descluox, G. Gey-
monat, G. Grubb, T. Kako, H. Langer, A. E. Lifchitz, R. Mennicken, M. Möller,
G. D. Raikov, A. Shkalikov, and others [1, 2, 4, 5, 8–11, 15, 17, 20–23, 28, 29, 31,
37]. Matrix differential operators with singular coefficients are of special interest
in plasma physics, for example so-called force operators describing equilibrium
state of plasma in toroidal region are exactly of this kind [20]. A more general
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class of 3 × 3 matrix differential operators with singularities was considered by
V. Hardt, R. Mennicken, and S. Naboko [17], where a new branch of the essential
spectrum determined by the singularity was observed and described. This new
branch had been predicted by J. Descloux and G. Geymonat [5]. To study the
essential spectrum of the operator, so-called quasiregularity conditions were intro-
duced ([17]). These conditions are necessary and sufficient for the boundedness
of the essential spectrum of the singular operator. A different approach to this
class of matrix operators satisfying the quasiregularity conditions was developed
by M. Faierman, R. Mennicken, and M. Möller [10]. Recently, R. Mennicken,
S. Naboko, and Ch. Tretter suggested clarifying approach to study this class of
singular operators ([30]). It was discovered that the new branch of the essential
spectrum can be characterized as the zero set for the symbol of the asymptotic
Hain–Lüst operator introduced in [30]. It should be mentioned that in the new
approach, the authors used Proposition A.1 from the current paper.

Investigation of the essential spectrum of differential and partial differential op-
erators attracts attention of many scientists ([40, 41, 44]). For example the spectrum
of pseudodifferential operators with piecewise continuous symbols has been inves-
tigated by S. C. Power [35, 36]. In [14] (Chapter 3), it is shown how to calculate
the essential spectrum for pseudodifferential boundary value problems using the
principal interior and boundary symbol operators.

A new class of matrix differential operators with singular coefficients is intro-
duced and investigated in this paper. This class consists of 2×2 matrices instead of
the 3 × 3 operator matrices studied in [30], which is a formal simplification. (The
method elaborated in the paper can be applied to m × m operator matrices.) But
all essential features of the problem are still present. Additionally the singularities
of the matrix elements are distributed in a different way. We decided to study this
class of singular operators in order to illustrate the mechanism of the appearance
of the additional branch of essential spectrum using the most explicit example.
This helps us to avoid tedious calculations and at the same time preserves the
main features of the original problem. For this reason we tried to develop a proper
Calkin calculus (see Appendix B), which allows one to justify calculations from
[17, 20–22] being incomplete. On the other hand, employment of Calkin calculus
makes all calculations transparent and easier. For example, the authors of [4], in-
vestigating nonsingular operator matrices, used subtle results from operator theory
due to P. E. Sobolevskii [26]. Developing these methods, some new results on
Banach space operators were obtained. These results on the spectrum of the sum
of three operators are of an abstract nature and can be used in other problems as
well. Investigating this problem, we tried to elaborate a new general approach to
singular matrix differential operators. We hope to be able to apply this method
to most general singular matrix differential operators including partial differential
operators.

The operator under investigation is determined formally by the following ex-
pression:
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We use this form of the matrix differential operator in order to display explicitly
the singularities of three matrix elements at the origin. The most interesting (and
complicated) case is when the functions β and m do not vanish at the origin.
Therefore, the operator defined by the functions β andm having zeroes at the origin
of order 1 and 2 respectively, will be called regular. In this case, all singularities
are artificial. The essential spectrum of the corresponding operator can easily be
investigated using the methods of [4]. All other operators from the described class
will be called singular and we are going to concentrate our attention on the case
of singular operators only. It is clear that the matrix symbol does not determine the
self-adjoint operator uniquely even in the regular case. The extension theory, of the
minimal operator in the regular case has been developed by H. de Snoo [43] and in
the case of nonsingular leading matrix coefficient in [38, 39].

Our interest in singular problem is motivated by the new spectral phenomenon
which can be observed in this case: the essential spectrum of any selfadjoint op-
erator corresponding to the symbol (1) in L2[0, 1] ⊕ L2[0, 1] cannot be described
as a limit of the essential spectra of the operators determined by the same symbol
in L2[ε, 1] ⊕ L2[ε, 1] as ε → +0. Such limit determines only a certain part of
the essential spectrum of the operator in L2[0, 1] ⊕ L2[0, 1]. An additional branch
of the essential spectrum appears due to the singularity of the coefficients at the
origin. Trivial counterpart of this phenomena is well known for infinite intervals,
since for example the essential spectrum of −(d2/dx2) on a finite interval [−an, bn]
is empty and therefore does not give the essential spectrum of −(d2/dx2) on the
whole line when an, bn → ∞. The phenomenon described in the current note is
more sophisticated and is due to rather complicated interplay between the com-
ponents of the matrix differential operator. On the other hand, the coefficient of
the matrix determining the operator have singularities at the boundary points. This
new branch of essential spectrum is absent in the case of regular operators, since
the limit procedure for the essential spectrum described above gives the correct
answer in the regular case. Spectral analysis in the regular case is well known
and can be carried out using methods developed in [4, 15]. In what follows, the
two branches of the essential spectrum will be called the regularity spectrum and
singularity spectrum, respectively. We introduce quasiregularity conditions for the
singular operator which guarantees boundedness of the regularity spectrum. The
quasiregularity conditions determine a special class of singular matrix differen-
tial operators for which we are able to calculate the essential spectra. Note that
in many physical applications, i.e. in plasma physics ([20]), these conditions are
fulfilled.

The singularities of the operator coefficients at the origin play an important role
even at the stage of the definition of the self-adjoint operator corresponding to the
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formal expression (1). The indices of the minimal differential operator produced
by the singular point are investigated by considering the extension of the minimal
operator to the set of functions satisfying certain symmetric boundary condition at
the regular point. (In this way the singular x = 0 and regular x = 1 endpoints
are treated separately and in different ways.) It is proven that this extended op-
erator has trivial deficiency indices (is essentially self-adjoint) if and only if the
quasiregularity conditions are satisfied and β(0) 
= 0. (The condition β(0) = 0
together with the quasiregularity condition (8) imply for smooth coefficients that
m(0) = m′(0) = 0 and therefore that the operator L is not singular.) If at least
one of the quasiregularity conditions is not satisfied or the function β vanishes
at the origin then the deficiency indices of the described extended operator are
nontrivial like it is in the regular case. We would like to note that the quasiregularity
conditions introduced originally to guarantee boundedness of the regular branch of
the essential spectrum play an important role in the investigation of the deficiency
indices. (Note that the name quasiregularity conditions has nothing to do with
the regularity of the extension problem for the operator. It refers to the essential
spectrum only.)

After the family of self-adjoint operators corresponding to the formal expres-
sion (1) is determined, we discuss the transformation of the operator using the
exponential map of the interval [0, 1] onto the half-infinite interval [0,∞). This
map transforms the singular point at the origin to a point at ∞ and enables us to
use the standard Fourier transform in L2(R). So the reason to use this exponential
map is pure technical.

Since we are interested in the essential spectrum of the corresponding self-
adjoint operators, the choice of the boundary conditions in the limit circle case
is not important. The difference between the resolvents of any two operators from
this family is a finite rank operator. To calculate the essential spectrum of any
such selfadjoint operator we use the even stronger fact that the essential spectra of
any two self-adjoint operators coincide if the difference between their resolvents is
compact (Weyl theorem). We develop a so-called cleaning procedure which enables
one to reduce the calculation of the essential spectrum of the complicated matrix
differential operator given by (1) to the calculation of the essential spectrum of a
certain asymptotic singular operator with real coefficients. The singular coefficients
of the asymptotic operator are chosen to have the same singularities as those of the
original operator. In other words the asymptotic operator is chosen so that the dif-
ference between the resolvents of the original and asymptotic operators is compact.
The Hain–Lüst operator can be considered as a regularized determinant of the 2×2
matrix differential operator (1), and it plays a very important rôle in the cleaning
procedure. In the considered case the Hain–Lüst operator is an ordinary (scalar)
second order differential operator in L2(R+). We hope that the approach developed
in the current paper can be applied to more general operators including arbitrary
dimension matrix differential operators and matrix partial differential operators.
The method of cleaning of the resolvent modulo compact operators is of general
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nature. Several abstract lemmas proven in the present paper can be applied without
even minor changes.

To calculate the essential spectrum of the asymptotic operator we use the fact
that its resolvent is equal to the separable sum of two pseudodifferential operators.
We call the sum of two pseudodifferential operators separable if the symbol of
one of these two operators depends only on the space variable, and the symbol
of the other operator depends only on the momentum variable. Calculation of the
essential spectrum of such operators is based on Proposition A.1 from Appendix A.

We observe that the essential spectrum of the model operator under consider-
ation coincides with the set of zeroes of the symbol of the asymptotic Hain–Lüst
operator. That operator is a modified version of the original Hain–Lüst operator
which preserves information on the behavior of the coefficients at the singular point
only. This operator has a more simple expression: it is a second-order differential
operator with constant coefficients. Unfortunately all information concerning the
regularity spectrum disappears during this rectification. This probably general re-
lation between the symbol of the asymptotic Hain–Lüst operator and the singularity
spectrum will be investigated in one of the forthcoming publications.

The methods developed in this article can easily be extended to include differen-
tial operators determined by operator matrices of higher dimension. For example,
the case when the coefficient m appearing in (1) is a matrix can easily be investi-
gated. The developed methods can help to study matrix partial differential operators
as well. These subjects will be discussed in a future publication.

2. The Minimal Operator

Let us consider the linear operator defined by the following operator valued 2 × 2
matrix

L :=



− d

dx
ρ(x)

d

dx
+ q(x) d

dx

β

x

−β
x

d

dx

m(x)

x2


 , (2)

where the real-valued functions ρ(x), q(x), β(x), and m(x) are continuously dif-
ferentiable in the closed interval [0, 1]

ρ, q, β,m ∈ C2[0, 1]. (3)

In addition we suppose that the density function ρ is positive (definite)

ρ(x) � ρ0 > 0. (4)

Certainly these conditions on the coefficients are far from being necessary for our
analysis, but we assume these conditions in order to avoid unnecessary complica-
tions. In this way we are able to present certain new ideas explicitly without getting
the most optimal result.
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The operator matrix (2) determines rather complicated matrix differential op-
erator. Indeed in its formal determinant which controls the spectrum of the whole
operator the differential order of the formal product of the diagonal elements(
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dx
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)
m(x)

x2

coincides with that of the formal product of the antidiagonal elements
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dx
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)
.

The same holds true for the orders of the singularities at the origin. These relations
can be expressed by the diagrams 2 + 0 = 1 + 1 for the order of differential
operators and 0 + 2 = 1 + 1 for the orders of the power-like singularities at the
origin. These conditions imply that the nondiagonal coupling cannot be considered
as a weak perturbation of the diagonal part of the operator and therefore no existing
perturbation theory can be applied to the study of the operator. The aim of this arti-
cle is to describe new spectral phenomena appearing due to this interplay between
the singularities.

The operator matrix given by (2) does not determine unique self-adjoint op-
erator in the Hilbert space H = L2[0, 1] ⊕ L2[0, 1]. To describe the family of
self-adjoint operators corresponding to (2) let us consider the minimal operator
Lmin with the domain C∞

0 (0, 1)⊕C∞
0 (0, 1). The operator Lmin is symmetric but is

not self-adjoint. Let us keep the same notation for the closure of the operator.
Any self-adjoint operator corresponding to the operator matrix (2) is an exten-

sion of the minimal operator Lmin. It will be shown in Section 4 that the deficiency
indices of Lmin are finite and all self-adjoint extensions of the operator can be
described by certain boundary conditions at the end points of the interval [0, 1].
In what follows we are going to consider local boundary conditions only. Such
boundary conditions do not connect the boundary values of functions at different
end point of the interval. As usual each self-adjoint extension of the operator Lmin

is a restriction of the adjoint operator L∗
min ≡ Lmax, which is defined by the same

operator matrix (2) on the domain of functions from W 2
2 [0, 1] ⊕ W 1

2 [0, 1] ⊂ H
satisfying the following two additional conditions ([33])
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dx
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−β
x
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dx
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x2
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Since the original operator Lmin has finite deficiency indices, the difference be-
tween the resolvents of any two self-adjoint extensions of Lmin is a finite rank
operator. Therefore all these self-adjoint operators have just the same essential
spectrum by the Weyl theorem [24].
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3. Quasiregularity Conditions

Consider an arbitrary self-adjoint extension L of the operator Lmin. The essential
spectrum of the operator L will be denoted by σess(L) in what follows. One part of
σess(L) can be calculated using the Glazman splitting method (see [3]) already at
this stage. Indeed consider the operator L0(ε) being the restriction of the operator
L to the domain

Dom(L0(ε)) =
{
F = (f1, f2) ∈ Dom(L) : f1(ε) = d

dx
f1(ε) = f2(ε) = 0

}
.

Consider the following decomposition of the Hilbert space

L2[0, 1] = L2[0, ε] ⊕ L2[ε, 1].
The corresponding decomposition of the Hilbert space H is defined as follows

H = Hε ⊕ H ε = (L2[0, ε] ⊕ L2[0, ε])⊕ (L2[ε, 1] ⊕ L2[ε, 1]).
Using this decomposition the operator L0(ε) can be represented as an orthogonal
sum of two symmetric operators acting in Hε and H ε respectively. The point x =
ε is regular for the operator matrix (2) and one of the self-adjoint extensions of
the operator L0(ε) is defined by Dirichlet boundary conditions at x = ε±. (The
fact that the Dirichlet boundary condition at any regular point determines a self-
adjoint extension is not trivial for matrix differential operators and has been proven
rigorously in [43].) Let us denote this extension by L(ε).

The difference between the resolvents of the operators L(ε) and L is at most a
rank 2 operator. Therefore the essential spectra of these two operators coincide. In
particular the essential spectrum of the operator L contains the essential spectrum
of the operator L(ε) restricted to the subspace H ε = L2[ε, 1] ⊕ L2[ε, 1]

σess(L) ⊃ σess(L(ε)|Hε ), ε ∈ (0, 1). (5)

The restricted operator L(ε)|Hε is a regular matrix self-adjoint operator and its
essential spectrum can be calculated using the results of [4] (Theorem 4.5)

σess(L(ε)|L2(ε,1)) = Rangex∈[ε,1]

(
m(x)

x2
− β(x)2

x2ρ(x)

)
. (6)

For any ε > 0 the essential spectrum of L(ε)|Hε fills in a certain finite interval,
since the functions m,β, and ρ−1 are finite and therefore bounded on [ε, 1]. Since
obviously

σess(L) ⊃
⋃
ε>0

σess(L(ε)|Hε ) = Rangex∈(0,1]

(
m(x)

x2
− β(x)2

x2ρ(x)

)
, (7)

the essential spectrum of L is bounded only if the following quasiregularity condi-
tions hold

ρm− β2|x=0 = 0,
d

dx
(ρm− β2)|x=0 = 0. (8)
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The quasiregularity conditions appeared first in [17] and were also used later in
[9, 10]. Note that the function (ρm− β2)/x2 is related to the leading coefficient of
the formal determinant of the matrix L (2).

The rôle of the quasiregularity conditions is explained by the following state-
ment based on formula (51) to be proven in Section 8.

LEMMA 3.1. Under the assumptions (3) and (4) on the coefficients ρ, β,m, and
q the quasiregularity conditions are fulfilled if and only if the essential spectrum of
at least one (and, hence, any) self-adjoint extension of Lmin is bounded.

Proof. Formula (7) implies that quasiregularity conditions are fulfilled if the
essential spectrum for at least one self-adjoint extension of Lmin. Here we used that
the coefficients satisfy (3). On the other hand, formula (51) valid for any operator
matrix satisfying the quasiregularity conditions implies the boundedness of the
essential spectrum for all self-adjoint extensions of Lmin. The lemma is proven,
provided formula (51) holds true. ✷

In what follows we are going to call the matrix L quasiregular if the quasi-
regularity conditions (8) on the coefficients are satisfied. Regular matrices form a
subset of quasiregular operator matrices. The subfamily of regular matrices can be
characterized by one of the following two additional conditions

m(0) = 0 ∨ β(0) = 0. (9)

Really each of these conditions together with the first quasiregularity condition im-
ply the other one. Then the second quasiregularity condition implies that
m′(0) = 0. Hence, the corresponding matrix is regular, since m(0) = m′(0) =
β(0) = 0. Therefore we are going to concentrate our attention on the case of
quasiregular matrices which are not regular, since the regular matrices have been
studied earlier ([43]).

4. Deficiency Indices

Self-adjoint extensions of the minimal operator Lmin are investigated in this section.
These extensions can be described by certain (generalized) boundary conditions on
the functions from the domain of the extended operator. These boundary conditions
relates the boundary values at the endpoints x = 0 and x = 1. We restrict our
studies to local boundary conditions. The boundary conditions are called local if
they do not join together the boundary values at different points.

Every self-adjoint extension of the operator Lmin is a certain restriction of the
adjoint operator L∗

min. To calculate the adjoint operator it is enough to consider
the operator Lmin restricted to the set of functions from C∞

0 (0, 1) ⊕ C∞
0 (0, 1),

since the adjoint operator is invariant under closure. One concludes using stan-
dard calculations ([33]) that the adjoint operator is determined by the same oper-
ator valued matrix (2) on the set of functions satisfying the following five condi-
tions
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(1) U = (u1, u2) ∈ L2[0, 1] ⊕ L2[0, 1]; (10)

(2) u1 ∈ W 1
2 (ε, 1) for any 0 < ε < 1; (11)

(3) The function

ωU(x) := −ρ(x)u′1(x)+
β(x)

x
u2(x) (12)

is absolutely continuous on [0, 1];
(4)

d

dx
ωU(x) = d

dx

(
−ρ(x) d

dx
u1 + β(x)

x
u2

)
∈ L2[0, 1]; (13)

(5) −β(x)
x

d

dx
u1 + m

x2
u2 ∈ L2[0, 1]. (14)

The function ωU is called transformed derivative� and is well-defined for any
function

U = (u1, u2)), u1 ∈ W 1
2,loc(0, 1) ∩ L2[0, 1], u2 ∈ L2[0, 1].

The transformed derivative appearing in the boundary conditions for the matrix
differential operator L plays the same rôle as the usual derivative for the stan-
dard one-dimensional Schrödinger operator. The function ωU corresponding to
U ∈ Dom(L∗) belongs to W 1

2 (0, 1), since it is absolutely continuous and (13)
holds.

Let us calculate the sesquilinear boundary form of the adjoint operator. This
form can be used to describe all self-adjoint extensions of Lmin as restrictions
of the adjoint operator to Lagrangian planes with respect to this form. Let U ,
V ∈ Dom(L∗

min), then integrating by parts we get

〈L∗
minU,V 〉 − 〈U,L∗

minV 〉

=
〈

d

dx

(
−ρu′1 +

β

x
u2

)
, v1

〉
+
〈
−β
x

d

dx
u1 + m

x2
u2, v2

〉
−

−
〈
u1,

d

dx

(
−ρv′1 +

β

x
v2

)〉
−
〈
u2,−β

x

d

dx
v1 + m

x2
v2

〉

= lim
ε↘0,τ↗1

{∫ τ

ε

(
d

dx
ωU

)
v1 dx +

∫ τ

ε

(
−β
x
u′1 +

m

x2
u2

)
v2 dx −

−
∫ τ

ε

u1

(
d

dx
ωV

)
dx −

∫ τ

ε

u2

(
−β
x
v1

′ + m

x2
v2

)
dx

}

= lim
ε↘0,τ↗1

{
ωU(x)v

′
1(x)|τx=ε −

∫ τ

ε

ωUv1 dx −
∫ τ

ε

β

x
u′1v2 dx −

� The transformed derivative is a generalization of the quasi-derivatives described, for example,
by W. N. Everitt, C. Bennewitz and L. Markus [6, 7].
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− u1(x)ωV (x)|τx=ε +
∫ τ

ε

u′1ωV dx +
∫ τ

ε

u2
β

x
v1

′ dx
}

= lim
ε↘0,τ↗1

{ωU(x)v1(x)|τx=ε − u1(x)ωV (x)|τx=ε}. (15)

Note that the limits in the last formula cannot be always substituted by the limit
values of the functions, since the functions u1 and v1 are not necessarily bounded at
the origin. On the other hand the limit as τ ↗ 1 can be calculated using continuity
of all four functions at the regular endpoint x = 1. This boundary form will be
used to determine the deficiency indices of the operator Lmin and describe its self-
adjoint extensions. This method of using boundary forms to describe self-adjoint
extensions of symmetric operators is classical and is well described for example in
[3] (vol. 2) and [33].

THEOREM 4.1. The operator Lmin is a symmetric operator in the Hilbert space
H with finite equal deficiency indices.

(1) If the operator matrix L is singular quasiregular (i.e. quasiregularity condi-
tions are satisfied and m(0) 
= 0), then the deficiency indices of Lmin are equal
to (1, 1) and all self-adjoint extensions of Lmin are described by the standard
boundary condition

ωU(1) = h1u1(1), h1 ∈ R ∪ {∞}. (16)

(2) If the operator matrix is regular or is not quasiregular then the deficiency
indices of Lmin are equal to (2, 2). The self-adjoint extensions of Lmin are de-
scribed by pair of boundary conditions using the following alternatives covering
all possibilities:

(a) If ρ(0)m(0) − β2(0) 
= 0 or β(0) = 0, then the first component u1 of any
vector from the domain of the adjoint operator L∗

min is continuous on the
closed interval [0, 1]. All local � self-adjoint extensions of the operator Lmin

are described by the standard boundary conditions ��

ωU(1) = h1u1(1), ωU(0) = h0u1(0), h0,1 ∈ R ∪ {∞}. (17)

(b) If

ρ(0)m(0)− β2(0) = 0,
d

dx
(ρm− β2)(0) 
= 0, and β(0) 
= 0,

then the first component u1 of any vector from the domain of the adjoint
operator L∗

min admits the asymptotic representation

u1(x) = kwU(0) ln x + cU + o(1), as x → 0, (18)
� The family of all self-adjoint extensions of Lmin can easily be described using our analysis. The

corresponding formulas are not written here only in order to make the presentation more transparent.
�� In the case hα = ∞, α = 0, 1 the corresponding boundary condition should be written as
u1(α) = 0 or cU = 0.
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where

k = −β
2(0)

ρ(0)

1
d

dx (ρm− β2)|x=0

and cU is an arbitrary constant depending on U . Then all local self-adjoint
extensions of the operator Lmin are described by the nonstandard boundary
conditions ��

ωU(1) = h1u1(1), ωU(0) = h0cU , h0,1 ∈ R ∪ {∞}. (19)

Information concerning the deficiency indices of Lmin and self-adjoint local
boundary conditions is collected in Table I.

Proof. In order to describe all local boundary conditions the points x = 0 and
x = 1 can be considered separately. The point x = 1 is a regular boundary point,
since the functions ρ−1, β/x,m/x2 are infinitely differentiable in a neighborhood
of this point. The symmetric boundary condition at the point x = 1 can be written
in the form

ωU(1) = h1u1(1), (20)

where h1 ∈ R ∪∞ is a real constant parametrizing all symmetric conditions (see
[43] and Case C below for details). The extension of the operator Lmin to the set
of infinitely differentiable functions with support separated from the origin and
satisfying condition (20) at the point x = 1 will be denoted by Lh1 .

Let us study the deficiency indices of the operator Lh1 . The operator adjoint to
Lh1 is the restriction of L∗

min to the set of functions satisfying (20). This operator
is defined by the operator matrix with real coefficients, therefore the deficiency

Table I.

ρ(0)m(0)− β2(0) 
= 0 ρ(0)m(0)− β2(0) = 0

d
dx (ρm− β2)|x=0 
= 0 d

dx (ρm− β2)|x=0 = 0

A B C

β(0) = 0 indices (2,2) indices (2,2) indices (2,2)

2 standard b.c. (17) 2 standard b.c. (17) 2 standard b.c. (17)

β(0) 
= 0 indices (2,2) indices (2,2) indices (1,1)

2 standard b.c. (17) 2 nonstandard b.c. (19) 1 standard b.c. (16)

The letters A, B, and C refer to the three cases considered in the proof of the theorem.
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indices of Lh1 are equal. Moreover, the differential equation on the deficiency
element gλ for any λ /∈ R [3] is given by

d

dx

(
−ρ(x) d

dx
gλ1 +

β(x)

x
gλ2

)
+ q(x)gλ1 = λgλ1 ,

−β(x)
x

d

dx
gλ1 +

m(x)

x2
gλ2 = λgλ2 ;

(21)

and it can be reduced to the following scalar differential equation for the first
component

− d

dx

(
ρ(x)+ β(x)

x

1

λ−m(x)/x2

β(x)

x

)
d

dx
gλ1 + q(x)gλ1 = λgλ1 . (22)

The component gλ2 can be calculated from gλ1 using the formula

gλ2 = − 1

λ−m(x)/x2

β(x)

x

d

dx
gλ1 .

Equation (22) is a second-order ordinary differential equation with continuously
differentiable coefficients. Since the principle coefficient in this equation for non-
real λ is separated from zero on the interval (ε, 1], the solutions are two times
continuously differentiable functions (18).

Boundary condition (20) implies that the first component satisfies the boundary
condition at point x = 1

−
(
ρ(1)+ β2(1)

λ−m(1)
)

d

dx
gλ1 (1) = h1g

λ
1 (1). (23)

This condition is nondegenerate, since λ is nonreal. Therefore the subspace of
solutions to Equation (21) satisfying condition (20) has dimension 1. But these
solutions do not necessarily belong to the Hilbert space H = L2[0, 1] ⊕ L2[0, 1].
If the nontrivial solution is from the Hilbert space, gλ ∈ H , then the operator Lh1 is
symmetric with deficiency indices (1, 1). Otherwise the operator Lh1 is essentially
self-adjoint ([42]). If the principal coefficient of Equation (22) is bounded and
separated from zero on the interval [0, 1], then gλ ∈ H and the operator Lh1 has
deficiency indices (1,1). The last condition is satisfied if for example m(0) 
= 0
and ρ(0)m(0) − β2(0) 
= 0, since �λ 
= 0. Complete analysis of Equation (22)
can be carried out using WKB method ([34]). We are going instead to analyze the
boundary form.

Let us study the singular point x = 0 in more detail. We are going to consider
the following three possible cases:

(A) The first quasiregularity condition (8) is not satisfied.
(B) The first quasiregularity condition is satisfied, but the second quasiregularity

condition (8) is not satisfied.
(C) The quasiregularity conditions (8) are satisfied.
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The case C includes the set of regular operator matrices.

Case A. Consider arbitrary cutting function ϕ ∈ C∞[0, 1] equal to 1 in a certain
neighborhood of the origin and vanishing in a neighborhood of the point x = 1.
The function

W = (m(0)xϕ(x), β(0)xϕ(x))

obviously belongs to the domain of the adjoint operator L∗
h1
, since the support of

the functionW is separated from the point x = 1 and condition (20) is therefore sat-
isfied. The functionW is not identically equal to zero, since the first quasiregularity
condition (8) is not satisfied.

Consider arbitrary U ∈ Dom (L∗
min). Then formula (15) implies that the limit

lim
ε↘0

{−ωU(ε)w1(ε)+ u1(ε)ωW(ε)}
exists. Taking into account that

ωU is absolutely continuous on the interval [0, 1];
limε↘0w1(ε) = 0;
limε↘0 ωW(ε) = −ρ(0)m(0)+ β2(0) 
= 0;

we conclude that the limit u1(0) = limε↘0 u1(ε) exists for arbitrary function U ∈
Dom (L∗). Hence, the boundary form of the operator L∗

h1
is given by

〈L∗
h1
U,W 〉 − 〈U,L∗

h1
W 〉 = −ωU(0)w1(0)+ u1(0)ωW(0),

and is not degenerate. The operator L(h1) has deficiency indices (1,1), and all
symmetric boundary conditions at the point x = 0 are standard

ωU(0) = h0u1(0). (24)

Case B. Let us introduce the following notation

c0 = d

dx
(ρ(x)m(x)− β2(x))|x=0 
= 0. (25)

In addition we suppose that β(0) 
= 0. To prove that the boundary form is not
degenerate (and hence the deficiency indices of Lh1 are (1, 1)) consider the two
vector functions

F =

 1 +

∫ x

0

β(t)

ρ(t)
dt

x


 , (26)

G =

 −

∫ 1

x

(
c0

ρ(0)β(0)
+ β(t)

tρ(t)

)
dt

1


 . (27)
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Multiplying the functions F and G by the scalar function ϕ introduced above one
gets functions from the domain of the operator L∗

h1
. The fact that these functions

satisfy (10), (11), (13), (14) is a result of straightforward calculations. We have

ωF (ε) ≡ 0, lim
ε↘0

f1(ε) = 1,

and

ωG(ε) = − c0

β(0)ρ(0)
ρ(ε), g1(ε) = β(0)

ρ(0)
(ln ε)+ cG + o(1).

Hence the boundary form of L∗
h1
(h1) calculated on ϕF and ϕG is given by

〈L∗
h1
ϕG, ϕF 〉 − 〈ϕG,L∗

h1
ϕF 〉 = c0

β(0)

= 0.

Therefore the deficiency indices of Lh1 are equal to (1,1).
Let us prove that the asymptotic representation (18) holds for any function V

from the domain of the operator adjoint to Lmin. Consider the boundary form of the
adjoint operator calculated on the function V and the above introduced function G.
The following limits obviously exist

∃ lim
ε↘0

[−ωG(ε)v̄1(ε)+ g1(ε)ω̄V (ε)]

= lim
ε↘0

[
−
(
− c0

β(0)
+ o(

√
ε)

)
v̄1(ε)+

+
(
β(0)

ρ(0)
ln ε + cU + o(1)

)
(ω̄V (0)+ o(

√
ε))

]

⇒ ∃ lim
ε↘0

[
c0

β(0)
(1 + o(

√
ε))v̄1(ε)+ β(0)

ρ(0)
ω̄V (0) ln ε

]
.

It follows that (18) holds. The parameters ωU(0) and cU are independent, when U
runs over Dom(L∗

h1
). This follows easily from the fact that the function (u1, u2) =

(1, 0) belongs to the domain of L∗
min.

Substituting the asymptotic representation (18) for arbitrary U,V ∈ Dom(Lh1)

into the boundary form

〈L∗
h1
U,V 〉 − 〈U,L∗

h1
V 〉 = lim

ε↘0
(−ωU(ε)v1(ε)+ u1(ε)ωV (ε))

=−ωU(0)cV + cUωV (0).
Hence all local self-adjoint extensions are described by nonstandard boundary
conditions (19).

To complete the study of Case B, let β(0) = 0. Consider the function F given by

(26) and the function S= ( x
0

)
. Then the boundary form calculated on the vectors

ϕF and ϕS is nondegenerate

〈L∗
h1
ϕS, ϕF 〉 − 〈ϕS,L∗

h1
ϕF 〉 = ρ(0) 
= 0,
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and therefore the operator Lh1 has deficiency indices (1, 1). Let us prove that the
component u1 of any vector from the domain of the adjoint operator is continuous
in the closed interval. Note that

ωS(x) = −ρ(x) and s1(0) = 0.

Consider the boundary form of L∗
h1

calculated on ϕS and arbitrary V ∈ Dom (Lh1)

〈Lh1ϕS, V 〉 − 〈ϕS,Lh1V 〉 = lim
ε↘0
(ρ(ε)v1(ε)+ εωV (ε))

= − lim
ε↘0

ρ(ε)v1(ε).

Since ρ(0) is not equal to zero, the limit limε↘0 v1(ε) exists and therefore self-
adjoint boundary conditions can be written in the standard form (17) as in Case A.
This completes investigation of Case B.

Case C. Suppose in addition that β(0) 
= 0. It follows that the matrix is singular
quasiregular. Consider the vector function

E =

 −

∫ 1

x

β(t)

tρ(t)
dt

1


 ,

which belongs to the domain of the adjoint operator L∗
min due to quasiregular

conditions. Therefore ϕE ∈ Dom(L∗
h1
). Then for any function U ∈ Dom(L∗

h1
) the

boundary form is given by

〈L∗
h1
U, ϕE〉 − 〈U,L∗

h1
ϕE〉 = − lim

ε↘0
ωU(ε)e1(ε),

since ωE(ε) ≡ 0. Note that e1 diverges to infinity due to our assumption β(0) 
= 0

v1(ε) ∼ε↘0
β(0)

ρ(0)
ln ε → ∞.

Since the limit limε↘0 ωU(ε) exists it should be equal to zero

ωU(0) = 0. (28)

Hence taking into account that ωU ∈ W 1
2 [0, 1] one concludes that

ωU(ε) = o(
√
ε). (29)

On the other hand, condition (13) implies that

x
d

dx
u1 = β

ρ
u2 − x

ρ
ωU ∈ L2[0, 1]. (30)

It follows from Cauchy inequality that

u1(ε) = O

(
1√
ε

)
. (31)
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Formulas (29) and (31) imply that the boundary form is identically equal to zero.
Therefore the operator L(h1) is essentially self-adjoint in this case. (Note that each
function from the domain of arbitrary self-adjoint extension of Lmin automatically
satisfies the boundary condition (28) at the singular point.)

To accomplish the investigation of Case C, assume β(0) = 0. The first quasireg-
ularity condition (8) implies that m(0) = 0. The second quasiregularity condition
(8) implies then that (d/dx)m|x=0 = 0. It follows that point zero is a regular point
for the operator matrix L. Therefore the deficiency indices of L(h1) are equal to
(1, 1) and the local self-adjoint extensions are described by standard boundary con-
ditions ([17, 43]). We have already proven this result. Indeed taking into account
that u1 ∈ W 1

2 (0, 1) and that the function ω(ε) is absolutely continuous the above
mentioned fact follows immediately from (15). This accomplishes the investigation
of Case C. The theorem is proven. ✷
COROLLARY 4.1. The theorem implies that the operator Lh1 is essentially self-
adjoint if and only if the operator matrix is singular quasiregular. Otherwise it has
deficiency indices (1,1).

Nonstandard boundary conditions (19) at the singular point described by The-
orem 4.1 are similar to the boundary conditions appearing in the studies of one-
dimensional Schrödinger operator with Coulomb potential

− d2

dx2
− γ

x
in L2(R).

In what follows we are going to study the essential spectrum of the self-adjoint
extensions of the operator Lmin. Since the deficiency indices of this operator are
always finite, the essential spectrum does not depend on the particular choice of
the boundary conditions. The same holds true for nonlocal boundary conditions
and therefore our restriction to the case of local boundary conditions can be waived.
Therefore in the course of the paper we are going to denote by L some self-adjoint
extension of the minimal operator.

5. Transformation of the Operator

In the current section we are going to transform the self-adjoint operator L to
another self-adjoint operator acting in the Hilbert space H = L2[0,∞)⊕L2[0,∞).
The reason to carry out this transformation is pure technical – we would like to be
able to use Fourier transform.

Consider the following change of variables

x = e−y , dx = −e−y dy = −x dy, (32)

mapping the interval [0,∞) onto the interval [0, 1] and the corresponding unitary
transformation between the spaces L2[0, 1] and L2[0,∞)

.: ψ(x) %→ ψ̃(y) = ψ(e−y)e−y/2. (33)
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The points 0 and ∞ are mapped to 1 and 0, respectively, and the following formula
holds∫ 1

0
‖ ψ(x) ‖2 dx =

∫ ∞

0
‖ ψ(e−x) ‖2 e−y dy.

The inverse transform is given by

.−1: ψ̃(y) %→ ψ(x) = 1√
x
ψ̃(−ln x). (34)

To determine the transformed operator denoted by K let us calculate the trans-
formed operator matrix first componentwise

K11:

√
x

([
− d

dx
ρ

d

dx
+ q(x)

]
1√
x
ψ̃(−ln x)

)

= √
x

(
− d

dx
ρ

[
1

2x3/2
ψ̃(−ln x)+ 1

x3/2
ψ̃ ′(−ln x)

])
+ q(x)ψ̃(−ln x)

= √
x

(
ρ ′x

(
1

2x3/2
ψ̃(−ln x)+ 1

x3/2
ψ̃ ′(−ln x)

)
+

+ ρ
[
− 3

4x5/2
ψ̃(−ln x)+ 1

2x3/2
ψ̃ ′(−ln x)

−1

x
+ −3

2x5/2
ψ̃ ′(−ln x)+

+ 1

x3/2
ψ̃ ′′(−ln x)

−1

x

])
+

+ q(x)ψ̃(−ln x)

= − ρ

x2
ψ̃ ′′(−ln x)+

(
ρ ′x
x

− 2
ρ

x2

)
ψ̃ ′(−ln x)+

(
ρ ′x
2x

− 3

4

ρ

x2

)
ψ̃(−ln x)+

+ q(x)ψ̃(−ln x)

= − d

dy

ρ

x2

d

dy
ψ̃(−ln x)+

(
q(x) + ρ ′x

2x
− 3ρ

4x2

)
ψ̃(−ln x).

K12:

√
x

(
d

dx

β

x

1√
x
ψ̃(−ln x)

)

= √
x

d

dx

(
β

x3/2
ψ̃(−ln x)

)

= − β
x2
ψ̃ ′(−ln x)+ ψ̃(−ln x)

(
β ′x
x

− 3β

2x2

)
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= − d

dy

(
β

x2
ψ̃(−ln x)

)
− x

(
β ′x
x2

− 2β

x3

)
ψ̃(−ln x)+

(
β ′x
x

− 3β

2x2

)
ψ̃(−ln x)

= − d

dy

(
β

x2
ψ̃

)
+ β

2x2
.

K21 is the conjugated expression to K12

β

x2

d

dy
+ 1

2

β

x2
.

K22: m/x2.

Finally the transformed operator matrix will be denoted by K and it is given by

K =



− d

dy

ρ

x2

d

dy
+
(
q(x)+ ρ ′x

2x
− 3ρ

4x2

)
− d

dy

β

x2
+ β

2x2

β

x2

d

dy
+ 1

2

β

x2

m

x2


 :=

(
A C∗
C D

)
. (35)

To define a self-adjoint operator corresponding to this operator matrix one has
to consider first the minimal operator Kmin being the closure of the differential
operator given by (35) on the domain of functions from C∞

0 [0,∞) ⊕ C∞
0 [0,∞).

Then one has to study the deficiency indices of this operator and describe all its
self-adjoint extensions. This analysis is equivalent to the one carried out in the
previous section for the operator Lmin. The self-adjoint extensions of the operators
Lmin and Kmin are in one-to-one correspondence given by the unitary equivalence
(33), (34). Therefore we conclude that the deficiency indices of the operator Kmin

are equal and finite ((1, 1) or (2, 2) depending on the properties of the coefficients).
Let us denote by K one of the self-adjoint extensions of the minimal operator. The
essential spectrum of the operator will be studied. The analysis does not depend
on the choice of self-adjoint extension, since the deficiency indices of the minimal
operator are finite.

It is easier to study pseudodifferential operators on the whole axis instead of
the half axis. The reason is that the manifold [0,∞) has nontrivial boundary and
therefore even the momentum operator cannot be defined as a self-adjoint operator
in L2[0,∞). It appears more convenient for us to study the corresponding problem
on the whole real line in order to avoid these nonessential difficulties related to the
boundary point y = 0. In this way the problem of studies of the matrix differential
operator can be reduced to a certain pure algebraic problem.

Consider the Hilbert space H = L2(R) ⊕ L2(R). The operator K acting in H

can be chosen in such a way that its essential spectrum coincides with the essential
spectrum of the operator K.

In order to simplify the discussion of the essential spectrum we have to chose
special continuation of the operator. However, this program applied to the operator
Kmin itself meets some difficulties and it appears more convenient for us to perform
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this program on a later stage of the investigation of the operator, namely during the
studies of the cleaned resolvent of the operator.

6. Resolvent Matrix and the Hain–Lüst Operator

The resolvent of the operator K will be used to study its essential spectrum. The
difference between the resolvents of any two self-adjoint extensions of the minimal
operator Kmin is a finite rank operator and it follows that the essential spectrum is
independent of the chosen self-adjoint extension. In fact it is enough to calculate
the resolvent of the operator K on any subspace of finite codimension, for example
on the range of the minimal operator Kmin. We are going to consider the resolvent
equation

(Kmin − µ)−1F = U,

for µ satisfying one of the following two conditions

(i) (µ 
= 0;
(ii) µ ∈ R, |µ| ) 1.

Formula (36) below shows that resolvent’s denominator T (µ) has no additional
singularities outside x = 0 for all nonreal values of the parameter µ. For suffi-
ciently large real µ the same holds true if either m(0) 
= 0, or m(0) = 0, the
quasiregularity conditions (8) hold and

sign µ sign m(0+) = −1.

If the quasiregularity conditions hold then m(0+) � 0 and the parameter µ can
always be chosen to be small negative, µ* −1.

For F ∈ R(Kmin) and U ∈ C∞
0 [0,∞)⊕ C∞

0 [0,∞) the resolvent equation can
be written as follows

f1 = (A− µ)u1 + C∗u2, f2 = Cu1 + (D − µ)u2.

Using the fact that the operator (D−µ) is invertible for nonreal µ one can calculate
u2 from the second equation

u2 = (D − µ)−1f2 − (D − µ)−1Cu1

and substitute it into the first equation to get

f1 = ((A− µ)− C∗(D − µ)−1C)u1 + C∗(D − µ)−1f2.

The last equation can easily be resolved using Hain–Lüst operator, which is anal-
ogous to the regularized determinant of the matrix K

T (µ) = (A− µI)− C∗(D − µI)−1C

= − d

dy

(
ρ

x2
− β2

x2(m− µx2)

)
d

dy
− µ+

+
{
q(x) + ρ ′x

2x
− 3ρ

4x2
− β2

4x2(m− µx2)
− x d

dx

(
β2

2x2(m− µx2)

)}
. (36)
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Elementary calculations show that under quasiregular conditions (8) both coef-
ficients in the expression above are smooth and bounded. The principle coefficient

ρ

x2
− β2

x2(m− µx2)

is uniformly separated from zero. We consider this operator for µ * −1 on the
set C∞

0 [0,∞) and use the same notation for its Friedrichs extension described by
the Dirichlet boundary condition at the origin. This operator has been introduced
in a special case by K. Hain and R. Lüst during the investigation of problems
of magnetohydrodynamics. In what follows we are going to show that Hain–Lüst
operator plays the key rôle in the investigation of the essential spectrum.

The rôle of the quasiregularity conditions for the Hain–Lüst operator is ex-
plained by the following lemma.

LEMMA 6.1. Let µ /∈ Rangex∈[0,1]((m(x))/x2), then the coefficients of the Hain–
Lüst operator (36)

f (x) = ρ

x2
− β2

x2(m− µx2)
,

and

g(x) = q(x) + ρ ′x
2x

− 3ρ

4x2
− β2

4x2(m− µx2)
− x d

dx

(
β2

2x2(m− µx2)

)
− µ,

are uniformly bounded functions if and only if the quasiregularity conditions (8)
hold.

Comment. The condition µ /∈ Rangex∈[0,1]((m(x))/x2) holds, for example, if the
parameter µ either nonreal or µ ∈ R, µ* −1.

Proof. Let the quasiregularity conditions (8) be satisfied. Then the coefficient

f (x) = ρm− β2 − µx2

x2(m− µx2)

is uniformly bounded, since by (8)

ρ(x)m(x) − β2(x) ∼x→0 cx
2

and the factor m− µx2 is uniformly separated from 0. The function

g(x)− q(x) + µ+ f (x)

4

= ρ ′x
2x

− ρ

x2
− x

(
β2

2x2(m− µx2)

)′

x
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= ρ ′x
2x

− ρ

x2
− x

(
β2 − ρµ

2x2(m− µx2)

)′

x

− x
(

ρµ

2x2(m− µx2)

)′

x

= −x
(

β2 − ρµ
2x2(m− µx2)

)′

x

+ µx
(

ρx2

2x2(m− µx2)

)′

x

is also uniformly bounded.
On the other hand, the boundedness of the leading coefficient

f (x) = ρm− β2 − µx2

x2(m− µx2)

implies conditions (8) under the assumptions of the lemma. The lemma is proven. ✷
Similar result has been proven for magnetohydrodynamic operator in [17].
The resolvent matrix can be presented by

M(µ) ≡ (Kmin − µ)−1

=
(

T−1(µ) −T−1(µ)[C∗(D − µI)−1]
−[(D − µI)−1C]T−1(µ) (D − µI)−1 + [(D − µI)−1C]T−1(µ)[C∗(D − µI)−1]

)
. (37)

The last expression determines the resolvent of any self-adjoint extension K of
the minimal operator Kmin on the subspace R(Kmin) which has finite codimen-
sion. Therefore this resolvent matrix determines the essential spectrum of any
self-adjoint extension K. In order to calculate the essential spectrum we are going
to consider perturbations of the calculated resolvent by compact operators. This is
discussed in the following section.

7. The Asymptotic Hain–Lüst Operator

The essential spectra of two operators coincide if the difference between their
resolvents is a compact operator. This idea of relatively compactness was used
in applications to magnetohydrodynamics by T. Kako [22]. Even if the expression
for the resolvent is much more complicated than the one for operator itself we
prefer to handle with the resolvent. We are going to simplify the expression for
the resolvent step by step using Weyl theorem. We call this procedure cleaning of
the resolvent. Therefore we are going to perturb the resolvent operator M(µ) by
compact operators in order to simplify it. Our aim is to factorize the pseudodiffer-
ential operator M(µ) into a sum of two pseudodifferential operators with symbols
depend on the coordinate and momentum, respectively. In our calculations we are
going to use the Calkin calculus [13]. We say that any two operators A and B are
equal in Calkin algebra if their difference is a compact operator. The following
notation for the equivalence relation in Calkin algebra will be used throughout the
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paper: A =̇B. Since all operators appearing in the decomposition (37) are in fact
pseudodifferential the following notation for the momentum operator will be used

p = 1

i

d

dy
. (38)

This symbol will denote the differential expression in the first half of this section.
The same notation will be used for the symbol of the pseudodifferential operator
on the real line in the rest of the paper.

Let us introduce the asymptotic Hain–Lüst operator for the generic case
m(0) 
= 0

Tas(µ) = a(µ)

(
− d2

dy2
+ c(µ)

)
≡ a(µ)(p2 + c(µ)), (39)

where

a(µ) = lim
x→0

(
ρ

x2
− β2

x2(m− µx2)

)
= l0 − µρ(0)

m(0)
,

l0 = lim
x→0

(
ρ − β2

m

x2

)
, (40)

c(µ)= 1

4
− µ

a(µ)
.

The domain of the asymptotic Hain–Lüst coincides with the set of functions from
the Sobolev space W 2

2 satisfying the Dirichlet boundary condition at the origin:
{ψ ∈ W 2

2 ([0,∞)), ψ(0) = 0}. We obtain the asymptotic Hain–Lüst operator by
substitution the coefficients of the second-order differential Hain–Lüst operator by
their limit values at the singular point. It will be shown that the additional branch of
essential spectrum of L is determined exactly by the symbol of asymptotic Hain–
Lüst operator.

To prove that the difference between the inverse Hain–Lüst and inverse asymp-
totic Hain–Lüst operators is compact we are going to use Lemma B.4. We decided
to devote a separate appendix to this lemma which is of special interest in the theory
of pseudodifferential operators (see Appendix B, where the proof of this lemma
can be found). This lemma implies that the difference of the inverse Hain–Lüst
operators is compact

T −1(µ)− T −1
as (µ) ∈ S∞ (41)

for sufficiently large |µ| to guarantee the invertibility of the both operators. Note
that both operator functions −T −1(µ) and −T −1

as (µ) are operator valued Herglotz
functions ([32]).

8. Cleaning of the Resolvent

This section is devoted to the cleaning of the resolvent, which is based on formula
(41). The main algebraic tool is Calkin calculus ([13]) and Appendix B.
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Using Calkin algebra and Lemma B.1 formula (41) can be almost rigorously
written as follows

p T −1(µ)p =̇ 1
ρ

x2 − β2

x2(m−µx2)

. (42)

In fact to apply Lemma B.1 one needs extra regularizator h – any bounded van-
ishing at infinity function (see formula (80)). The operator p T −1(µ)p here is the
closure of the bounded operator defined originally on W 1

2 [0,∞). Let us introduce
the function

b(x, µ) = β

m− µx2
. (43)

Our aim is to find a matrix differential operator equivalent in Calkin algebra to
the operator M(µ) given by (37). Using (41) and the fact (the result of straight-
forward calculations) that the operators C∗(D − µI)−1 and (D − µI)−1C under
quasiregular conditions are first order differential operators with bounded smooth
coefficients we obtain �

M(µ) =̇



1
a(µ)

1
p2+c(µ) − b(0,µ)

a(µ)

ip+1/2
p2+c(µ)

− b(0,µ)
a(µ)

−ip+1/2
p2+c(µ)

x2

m−µx2 + [(D − µI)−1C]T−1(µ)[C∗(D − µI)−1]


 . (44)

The expressions (±ip + 1/2)/(p2 + c(µ)) are considered as bounded opera-
tors defined on L2[0,∞) by

(±ip + 1/2)(p2 + c(µ))−1,

where (p2 + c(µ))−1 is the resolvent of the Laplace operator p2 with the Dirichlet
boundary condition at the origin. Substituting expressions for the operators C and
D from (35) we get

M(µ) =̇
( 1

a(µ)
1

p2+c(µ) − b(0,µ)
a(µ)

ip+1/2
p2+c(µ)

− b(0,µ)
a(µ)

−ip+1/2
p2+c(µ)

x2

m−µx2 + b(x,µ)(−ip+ 1/2)T −1(µ)(ip + 1/2)b(x, µ)

)
.

Let us concentrate our attention to the element (22). We consider this differential
operator on the set W 1

2 [0,∞).
b(x, µ)(−ip + 1/2)T −1(µ)(ip + 1/2)b(x, µ)

= b(x, µ)(−ip + 1/2)T −1
as (µ)(ip + 1/2)b(x, µ) +

+ b(x, µ)(−ip + 1/2)T −1(µ)(Tas(µ)− T (µ))T −1
as (µ)(ip + 1/2)b(x, µ)

=̇ b(x, µ)
p2 + 1/4

a(µ)(p2 + c(µ))b(x, µ)+
� In fact only the condition m(0) 
= 0 is used here. This relation follows from the first

quasiregularity condition (8).
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+ b(x, µ)(−ip + 1/2)T −1(µ)

[
d

dy

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)
d

dy

]
×

× ip + 1/2

a(µ)(p2 + c(µ))b(x, µ).

The last equality in Calkin algebra holds due to the following observations:

(1) The operator T −1
as (µ)(ip + 1/2) is bounded.

(2) Since the minor terms in both T (µ) and Tas(µ) are bounded functions,
Lemma B.3 and (1) imply that the following operator is compact

(−ip + 1/2)T −1(µ) {bounded function tending to 0 at infinity}
=̇ (−ip + 1/2)T −1

as (µ) {bounded function tending to 0 at infinity}
=̇ 0.

To transform the first term the following equality has been used

(−ip + 1/2)T −1
as (µ)(ip + 1/2) =̇ p2 + 1/4

p2 + c(µ) .

Using

b(x, µ)
p2 + 1/4

p2 + c(µ)b(x, µ) =̇ b(0, µ)
p2 + 1/4

p2 + c(µ)b(0, µ)

(b ∈ L∞[0,∞) and has limit at ∞, Lemma 6.1 from [17]), we get

b(x, µ)(−ip + 1/2)T −1(µ)(ip + 1/2)b(x, µ)

=̇ b2(x, µ)

a(µ)
+ b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ) +

+ b(x, µ)(−ip + 1/2)T −1(µ)

[
−p

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)]
×

× ip2 + p/2
a(µ)(p2 + c(µ))b(x, µ).

The operator

ip2 + p/2
a(µ)(p2 + c(µ))b(x, µ) ≡ (ip2 + p/2)T −1

as (µ)b/x,µ)

is bounded. Consider the operator

b(x, µ)(−ip + 1/2)T −1(µ)

[
−p

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)]

=̇ b(x, µ) 1
ρ

x2 − β2

x2(m−µx2)

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)
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due to Lemma B.1 and the equality following from (8)(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)
|x=0 = 0. (45)

Lemma B.1 could be applied here, since one can easily that the operator

b(x, µ)(1/2)T −1(µ)

[
−p

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)]

is compact.
Therefore the element (22) is equivalent in Calkin algebra to the following

operator

x2

m− µx2
+ b2(x, µ)

a(µ)
+ b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ) −

− b(x, µ) 1
ρ

x2 − β2

x2(m−µx2)

(
ρ

x2
− β2

x2(m− µx2)
− a(µ)

)
1

a(µ)
b(x, µ).

The following formula for the cleaned resolvent matrix has been obtained

M(µ)

=̇




1

a(µ)

1

p2 + c(µ) − b(0, µ)
a(µ)

ip + 1/2

p2 + c(µ)

− b(0, µ)
a(µ)

−ip + 1/2

p2 + c(µ)
x2

m− µx2
+ b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ) + b2(x, µ)

ρ

x2 − β2

x2(m−µx2)


 . (46)

Let us remind that the formal expression

1

a(µ)

1

p2 + c(µ)
in all four matrix entries denotes the resolvent of the asymptotic Hain–Lüst opera-
tor.

The last matrix can be written (at least formally) as a sum of two matrices
depending on x and p only: M(µ) =̇X(x)+ P(p), where

X(x) =




0 0

0
x2

m− µx2
+ b2(x, µ)

ρ

x2 − β2

x2(m−µx2)


 ,

P (p) =




1

a(µ)

1

p2 + c(µ) −b(0, µ)
a(µ)

ip + 1/2

p2 + c(µ)
−b(0, µ)
a(µ)

−ip + 1/2

p2 + c(µ)
b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ)


 .
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In Section 4, to handle pseudodifferential operators, we discussed the extension
of all operators to certain operators acting in the Hilbert space H = L2(R) ⊕
L2(R) ⊃ L2[0,∞) ⊕ L2[0,∞). This procedure can easily be carried out for the
cleaned resolvent. Let us continue all involved functions b(x(y), µ), ρ(x(y)) and
m(x(y)) to the whole real line as even functions of y. Consider the operator gen-
erated by the continued matrix symbol X(x(y))+ P(p). This operator is bounded
operator defined on the whole Hilbert space H. The essential spectrum of the new
operator coincides (without counting multiplicity) with the essential spectrum of
the original operator M(µ). Really Glazman’s splitting procedure ([3]) and Weyl
theorem on compact perturbations ([24]) imply that the essential spectrum of the
new operator coincides with the union of the essential spectra of the two operators
generated by the operator matrix on the two half-axes:

1

p2 + c(µ) |L2(R) =̇
1

p2 + c(µ) |L2(−∞,0] ⊕
1

p2 + c(µ) |L2[0,∞),

where
1

p2 + c(µ) |L2(−∞,0] and
1

p2 + c(µ) |L2[0,∞)

denote the resolvents of the Laplace operator p2 on the corresponding semiaxis
with the Dirichlet boundary condition at the origin. In the last formula p denotes
the momentum operator in the left-hand side and the differential expression in the
right one.

One can easily prove that the unitary transformation(
f1(y)

f2(y)

)
%→
(
f1(−y)
−f2(−y)

)
relates the matrix operators generated in the orthogonal decomposition of the
Hilbert space

H = (L2(−∞, 0] ⊕ L2(−∞, 0])⊕ (L2[0,∞)⊕ L2[0,∞)).
Hence, the two operators appearing in this orthogonal decomposition are unitary
equivalent and therefore have the same essential spectrum.

The problem of calculation of the essential spectrum has been transformed to a
pure algebraic problem.

9. Calculation of the Essential Spectrum

In order to apply Proposition A.1 from Appendix A let us introduce two matrix
operator functions

Q =



0 0

0
ρ(0)

m(0)a(µ)


 (47)
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and

Y (y) =




0 0

0
x2

m− µx2
+ b2(x, µ)

ρ

x2 − β2

x2(m−µx2)

− ρ(0)

m(0)a(µ)


 . (48)

Let us remind the reader that everywhere in the paper x is considered as a function
of the variable y, x = e|y|, where we have taken into account the even continuation
of all parameters of the matrix for negative values of y. The matrices Q, Y (y) and
P(p) satisfy the conditions of Proposition A.1. In addition, the matrix functions
Y (y) and P(p) are continuous on the real line and have zero limits at infinity.
All matrix functions are depending on the parameter µ. Therefore the essential
spectrum of the resolvent operator M(µ) is given by (72)

σess(M(µ)) = σess(Q + P) ∪ σess(Q + Y).

To calculate the essential spectra of the operators Q + P and Q + Y we use the
fact that the determinants of the corresponding matrices Q+ P(p) and Q+ Y (y)
are equal to zero identically. It follows that one of the two eigenvalues of the each
matrix is identically zero. Therefore the essential spectra of the operators coincides
with the range of the second (nontrivial) eigenvalues when y resp.p runs over the
whole real axis. This simple fact is a result of straightforward calculations. The
nontrivial eigenvalues coincide with the traces of the corresponding 2× 2 matrices
Q+ P(p) and Q+ Y (y). The trace of the matrix M(µ) is given by

Tr (M(µ)) = Tr (Y (y))+ Tr (P (p))− Tr (Q)

= 1

a(µ)

1

p2 + c(µ) +
x2

m− µx2
+

+ b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ) + b2(x, µ)

ρ

x2 − β2

x2(m−µx2)

.

The last expression can be factorized into the sum of three factors

Tr(M(µ)) = ϕ(x(y))+ ψ(p)− Tr(Q),

TrQ = ρ(0)

m(0)a(µ)
,

where the functions ϕ(x(y)) and ψ(p) tend to zero as y resp.p tend to ∞. The
factorization is unique and obvious

ϕ(x) = x2

m− µx2
+ b2(x, µ)

ρ

x2 − β2

x2(m−µx2)

;

ψ(p)= 1

a(µ)

1

p2 + c(µ) +
b2(0, µ)

a(µ)

1/4 − c(µ)
p2 + c(µ) + ρ(0)

m(0)a(µ)
.

(49)
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Proposition A.1 implies that the essential of the resolvent operator is given by

σess(M(µ)) = (Range(ϕ(x)) ∪ Range(ψ(x))+ ϕ(0)). (50)

Straightforward calculations imply

σess(L) = Rangex∈[0,1]

{
m− β2

ρ

x2

}
∪
[

l0

4 + ρ(0)
m(0)

,
l0
ρ(0)
m(0)

]
, (51)

where l0 is given by (40). The parameter µ disappears eventually as one can expect.
This parameter is pure axillary.

We conclude that the essential spectrum of L consists of two parts having
different origin. The so-called regularity spectrum ([30])

Rangex∈[0,1]

{
m− β2

ρ

x2

}

is determined by all coefficients of the operator matrix on the whole interval [0, 1].
This part of the spectrum coincides with the limit of the essential spectra of the
truncated operators L(ε)

Rangex∈[0,1]

{
m− β2

ρ

x2

}
=
⋃
ε>0

σess(L(ε)).

On the contrary the singularity spectrum[
l0

4 + ρ(0)
m(0)

,
l0
ρ(0)
m(0)

]

is due to the singularity of the operator matrix at the origin and depends on the
behavior of the matrix coefficients at the origin only. This part of the essential
spectrum is absent for all truncated operators L(ε) and cannot be obtained by the
limit procedure ε → 0. This fact explains the name singularity spectrum given
in [30]. The appearance of this interval of the essential spectrum generated by
the singularity was predicted by J. Descloux and G. Geymonat. Note that the end
point l0/(ρ(0)/m(0)) of the singularity spectrum always belongs to the interval of
regularity spectrum, since

lim
x→0

m− β2

ρ

x2
= l0

ρ(0)
m(0)

.

Remark. Let us remind that the essential spectrum has been calculated provided
m(0) 
= 0 and the quasiregularity conditions are satisfied. If m(0) = 0, the qua-
siregularity conditions imply that β(0) = 0 and hence m′(0) = 0. No singularity
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appears in the coefficients of the matrix L given by (2). Therefore the operator is
regular and its essential spectrum equals to

Rangex∈[0,1]

{
m− β2

ρ

x2

}
(4).

No singularity spectrum appears in this case.
There is another way to describe the singularity spectrum using the roots of the

symbol of the asymptotic Hain–Lüst operator, observed first for a different matrix
differential operator in [30].

LEMMA 9.1. The singularity spectrum[
l0

4 + ρ(0)
m(0)

,
l0
ρ(0)
m(0)

]

of the operator L coincides with the set of singular points (roots) of the symbol of
the asymptotic Hain–Lüst operator

. = {µ ∈ R | ∃p ∈ R ∪ {∞} : a(µ)(p2 + c(µ)) = 0}.
Proof. The set of singular points of the symbol a(µ)(p2 + c(µ)) coincides with

the set

. = {µ ∈ R | c(µ) � 0}.
Formula (40) implies

. =
{
µ ∈ R | 0 �

l0 − µ ρ(0)
m(0)

µ
� 4

}

=
[

l0

4 + ρ(0)
m(0)

,
l0
ρ(0)
m(0)

]
.

Note that p = ∞ formally corresponds to right endpoint of the last interval. The
lemma is proven. ✷

In our opinion this connection between the singular set of the symbol of the
asymptotic Hain–Lüst operator and the singularity spectrum has general character.
Studies in this direction will be continued in one of our forthcoming publications.

Remark. We would like to mention that the regularity spectrum

Rangex∈[0,1]

{
m− β2

ρ

x2

}
under quasiregularity conditions can be calculated using just the symbol of the
Hain–Lüst operator. Really trivial calculations show that the regularity spectrum
coincides with the set of real µ for which the principle coefficient of the Hain–Lüst
operator degenerates, i.e. equals zero. Roughly speaking this idea has been utilized
by physicists K. Hain and R. Lüst ([16]) (see also [12]).
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10. Semiboundedness of the Operator

In many applications to physics semibounded operators play very important rôle.
Semiboundedness of the considered operator is related to the quasiregularity con-
ditions.

THEOREM 10.1. Suppose that the real valued functions q, β, ρ,m satisfy the
following conditions:

q ∈ L∞[0, 1], β,m, ρ ∈ C2[0, 1], ρ � c0 > 0. (52)

Then the symmetric operator Lmin corresponding to the operator matrix (2) is
semibounded if and only if one of the following three conditions is satisfied

(1) (m− β2/ρ)|x=0 > 0,
(2) (m− β2/ρ)|x=0 = 0 and (m− β2/ρ)′|x=0 > 0,
(3) (m− β2/ρ)|x=0 = 0 and (m− β2/ρ)′|x=0 = 0 (quasiregularity conditions).

COROLLARY 10.1. Under assumptions of Theorem 10.1 the operator Lmin ad-
mits self-adjoint extensions. Every such extension L is a semibounded operator if
and only if one of the conditions (1)–(3) is satisfied.

Proof. Since the coefficients of the matrix L are real valued functions, the defi-
ciency indices of Lmin are equal. On the other hand the equation for the deficiency
element is a system of ordinary differential equations. Therefore the set of solutions
has finite dimension. Hence the operator Lmin always has finite equal deficiency
indices and admits self-adjoint extensions. Theorem 10.1 implies that every such
extension is semibounded if and only if one of the three conditions is satisfied
(see [3]). ✷

Proof of Theorem 10.1. Without loss of generality one can suppose that q = 0,
since the operator corresponding to the matrix

(
q 0
0 0

)
is bounded in H and cannot

change the semiboundedness of the whole operator Lmin.
The theorem will be proven by estimating the quadratic form of Lmin defined on

the domain C∞
0 [0, 1] ⊕ C∞

0 [0, 1] by the following operator matrix

L =




− d

dx
ρ

d

dx

d

dx

β

x

−β
x

d

dx

m

x2


 . (53)

The quadratic form of this operator is

〈LminU,U 〉 = 〈ρu′1, u′1〉 −
〈
β

x
u2, u

′
1

〉
−
〈
β

x
u′1, u2

〉
+
〈
m

x2
u2, u2

〉
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=
〈

1 − β√
ρ

− β√
ρ

m






√
ρu′1
u2

x


 ,




√
ρu′1
u2

x


〉 . (54)

Considering functions with zero second component U = (u1, 0) we conclude
that the operator Lmin is not bounded from above, since the quadratic form coin-
cides with the quadratic form of the operator −(d/dx)ρd/dx in this case. Therefore
the operator Lmin is semibounded if and only if it is bounded from below. To get
the second necessary condition for the semiboundedness of the operator consider
the set of functions with zero first component U = (0, u2). The quadratic form is
then given by

〈LminU,U 〉 =
〈
m

x2
u2, u2

〉
.

Hence the operator Lmin is semibounded only if

m(0) > 0 or m(0) = 0 and m′(0) � 0. (55)

Case A. Suppose that the determinant of the matrix

det




1 − β√
ρ

− β√
ρ

m


 = m− β2

ρ

is negative at point zero (and therefore in a neighborhood of this point as well)

m(0)− β(0)2

ρ(0)
< 0. (56)

It follows that the matrix has precisely one negative eigenvalue λ(x) < 0 for small
enough values of x. Let us denote by (α, γ ) the corresponding normalized real
eigenvector depending continuously on x in a neighborhood of the origin.

Suppose that α(0) = 0. Then the first equation for the eigenvector implies that
β(0) = 0 and therefore m(0) < 0 due to (56). This contradicts (55) and therefore
α(0) 
= 0 in a certain neighborhood of the origin due to the continuity of α.

Consider arbitrary real function h ∈ C∞
0 [0, 1] such that the derivative of h

is equal to 1 in the interval (1/4, 1/2) and the family of scaled functions hε =
εh(x/ε). The corresponding family of vector functions Uε = (hε,

γ

α

√
ρxhε ′) is

well-defined for sufficiently small ε. Since

〈LminU
ε,Uε〉 =

∫ ε

0

λ(x)ρ

α2
hε

′2 dx,
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and

‖Uε‖2 =
∫ ε

0

(
hε2 + γ 2ρ

α2
x2hε ′2

)
dx,

the quotient 〈LU,U 〉/‖ U ‖2 tends to −∞ as ε → 0. Hence the operator Lmin is
not semibounded in this case.

Case B. Suppose that

m(0)− β(0)2

ρ(0)
> 0.

The operator L is semibounded in this case. Indeed the quadratic form can be
decomposed as follows

〈LminU,U 〉 =
〈

1 − β(0)√
ρ(0)

− β(0)√
ρ(0)

m(0)






√
ρu′1

u2

x


 ,




√
ρu′1

u2

x



〉
+

+
〈

0
β(0)√
ρ(0)

− β√
ρ

β(0)√
ρ(0)

− β√
ρ

m−m(0)






√
ρu′1

u2

x


 ,




√
ρu′1

u2

x



〉
.

The first term is positive and can be estimated from below by

const(‖u′1‖2 + ‖u2‖2)

due to the assumption. The second term is subordinated to the first one∣∣∣∣∣∣∣∣∣
〈

0
β(0)√
ρ(0)

− β√
ρ

β(0)√
ρ(0)

− β√
ρ

m−m(0)






√
ρu′1

u2

x


 ,




√
ρu′1

u2

x



〉∣∣∣∣∣∣∣∣∣

� const
∫ 1

0

(
xu′1

2 + u2
2

x

)
dx

� const ε
∫ ε

0

(
ρu′1

2 + u2
2

x2

)
dx + const

∫ 1

ε

(
u′1

2 + u2
2

x2

)
dx.

The relative bound const ε can be chosen less than 1 and the second term is
bounded for any ε > 0.

Case C. Suppose that

m(0)− β(0)2

ρ(0)
= 0 and

d

dx

(
m− β2

ρ

)
|x=0 < 0.
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The quadratic form can be decomposed as

〈LminU,U 〉 =
〈(

1 −β/√ρ
−β/√ρ β2/ρ

)
√
ρu′1
u2

x


 ,




√
ρu′1
u2

x


〉+

+
〈(

0 0

0 m− β2/ρ

)


√
ρu′1
u2

x


 ,




√
ρu′1
u2

x



〉
.

Consider the vector function

V ε =
(∫ x

0

β(t)

ρ(t)
hε

′
(t) dt, xhε ′(x)

)
,

where the scalar hε has been introduced investigating Case A. Calculating the the
quadratic form

〈LminV
ε, V ε〉 =

〈(
m− β2

ρ

)
hε

′
, hε

′
〉

and estimating the norm

‖V ε‖2 =
∫ 1

0

[
x2hε

′2 +
(∫ x

0

β

ρ
hε

′ dt
)2]

dx

�
∫ 1

0
[x2hε

′2 + const hε2] dx.

Since (m− (β2/ρ))′|x=0 < 0, the quotient

〈LU,U 〉
‖U‖2

tends to −∞ as ε → 0. The operator is not semibounded in this case.

Case D. Suppose that(
m− β2

ρ

)
|x=0 = 0 and

(
m− β2

ρ

)′
|x=0 � 0. (57)

The operator Lmin is semibounded in this case due to the following estimate〈(
0 0

0 m− β2/ρ

)


√
ρu′1
u2

x


 ,




√
ρu′1
u2

x



〉

=
∫ 1

0

m− β2

ρ

x2
|u2|2 dx � const‖u2‖2,
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which is valid since the function (m− (β2/ρ))/x2 from below.
The Cases A–D cover all the possibilities. The Theorem is proven. ✷

Appendix A. On the Essential Spectrum of the Triple Sum of Operators in
Banach Space

The following simple lemma will be used to calculate the essential spectrum of the
separable sum of pseudodifferential operators. It allows one to pass to the limit in
formula (58) below when the point λ reaches the discrete spectrum.

LEMMA A.1. Let T,Y,P be bounded operators acting in a Banach space X.
Suppose that a certain dotted neighborhood of λ = 0 does not belong to the
spectrum of the operator T and the point λ = 0 is not in the essential spectrum of
the operator T. � Suppose in addition that

Y(T − λ)−1P ∈ S∞ (58)

is a compact operator in the dotted neighborhood. Let RT be the parametrix of the
operator T ([13])

RTT =̇TRT =̇ I. (59)

Then the operator YRTP is compact

YRTP ∈ S∞. (60)

Proof. The following calculations prove the lemma

YRTP := Y(T − λ)−1(T − λ)RTP
=̇ Y(T − λ)−1(I − λRT)P
=̇ −λY(T − λ)−1RTP
=̇ −λYRT(I − λRT)

−1RTP
=̇ 0,

(61)

where the second equality from the end is valid for all λ, 0 < |λ| < 1/‖RT‖ not
from the spectrum of the operator T

(T − λ)R =̇ I − λR ⇒ (T − λ)−1 =̇R(I − λR)−1.

The lemma is proven. ✷
� These conditions imply that the point λ = 0 is a finite type eigenvalue of T ([13]) or does not

belong to the spectrum of T at all. In the last case the proof of the lemma is trivial.
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THEOREM A.1. Let M be the operator sum of three bounded operators Q, Y and
P acting in a certain Banach space

M = Q + Y + P, (62)

such that the complement in C of the essential spectrum of the operator Q is con-
nected. Suppose that the following two operators are compact for any λ from the
regular set of Q

P
1

Q − λY ∈ S∞; Y
1

Q − λP ∈ S∞. (63)

Then the essential spectrum of the operator M can be calculated as follows

σess(M) \ σess(Q) = [σess(Q + Y) ∪ σess(Q + P)] \ σess(Q). (64)

Proof. It has been proven in [13] (Corollary 8.5, page 204) that if the comple-
ment in C of the essential spectrum of a certain bounded operator is connected,
then any number λ from the spectrum of the operator, but not from the essential
spectrum is a finite type eigenvalue ([13]), i.e. the pole of the resolvent with fi-
nite rank Laurent coefficients with negative indices. Lemma A.1 implies that the
operators

YRQ(λ)P, PRQ(λ)Y (65)

are compact operators, where RQ(λ) is one of the parametrix of the operator Q at
point λ

(Q − λ)RQ(λ) =̇RQ(λ)(Q − λ) =̇ I. (66)

Then the following equalities can be proven

(Q + Y − λ)RQ(λ)(Q + P − λ) =̇Q + Y + P − λ;
(Q + P − λ)RQ(λ)(Q + Y − λ) =̇Q + Y + P − λ. (67)

Let us prove the first equality only, since the prove of the second equality is similar.
Formulas (65) imply that

(Q + Y − λ)RQ(λ)(Q + P − λ)
=̇ (I + YRQ(λ))(Q + P − λ)
=̇Q − λ+ YRQ(λ)(Q − λ)+ P + YRQ(λ)P

=̇Q + Y + P − λ.
We are going to prove now formula (64) for the essential spectra of the operators

M, Q, Y, and P following the idea of [17], where a similar fact has been proven to
the sum of two operators. Let us prove the following inclusion first

σess(M) \ σess(Q) ⊂ [σess(Q + Y) ∪ σess(Q + P)] \ σess(Q). (68)
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Suppose that λ does not belong to the essential spectra of the operators Q, Q + Y,
and Q + P, then the operators

Q + Y − λ, RQ(λ), Q + P − λ
are Fredholm operators as a product of three Fredholm operators. Then formulas
(67) imply that the operator

Q + Y + P − λ
is a Fredholm operator. Hence the point λ does not belong to the essential spectrum
of the operator Q + Y + P.

In the second step let us prove the inclusion

σess(M) \ σess(Q) ⊃ [σess(Q + Y) ∪ σess(Q + P)] \ σess(Q). (69)

Suppose that λ does not belong to the essential spectra of the operators M and Q,
i.e. that the operators M − λ and Q − λ are Fredholm operators. We are going to
use Proposition 8.2 from [17] (see also [13]) stating that if the operators A and
B are two bounded operators acting in a certain Banach space and the operators
AB and BA are Fredholm operators, then the operators A and B are also Fredholm
operators. Formulas (67) imply that the operators

RQ(λ)(Q + Y − λ)RQ(λ)(Q + P − λ)
and

RQ(λ)(Q + P − λ)RQ(λ)(Q + Y − λ)
are Fredholm operators. Then the proposition implies that the operators RQ(λ)(Q+
Y − λ) and RQ(λ)(Q + P − λ) are Fredholm operators. It follows from (66) that
the operators

Q + Y − λ =̇ (Q − λ)RQ(λ)(Q + Y − λ)
and

Q + P − λ =̇ (Q − λ)RQ(λ)(Q + P − λ)
are Fredholm operators. It follows that λ does not belong to the essential spectra of
the operators Q + Y and Q + P. Inclusion (69) is proven.

Formulas (68) and (69) imply (64). The Theorem is proven. ✷
Remark. It is possible to get read of the condition that the complement in C of

the essential spectrum the operator Q is connected. Then it is necessary to suppose
that the operators YRQ(λ)P, PRQ(λ)Y are compact for any λ outside the essential
spectrum of Q. It is possible to construct three operators Q,P,Y satisfying all
conditions of the theorem except the connectivity of C \ σess(Q) but not satisfying
formula (64). This counterexample can be prepared using bilateral shift in the
Hilbert space X = ?2

Z(?
2
N,H ⊕ H), where H is a certain infinite dimensional

axillary Hilbert space.
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PROPOSITION A.1. Let M be any n × n matrix separable pseudodifferential
operator generated in the Hilbert space L2(R,Cn) by the symbol

M(y, p) = Q+ Y (y)+ P(p), p = 1

i

d

dy
, (70)

where Q is a constant diagonalizable matrix with simple spectrum, and the matrix
functions Y (y) and P(p) are essentially bounded and satisfy the following two
asymptotic conditions

lim
x→∞Y (y) = 0 lim

p→∞P(p) = 0. (71)

Then the essential spectrum of the operator M is given by

σess(M) = σess(Q + P) ∪ σess(Q + Y). (72)

Proof. The essential spectra of both operators Q + Y and Q + P contain the
essential spectrum of Q

σess(Q) = σ (Q),

where σ (Q) is the spectrum of the matrix Q. To prove this fact one can use pertur-
bation theory and the fact that the matrices Y (y), y → ∞ and P(p), p → ∞ are
asymptotically small ([24]).

Theorem A.1 implies that

σess(Q + Y + P) \ {0} ⊃
⋃
n

σess(PN(Q + Y)PN) \ {0} ⊃ σ (Q) \ {0},

(using A = Q + Y, B = P ). It follows that

σess(M) \ {0} = (σess (Q + P) ∪ σess (Q + Y)) \ {0}. (73)

We are going to remove the set {0} from the last formula.
Applying the same analysis for the operator M − εI we obtain that

σess(M − εI) \ {0} = (σess (Q − εI + P) ∪ σess (Q − εI + Y)) \ {0}. (74)

This implies that

σess(M(y, p)) \ {ε} = (σess(Q + P) ∪ σess(Q + Y)) \ {ε},
for arbitrary real ε and hence

σess(M) = (σess(Q + P) ∪ σess(Q + Y)). (75)

The proposition is proven. ✷
In the special case case n = 1 and when the symbols Y (y) and P(p) are

piecewise continuous the last proposition can be derived from Theorem 3 in [35]
(see also [36]). The advantage of our approach is its transparency compared with
the technique of C∗ algebras used in [35].
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Remark. The condition concerning the simplicity of the spectrum of matrix
Q can be removed in the special case where all matrices Q,Y (y), and P(p) are
Hermitian.

Proof. Consider the family of small Hermitian perturbations Qε, ε > 0 of the
matrix Q such that

‖ Qε −Q ‖� ε

and the spectrum of Qε is simple. Such matrix Qε satisfy the conditions of the
theorem and hence

σess(Qε + Y + P) = σess(Qε + P) ∪ σess(Qε + Y). (76)

Let us denote by Fδ the δ-neighborhood of any set F ⊂ R

Fδ := {x ∈ R : dist(x, F ) � δ}.
LetA and B be two bounded self-adjoint operators acting in a certain Hilbert space.
Then the essential spectra of the operators A and A+B are related by the following
formula ([3])

σess(A + B) ⊂ (σess(A))‖B‖.

From (76) we immediately obtain that

σess(Q + Y + P(p)) ⊂ [σess(Qε + Y) ∪ σess(Qε + P)]2ε;
σess(Q + Y) ∪ σess(Q + P) ⊂ [σess(Qε + Y + P)]2ε.

Since the essential spectra are closed sets and ε is arbitrary small, we conclude that

σess(Qε + Y + P) = σess(Q + Y) ∪ σess(Q + P). (77)

This completes the proof. ✷

Appendix B. Elementary Lemmas on Calkin Calculus

The following lemmas are necessary for the transformation of the resolvent.

LEMMA B.1. Let the real valued function f (y) be positive bounded and sepa-
rated from zero

0 < c � f (y) � C (78)

for some c, C ∈ R+. Let the function g(y) be bounded and the operator

L ≡ pf (y)p + g(y) (79)
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be self-adjoint and invertible in L2(R). Suppose that the operator pL−1p be
bounded. � Then for any bounded function h(y) such that limy→∞ h(y) = 0 the
following equality holds in Calkin algebra

pL−1ph =̇ h

f
. (80)

Comment 1. The rôle of the function h is to regularize the equality which does
not hold in Calkin algebra pL−1 =̇ 1/f . Therefore the regularizing function h can-
not be cancelled in (80). To construct a counter example let us first consider similar
problem on the whole axis for which all calculations are trivial. Let the functions
f and g be constant functions f = 1, g = 1. Then the operator

pL−1p − 1 = p(p2 + 1)−1p − 1 = − 1

p2 + 1

obviously is not compact, since it is a multiplication operator in the Fourier repre-
sentation.

Comment 2. In [4] similar result has been obtained in the regular case. Here
an abstract proof of a generalization of the result is presented. We hope that the
algebraic character of the proof will enable us to generalize these results to a wider
classes of PDO and CDO. The advantage of our approach is that no information
concerning the Green’s function is used.

Proof. Consider first the case where the function h(y) is a C∞(R) function.
We need this condition in order to avoid to consider the closure of bounded op-
erators considered below. All these operators are well defined by their differential
expressions on W 1

2 (R).
The following identity holds (at least in W 1

2 (R))

((p + i)L−1(p − i))
(

1

p − i L
1

p + i
)
= I.

Multiplying the latter equality by the operator of multiplication by decreasing
function h one can get the operator equality valid on W 1

2 (R)

((p + i)L−1(p − i)) 1

p − i (pfp)
1

p+ i h+

+ ((p + i)L−1(p − i)) 1

p − i g
1

p + i h = h.

The second term in left-hand side is a compact operator as the multiplication of
the bounded operator (p + i)L−1(p − i)(1/(p − i))g and the compact operator

� The latter condition could follow from the previous conditions for sufficiently smooth
function f .
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(1/(p + i))h (since the functions 1/(p + i) and h are decreasing function of p
and y respectively). Hence the following equality holds in Calkin algebra

((p + i)L−1(p − i)) 1

p − i (pfp)
1

p+ i h =̇h.

Similarly taking into account that

p
1

p + i h =
(

1 − i

p + i
)
h =̇h

we get the following equality

((p + i)L−1(p − i)) 1

p − i pf h =̇h.

Multiplying by f −1 the latter equality, one gets

(p + i)L−1(p − i) 1

p − i ph =̇
h

f
,

using the fact the function f is boundedly invertible. Multiplying the latter equality
by factor

p

p + i = 1 − i

p + i
from the left one gets in Calkin algebra

h

f
=̇ p

p + i (p + i)L−1(p − i) p

p − i h
p

p − i = pL−1ph.

Let us consider the case of decreasing bounded but otherwise arbitrary func-
tion h. Every such function can be estimated from above by a certain positive
decreasing to zero C∞(R) function h̃, |h(y)| � h̃. We have already proven the
Lemma for the function h̃

h̃

f
=̇ p

p + i (p + i)L−1(p − i) p

p − i h
p

p − i = pL−1ph̃.

Of cause the multiplication by the contraction operator of multiplication by the
bounded function h/h̃ preserves the equality in Calkin algebra. Finally one gets
(80) for arbitrary h satisfying the conditions of the Lemma. ✷

The following lemma is well-known. (It is a special case of problems treated
systematically in [19].)

LEMMA B.2. Let the following conditions be satisfied



ON THE ESSENTIAL SPECTRUM OF MATRIX DIFFERENTIAL OPERATORS I 283

(i) f � c > 0,
(ii) f, g ∈ C1(R),

(iii) (pfp + g)|W 2
2 (R)

is invertible, then the operator (p + i)(pfp + g)−1(p − i)
defined originally on the dense set W 1

2 (R) is bounded in L2(R).

COROLLARY. Under conditions of the lemma the operator

p(pfp + g)−1p|W 1
2 (R)

is also bounded, since the operator p/(p ± i) is a contraction.

Remark. Condition (iv) can be substituted by a stronger condition (iv′) the real
valued function g is positive definite g(x) � c̃0 > 0. Really conditions (i), (ii), (iii)
(iv′) imply (iv), since the estimate

〈(pfp + g)u, u〉 = 〈fpu, pu〉 + 〈gu, u〉 � c0‖pu‖2 + c̃0‖u‖2

implies that the operator (pfp + g)|W 2
2 (R)

has bounded inverse.

LEMMA B.3. Suppose that conditions (i)–(iii) of Lemma B.2 be satisfied. Let in
addition the limits

lim
y→∞f (y), lim

y→∞ g(y),

be finite. Then the difference between the inverse Hain–Lüst and asymptotic Hain–
Lüst operators is a compact operator, moreover

(p + i)[T −1(µ)− T −1
as (µ)] ∈ S∞;

[T −1(µ)− T −1
as (µ)](p − i) ∈ S∞. (81)

Proof. Consider the following chain of equalities

(p + i)[T −1(µ)− T −1
as (µ)] ∈ S∞

= (p + i)T −1(µ){Tas(µ)− T (µ)]T −1(µ)

= (p + i)T −1(µ)(pf̃ p + g̃)T −1(µ)

= (p + i)T −1(µ)(p − i)(p − i)−1(pf̃ p + g̃)T −1(µ),

where

f̃ = f − lim
y→∞ f (y) ∈ C

1(R),

g̃ = g − lim
y→∞ g(y) ∈ L

∞(R) ∩ C1(R),

lim
y→∞ f̃ (y) = lim

y→∞ g̃(y) = 0.
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The operator (p+ i)T −1(µ)(p− i) is bounded and the operator (p− i)−1(pf̃ p+
g̃)T −1(µ) is compact operators, since the operators

(p − i)−1g̃ and f̃ pT −1(µ)

are compact. (Here we use the fact that any pseudodifferential operator deter-
mined by the symbol ϕ(x)ψ(p) is compact if ϕ,ψ ∈ C(R) and limx→∞ ϕ(x) =
0, limp→∞ ϕ(p) = 0.) The lemma is proven. ✷
LEMMA B.4. Let conditions (i)-(iii) of Lemma B.2 be satisfied. Suppose in ad-
dition that the continuous functions α, γ ∈ C(R) are continuous and have finite
limits at infinity. Then the following equality holds in Calkin algebra

(αp + γ )T −1(µ) =̇ (α(∞)p + γ (∞))T −1
as (µ). (82)

Proof. Lemma B.3 implies that

(αp + γ )T −1(µ)

=̇ (αp + γ )T −1
as (µ)

= (α(∞)p + γ (∞))T −1
as (µ)+ ((α − α(∞))p + γ − γ (∞))T −1

as (µ)

= (α(∞)p + γ (∞))T −1
as (µ)+ (α − α(∞))pT −1

as (µ)+ (γ − γ (∞))T −1
as (µ)

=̇ (α(∞)p + γ (∞))T −1
as (µ).

The lemma is proven. ✷
Remark. All lemmas proven in this appendix for the operators acting in L2(R)

are in fact valid for the corresponding operators restricted to L2(R+). To make the
operators self-adjoint in L2(R+) one needs to introduce some additional symmetric
boundary condition at the origin, for example the Dirichlet boundary condition dis-
cussed in the paper. Let us mention here the necessary modifications of Lemma B.1
only. The other lemmas can be treated in the same way. Let L be a self-adjoint op-
erator in L2(R+) determined by (79) and certain boundary condition at the origin.
Consider the extension of L to the operator acting inL2(R) determined by the same
expression, where the functions f (y) and g(y) are continued for negative values
of y as even functions. Then equality (80) holds in Calkin algebra for the extended
operator. Taking into account that the resolvent of the extended operator differs
from the orthogonal sum of two copies of the resolvents of the initial operator taken
on the positive and negative semiaxes separately by a finite rank operator. (Note that
the functions from the domain of both operators satisfy proper separating boundary
conditions at the origin.) We have used here the Glazman splitting method ([3]).
As a result, we obtain the necessary equality for the operators in L2(R+).
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