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1 Introduction

It is known that Krein formula for generalized resolvents of selfadjoint ex-
tensions of symmetric operators may produce not only the resolvent of an
operator, but sometimes the resolvent of an operator relation, which corre-
sponds to the singular choice of the unitary von-Neumann parameter with
an eigenvalue equal to one. The formal von-Neumann construction gives
an operator relation in this case, since the domain of it is not dense. The
denominator of the additional term in Krein formula for generalized resol-
vents is growing linearly in this case. The remarkable fact is that precisely
this property of Krein formula is necessary for the scattering matrix to have
physical behavior at infinity

S(k) −→ 1 when k →∞,
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(see [4]). In this paper we show that the linear term in the asymtotics of
the denominator can appear even if no operator relation occures. Actually
the operators (not operator relations) with exactly this property have been
studied in a series of papers devoting to the investigation of Schrödinger
operators with resonance interaction (“Inner structure”) generated by a finite
matrix ([1, 4, 5, 7]).

We study also the following question: Can operator relation occur if one
considers generalizations of the resonance interactions involving symmetric
operators with arbitrary finite deficiency indices? (All operator considered
earlier have essentially deficiency indices (1,1).) It is proven that the oper-
ator relations can occur, but are not interesting for applications, since the
corresponding generalized resolvents just coincide with the generalized re-
solvents of the selfadjoint operators appeared by restriction of the operator
relations to the subspace of ”physically realizable” elements, which belong
to the linear hull of elements, generated by the ”outer” space. Thus only the
operator-part of the relation plays role in scattering processes.

The authors were supported by the Grant number 3368152 from the Mars-
den Fund of the Royal Society of New Zealand, by the system of Grants
ESPRIT21042, CTIAC, awarded by the Commission in Research and De-
velopment of European Community, and by the grant number 97−01−01149
of the Russian Fund for Fundamental Research.

2 Residue of the resolvent at infinity.

Let us consider first a bounded selfadjoint operator A acting in the Hilbert
Space E. Assume that N ⊂ E, dimN = n is a subspace such that the
angle between N and N̂ ≡ A+iI

A−iI
is positive. This permits developing the

construction of extensions, which is alternative to the classical von Neumann
construction. This construction uses the symmetric Krein parameter for
description of all selfadjoint extensions instead of the unitary parameter in
von-Neumann case. This alternative approach provides a straightforward
proof of Krein formula, [5]. We are going to explain below some details of
this construction.

In what follows the subspaces N, N̂ play roles of deficiency subspaces at
the points λ = i,−i respectively. It is clear, that the Cayley transform of A
transfers EªN into Eª N̂ and N into N̂ . Redefining the Cayley transform
on N : U |N → U ′|N we get a new unitary operator U ′, which coincides with
U on EªN . If 1 is not an eigenvalue of it then the inverse Cayley transform
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A′ = iU ′+1
U ′−1

exists and is a densely defined selfadjoint operator in E. If 1 is
an eigenvalue, then the latter formula defines a selfadjoint operator relation.
In both cases the corresponding resolvent is related to the resolvent of the
corresponding unitary operator by the formula

R′
λ ≡ (A′ − λ1)−1 =

1

i− λ

U ′ − 1

U ′ − ζ
, ζ =

λ + i

λ− i
,

and satisfies the Hilbert relation

R′
λ −R′

µ = (λ− µ)R′
λR

′
µ.

In the singular case the residue of the resolvent at infinity is not equal to
identity but the following equality holds

1

2πi

∮
R′

λdλ = −I + P0,

where P0 is the orthogonal projection onto the singular subspace N0 ⊂ N
which corresponds to the singular eigenvalues ζ = 1 of U ′ . Then the restric-
tion of the relation A′ onto E ªN0 is a usual selfadjoint operator.

The reduction of an operator relation to the operator can be done for finite
rank perturbations of unbounded operators as well with the only difference,
that 1 could be not the isolated eigenvalue of the Cayley transform U ′, but
an embedded eigenvalue. Nevertheless the splitting of the corresponding sin-
gular subspace gives obviously a usual selfadjoint operator in the remaining
part of the Hilbert space.

Consider now the case where the nonperturbed operator acts in an or-
thogonal sum H of two Hilbert spaces H = E ⊕ H and is equal to the
orthogonal sum of two operators A = A ⊕ L acting in the spaces E and H
correspondingly. We suppose that the first operator is bounded, the second
one is unbounded. In the following section the role of A is played by a finite
matrix, and the role of L is played by the Laplacian in L2(R

3).
Let us asume that Ne and Nh are finite dimensional deficiency subspaces

at point λ = i for the restricted operators A0 and L0 respectively. Then the
sum N = Ne ⊕ Nh is a deficiency subspace for the total restricted operator
A0 = A0⊕L0 and Dom (A0) = I

A−iI
[HªN ]. We assume, thatN∩Dom (L) =

∅, so that the domain of the restricted operator L0 is dense in H.
In what follows we need the expression for singular subspace in terms

of Krein parameters. The Krein formula for the singular case has the same
form as for non-singular case (see [6],[7],[9]). Denoting by Γ any bounded
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selfadjoint operator in N (Krein parameter) represented by the operator-
matrix

Γ =

(
γee γeh

γhe γhh

)

we write this formula as

(AΓ − λI)−1 = (A− λI)−1 +
A+ iI

A− λI

I

Γ−Q(λ)
PN

A− iI

A− λI
,

where

Q(λ) =

(
PNe

I+λA
A−λI

|Ne 0

0 PNh

I+λL
L−λI

|Nh

)
≡

(
QA(λ) 0

0 QL(λ)

)

and PN is the orthogonal projector on N . Consider the case where the total
operatorA is bounded, i.e. whereA = A and Γ = γee. Then the residue of the
resolvent at infinity can easily be calculated using the spectral representation
of the finite dimensional operator Γ + PNAPN acting in N with respect to
the weighted scalar product

¿ g, h À≡< PN(I + A2)PNg, h > .

Lemma 1 If the total original operator is bounded A = A then the residue
of the resolvent (AΓ − λI)−1 at infinity is equal to I − P0, where

P0∗ =
∑

αs=0

(A + iI)es < (A− iI)∗, es >,

and es are the eigenvectors of the operator Γ + PNA|N corresponding to the
eigenvalue αs and orthonormalized with respect to the weighted scalar product
¿ ·, · À.

Note that the sum in the latter formula is taken over all eigenvectors corre-
sponding to the zero eigenvalue of the operator γee +PNeA|Ne = Γ+PNA|N .
Proof. Note that the additional term P0 of the residue is determined by the
second term in Krein formula

P0 = (A + iI) lim
λ→∞

1

λ[Γ− PN
I+λA
A−λI

|N ]
PNe(A− iI).

If the operator A is bounded, then the asymptotic representation for the in-
verse operator in the latter formula for large values of λ can be calculated via
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the perturbation procedure. Really, for bounded operator A the denominator
for large values of λ can be represented by convergent series

λ[Γ + PNA|N ] + PN(1 + A2)|N +
∞∑

l=1

PNAl(1 + A2)|N
λl

.

The leading terms of this series can be inverted using the spectral repre-
sentation of Γ + PNA|N in N with respect to the weighted scalar product
¿ ·, · À:

(Γ + PNA)es = αsPN(1 + A2)es.

Assuming, that the eigenvectors are orthonormalized ¿ es, et À= δst, we
get for the inverse of the leading pair :

[λΓ + λPNA|N + PN(1 + A2)|N ]−1f =

=
∑
s

1

1 + λαs

es < f, es >≡ R0f

The term corresponding to the eigenvalue αs = 0 is constant, and the re-
maining terms tend to zero when λ goes to infinity. The operator R0 is
bounded. Taking into account, that the sum of the remaining terms of the
series is small for lagre λ

∞∑

l=1

‖ PNAl(1 + A2)|N
λl

‖= O(
1

λ
),

we conclude, that

1

λ[Γ− PN
I+λA
A−λI

|N ]
= R0[1 + O(

1

λ
)R0]

−1,

and hence

P0f = (A + iI) lim
λ→∞

1

λ[Γ− PN
I+λA
A−λI

|N ]
PNe(A− iI)f

= lim
λ→∞

(A + iI)R0PNe(A− iI)f

=
∑

αs=0

(A + iI)es < f, (A + iI)es > .

Notice, that the dot product in the latter formula is not weighted, hence the
operator P0 is an orthogonal projection in E onto (A + iI)N0. The Lemma
is proven. 2
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In the case where the nontrivial unbounded component is present, the
extensions could be parametrised by the boundary conditions imposed onto
abstract boundary values ξ± of the elements ( see [7]) :

uNe ∼
A

A− iI
ξe
+ +

1

A− iI
ξe
− ∈ Ne + N̂e

h = h0 +
L

L− iI
ξh
+ +

1

L− iI
ξh
− ∈ H,

(
ξe
−

ξh
−

)
=

(
γee γeh

γhe γhh

) (
ξe
+

ξh
+

)
.

Straightforward calculation gives the two-channel Krein formula

(AΓ − λI)−1 =

(
I

A−λI
0

0 I
L−λI

)
+

(
A+iI
A−λI

0

0 L+iI
L−λI

) 


γee − PNe

I+λA
A−λI

|Ne γeh

γhe γhh − PNh

I+λL
L−λI

|Nh




−1

PN

(
A+iI
A−λI

0

0 L+iI
L−λI

.

)
.

Calculation of the residue of the resolvent at infinity in this case obviously
requires comparison of the behavior of Q-operators QA(λ) and QL(λ) at in-
finity. Therefore we are going to study in the following section the particular
case, where the comparison can be easily carried out.

General scattering problem can be studied using technique developed in
[1]. The case where the deficiency indices of the operator L0 are equal to (1, 1)
has been investigated in detail [2, 8]. Physically relevant are the restrictions
of the resolvent of the total operator AΓ to the space H. These restrictions
coincide with the generalized resolvents corresponding to the operator L0.
It has been proven that one can obtain arbitrary generalized resolvent con-
sidering only the restrictions of the operator A with the deficiency indices
(1, 1). Moreover it has been proven that if both restricted operators A0 and
L0 have deficiency indices (1, 1), the boundary operator Γ is not singular
(γeh 6= 0 6= γhe), then AΓ is a selfadjoint operator (not an operator relation).
In the exceptional case, where γeh = γhe = 0, AΓ is equal to the orthogonal
sum of a selfadjoint operator acting in H and may be an operator relation in
E. The latter case is not interesting, since the generalized resolvent in this
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case coincides with the resolvent of a selfadjoint operator acting in H. In the
following section we show how to generalize the resolvent analysis to the case
of unbounded operator.

3 Resolvent analysis of a soluble model.

Let us consider the selfadjoint operator A = A⊕ (−4) acting in the orthog-
onal sum E⊕L2(R

3) with the finitedimensional component E. Reducing the
Laplacian to the domain containing all smooth square integrable functions
vanishing at the origin we get the adjoint operator −4+ defined on locally
W 2

2 (R3 \ {0}) functions outside the origin with the asymptotic behavior

u(x) =
a

4π|x| + b + o(1), x → 0.

The constants a = au, b = bu play the role of boundary data of the element
u at the origin and the corresponding boundary form is equal to

< −4+ u, v > − < u,−4+ v >= buāv − aub̄v.

The boundary data and the boundary form are nontrivial only on the sum
of deficiency subspaces of L0:

Mh = Nh + N̂h =
∨

(
eik|x|

4π|x| ,
e−ik̄|x|

4π|x| ), k2 = i.

The finitedimensional operator A is restricted A → A0 onto domain Dom(A0) =
1

A−iI
(E ª N), N playing the role of the deficiency subspace at the spectral

point i, N = E ª (A0 − iI)Dom (A0). If the angle between Ne and N̂e is
positive, then the elements ν from the orthogonal sum Me = Ne + N̂e can be
characterized by the boundary values ξ±:

ν =
A

A− iI
ξν
+ +

1

A− iI
ξν
−,

and the formal adjoint A+
0 defined on Me by the formulas

A+
0

(
A

A− iI
ξν
+

)
= − 1

A− iI
ξν
+

A+
0

(
1

A− iI
ξν
−

)
=

A

A− iI
ξν
−
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has the boundary form

< A+
0 ν, µ >E − < ν,A+

0 µ >E=< ξν
−, ξµ

+ > − < ξν
+, ξµ

− > .

The latter boundary form can be extended to the formal sum Dom (A0)+Me.
The selfadjoint operator extensions and operator relations of the sym-

metric operator A0 ⊕ L0 are parametrised by Lagrangian planes L of the
total boundary form in Me ⊕Mh, see [5]. In particular these planes LΓ can
be described by the boundary conditions defined by the bounded selfadjoint
operators Γ connecting the boundary data:

(
γee γeh

γhe γhh

) (
ξ+

a

)
=

(
ξ−
b

)
,

similarly to [3]. One can easily check, that the operator A|L defined on
the Lagrangian plane L as a sum of adjoint L+

0 and the formal adjoint A+
0

is symmetric on L. Attaching to it the operators A0 and L0 we get the
selfadjoint operator or operator relation in E ⊕ L2(R3).

Theorem 2 The sum DΓ = D(A0)+L+D(L0) is a direct one in E⊕L2(R
3)

and represents the domain of a selfadjoint operator or operator relation AΓ

defined by the corresponding Krein formula for the resolvent

(AΓ − λI)−1 =




I
A−λI

0

0
∫
R3

eik|x−y|
4π|x−y| · d3y


 +




A+iI
A−λI

0

0 eik|x|
4π|x|




(
γee − PN( I+λA

A−λI
) γeh

γhe γhh − ik
4π

)−1

 PNe

A−iI
A−λI

0

0
∫
R3

eik|y|
4π|y| · d3y


 ,

where k2 = λ.

The proof of this statement can be achieved by minor modification of one
of standard proofs of Krein formula taking into account the fact, that the
restricted operator is not densely defined ( see [3],[5],[9]).

Our aim is investigation of asymptotic behavior of the resolvent at in-
finity and calculation of the corresponding residue. The central part in the
calculation of the resolvent is the calculation of the inverse matrix in the
second term of the expression for the generalized resolvent.
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Lemma 3 Let us denote by K the expression

K ≡ γhh − ik

4π
− γhe

I

γee −Q0

γeh.

Then the following representation of the inverse matrix is true:

(
γee − PN( I+λA

A−λI
) γeh

γhe γhh − ik
4π

)−1

=




1
γee−Q0

[1 + γeh
1

γee−Q0
γhe

1
K

1
γee−Q0

] − 1
γee−Q0

γeh
1
K

− 1
K

γhe
1

γee−Q0

1
K




Proof is obtained by straightforward calculation.
Now we calculate the residue of the resolvent at infinity separately in

”internal” space E and in ”external” space L2(R
3).

Let us consider basis es in N introduced in the previous section. The vec-
tor γ =

∑

αs=0

(A + iI)es < γeh, es >∈ N0 is actually the orthogonal projection

of (A + iI)−1γeh onto M0 = (A + iI)N0. Denoting by γ0 the correspond-
ing normalized vector γ0 = γ

|γ| we form the orthogonal projection in E onto

Mγ ≡ M0 ª {γ} as
PM ∗ −γ0 < ∗, γ0 >≡ PMγ ∗ .

Theorem 4 The residue of the resolvent of the total operator AΓ at infinity
is equal to I − PMγ where PMγ is the orthogonal projector onto Mγ in E ⊕
L2(R

3).

Proof. Straightforward calculation of the expression K for large values of λ
gives

K ≈ γhh − ik

4π
−∑

s

λ

1− λαs

| < γeh, es > |2

= −λ
∑

αs=0

| < γeh, es > |2 − ik

4π
+ γhh − λ

∑

l≥1

∑

αs 6=0

| < γeh, es > |2
(−αsλ)l

= −λ
∑

αs=0

| < γeh, es > |2 + O(1).
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Then the integration of the ee-element of the resolvent over the large circle
gives precisely I − PMγ . The integration of the remaining elements of the
resolvent applied to the dense in L2(R

3) lineal of all functions g1, for which∫ g1(x)
|x| dx = 0 gives no contribution, since each of the elements contains the

factor eik|x|
4π|x| , for instance the eh-element of the kernel of the additional term

in Krein formula gives the residue:
∑

αs=0(A + iI)es < γeh, es >∑
αs=0 | < γeh, es > |2

1

4π|x| ,

which vanishes on this dense lineal. The theorem is proven. 2

At the same time the straightforward calculation shows, that any element
ν from the subspace Mγ

ν =

(
(A + iI)e

0

)
, where e ∈ Ne, [γee + PNA|N ]e = 0, < γeh, e >= 0

satisfies the equation (Aγ − λI)−1ν = 0 for each λ. Really

PNe

A−i
A−λI

(A + iI)e = PNe

A2+1
A−λ

=

PNeAe + PNe

I+λA
A−λI

e = −γeee + Q0(λ)e.

On the other hand
(

γee − PNe(
I+λA
A−λI

) γeh

γhe γhh − ik
4π

) (
e
0

)
=

(
(γee − PNe(

I+λA
A−λI

)γeh)e

0

)
,

since γhee =< e, γeh >= 0. Then we have:

(Aγ − λI)−1ν =
(

A+iI
A−λI

e
)
−

(
A+iI
A−λI

e
)

= 0.

It follows that the space Mγ is contained in the kernel of the resolvent of AΓ.
In the case where the deficiency subspace Ne has dimension one and the

parameters γeh, γhe are not equal to zero, the subspace Mγ is trivial. It follows
that in this case no operator relation occures. If the dimension of the defi-
ciency subspace Ne is greater than one, then AΓ can be an operator relation.
But the restriction of the operator relation to the orthogonal complement of
Mγ in E ⊕ L2(R

3) is a selfadjoint operator. The resolvent of this new oper-
ator restricted to the space L2(R

3) coincides with the restricted resolvent of
the operator relation. Therefore general consideration can be confined to the
case where no operator relation occures, since only the generalized resolvent
is interesting in applications.
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4 Scattering Matrix.

In our case the scattering amplitude is nontrivial in spherically - symmetric
channel only. The corresponding scattering amplitude can be found from the
condition, that the ansatz

ψ =




A+iI
A−λI

ξ+

eik<x,ω> + f(k) eik|x|
4π|x|




satisfies the homogeneous equation (Aγ − λI)ψ = 0 in the distributional
sense and the boundary conditions. This gives the following expressions for
the scattering amplitude f and the boundary data ξ+ in the internal channel:

f(k) =
1

−γhh + γhe(γee −QA(λ))−1γeh + ik
4π

ξ+ = −(γee −QA(λ))−1γehf(k).

It is obvious, that under the condition that the orthogonal projection of
(A + iI)−1γeh onto M0 = (A + iI)N0 is not zero, that is the vector γeh is
not orthogonal to the null-space of the operator γee + PNA|A, the scattering
matrix in spherically - symmetric channel

S(k) =
−γhh + γhe(γee −QA(λ))−1γeh − ik

4π

−γhh + γhe(γee −QA(λ))−1γeh + ik
4π

tends to 1 as k2 = λ → ∞. One can check by direct calculation, that the
inner components of scattered waves are orthogonal to the singular subspace
of the operator relation.

We have shown that all model operators cosidered in the papers [1, 4, 5, 7]
are really selfadjoint operators. These operators can model physically inter-
esting problems only if the denominator in Krein formula for the generalized
resolvents has linear asymtotics at infinity. This situation has been usually
related with the fact that the Q-function of the operator contains linear term
and therefore with the operator relations. We have proven in this paper that
this relation is not inevitable.

The authors are grateful to Professor Malamud for fruitful discussions.
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