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VON NEUMANN–WIGNER THEOREM: LEVEL REPULSION AND

DEGENERATE EIGENVALUES

Yu. N. Demkov∗ and P. B. Kurasov∗†

We investigate the spectral properties of Schrödinger operators with point interactions, focusing attention

on the interplay between level repulsion (von Neumann–Wigner theorem) and the symmetry of the con-

figuration of point interactions. The explicit solution of the problem allows observing level repulsion for

two centers. For a large number of centers, we investigate the families of point interactions leading to the

maximum degeneracy.

Keywords: von Neumann–Wigner theorem, zero-range potential, extension theory, inverse spectral prob-
lem

1. Introduction

The method of operator extensions in mathematics and its special case called the zero-range poten-
tial method in physics have been rapidly developing recently because their universality and applicability
to many physical problems lead to essential simplifications (usually algebraizing the problem). Physical
applications were considered in [1], and the mathematical theory was presented in [2]. In contrast to other
approximation methods, the zero-range potential method contains the continuous spectrum from the very
beginning and preserves important properties of the original problem such as unitarity (in contrast to the
Born approximation). In many problems in physics, short-range objects are separated by large distances
(galaxies, stars, planets, atoms and molecules, nuclei and elementary particles). Apart from very exotic
cases, only solid state problems do not have such properties, but even in condensed matter, excitations can
be regarded as quasiparticles, applying the same method.

Using the zero-range potential method, we obtain a unique possibility to solve quantum problems in
an explicit form. The method is a generalization of the separable potential method, where the interaction
is given by nonlocal projection operators, when δ-functions are chosen as the projection functions, and this
allows preserving the locality of the operator.

Although the theory of zero-range potentials is well developed, the case of an infinite number of centers
or even a few centers is still not completely studied. In this paper, we discuss properties of these models
from the standpoint of the inverse spectral problem and the von Neumann–Wigner theorem.

The celebrated von Neumann–Wigner theorem [3] describes the probability that a finite-dimensional
matrix has a degenerate eigenvalue. This probability is lower than might be expected: the codimension of
the set of matrices with a double eigenvalue is always greater than one. It follows that for a time-dependent
Hamiltonian, the probability that two energy curves intersect is extremely low, and this phenomenon is
called level repulsion. Usually, two levels intersect only if the corresponding eigenfunctions have different
symmetries. Hence, we can expect to observe degenerate eigenvalues primarily for Hamiltonians with
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symmetries. In this paper, we study this phenomenon using Hamiltonians with point interactions in R
1

and R
3. Such operators are widely used in quantum mechanics and atomic physics to model different

physical processes (see [1], [2], [4]–[6], and the numerous references therein).
Every Hamiltonian with N point interactions can have at most N eigenvalues. A straightforward

analysis shows that no eigenvalue of multiplicity N can appear. Our main goal here is to study the
possibility for operators with point interactions to have eigenvalues of the maximum multiplicity N − 1.

This paper is organized as follows. We rigorously define Schrödinger operators with point interactions
in Sec. 2 (mainly following [1], [2]). Because two local point interactions cannot produce any degenerate
eigenvalue (even of multiplicity two), we study level repulsion for two centers in Sec. 3. We study the
multiplicity of levels for the cases of three, four, and five centers in Sec. 4. We show that the symmetry of
the configuration of centers plays an important role in the appearance of strongly degenerate states.

2. Hamiltonians with δ-interactions

A Schrödinger operator with N local δ-interactions at the points {yn}N
n=1 is formally defined by

Lα = −∆ +
N∑

n=1

αnδ( · − yn), (1)

where ∆ is the Laplace operator and δ( · − yn) is the delta function with support at the point yn. Without
loss of generality, we assume that all points yn are different.

In what follows, we precisely define the operator Lα. We note that the operator corresponding to
formal expression (1) is uniquely defined in R

1, but to define this operator in R
3, we must take extra

assumptions into account.
We consider the Laplace operators

− ∆1 = − d2

dx2
in L2(R1),

− ∆3 = − ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

in L2(R3),
(2)

which are self-adjoint when defined on the Sobolev spaces W 2
2 (Rj). Here, x and �x = (x1, x2, x3) denote the

respective coordinates in R
1 and R

3. Then the operator corresponding to formal expression (1) is one of
the self-adjoint extensions of the symmetric restrictions −∆j0 of the operator −∆j , j = 1, 3, to the set of
functions vanishing at the interaction points:

−∆j0 = −∆j|{ψ∈W 2
2 (Rj) : ψ(yn)=0, n=1,2,...,N}. (3)

The corresponding deficiency elements for λ = −χ2 are just solutions of the equations −∆j0∗g + χ2g =
δ(x − yn):

g1(x, yn) =
e−χ|x−yn|

2χ
, g3(x, yn) =

e−χ|x−yn|

4π|x − yn| , n = 1, 2, . . . , N. (4)

Hence, the deficiency indices of the restricted operators are equal to (N, N). The domains of the adjoint
operators are

Dom(−∆10∗) = W 2
2 (R1 \ {yn}N

n=1) ∩ C(R1),

Dom(−∆30∗) = W 2
2 (R3 \ {yn}N

n=1).
(5)
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To describe self-adjoint extensions of −∆j0, we use the boundary values for the functions from the domain
of the adjoint operator:

ψ(x) ∼x→yn −1
2
|x − yn|ψ−n + ψ0n + o(1) for R

1,

ψ(x) ∼x→yn

1
4π|x − yn|ψ−n + ψ0n + o(1) for R

3.

(6)

Then the boundary forms of the adjoint operators are given by

〈(−∆j0∗)u, v〉 − 〈u, (−∆j0∗)v〉 =
N∑

n=1

(u0nv̄−n − u−nv̄0n). (7)

We introduce the diagonal matrix α = diag{α1, α2, . . . , αN}.

Definition. The operator Lj
α is the restriction of the adjoint operator −∆j0∗ to the set of functions

from ψ ∈ Dom(−∆j0∗) satisfying the boundary conditions

�ψ0 = −α−1 �ψ−, (8)

where �ψ− = (ψ−1, ψ−2, . . . , ψ−N )T and �ψ0 = (ψ01, ψ02, . . . , ψ0N )T are vectors of boundary values of the
function ψ. In other words, the operator Lj

α coincides with the Laplace operator defined on the domain of
functions satisfying (8).

In one dimension, we can prove that the operator corresponding to formal expression (1) is given by
this definition. To show this in three dimensions, we must use certain additional assumptions such as the
homogeneity of the Laplace operator and of the δ-distribution (see Sec. 1.5.1 in [5]). We do not want to
dwell on this point, because our further studies are based on the definition and are independent of these
assumptions.

In what follows, we consider only local point interactions, i.e., interactions corresponding to the diagonal
matrix α. The question of which point interactions are local was exhaustively investigated in [7] (it can
be shown that nondiagonal matrices α in condition (8) lead to nonlocal interactions). Without loss of
generality, we assume that all coefficients αn are nonzero. If this is not the case, then the set of singular
points yn, n = 1, 2, . . . , N , can simply be reduced.

The resolvent of the perturbed operator Lα can be calculated using Krein’s formula [8]–[10] because
each operator Lj

α is a finite-dimensional perturbation of the Laplace operator −∆j in the resolvent sense.
Hence, the essential spectrum of Lα is purely absolutely continuous and coincides with the interval [0,∞) (it
has multiplicity two in R

1 and infinite multiplicity in R
3). The number of negative eigenvalues cannot exceed

N (the rank of the perturbation). In addition, a straightforward analysis shows that no positive eigenvalues
occur. The discrete spectrum of the operator is given by the zeroes of the perturbation determinant
appearing in Krein’s formula.

Another way to obtain the equation for the discrete spectrum is to consider the ansatz for the eigen-
function

ψ =
N∑

n=1

angj(x, yn), (9)

where gj(x, y) are the Green’s functions for the Laplace operator given by (4). The function ψ given by
formula (9) satisfies the eigenfunction equation for the energy λ = −χ2

Lj0∗ψ = −χ2ψ (10)
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for any value of the complex parameters an. It is an eigenfunction if and only if it satisfies boundary
condition (8). We consider the boundary values of the Green’s functions

g1 = g1(x − yn) ⇒ g1
−m =





1, m = n,

0, m �= n,
g1
0m =






1/(2χ), m = n,

e−χ|yn−ym|

2χ
, m �= n,

g1 = g1(x − yn) ⇒ g3
−m =





1, m = n,

0, m �= n,
g3
0m =






−χ/(4π), m = n,

e−χ|yn−ym|

4π|yn − ym| , m �= n.

(11)

We obtain the respective dispersion equations defining the discrete spectrum in R
1 and R

3:

det(1 + G1 + 2χα−1) = 0, (12)

det(−χ + G3 + 4πα−1) = 0, (13)

where Gj are the Hermitian N×N matrices

G1
nm =





e−χ|yn−ym|, n �= m,

0, n = m,

G3
nm =






e−χ|yn−ym|

|yn − ym| , n �= m,

0, n = m.

(14)

In what follows, we study solutions of these dispersion equations, focusing on the degeneracy of the
eigenvalues.

In addition to eigenfunctions exponentially decreasing at infinity (corresponding to negative eigenval-
ues), there exist solutions with a power-law decrease (corresponding to the eigenvalue zero). The decrease of
these functions at infinity is related to their angular dependence. Spherically symmetric functions decrease
as c/r and therefore are not normalizable. All other values of the angular momentum are admissible (for
E = 0).

3. Level repulsion for two centers in R
1 and R

3

Two local point interactions cannot produce a degenerate eigenvalue; therefore, we study the level
repulsion in this section. The operator with two δ-potentials can be parameterized by three real parameters:
the distance d > 0 between the centers and the strengths αj , j = 1, 2, of the point interactions.

We first consider the case of two point centers in R
1. In this case, the dispersion equation is given by

the formula
(1 + 2χα−1

1 )(1 + 2χα−1
2 ) − e−2χd = 0. (15)

Using the two parameters

γi = −1
2
αi, i = 1, 2, (16)

for convenience, we write it in the form

(χ − γ1)(χ − γ2)
γ1γ2

− e−2χd = 0. (17)
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Let L1(γ1, γ2) denote the corresponding operator.
The dispersion equation for two centers in R

3 is given by

(−χ + 4πα−1
1 )(−χ + 4πα−1

2 ) − e−2χd

d2
= 0. (18)

We introduce the two new parameters

γj =
4π

αj
, j = 1, 2, (19)

and obtain the dispersion equation

(χ − γ1)(χ − γ2) −
e−2χd

d2
= 0. (20)

The corresponding operator is denoted by L3(γ1, γ2).
The parameters γj just introduced for the one- and three-dimensional problems can be interpreted as

the energies of the bound states associated with each of the two point centers separately.
We consider the Schrödinger operator with one δ-interaction −∆ + αδ(x). Then the corresponding

operator has exactly one bound state with the energy

E = −γ2 = −α2

4
(21)

under the condition α < 0 in R
1 and

E = −γ2 = − (4π)2

α2
(22)

under the condition α > 0 in R
3.

The energies corresponding to single interactions can be obtained from dispersion equations (17)
and (20) in the limit d → ∞. The exponential function tends to zero, and the two dispersion equations are
transformed into the equation

(χ − γ1)(χ − γ2) = 0.

This equation has two solutions χ = γ1,2 and determines the energies of two bound states E1 = −γ2
1 and

E2 = −γ2
2 under the conditions γ1,2 > 0.

Another way to obtain these bound states is to consider the limit where the interaction at one of the
centers vanishes. We note that a vanishing interaction αj = 0 formally corresponds to γj = 0 in R

1 and
γj = ∞ in R

3. The limit of the respective Eqs. (17) and (20) as γ2 → 0 and γ2 → ∞ is the equation

χ − γ1 = 0,

which determines the unique bound state with the energy E1 = −γ2
1 (under the condition γ1 < 0).

It seems more convenient to use the parameters γj instead of αj to define the operators with point
interactions.

We study the number of eigenvalues depending on the values of the two parameters. Without loss of
generality, we can assume that γ1 ≥ γ2. We introduce the notation

P 1(χ) =
(χ − γ1)(χ − γ2)

γ1γ2
,

P 3(χ) = (χ − γ1)(χ − γ2).
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The eigenvalues of the operator L(γ1, γ2) correspond to positive (real) solutions of the dispersion equation.
We note that Eq. (17) has one “parasite” solution χ = 0, which is unphysical because no eigenfunction
corresponds to E = 0 in this case. The corresponding function does not belong to the Hilbert space.

We study the three cases covering all possibilities (the cases where γ1 or γ2 are equal to zero can be
excluded from consideration) separately for point interactions in R

1 and R
3.

1. In the case γ2 ≤ γ1 < 0, the functions P 1(χ) and e−2χd for positive χ satisfy the inequalities

P 1(χ) ≥ 1 ≥ e−2χd,

which are strict for χ �= 0. Therefore, Eq. (17) has no solution on the interval (0,∞) in this case.
The function P 3 increases to infinity for positive χ, and the function e−2χd/d decreases. Comparing

the values of the functions at the origin, we can deduce that Eq. (20) has one solution if and only if

γ1γ2 <
1
d2

. (23)

2. In the case γ2 < 0 < γ1, the functions P 1(χ) and e−2χd are equal to 1 at χ = 0; their second
derivatives are respectively negative and positive. Therefore, Eq. (17) has at most one positive solution,
and this solution exists if and only if

d

dχ
(e−2χd)

∣∣∣∣
χ=0

<
d

dχ
P 1(χ)

∣∣∣∣
χ=0

,

i.e.,
1
γ1

+
1
γ2

< 2d.

The solution belongs to the interval (0, γ1); let χ1 denote this solution.
Equation (20) always has one solution in this case because the function P 3 increases to infinity and

has a positive zero and the function e−2χd/d2 is positive and decreases to zero. The solution belongs to the
interval (γ1,∞).

3. In the case 0 < γ2 ≤ γ1, the function P 1 is equal to zero at the points χ = γ1 and χ = γ2 and
increases to +∞ on the interval (γ1,∞). Hence there exists a solution of Eq. (17) in the interval (γ1,∞).
This solution is denoted by χ1. The second solution may be located in the interval (0, γ2), and it exists if
and only if the condition

d

dχ
(e−2χd)

∣∣∣∣
χ=0

<
d

dχ
P 1(χ)

∣∣∣∣
χ=0

is satisfied, i.e.,
1
γ1

+
1
γ2

< 2d.

Let χ2 denote this solution.
Similarly, Eq. (20) has two solutions χ1 and χ2 in the intervals (0, γ2) and (γ1,∞) if and only if the

condition
γ1γ2 >

1
d2

(24)

is satisfied. Otherwise, the equation has a unique solution in the interval (γ1,∞).
We have thus again proved that the discrete spectrum of the two considered problems consists of at

most two distinct eigenvalues located on the negative half-axis. We now study the inverse spectral problem
for these operators: reconstruct the coupling constants γ1 and γ2 for the operators L1(γ1, γ2) and L3(γ2, γ3)
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from the bound-state energies −χ2
1 = E1 < E2 = −χ2

2 < 0 for a fixed distance d between the centers. We
can set d = 1 without loss of generality.

We first consider the dispersion equation corresponding to the one-dimensional problem. We suppose
that χ1 and χ2 are solutions of (17). Then the parameters γ1,2 satisfy the system of equations

(χ1 − γ1)(χ1 − γ2) = γ1γ2e
−2χ1 ,

(χ2 − γ1)(χ2 − γ2) = γ1γ2e
−2χ2 ,

(25)

which can be rewritten in the form

γ1γ2 =
χ1χ2(χ1 − χ2)

χ1(1 − e−2χ2) − χ2(1 − e−2χ1)
≡ A(χ1, χ2),

γ1 + γ2 =
χ2

1(1 − e−2χ2) − χ2
2(1 − e−2χ1)

χ1(1 − e−2χ2) − χ2(1 − e−2χ1)
≡ B(χ1, χ2).

(26)

Each of these two equations is linear in γi. Therefore, this system of equations can be solved, for example,
by expressing γ1 from the first equation and substituting it in the second equation. We obtain the quadratic
equation

γ2 − Bγ + A = 0, (27)

which can always be solved. But the solution of the equations can be complex, while only real parameters γj

define a self-adjoint operator. Hence, the bound-state energies are not arbitrary but satisfy the inequality

D(χ1, χ2) ≡ B2(χ1, χ2) − 4A(χ1, χ2) ≥ 0. (28)

Similarly, for the three-dimensional problem, we have the system of equations

(χ1 − γ1)(χ1 − γ2) = e−2χ1 ,

(χ2 − γ1)(χ2 − γ2) = e−2χ2

(29)

or

γ1γ2 = χ1χ2 +
χ1e

−2χ2 − χ2e
−2χ1

χ1 − χ2
≡ A(χ1, χ2),

γ1 + γ2 = χ1 + χ2 −
e−2χ1 − e−2χ2

χ1 − χ2
≡ B(χ1, χ2),

(30)

and again there exists a self-adjoint operator if and only if discriminant (28) is nonnegative.

Theorem 1. Let E1 = −χ2
1 < −χ2

2 = E2 be eigenvalues of the operator Lj(γ1, γ2), j = 1, 3. Let the

energy E1 = −χ2
1 be fixed. Then all possible values of χ2 fill the interval [0, χmax

2 ], where χmax
2 = χmax

2 (χ1)
is the value of χ2 corresponding to the symmetric interaction γ1 = γ2. This value of χmax

2 is the unique

solution of the respective equations

1 − e−χmax
2

χmax
2

=
1 + e−χ1

χ1
, χmax

2 + e−χmax
2 = χ1 − e−χ1 (31)

for R
1 and R

3.
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Proof. We prove the theorem for the one and three dimensions separately.
1. In one dimension, the energies χ1 and χmax

2 corresponding to the symmetric case γ1 = γ2 ≡ γ can
be calculated from the equation

(χ − γ)2 = γ2e−2χ ⇒ χ − γ = ±γe−χ ⇒

⇒ 1 + e−χ1

χ1
=

1 − e−χmax
2

χmax
2

.

To prove the theorem, it suffices to show that the discriminant of system (27) is positive for χ2 < χmax
2

and negative for χmax
2 < χ2. Taking into account that the discriminant is equal to zero for χ2 = χmax

2

(γ1 = γ2 in this case), it suffices to show that ∂D(χ1, χ2)/∂χ2 is negative. We consider the function
f(x) = (1 − e−2x)/x. Direct calculations show that

0 ≤ f(x) ≤ 2, −2 ≤ f ′(x) ≤ 0, 0 ≤ f ′′(x)

for x > 0. It is easy to show that

A =
χ1 − χ2

f(χ2) − f(χ1)
.

Then the mean value theorem implies that 0 ≤ A(χ1, χ2) ≤ 1/2. Taking into account that B = χ1 +
A(χ1, χ2)f(χ1), we can evaluate the derivative of the discriminant:

∂D(χ1, χ2)
∂χ2

= 2((χ1 + A(χ1, χ2)f(χ1))f(χ1) − 2)
∂A(χ1, χ2)

∂χ2
.

To prove that the derivative ∂A(χ1, χ2)/∂χ2 is positive, we again use the mean value theorem,

∂A(χ1, χ2)
∂χ2

=
f(χ1) − (f(χ2) + (χ1 − χ2)f ′(χ2))

(f(χ1) − f(χ2))2
,

and take into account that the second derivative of f is positive. The expression in the parentheses is
negative:

χ1f(χ1) + A(χ1, χ2)f2(χ1) − 2 ≤ χ1f(χ1) +
f2(χ1)

2
− 2 ≤ 0.

The last inequality follows directly from the properties of the function f(x). Hence, D(χ1, χ2) is positive
for χ2 < χmax

2 and negative for χmax
2 < χ2.

2. In three dimensions, we introduce the new parameters

ξ =
1
2
(γ1 + γ2), η =

1
2
(γ1 − γ2), (32)

i.e.,
γ1 = ξ + η, γ2 = ξ − η.

Dispersion equation (20) becomes
(χ − ξ)2 − η2 − e−2χ = 0. (33)

Because χ1 is a solution of the last equation, we obtain

Q3(ξ, χ) ≡ (χ − ξ)2 − (χ1 − ξ)2 − e−2χ + e−2χ1 = 0. (34)
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We can now estimate the partial derivative ∂χ2/∂η as

∂χ

∂η

∣∣∣∣
χ=χ2

=
η(χ1 − χ2)

(χ1 − ξ)(χ2 − ξ + e−2χ2)
< 0,

taking into account that

χ2 − ξ + e−χ = −
√

e−2χ2 + η2 + e−2χ2 ≤ e−χ2(e−χ2 − 1) < 0.

It follows that χ2 takes its maximum value at η = 0, i.e., in the symmetric case γ1 = γ2 ≡ γ. This case
corresponds to χ1 and χ2 = χmax

2 satisfying the equation

(χ − γ)2 = e−2χ ⇒ χ1 − χmax
2 = e−χ1 + e−χmax

2 .

Hence, the estimate

χ1 − χ2 ≥ e−χ1 + e−χ2 (35)

holds for all χ2 : 0 ≤ χ2 ≤ χmax
2 .

We show that the discriminant is positive for all χ2 ≤ χmax
2 . The discriminant of quadratic equation (30)

for γ1 and γ2 is

D(χ1, χ2) = (χ1 − χ2)2 − 2(e−2χ1 + e−2χ2) +
(e−2χ1 − e−2χ2)2

(χ1 − χ2)2
.

We can estimate the sum of the first and third terms by

(e−χ1 + e−χ2)2 +
(e−2χ1 − e−2χ2)2

(e−χ1 + e−χ2)2
,

taking into account that (χ1 −χ2)2 ≥ e−2χ1 − e−2χ2 in accordance with estimate (35). Hence, the discrim-
inant can be estimated from below:

D(χ1, χ2) ≥ (e−χ1 + e−χ2)2 − 2(e−2χ1 + e−2χ2) +
(e−2χ1 − e−2χ2)2

(e−χ1 + e−χ2)2
= 0.

It follows that system (30) has real solutions for all 0 ≤ χ2 ≤ χmax
2 (χ1). The theorem is proved.

The theorem states that the system of two local point interactions never has a multiple eigenvalue. The
distance between the eigenenergies is minimum in the symmetric case γ1 = γ2. This is illustrated in Fig. 1
(Figs. 1a and 1b respectively correspond to R

1 and R
3). The domains between the curves are forbidden,

i.e., it is impossible to find two point interactions at the distance d = 1 such that the eigenvalues are located
in these domains. In the limit as χ1, χ2 → ∞, these curves approach the line χ1 = χ2. This means that
two deep eigenvalues may be located rather close to each other. Both curves intersect the corresponding
coordinate axes at the points that are a unique solution of the equation x = 1 + e−x.
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a

b

Fig. 1

We have proved that the Schrödinger operator with two local point interactions cannot have a degen-
erate eigenvalue. Moreover, the two eigenvalues cannot be arbitrarily close to each other. This is a certain
generalization of the von Neumann–Wigner theorem [3]. We note that the last statement holds because of
the special form of the boundary conditions described by diagonal matrices. Considering nonlocal point
interactions, we can obtain operators with two negative eigenvalues located arbitrarily.

4. Degenerate eigenvalues in the case of several centers

The one-dimensional Schrödinger operator cannot have degenerate eigenvalues (except in the case
where the operator can be represented by an orthogonal sum of operators on two intervals). Therefore, we
restrict our consideration to the case of the three-dimensional Schrödinger operator with point interaction
described in Sec. 2. Moreover, we study the maximum possible degeneracy for simplicity. Lower-order
degeneracies can be studied by considering clusters consisting of a smaller number of centers.

We consider the possibility of the maximum degeneracy N − 1 for the system of N point potentials.
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The equation determining the eigenvalues in this system is

det





−χ + γ1
e−χd12

d12

e−χd13

d13
· · · e−χd1N

d1N

e−χd21

d21
−χ + γ2

e−χd23

d23
· · · e−χd2N

d2N

e−χd31

d31

e−χd32

d32
−χ + γ3 · · · e−χd3N

d3N

...
...

...
. . .

...

e−χdN1

dN1

e−χdN2

dN2

e−χdN3

dN3
· · · −χ + γN





= 0, (36)

where γj = 4πα−1
j . This equation determines at most N negative eigenvalues. We are interested in the

case where one of these eigenvalues has the maximum possible multiplicity N − 1. This occurs in the case
where all rows in the matrix are parallel, i.e., the determinants of all 2×2 minors are zero. We estimate for
which number of centers this is possible. For sufficiently large N (N ≥ 3), the configuration of the centers
is determined by Ngeom = 3(N−2) distances. In addition, there are Next = N parameters determining the
extensions. Hence, the matrix contains Npar = Ngeom + Next + 1 = 4N − 5 parameters if we additionally
include the spectral parameter χ. The total number of 2×2 minors is equal to (n(n − 1)/2)2, but the
number of independent equations reduces to n(n − 1)/2 because of the symmetry and special form of the
matrix. Hence, there are Ncon =n(n−1)/2 constraints in general on the parameters that guarantee the
maximum degeneracy of the eigenvalue. Because the number of constraints increrases quadratically but the
number of parameters increases just linearly, it is impossible to find a configuration leading to the maximum
degeneracy for sufficiently large N . In Table 1, we show the calculated maximum expected dimension D of
the parameter set that guarantees the maximum degeneracy.

Table 1

N Ngeom Next Npar Ncon D

1 0 1 2 1 1

2 1 2 4 1 3

3 3 3 7 3 4

4 6 4 11 6 5

5 9 5 15 10 5

6 12 6 19 15 4

7 15 7 23 21 2

8 18 8 27 28 ∅

We see that for low N , our “naive” calculations give the correct result. Thus, in the case of one point
interaction, there is a one-parameter family of extensions having an eigenvalue. For two centers, the family
of operators having an eigenvalue is described by three parameters: two extension parameters and one
distance.

For large N (N ≥ 8), the table indicates that no eigenvalue of maximum multiplicity is possible. In
this section, we study the case of intermediate values of N .
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Three centers. There are nine minors. Because the matrix is symmetric, only six minors are inde-
pendent. Because of the special structure of the matrix, the number of equations reduces to three:

− χ + γ1 =
d23

d12d13
eχ(d23−d13−d12),

− χ + γ2 =
d13

d12d23
eχ(d13−d12−d23),

− χ + γ3 =
d12

d13d23
eχ(d12−d13−d23).

(37)

Theorem 2. For an arbitrary configuration {y1, y2, y3} of three points in R
3 and an arbitrary negative

number E = −χ2, there exists a unique set of parameters α1, α2, and α3 such that the Schrödinger operator

with three δ-interactions of the strengths α1, α2, and α3 respectively concentrated at y1, y2, and y3 has a

degenerate eigenvalue with the energy E = −χ2.

Proof. We consider system of equations (37) for an arbitrary set of positive parameters d12, d13,
d23, and χ. These equations allow directly calculating three positive real numbers γj = 4π/αj and hence
reconstructing the parameters determining the δ-interactions at the points yj. The theorem is proved.

Theorem 2 shows that for an arbitrary fixed configuration of points supporting δ-functions, the pa-
rameter set determining the interactions that lead to double eigenvalues can be parameterized by one
real parameter: the energy of the degenerate eigenvalue. Then the parameter set leading to a degenerate
eigenvalue can be described by four parameters, as predicted in Table 1.

Four centers. There are 36 minors, but because of the symmetry of the matrix, only 21 minors are
independent. The special form of the matrix reduces the number of independent equations to six. It is
natural to divide these equations into two systems, one of four equations and one of two:

− χ + γ1 =
d23

d13d12
eχ(d23−d13−d12),

− χ + γ2 =
d34

d24d23
eχ(d34−d24−d23),

− χ + γ3 =
d14

d34d13
eχ(d14−d34−d13),

− χ + γ4 =
d12

d14d24
eχ(d12−d14−d24)

(38)

and

eχ(d12+d34)d12d34 = eχ(d13+d24)d13d24 = eχ(d14+d23)d14d23. (39)

The second system describes a certain relation between the distances and the energy parameter. This means
that not all configurations of four centers lead to a triple eigenvalue. In general, if this configuration is
admissible, then it uniquely determines the possible energy of the triple bound state (except in the special
cases described by Theorem 3). Then the distances and the energy of the triple eigenvalue can be used to
determine the strengths of the point interactions from the first four equations, system (38).
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For the system of four centers, we introduce some perimetric coordinates: the sums of the lengths of
opposite edges in the tetrahedron determined by y1, y2, y3, and y4,

D12 = d12 + d34,

D13 = d13 + d24,

D14 = d14 + d23.

(40)

These coordinates can be used to easily calculate the perimeters of all three possible quadrangles: the
perimeters are equal to the sums of the corresponding two perimetric coordinates.

Theorem 3. We consider the Schrödinger operator in L2(R3) with four point interactions of strengths

α1, α2, α3, and α4 at the points y1, y2, y3, and y4. This operator has a triple eigenvalue if and only if one

of the following conditions is satisfied.

1. If all three perimetric coordinates are different, then the distances between the centers must satisfy

one of the three equivalent conditions

log d12 + log d34 − log d13 − log d24

d12 + d34 − d13 − d24
=

log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23
< 0, (41)

log d12 + log d34 − log d13 − log d24

d12 + d34 − d13 − d24
=

log d13 + log d24 − log d14 − log d23

d13 + d24 − d14 − d23
< 0, (42)

log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23
=

log d13 + log d24 − log d14 − log d23

d13 + d24 − d14 − d23
< 0. (43)

The energy of the triple eigenvalue is uniquely determined by the geometry of the centers:

E = −
(

log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23

)2

. (44)

The unique values of the constants αj are determined by Eq. (38) (with (19) taken into account).
2. If two of the perimetric coordinates coincide, for example, D12 − D13 = d12 + d34 − d13 − d24 = 0,

then the lengths in these pairs must be equal, i.e.,





d12 = d13,

d34 = d24,
or





d12 = d24,

d34 = d13.
(45)

Then the triple eigenvalue exists only if the condition

log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23
< 0

is satisfied, and its energy is uniquely determined by the geometry and is given by formula (44). The unique

values of the parameters αj are determined by formula (38) (with (19) taken into account).
3. If all three perimetric coordinates are equal, then the triple eigenvalue exists if and only if the four

centers are located at the vertices of a tetrahedron with at least one side given by a regular triangle and

the three other sides equal. The energy of the triple eigenvalue is arbitrary (negative), and the values of

the parameters αj (all equal) are uniquely determined by this energy.
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Proof. We consider each of the three cases separately.

1. If all three perimetric coordinates are different, then the parameter χ, which determines the energy
of the triple bound state, can be calculated from (39), using the equations

χ = − log d12 + log d34 − log d13 − log d24

d12 + d34 − d13 − d24
,

χ = − log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23
,

χ = − log d13 + log d24 − log d14 − log d23

d13 + d24 − d14 − d23
.

Eliminating χ from the three different equations, we obtain (41)–(43), taking into account that χ must be
positive. Then the parameters αj (or γj) can be calculated from Eqs. (38).

2. If any two of the three perimetric coordinates coincide, for example, D12 = D13, then system of
equations (39) is equivalent to

log d12 + log d34 − log d14 − log d23

d12 + d34 − d14 − d23
< 0,

d12d34 = d13d24.

Because the two perimetric coordinates coincide, we conclude that the last equation implies Eqs. (45) and
that the energy of the triple eigenvalue is given by expression (44). The extension parameters are again
determined by Eqs. (38).

3. If all three perimetric coordinates coincide, then Eqs. (39) are equivalent to

d12d34 = d13d24 = d14d23,

and it follows that the four centers form a tetrahedron with at least one side given by a regular triangle.
The three remaining sides are equal. In this case, Eqs. (39) are satisfied for an arbitrary value of the energy
parameter E = −χ2. After choosing this parameter equal to an arbitrary negative number, we can calculate
the unique values of the strength parameters from Eqs. (38). The theorem is proved.

The first family of point interactions is described by five independent parameters as expected (see
Table 1). The other two families are correspondingly described by four and three parameters. The last
family is the most interesting: it includes the regular tetrahedron, the most symmetric configuration of four
centers.

Five centers. We study whether this system can have an eigenvalue of multiplicity four. It is not
obvious that the system of equations is solvable. The table predicts that the family of solutions is described
by five parameters. We can show that there exists a two-parameter family. We consider the most symmetric
configuration of five points: the points y2, y3, y4, and y5 are located at the corners of a regular tetrahedron,
and the point y1 is located at the center of the tetrahedron.

We let d denote the length of the tetrahedron edges and r denote the radius of the circumscribed sphere
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containing the four tetrahedron vertices. Then system (36) becomes

det





−χ + γ1
e−χr

r

e−χr

r

e−χr

r

e−χr

r

e−χr

r
−χ + γ2

e−χd

d

e−χd

d

e−χd

d

e−χr

r

e−χd

d
−χ + γ3

e−χd

d

e−χd

d

e−χr

r

e−χd

d

e−χd

d
−χ + γ4

e−χd

d

e−χr

r

e−χd

d

e−χd

d

e−χd

d
−χ + γ5





= 0. (46)

All rows of the matrix are linearly dependent (the eigenvalue has the multiplicity four) if and only if

−χ + γ2 = −χ + γ3 = −χ + γ4 = −χ + γ5 =
e−χd

d
,

i.e.,

γ2 = γ3 = γ4 = γ5 = χ +
e−χd

d

and

−χ + γ1 =
(e−χr/r)2

e−χd/d
,

i.e.,

γ1 = χ +
d

r2
eχ(d−2r).

Hence, for any χ, we can find parameters αj , j = 1, . . . , 5, such that the Schrödinger operator with five
point interactions has an eigenvalue of multiplicity four. We obtain a family described by two parameters:
the length of the edge of the regular tetrahedron and the energy of the degenerate state.

Six and more centers. We consider the system of six centers. The table predicts that the parameter
set leading to the maximum degeneracy is described by four parameters. We examine the most symmetric
configuration of six centers: the points located at the vertices of an octahedron. The matrix in Eq. (36)
becomes 



−χ + γ1
e−χd

d

e−χ
√

2d

√
2d

d
e−χd

d

e−χd

d

e−χd

d

e−χd

d
−χ + γ2

e−χd

d

e−χ
√

2d

√
2d

d
e−χd

d

e−χd

d

e−χ
√

2d

√
2d

e−χd

d
−χ + γ3

e−χd

d

e−χd

d

e−χd

d

e−χd

d

e−χ
√

2d

√
2d

e−χd

d
−χ + γ4

e−χd

d

e−χd

d

e−χd

d

e−χd

d

e−χd

d

e−χd

d
−χ + γ5

e−χ
√

2d

√
2d

e−χd

d

e−χd

d

e−χd

d

e−χd

d

e−χ
√

2d

√
2d

−χ + γ6





,

where d is the length of the octahedron edge. The rows are parallel only if

e−χd

d
=

e−χ
√

2d

√
2d
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is satisfied, i.e.,

χ = − log 2
2d(

√
2 − 1)

< 0,

but the parameter χ must be positive. It follows that this system cannot have an eigenvalue of multiplicity
five. The last equation determines a resonance instead of the eigenvalue. We conjecture that the system of
six point interactions cannot have an eigenvalue of multiplicity five. Similarly, we do not expect eigenvalues
of the multiplicity N − 1 for any system of N point interaction for N > 6. We will return to this problem
in one of our forthcoming publications.
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