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Abstract

The modification of the Lax-Phillips scattering theory to the case
of Schroedinger equation is investigated. Formal asymptotic represen-
tation is constructed. Decay operator for the Schroedinger evolution
is separated from nonexponential evolution. The developed method
is applicated to exactly solvable model, constructed with the help of
restriction-extension procedure.
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1.INTRODUCTION.
Asymptotic behaviour of Schroedinger evolution is a very interesting ob-

ject to study, especially from the physical point of view due to the contra-
diction with the idea of an exponential decay 1−9. An exponential decay
is a typical evolution only for badly localized quantum objects. Evolution
of localized objects is nonexponential. Corresponding analysis for two-body
sector of the Lie model has been carried out in 7−12. P.Exner and J.Dittrich
analysed corresponding mathematical exactly solvable model with the help
of scattering theory methods in 6−9. All these calculations contain an ana-
lytical description of the investigated phenomenon. But operator treatment
of the nonphysical sheet is absent. It will be very interesting to calculate
dissipative operator which eigenvalues coincide with resonances of quantum
system. Such an operator was constructed for the acoustic scattering 1,13.
We shall name it the ”decay operator”. A spectral analysis of this operator
seems to be very usefull because it provides an universal model of a dissi-
pative operator and a contractive evolution. The main operator object of
self-adjoint theory - scattering matrix - is a characteristic function of the
”decay operator” 14,15. Singularities of the S-matrix define the spectrum of
this operator (discrete and continuous) 13−15.

One can conclude that such an operator is absent for Schroedinger evolu-
tion. In the spectral representation quantum-mechanical asymptotic t →∞
is very simple, but it contains nonexponential terms. The ”decay operator”
can be separated from the nonexponential evolution. In the second part of
the paper we shall construct exactly solvable model with the help of the
extensions theory in order to make all the peculiarities of the theory clear.
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2.SCHROEDINGER EVOLUTION IN LAX-PHILLIPS REP-
RESENTATION.

Let us study the simplest scattering problem in Hilbert space H = L2(R)
for the shift group {eikt}. We fix incoming and outgoing spaces D+ and D−
by introducing some inner function S as a Bluashke product with simple
zeroes {k`}, which are situated at the upper half-plane =k` > 0.

S(k) =
∏

`

k − k`

k − k`

(
ı− k`

ı− k`

)−1

∣∣∣∣∣
ı− k`

ı− k`

∣∣∣∣∣ (1)

D− = H2
−,D+ = SH2

−.

Supposing the product (1) to be finite, 1 ≤ ` ≤ n. we have Carleson condition
satisfied automatically :

∏

` 6=m

∣∣∣∣∣
k` − km

k` − km

∣∣∣∣∣ = |S ′(km)| 2=km ≥ δ > 0

We confine ourselves with this simplest case just to share more attention
to the crucial fact of nonexponential decay, caused by spectral threshold at
λ = 0. By restriction of the semigroup of left shifts onto the translation-
invariant subspace K = H2

+ − SH2
+ we get the family of contractions which

forms the semigroup with the dissipative generator B

Z(t) = PKUt|K = eıBt,=B ≥ 0,

S being the characteristic function of B. It’s zeroes k` are eigenvalues of the
generator. The corresponding eigenfunctions are:

ψ`(k) = S(k)(k − k`)
−1.

It is easy to proof that eigenfunctions of the generator B∗ of the conjugated
semigroup PKU∗t |K = e−ıB∗t, t > 0,are:

ϕ`(k) = −ı(k − k`)
−1.

Together with {ψ`} they form a biorthogonal system in K:

〈ψ`, ϕm〉 =
1

2π

∫
ψ`ϕmdk = S ′(k`)δ`m.
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In terms of this system there can be written the spectral representation of B
:

f =
∑

`

〈f, ϕ`〉ψ`
1

S ′(k`)

and the restricted evolution:

eıBtf =
∑

`

eık`t

S ′(k`)
〈f, ϕ`〉ψ` (2)

This decreasing evolution is of an exponential type. The corresponding decre-
ment of the decay is equal to the smallest imaginary part of an eigenvalue
min=k`.

Now let us study the Schroedinger evolution V(t) , connected with the
shift group. It’s generator is equal to the square of the generator of the shift
group :

L∗ = k2∗,
V(t)∗ = eık2t ∗ .

We shall investigate the evolution on the translational invariant subspace K
for large times, t →∞ .

Theorem 1. The Schroedinger evolution, restricted on K, has the fol-
lowing asymptotic behaviour for large t :

PKV(t)f =
f(0)

2p
√

tπ

−S(0) + S(p)

S(0)
e−ı π

4 + O(
1

t
3
2

).

Proof. In our representation the restricted Schroedinger evolution is pre-
sented as an operator with an unitary symbol: eık2t > 0, t ≥ 0.

PKV(t)|K = PKeık2t|K (3)

An integral representation for Hilbert projector should be used:

P+∗ =
1

2πı

∫ 1

k − p
∗ dk,=p > 0

PK = P+ −PSH2
+

= P+ − SP+S∗.
One can calculate the Schroedinger evolution on K :

PKVtf = P+Vtf − SP+S∗Vtf
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The integrate function in the second term

S(p)

2πı

∫ 1

k − p
eık2t f(k)

S(k)
dk,=p > 0

has singularities in the upper half-plane in the point k = p and at the zeroes
of the S-function:

f(k)

S(k)
=

∑

`

1

k − k`

f(k`)
1

S ′(k`)
.

In the lower half-plane the function fS−1 is an analytic one. On the contrary
the integrate function in the first term

1

2πı

∫ eık2t

k − p
f(k)dk

is an analytic function in the upper half-plane due to f ∈ K ⊂ H2
+ and has

poles in the lower one at points k` :

f(k) =
∑

`

ı

k − k`

〈f, ψ`〉 1

S ′(k`)
.

The bisector of the 1-3 quadrants is the steepest descent line for the entire
function eık2t, t > 0,

eık2t|k=exp(ı π
4
)χ = e−χ2t.

One can deforme the contour in the formula (3). It is only necessary to
calculate the residues at points k`, k`, which lie in the sectors 0 < argk < π

4

and π < argk < π + π
4
. So the restricted Schroedinger evolution (3) can be

presented in the following form for p = q + ı0, q < 0:

PKV(t)f =

eı π
4

2πı

∫ +∞

−∞
e−χ2tf(χeı π

4 )

χeı π
4 − p

dχ− S(p)

2πı
eı π

4

∫ +∞

−∞
e−χ2t

χeı pi
4 − p

f(χeı π
4 )

S(χeı π
4 )

dχ−

−∑

`−

eık2
`
t 〈f, ψ`〉
k` − p

ı

S ′(k`)
−∑

`+

eık2
` t S(p)

k` − p

f(k`)

S ′(k`)
. (4)

The first (second) sum
∑

`−(
∑

`+) is a sum over the ”physical” resonances
k` lying in the sector π − π

4
< argk` < π (0 < argk` < π

4
). We include
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all resonances lying on the bisector into the integrals. The residues for p =
q + ı0, q > 0 in the first and second terms compensate one another. So the
formula (4) is valid for an arbitrary real q.

These two sums provide exponentialy decreasing terms:

∣∣∣eık2
` t

∣∣∣ = e−2=k`t =
∣∣∣∣eık2

`
t

∣∣∣∣ .

Amplitudes of the corresponding exponential modes can be calculated up to
S ′(k`) as a scalar product of the initial state f and eigenfunctions ψ`, ϕ` of
the generator B and it’s adjoint B∗:

f` = 〈f, ϕ`〉.

The integrals in the formula (4) can be calculated with the help of the steepest
descent path method due to the analyticity of the integrated functions at
zero:

eı π
4

2πı

∫ +∞

−∞
e−χ2t f(χeı π

4 )

χeı π
4 − q

dχ =
f(0)

q
√

t

e3ı π
4

2
√

π
+ O(

1

t
3
2

) (5)

−S(q)eı π
4

2πı

∫ ∞

−∞
e−χ2t

χeı π
4 − q

f(χeı π
4 )

S(χeı π
4 )

dχ =
f(0)

S(0)

S(q)

q
√

t

e−ı π
4

2
√

π
+ O(

1

t
3
2

) (6)

Remark. Formulae (4,5,6) show that the exponential terms are important
for the small t and for the initial data satisfying the condition of delocaliza-
tion |f(0)| ¿ 1 . In this case a wave packet decay exponentialy. We shall
see a nonexponential evolution for ”large” t only. On the contrary, ”well lo-
calized” wave packets develop nonexponentially. This conclusion is approved
by the papers [1-9]. In addition to these papers we see that nonexponential
terms have an operator interpretation. One can introduce dissipative ”decay
operators”. They commute with B,B∗ correspondingly:

A+ =
∑

`+

k2
` ψ`〈∗, ϕ`〉(S ′(k`))

−1,

A− =
∑

`−

k2
` ϕ`〈∗, ψ`〉(S ′(k`))

−1

So the exponential part of the evolution is:

eıA+tf + eıA−tf
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These terms are important for the delocalized initial data and the ”small”
time only. The formula (4) can be written as following:

PKeık2tf ≈ eıA+tf + eıA−tf +
f(0)[S(q)− S(0)]

2S(0)
√

tπq
e−ı π

4 . (7)

Thus we see, that no ”decay operator” for Schroedinger evolution exist, but
there exist two mutually adjoint operators A±, which are associated with
corresponding shift group. These operators play important role for small
time and special initial data.
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3. DECAY OPERATOR FOR THE POINT INTERACTION.
Let us investigate connections between wave and Schroedinger equations

in the case of the simplest model, constructed with the help of the restriction-
extension procedure. The unperturbed Schroedinger equation

−4u =
1

ı

δu

δt
(8)

defines the unperturbed evolution. The generator −4 is a selfadjoint opera-
tor in the space L2(R3). By restriction of this operator on the subset of the
domain of all functions, vanishing at origin we receive the symmetric operator
with defficiency indices (1,1) and defficiency element for λ = k2

0,=k0 > 0:

g0 =
eık0|x|

4π|x| .

The domain of the adjoint operator consists of all Caushy data with the
following singularity at the origin:

u =
ξ−(u)

4π|x| + ξ0(u) + o(1)

|x| → 0.

The boundary form of the adjoint operator (−40)
∗ is:

〈(−40)
∗u, v〉 − 〈u, (−40)

∗v〉 = ξ0(u)ξ−(v)− ξ−(u)ξ0(v).

We shall ”switch on” a non-trivial point interaction by adding internal struc-
ture. Let us choose some self-adjoint operator Lin, acting in the Hilbert space
Hin. Let us suppose Hin to be finite-dimensional just for the same reason as
in part 2. We shall consider the orthogonal sum of the external (Lex = −4)
and internal Lin operators A0 = Lex⊕Lin as a background operator. It acts
in the space H = L2(R3)⊕Hin. Let us consider the perturbed operator

A
(

uex

uin

)
=

(
L∗0uex

Linuin + (aξ0(uex) + bξ−(uex)) θ

)
(9)

in order to ”switch on” an interaction between internal and external compo-
nents. Here a and b are arbitrary complex constants. Operator A, defined on
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the domain Dom(L∗0)⊕Hin is not self-adjoint. The corresponding boundary
form is:

[u, v] ≡ 〈AU ,V〉Hex⊕Hin
− 〈U ,AV〉Hex⊕Hin

=

=
(
ξ0(uex)ξ−(vex)− ξ−(uex)ξ0(vex)

)
+

(aξ0(uex) + bξ−(uex)) 〈θ, vin〉Hin
− 〈uin, θ〉(aξ0(vex) + bξ−(vex)).

If we shall restrict A on the lineal determined by the boundary conditions:

〈uin, θ〉 = cξ0(uex) + dξ−(uex) (10)

we shall receive the following boundary form:

[u, v] = (1 + ad̄− cb̄)ξ0(u)ξ−(v)+

+(−1 + bc̄− dā)ξ−(u)ξ0(v) + (ac̄− cā)ξ0(u)ξ0(v) + (Bd̄− db̄)ξ−(u)ξ−(v),

which vanishes in the case:

det

(
a b
c d

)
= −1 (11)

ac ∈ R,

bd ∈ R
This restriction defines a self-adjoint operator. It has branch of continuous
spectrum [0, +∞). Corresponding eigenfunctions are solutions of the equa-
tion:

AΨ = λΨ

in the distributional sense. The external component is:

Ψex = e−ık〈x,ν〉 + f(k)
eık|x|

4π|x| , k
2 = λ (12)

with the scattering amplitude, calculated by excluding the internal compo-
nent:

f(k) =
D

1− ık
4π
D (13)
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where D(k) is a meromorphic function with the positive imaginary part in
the upper half-plane due to the conditions (11):

D(k) = −c + aR(k)

d + bR(k)
, (14)

R(k) ≡ 〈(Lin − k)−1θ, θ〉
We shall restrict our consideration by the case of absence of bound states. It
means that unperturbed internal operator has not negative eigenvalues.

Our goal is a description of decay operator for constructed Schroedinger
evolution:

1

ı

δU

δt
= AU

U ∈ H. (15)

Following chapter 2, we shall write it in the spectral representation of corre-
sponding wave-equation :

δ2U

δt2
= AU, (16)

which is to be used in Schroedinder form :

δ

δt

(
U0

U1

)
= ı

(
0 −1
A 0

) (
U0

U1

)
. (17)

The generator

Q = ı

(
0 −1
A 0

)

is a self-adjoint operator in the space:

E = (W 1
2 (R3)⊕Hin)⊕ (L2(R3)⊕Hin),

U =

(
U0

U1

)
=




u0,ex

u0,in

u1,ex

u1,in




with the energy norm:

|U|2E =
1

2

(∫

R3
(| ∇u0,ex |2 + | u1,ex |2)dx + |ξ−(u0,ex)|2+
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+|
√
Linu0,in|2 + |u1,in|2

)
.

Note, that the energy norm can be written in this form only for smooth data
with now singularities at the origin. But if we write it for all data from
Dom(

√A)⊕H the component u0,ex :

u0,ex =
a

4π|x| + ũ0, ˜u0,ex < ∞

has to be renormalized by subtracting singularity part a
|x| , which does not

give any contribution into the Dirichlet integral, since this singular part is a
harmonic function. Thus we can write the energy norm in the form ( ) for
all data with finite energy, having in mind the described renormalization.

The generator Q determines an unitary evolution. Corresponding incom-
ing and outgoing subspaces can be constructed in accordance to the standard
procedure [1]. Because of the fact that we are able to construct translation
representation for the unperturbed evolution in the external space which is
literally both incoming and outgoing, it follows that incoming and outgoing
spaces together span the set H0 of all initial data for the evolution in the
external space with the boundary condition

ξ−(u0,ex) = 0.

So we can define an isometrical imbedding of H0 into H. Then H can be
split into the direct sum of H0 and some finite-dimensional space K. All the
data from K are of the following type:

U =




c0
|x|

u0,in

0
u1,in




The energy-orthogonal projection on K is equivalent to the projection on
the internal spaces Hin and calculation of the singularity of the zero external
component at the origin. Also we can consider evolution in K as an evolution
in the space e⊕Hin ⊕Hin where e marked the one-dimensional space .

In order to calculate the compressed evolution let us solve the Caushy
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problem with data from K :

u0,ex(x) = c0
|x|

u1,ex(x) = 0
u0,in

u1,in.

Note that in the region |x| > t the solution does not change with the time:

uex =

(
c0
|x|
0

)
.

Using the standard anzats for incoming and outgoing solutions in the region
|x| < t :

u0,1 =
1

4π|x| (a0,1(t + |x|) + b0,1(t− |x|))

with an arbitrary functions a0,1 and b0,1 we can exclude the external channel.
On the surface |x| = t we have the boundary condition : u0,1 = const. It
means that a(s) are constant for s > 0 and thus may be adsorbed into b(s).
From the evolution equation we receive immediately the connection between
b0 and b1:

b1(s) = b′0(s).

Then the boundary values of the external component are :

ξ−(u0,ex)(t) = b0(t)

ξ0(u0,ex)(t) = −b′0(t)
4π

ξ−(u1,ex)(t) = b1(t) = b′0(t)

ξ0(u1,ex)(t) = −b′1(t)
4π

= −b′′0(t)
4π

By excluding the external component (function b0(t) )we receive the fol-
lowing connections between the boundary values:

ξ0(u0,ex) = −ξ′−(u0,ex)

4π

ξ−(u1,ex) = ξ′−(u0,ex)
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ξ0(u1,ex) = −ξ′′−(u0,ex)

4π

Now the compressed evolution equation in the space K can be calculated:




1
ı

4πd
c

ı4π
c

< ∗, θ > 0
0 0 −ı

ı
(
−ad

c
+ b

)
θ ıLin + ıa

c
Pθ 0







s
u0,in

u1,in


 =

1

ı

δ

δt




s
u0,in

u1,in


 . (18)

On the contrary to the unperturbed evolution the new generator B:

B =




−ı4πd
c

ı4π
c

< ∗, θ > 0
0 0 −ı

ı(−ad
c

+ b)θ ıLin + ıa
c
Pθ 0


 (19)

is a dissipative operator in the space K with the norm:

|U|2K =
1

2

(
|s|2+ < Linu0, u0 >Hin

+ < u1, u1 >Hin

)
.

The eigenvalues kj coincide with the zeroes of the S-matrix i.e. they are
situated at the points, symmetric to the poles pj:

kj = −pj.

The corresponding eigenfunctions are:

Ψj =




1

−
(

ıpj

4π
a + b

)
(Lin − p2

j)
−1θ

ıpj

(
ıpj

4π
a + b

)
(Lin − p2

j)
−1θ


 .

The adjoint generator

B∗ =




ı4πd̄
c̄

0 −ı
(
− ād

c̄
+ b̄

)
< ∗, θ >

−ı4π
c̄
L−1

in θ 0 −ı
(
1 + ā

c̄
(L−1

in θ) < ∗, θ >
)

0 ıLin 0




has eigenvalues αj at the conjugated points:

αj = −p̄j = k̄j
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with the eigenfunctions:

Φj =




1
−ıp̄j

4π
āR(pj)+c̄

L−1
in (L − p̄2)−1θ

− 4π
āR(pj)+c̄

(Lin − p̄2
j)
−1θ


 .

The eigenfunctions of these two operators form a biorthogonal system in K:

< Ψi, Φj >K=

=

(
1

2
+

ıpj(ıpjc + 4πd)

R(pj)(aR(pj) + c)
< (Lin − p2

j)
−2θ, θ >Hin

)
δij ≡ m(pj).

The exponential-decay modes for compressed evolution are decreasing func-
tions:

e−ıpjtΨj.

So the reduced evolution can be written in the form:

Z(t) =
∑

e−ıpjtm−1(pj) < ∗, Φj > Ψj. (20)

Now let us return back to the Schroedinger evolution. It can be written
in the same space as wave-equation evolution, using the connection between
A and Q: (

A 0
0 A

)
= Q2. (21)

The Schroedinger equation

1

ı

δ

δt
U = Q2U (22)

decomposes into the two systems of nonconnected equivalent equations for
components u0,ex, u0,in and u1,ex, u1,in. But we are interesting in the evolution
of the second pair of components u1,ex, u1,in only. There exist a natural
isometric imbedding of the space H1 of all initial data with the component
U0 equal to zero into the space of all Caushy data. Really the Schroedinger
evolution in K is evolution (22), restricted on the space H1. Projections on
K and H1 commute. So the Schroedinger evolution in K is the evolution,
restricted on the internal component u1,in:

P1V2(t)P1 =

15



=
1

(2π)2

∫ +∞

−∞

∣∣∣∣∣
bc− ad

d + bR(k) + ık
4π

(c + aR(k))

∣∣∣∣∣
2

(23)

eık2t < ∗, (Lin − k2)−1θ > (Lin − k2)−1θk2dk.

Here P1 is projector on u1,in. The Schroedinger evolution has not incoming
and outgoing subspaces. So this evolution is not semigroup evolution. To
calculate the asymptotic behaviour of this integral one can use the steepest
descent line method. The steepest descent line for this integral is the bisector
of the 1-3 quadrants. The asymptotics has exponential and nonexponential
terms:

P1V(t)P1 =

=
1

ı

∂

∂t

1

(2π)2

∫ +∞

−∞

∣∣∣∣∣
bc− ad

d + bR(k) + ık
4π

(c + aR(k))

∣∣∣∣∣
2

eık2t < ∗, (Lin − k2)−1θ > (Lin − k2)−1θdk ∼

∼ eı3π/4

8(πt)3/2

∣∣∣∣∣
bc− ad

d + bR(0)

∣∣∣∣∣
2

< ∗,L−1
in θ > L−1

in θ−

−∑

`+

ıeık2t|bc− ad|2k2

2π(d + bR + ık
4π

(c + aR) ∂
∂k

(d̄ + b̄R− ık
4π

(c̄ + āR)

∣∣∣∣∣
k=p̄`

+

+
∑

`−

ıeık2t|bc− ad|2k2

2π ∂
∂k

(d + bR + ık
4π

(c + aR)(d̄ + b̄R− ık
4π

(c̄ + āR)

∣∣∣∣∣
k=p`

(24)

Nonexponential term is small for initial data orthogonal to the element
L−1

in θ. Exponential terms are formed by the ”physical” poles of the S-matrix.
The exponential evolution is semigroup evolution.
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