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Abs t rac t  The inverse scattering problem on the half-axis for long range po- 
tentials is studied. It is shown that the solution of the inverse problem contains 
arbitrary real parameters iven if no bound states are present. Connections with 
the inverse problem on the whole axis are discussed. 

1 Introduction 

The present paper is devoted to the inverse scattering problem on the half line 
[1],[2]. New exact solutions of this inverse problem are constructed. Such exact 
solutions play an important role in the theory of nonlinear equations. Nonunique- 
ness of the solution of the inverse problem in the presence of bound states allows 
to construct soliton solutions of nonlinear equations. Several examples of the 
ambiguity potentials without any bound states for the case of the whole line 
scattering [3] were discovered during the last years [4, 5, 6, 7, 8, 9]. The most 
general description of such potentials is given in [2]. This class of ambiguities 
is connected with a slow decrease of the potentials at infnity ( like const./x2). 
But such potentials do not produce any ambiguities for half line scattering. In 
order to obtain ambiguities in that case the class of admissible potentials must 
be extended. In the present paper we shall investigate the solution of the inverse 
problem on the half line for potentials with the following behaviour at infinity 

v(x) ~ Es%  Aj sin kj x 

The corresponding scattering matrix does not satisfy the Levinson condition. 
Similar scattering matrices were obtained for delta-functional potentials and 
selfadjoint perturbations constructed with the help of the extension-restriction 
procedure [10, 11, 12]. We shall restrict our consideration to the case of rational 
reflecgion coefficients only in order to avoid additional unessential difficulties. 

The direct scattering problem for oscillating potentials is discussed in the 
second part of the paper. The third part is devoted to the solution of the inverse 
problem for rational reflection coefficients corresponding to the short range po- 
tentials. We recall simple analytical formulas for the solution, obtained from the 
Gelfand-Levitan-Marchenko equation. In the fourth part we discuss the solution 
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of the inverse problem for the rational reflection coefficients violating the Levin- 
son theorem. It is shown that  the resulting oscillating potential is not defined 
uniquely by the reflection coefficient even if no bound state is present. The family 
of ambiguity potentials contains a finite number of real parameters. 

2 The direct scattering problem 

We shall discuss the scattering problem for the Schroedinger operator 

d 2 
A = - dx--- ~ + V(x) (1) 

on the half axis [0, c~) with Dirichlet boundary condition at the zero point: 
Dom(.A) = {u E W~(IR+), u(0) = 0}. The unperturbed operator is 

d 2 
. 4 o -  

dx2" 
Usually the scattering problem is investigated in the case of real potentials sat- 
isfying the condition 

0 ° IV(x) ldx < oo. (2) 

Under this condition the Jost solutions exist for all real nonzero values of the 
spectral parameter k and the asymptotics of the regular solution 

d 2 
~(k, ~): - ~ ( ~ ,  ~) + v(~)~(k, ~) = k~(k ,  ~), ~(k, O) = 0 

for large x is a combination of plane waves 

~(k,x),-,A+(k)e'k::+A_(k)e-'k~:+o(--~), k E [0,oc). (3) 

The scattering operator coincides with the reflection coefficient S(k) 
-A_(k)/A+(k). Under the condition of the finitness of the first moment: 

f0 ° x lV(x) ld~ < oo. (4) 

the Jost solution f(k, x ) , - f ' ( k ,  x) + V(x)f(k, x) = k2f(k, x), f(k, x) = e 'k~ + 
o(1/v/x), x --* 00 and the Jost function F(k) = f(k, 0) are analytic functions 
of the spectral parameter k in the upper half plane, continuous up to the real 
axis. The scattering matrix S(k) coincides with the ratio of two Jost functions 
S(k) - -  F(-k)/F(k) .  

The Jost function for potentials violating the condition (4) can have sin- 
gularities on the real axis. This phenomenon was studied for the first time in 
connection with the zero energy bound state, when potential decreases at infin- 
ity like 1/[x[ ~ and the Jost function has singularity at point zero. Condition (2) 
is sufficient but not necessary condition for the wave operators to be complete. 
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The usual scattering operator exists also in the case when the Jost solution is 
well defined for almost all k on the real axis. An additional condition on the 
difference between the regular and free solutions at infinity, x --+ oc is necessary 
[13] . Hence the class of admissible potentials can be extended. For example, 
the wave operators are complete for potentials with the following asymptotic 
behaviour at infinity 

Y(x) ~JM1 As sin(kjx) 
= + y0(~); (5) 

IYo(~)l < c(1 -t- x2) -1/2-c 

for some C, e > 1/4.This class of potentials was investigated in connection with 
the phenomenon of bound states imbedded into the continuous spectrum [14, 15, 
16]. The Jost solution for a potential from the class (5) exists for k # 0, k # kj/2. 
The reflection coefficient is defined for almost every real k. 

3 Inverse scattering problem for short-range potentials 

The inverse problem is the problem to restore the potential V(x) from the known 
reflection coefficient. For the class of potentials defined by the conditions (2, 4) 
this problem can be solved by Gelfand-Levitan-Marchenko procedure [1, 2]. 

An important class of analytically solvable inverse problems is formed by 
the rational Jost functions. All rational Jost functions can be presented in the 
following form 

M 

F(k) = 1-I k + zaj j=l k + ,b~ (6) 

with ~bj > 0. The sets {aj}, {bj} are symmetric over the real axis. The constants 
aj with negative real part can be only real and correspond to bound states. Such 
Jost functions define scattering matrices of the form 

M 

s(k) = I I  k - ,as k + ,b~ 
j=l k zbj k + ~aj 

(7) 

corresponding to potential exponentially decreasing at infinity. Simple analytical 
formulas for the potential and regular solution can be obtained by solution of 
the Gelfand-Levitan-Marchenko equation [1, 2] 

d 2 
V(x) = - 2 ~ x  2 In det W(x), 

w ( x )  f (x)  
sin kx det ~ ( k ' ~ ) - V - -  

~(k,x)= de tW(x)  ' (8) 
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where 

~ ( k ,  z) = [" sin ~bnt sin kt dt 
~bn k " J0 

4 Inverse problem for oscillating potentials 

The scattering matrix for potentials satisfying condition (5) is a generalized 
function. We shall consider the case when this function is equivalent to some 
rational function of the form 

M 
S(k) = E k-zaj j=l k -+ ,aj (9) 

~aj > 0. As the phase shift on the real axis 

1 / / f  S'(k) 
- = s ( k )  d k  = 

is positive the Levinson theorem can not be fulfilled for such reflection coeffi- 
cients. Then the inverse problem does not have a solution in the class of short 
range potentials even if we assume that  some bound states are present. 

The Gelfand-Levitan method is based on the representation of the scattering 
matrix as a ratio of the Jost functions analytical in the upper half plane H+ = 
{k, ~k > 0} continuous in the closed upper half plane H+ = {k, ~k > 0} with the 
unit limit at infinity. Similar representation can be introduced in the investigated 
case also 

M 

- s 0 ( k )  ' s 0 ( k )  = I I  k + j=l k + zbj ' ~bj = 0. (10) 

The formally introduced Jost function Fo(k) has singularities on the real axis. 
The singularities k = -zbj are situated symmetrically with respect to the origin 
and do not give any contribution to the scattering matrix. The Jost function 
So(k) contains [M/2] arbitrary real parameters. To solve the inverse problem for 
this class of the reflection coefficients the limit of the Gelfand-Levitan procedure 
can be used. In the first step we approximate the Jost functions Fo(k) by the 
functions with singularities at the lower half plane, which are Jost functions for 
some short-range potentials 

M 
k + ~aj 

F, -- I I k  + ,(bj + c) 'e > 0. (11) 
j = l  

The potential V,(x) and the regular solution ~ ( z )  corresponding to the Jost 
function Fe(k) can be calculated with the help of the formulas (8). Then the 



130 P.B. Kurasov 

pointwise limits of the potential and regular solution when e ~ 0 are considered. 
The potentials V~ exponentially decrease at infinity, but the limit potential V0 
is from the class (5). 

The following theorem was formulated in [12] as a conjecture and it was 
proved there for M = 1, 2 only. 

T h e o r e m  1. The limit of the regular solution To(k, x) = lime-~0 Te(k, z), x E 
[0, ~o) is a regular solution for the Schroedinger equation for every k E [0, oo), k 
O, ,bj with the limit potential Vo(z) = lim~--.o V~(z), x E [0, ~ ) .  The reflection 
coefficient for the limit potential is given by the formula 

M 

S(k) = H k - z a j  
j=l  k"+ ~aj : 

Proof. The Theorem 1 can be proved by an iteration procedure because every 
scattering matrix S(k) with the symmetrically situated zeroes and poles can be 
presented as a product of elementary unimodular functions containing not more 
than two factors. 

The formulas (8) can be generalized for the case when the background oper- 
ator has the form 

d 2 
•0 - dx2 + v0(x) (12) 

with the potential V0 from the class (5). The generalized formulas allow to calcu- 
late the potential V(x) and the regular solution corresponding to the reflection 
coefficient S(k) M = l'Ij=t(k - ~aj)/(k + ~aj)So(k), where So(k) is the reflection 
coefficient for the potential V0(x). The standard Gelfand-Levitan-Marchenko 
procedure can not be used directly and one needs to consider the approximation 
procedure similar to one discussed earlier. To prove the Theorem 1 one needs to 
consider this approximation procedure for the case M = 1, 2 only. 

L e m m a  2. Let the background operator be of the form (12) and let the logarith- 
mic derivative of the corresponding Jost function be bounded at the point t = O. 
Then for M -" 1 the limit of the regular solution Te=o(k, x) is a regular solution 
for the Schroedinger equation for every k E [0, ~ ) ,  k • 0, zbj with the limit po- 
tential V~=o(x). The reflection coefficient for the limit potential is given by the 
formula 

S ( k ) -  k -  k ¥ So(k) • 

Proof. The Jost function and approximate Jost functions are introduced as fol- 
lows: 

F(k) - k + ~a~ Fo(k) ~ FE(k) = k + ~al Fo(k) (13) 
k k+ze  

The potential and the regular solution, corresponding to the approximate Jost 
function are [1, 2]: 
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where the following notations for the Jost and regular solutions corresponding 
to the nonperturbed operator do were used f  ( k )  f o ( k ,  x ) ,  p ( k )  E p o ( k ,  x ) .  
The limits of the potential and regular solution for e + 0 are 

V,,o ( x )  - & ( x )  = 2a2 x (16)  

By direct calculation one can prove that the limit of the regular solution is a 
regular solution for the limit potential. The asymptotics of the potential for large 

We - 
note that the Jost function Fo(k)  has the following property: F o ( - l )  = 

F o ( t ) .  Hence the logarithmic derivative of the Jost function at point zero is 
purely imaginary zFA(0)/Fo(O) E IR and the calculated potential is real. The 
asymptotics of the regular solution for x -+ oo is 

{ e - 2 k x ( k  + zal)Fo(k) - ehX(k - zal )Fo(-k))  (18) 
and the reflection coefficient is 

The Jost function and the Jost solution have singularities on the real axis 
a t  the points k = f z b j ,  0 .  The case of the multiple singularities can be studied 
separately. This complets the proof of Lemma 1 . 0 
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We note that  the condition of the finitness of the logarithmic derivative of 
the Jost function at the point zero is fulfilled automatically if the potential V0 
was constructed by the iteration procedure. 

L e m m a 3 .  Let the background operator be of the form (12). Then for M -- 2 the 
limit of the regular solution ~ac=o(k , x) is a regular solution for the Schroedinger 
equation for every k E [0, ~ ) ,  k • O, zbj with the limit potential V~=o(x). The 
reflection coefficient for the limit potential is given by the formula 

S(k) = k -  ~al k -  ~a2 so(k). 
k + ~al k -+ za 2 

Proof. To avoid complicated formulas we shall discuss here the proof of this 
Lemma for the case of V0 = 0 only. The original scattering matr ix  is given by 
the expression 

k - ml k - ~a2 
- - ~  a 1 . :  (z 2 or al~a2 E ] l~ .  S(k) = k + ~al k + ~a~ 

There is arbitrariness in the definition of the Jost function in this case. The 
family of the possible Jost functions depends on the real parameter  b0 

k + ~al k + za2 
Fb° (k )=  k - S o  k + b 0  (20) 

Approximate Jost functions are introduced as follows 

k + ~al k + ~a2 
= , > 0 (21)  Fb°'~( k ) k - bo + ~c k + bo + ~c 

The limit potential when c ~ 0 is 

V,~,~2,bo(X) _--- 16b02 ! .- 7 (box + B) sin2(box + 5(b0)) - cos 2(b0x + 5(b0)) (22) 
(2b0  + 2 B  - s in 2(b0  + 2 

where we used the following notations 

bo(al + a2)(ala2 + b~) 
B = B(bo, al, a2) -- (a~ + b~)(a~ + b~) 

e 2~(b°) = S(b0) (23) 

The corresponding regular solution is 

sin kx 

= k + 
(24)  

1 e ~ :  (-w(bo,  -~k, a2) + w(bo, -2k, al)) + e -~k~ (w(b0, zk, a2) - w(bo, ~k, al)) 
2~k w(bo, al, a2) 

where the function w is 
w(bo, al, a2) = 

a2 - al (2box + 2B(bo, al,  a2) - sin 2(b0x + 5(bo, al, a2))) "~ (a 2 - b2)(a~ - b 2) (25) 
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The asymptotics of the solution for x --~ ~z is: 

e 'kx (k - *al)(k - *a2) e - 'kx (k + zal)(k + *a2) 
x)  ~ 2 , k  - bo 2 , k  - ( 2 6 )  

for k ¢ +bo and the scattering matr ix  can be easily calculated: 

k - ~al k - za2 
= ( 2 7 )  S(k) k + ~al k + *a2 

The calculated frost function and Jost solution have singularities at the points 
k = +b0. This proof can be generalized for the case V0 # 0. Then the additional 
condition bo # ,bj is necessary. We have now finished the proof of Lemma 2 and 
Theorem 1. [] 

The proof of Theorem 1 shows, that  in the case M = 1 the unique potential 
was calculated. Arbitrariness of the solution of the inverse problem in the second 
case is connected with the arbitrariness of the definition of the Jost function. 
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