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Abstract

An exactly solvable problem with energy dependent interaction is
investigated in the present paper. The selfadjoint model operator de-
scribes the scattering problem for three one dimensional particles. It
is shown that this problem is equivalent to the diffraction problem in
the sector with energy dependent boundary conditions. The problem
is solved with the help of the Sommerfeld-Maluzhinetz representation,
which transforms the partial differential equation for the eigenfunc-
tions to a functional equation on the integral densities. The solution
of the functional equation can be constructed explicitly in the case of
identical particles. The three body scattering matrix describing rear-
rangement and excitation processes is represented in terms of analytic
functions.
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1 Introduction

Energy dependent interactions play an important role in the modern mathe-
matical physics. Such interactions allow to model complicated physical phe-
nomena and solve the problem exactly at the same time. A disadvantage of
these problems is that they are usually described by nonselfadjoint operators
or even by operator bundles. The corresponding eigenfunctions do not satisfy
orthogonality and completeness properties. This produces additional difficul-
ties during the investigation of these problems and limits the number of the
phenomena which can be described in habitually terms. We show that some
of these problems can be solved by considering operators in certain extended
Hilbert spaces. In this approach operator bundles with energy dependent
interactions appear as restrictions of selfadjoint operators. Resolvents of the
operators with energy dependent interactions can be calculated with the help
of M.G.Krein formula [43].

A wide class of such operators is well known under the name of opera-
tors with zero-range (or delta functional) potentials. The interaction in such
problems is described by boundary conditions on some low dimensional man-
ifolds. The most complete set of these problems has been collected in the
monographs by S.Albeverio et al. [5] and Yu.N.Demkov and V.N.Ostrovsky
[10]. Similar problems were studied with the help of the method of point
interactions with internal structure. This method leads to a new class of ex-
actly solvable Schrödinger operators with a richer spectral structure [40, 41].
Selfadjoint operators describing physical phenomena are defined in the or-
thogonal sum of standard Hilbert spaces and certain internal spaces, de-
scribing the interaction. Applications of the discussed methods to the two
body problem were considered by V.M.Adamyan and B.S.Pavlov [1]. A sim-
ilar scattering problem for three particles in the three dimensional space
has been studied by B.S.Pavlov, Yu.A.Kuperin, K.A.Makarov, S.P.Merkuriev
and A.K.Motovilov [19, 20, 21, 29, 30, 42]. This investigation was inspired
by the papers [47, 36, 37, 49, 3, 4], where the system of three particles in
three dimensional space interacted via delta potential has been studied. The
present paper is devoted to the three-body problem in one space dimension.

The few-body scattering problems form a wide class of complicated quan-
tum mechanical problems [35, 39, 44]. Some of the difficulties appear already
at the level of the three-body operator. Such operators describe the following
processes: rearrangement (12) + 3 → 1 + (23), breakup (12) + 3 → 1 + 2 + 3,
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capture 1 + 2 + 3 → (12) + 3 and excitation (12) + 3 → (12)∗ + 3. The
corresponding scattering matrix describes the interaction between several
asymptotic channels. As the standard scattering problem leads to compli-
cated calculations, exactly solvable models should play an important role in
the investigation of these phenomena.

An application of the discussed method of boundary conditions to the
case of few-body problems leads to a wide class of operators which can be
studied exactly. Unfortunately the simplest models do not give a possibility
to describe complicated phenomena. The complexity of the model problem
increases with the number of phenomena which can be described by the
model. Several systems of one-dimensional particles with interaction of this
type have been analyzed. The investigation of this three-body problem was
started from the simplest problems such as the system of identical particles
[13, 50], the system of impenetrable particles [14], the system of two particles
interacting with a wall [2, 28]. Some of the solutions were expressed in terms
of the elementary functions, for example in the case of identical particles. The
scattering solution can be constructed with the help of the Bethe Ansatz [12]
in this case. More realistic problems describing nonidentical particles lead to
complicated equations for the eigenfunctions. These equations can be solved
using certain integral transformations. Using the Sommerfeld-Maluzhinetz
integral representation [31, 32] one transfers the partial differential equation
into a difference equation for some analytic function. The solution of this
equation can be constructed with the help of special functions [2, 14, 15,
25, 26, 27, 28], and it can be expressed in terms of elementary functions
when the problem has some symmetry properties. Usually this case coincides
with the one for which the solution can be presented by the Bethe Ansatz.
The standard delta functional interaction defines the unique two-body bound
state or resonance. The corresponding model can not be used to describe
collisional deexcitation processes. The two-cluster and three-cluster channels
are orthogonal in the case of equal particles. Breakup and capture processes
are forbidden in this model.

The case of identical particles is studied in the present paper. The model
operator is constructed following the general scheme suggested by B.S.Pavlov.
This is the first application of this scheme to the soluble problem of three-
body scattering in dimension one with nontrivial two-body interaction (see
[18] where a nontrivial three-body interaction has been introduced). The
model constructed has a more realistic scattering matrix and richer structure
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of the spectrum than the model in [8]. In particular it permits to describe
rearrangement processes. The model operator is a selfadjoint perturbation
of the ”asymptotic” Hamiltonian, describing the free motion in the system
of three particles. The model operator describes a system of three arbitrary
particles, but later we confine our consideration to the case of identical par-
ticles in order to be able to express the solution of the scattering problem in
terms of elementary functions. The solution of the two-body scattering prob-
lem can be presented by a combination of plane waves. The problem has an
arbitrary number of bound states and resonances. The solution of the three-
body scattering problem can not be presented in terms of a Bethe Ansatz
and it is calculated using the Sommerfeld-Maluzhinetz transformation. The
equation for the eigenfunctions is equivalent to the Helmholtz equation in the
sector with energy dependent boundary conditions. The diffraction problem
is transformed to a functional equation, which is solved exactly. Analytical
properties of the solutions of the functional equation are investigated. Sin-
gularities of these solutions are determined by the two-body bound states
and resonances. The analytical solution of the functional equation yields
the analytical two and three body scattering matrices. Simple formulae for
these scattering matrices give us the possibility to investigate the relations
between the two- and three-body spectral characteristics. Some of the results
presented here were discussed by the author in [22]. Our model can be used in
statistical physics calculations in order to investigate the relations between
the spectral characteristics of two-body operators and the thermodynamic
parameters. Such investigations have been started in [24]. Developed meth-
ods can be applied to the study of diffraction problems in the domains with
singularities.

The model operator is presented by certain block operators acting in the
orthogonal sum of Hilbert spaces. The interaction between the components is
determined by boundary conditions, which can be considered as antidiagonal
singular operators. Thus the operator constructed is close to the set of ma-
trix selfadjoint operators studied recently by V.M.Adamyan, F.V.Atkinson,
H.Langer, R.Mennicken and A.Shkalikov [6].

The paper is organized as follows. The two-body Schrödinger operator
is constructed in Section 2. The two-body scattering matrix is calculated.
Relations with the standard Schrödinger operator are discussed here following
the paper [23]. In Section 3 a generalization of the model to the three-body
case is considered. The symmetric three body operator is constructed. A
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selfadjoint extension of this operator is calculated with the help of the von
Neumann theory. The equation for the deficiency elements is transformed
into the vector difference equation for an analytic function in Section 3. The
symmetries of the corresponding equations are discussed. Investigation of
a special invariant basis leads to a system of independent two-dimensional
difference equations. It is shown that these equations can be decoupled in the
case of indistinguishable particles. The solution of the difference equation is
obtained in Section 4 for this system. Properties of the deficiency elements
are studied in Section 5. A selfadjoint extension of the symmetric three-
body operator is constructed in Section 6. The three-body scattering matrix
is calculated, it is expressed in terms of elementary functions. The scattering
solution is presented by a combination of plane waves constructed in the
form of the Bethe Ansatz plus a certain outgoing wave. The outgoing wave
is equal to the limit of the deficiency element calculated earlier, when the
spectral parameter λ approaches the real line. Relations between the spectral
properties of the two and three-body operators are discussed.

2 The two-body Hamiltonian

This section is devoted to the construction of the model operator describing
the two-body problem on the line. We first recall some standard facts con-
cerning the two body Schrödinger operator with the interaction introduced
by usual potential. We concentrate our attention to the properties of the cor-
responding scattering data. The main part of this section is devoted to the
construction of the model for a two body operator. The two body quantum
mechanical problem contains the following asymptotic channels

two noninteracting particles;
two particles in a bound state.
The model operator is defined as a selfadjoint perturbation of the orthog-

onal sum of the Hamiltonians describing each asymptotic channel. These
operators are the two dimensional Laplace operator and the one dimensional
matrix second derivative operator with a diagonal threshold matrix. The
entries of the latter matrix coincide with the energies of the two body bound
states. The eigenfunctions of the model operator corresponding to the dis-
crete and continuous spectra are calculated explicitly. The scattering matrix
is expressed in terms of elementary functions. We discuss how to select model
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operators with the standard properties of the scattering data.

2.1 Interaction determined by a potential

The Schrödinger operator describing two one dimensional quantum particles
with equal masses has the following form

(2.1) AV = −1

2

(
d2

dr2
1

+
d2

dr2
2

)
+ V (| r1 − r2 |),

where r1, r2 denote the coordinates of the particles. Here the interaction is
determined by a potential V which depends only on the distance between
the particles. The center of mass motion can be separated using Jacobi
coordinates

x12 = r1 − r2, y12 =
r1 + r2

2
,

the Schrödinger operator can be decomposed as follows

AV = −1

4

∂2

∂y2
12

× I + I × AV ,

(2.2) AV = − d2

dx2
12

+ V (| x12 |).

The operator AV has been studied as a selfadjoint operator in the Hilbert
space L2(R) for potentials with the finite first momentum [11, 33, 9, 34]:

(2.3)
∫ +∞

−∞
|xV (x)|dx < ∞.

The scattering problem for the two-body Schrödinger operator is formulated
with the unperturbed operator equal to the second derivative operator

A0 = − d2

dx2
12

,

defined on the standard domain Dom(A0) = W 2
2 (R). The unperturbed

and perturbed operators have the same branch of absolutely continuous
spectrum [0,∞). The perturbed operator AV with the interaction V can
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have some additional negative eigenvalues - two-body bound states. Let
f−(x, k), f+(x, k), k ∈ R \ {0}, be the solutions of the equation AV f = k2f
in the generalized sense with the following asymptotics

f−(x, k) ∼ eikx, x → +∞,

(2.4a) f+(x, k) ∼ e−ikx, x → −∞.

The solutions fj(k, x) are asymptotic to sums of exponentials as x → ∓∞

f−(x, k) ∼ 1

T−(k)
eikx +

R−(k)

T−(k)
e−ikx, x → −∞,

(2.4b) f+(x, k) ∼ 1

T+(k)
e−ikx +

R+(k)

T+(k)
eikx, x → +∞.

The matrix

(2.5) S(k) =
(

T+(k) R−(k)
R+(k) T−(k)

)

is called the scattering matrix. This matrix is unitary

|T−|2 + |R−|2 = 1 = |T+|2 + |R+|2,
T−(k)R+(−k) + R−(k)T+(−k) = 0.

One can prove that the transition coefficients coincide and that the following
asymptotics for the coefficients of the scattering matrix are valid [11] when
k →∞

(2.6)
T+(k) = T−(k) = 1 + O( 1

|k|);
R−(k) = O( 1

|k|); R+(k) = O( 1
|k|).

The following estimates are valid in the low-energies domain

(2.7) T±(k) = O(k), R±(k) = −1 + O(k) k → 0.

These asymptotics will be called ”standard” ones in what follows. The model
operators which will be constructed in the next section define unitary scat-
tering matrices. But the coefficients of these matrices do not necessarily have
the standard asymptotics. In order to make the model realistic we confine
our consideration to the model operators with the standard asymptotics of
the scattering matrix (see Section 2.5).
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2.2 The model operator

The model two-body operator is constructed as a perturbation of the op-
erator A2

0 describing possible asymptotic channels for the two-body prob-
lem. The operator A2

0 is equal to the orthogonal sum of two operators

A2
0 = −1

2

(
∂2

∂r2
1

+ ∂2

∂r2
2

)
⊕ −1

4
d2

dy2
12

+ A12. The first operator in this orthogonal

sum acts in the Hilbert space L2(R
2) and describes two noninteracting par-

ticles. The second operator describes two coupled particles moving together.
The energies of the bound states are equal to the eigenvalues of the finite
dimensional selfadjoint matrix A12 acting in the finite dimensional space H12.
We suppose that the eigenvalues of A12 are negative. The second operator
acts in the Hilbert space L2(R, H12). The standard separation of the center
of mass motion gives the following operator

(2.8) A2
0 = A1,2 ⊕ A12, A1,2 = − d2

dx2
1,2

which acts in the orthogonal sum of the Hilbert spaces H2 = L2(R) ⊕H12.
The unperturbed operator for the scattering problem can be chosen equal to
the A2

0.
The perturbed operator can be constructed by restricting first the oper-

ator A2
0 to a certain symmetric operator and then extending it to another

selfadjoint operator. The interaction between the channels will be introduced
using some generalized boundary conditions. The restriction of the operator
A1,2 → A1,20 to the domain

Dom(A1,20) =
{
u ∈ W 2

2 (R), u(0) = 0, u′(0) = 0
}

is a symmetric operator with the deficiency indices (2, 2). The adjoint oper-
ator is defined by the same differential expression on the domain

Dom(A∗
1,20) =

{
u ∈ W 2

2 (R\{0})
}

.

The boundary form of the adjoint operator is equal to
u, v ∈ Dom(A∗

1,20)

(2.9) < A∗
1,20u, v >L2 − < u, A∗

1,20v >L2=

=

([
du

dx

]
< v̄ > + <

du

dx
> [v̄]− < u >

[
dv̄

dx

]
− [u] <

dv̄

dx
>

)
|x=0,
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where [∗] and < ∗ > denote the jump and the mean value of function at the
origin

(2.10)
[f(x)] ≡ f(x + 0)− f(x− 0),

< f(x) > ≡ f(x+0)+f(x−0)
2

.

We restrict the operator A12 to the operator A120 defined on the domain
{u12 ∈ H12 : 〈u12, θ〉 = 0}. The restricted operator is a symmetric but not
densely defined operator in H12. Thus one cannot use directly the von Neu-
mann theory to construct the selfadjoint extensions of the operator A120.
The restricted total operator A2

00 is defined by the orthogonal sum of the
symmetric operators A2

00 = A1,20 ⊕ A120 on the domain

Dom(A2
00) = {(u1,2, u12) ∈ H2 : u1,2 ∈ W 2

2 (R), u1,2(0) = 0, u′1,2(0) = 0; 〈u12, θ〉 = 0}.

We define the perturbed operator describing the interacting particles as a
certain selfadjoint extension of the operator A2

00.

Theorem 2.1 Let the real parameters a, b, c, d satisfy the following equality

(2.11) det
∣∣∣∣
a b
c d

∣∣∣∣ = −1,

θ ∈ H12. The operator

(2.12) A2U = A2
(

u1,2

u12

)
=




A∗
1,20u1,2

A12u12 +

(
a

[
du1,2

dx

]
+ b < u1,2 >

)
|x=0 θ


 ,

defined on the domain of functions from Dom(A∗
1,20) ⊕ H12 satisfying the

boundary conditions

(
c

[
du1,2

dx

]
+ d < u1,2 >

)
|x=0=< u12, θ >

(2.13) [u1,2] |x=0= 0

is a selfadjoint extension of the operator A2
00.
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Remark. The operator A2 will be called the perturbed model two-body
operator in the sequel. Similar two-body operators has been suggested first
by K.Makarov [29, 30].

P r o o f. Consider first any element U from the domain of the operator
A2

00. The operators A2 and A2
00 map this element to one and the same element

of the Hilbert space H2 = L2(R)⊕H12. It follows that the operator A2 is an
extension of the operator A2

00.
We are going to prove that the operator A2 is densely defined. Let U

be a given element from the Hilbert space H2 3 U = (u1,2, u12). Consider
an arbitrary element (ũ1,2, u12) from the domain of the operator A2. The
difference (u1,2, u12)−(ũ1,2, u12) = (u1,2−ũ1,2, 0) belongs to the space L2(R) ⊂
H2. The restricted operator A1,20 is densely defined, thus for every given ε > 0
there exists function û1,2 from the domain of the operator A1,20 such that
‖ u1,2−ũ1,2−û1,2 ‖L2< ε. This implies that ‖ (u1,2, u12)−(ũ1,2+û1,2, u12) ‖< ε
and (ũ1,2 + û1,2, u12) belongs to the domain of the operator A2. Thus the
operator A2 is densely defined.

We calculate now the boundary form of the operator (11) on the functions
from Dom(A∗

1,20)⊕H12

(2.14)

< A2U, V >H − < U,A2V >H=

=
([

du1,2

dx

]
< v1,2 >+ < du1,2

dx
> [v1,2]

− < u1,2 >
[

dv1,2

dx

]
− [u1,2]<

dv1,2

dx
>

)
|x=0

+
(
a

[
du1,2

dx

]
+ b < u1,2 >

)
|x=0 < v12, θ >

− < u12, θ >
(
a

[
dv1,2

dx

]
+ b< v1,2 >

)
|x=0
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This boundary form vanishes on the domain of the operator A2

(2.15)

< A2U, V > − < U,A2V > =
([

du1,2

dx

]
< v1,2 >− < u1,2 >

[
dv1,2

dx

]
+

+ac
[

du1,2

dx

] [
dv1,2

dx

]
+ bc < u1,2 >

[
dv1,2

dx

]

+ad
[

du1,2

dx

]
< v1,2 > + bd < u1,2 > < v1,2 >

−ac
[

du1,2

dx

] [
dv1,2

dx

]
− ad < u1,2 >

[
dv1,2

dx

]

−cb
[

du1,2

dx

]
< v1,2 >− bd < u1,2 > < v1,2 >

)
|x=0=

=
([

du1,2

dx

]
< v1,2 > − < u1,2 >

[
dv1,2

dx

])
|x=0

(
1 + det

∣∣∣∣
a b
c d

∣∣∣∣
)

= 0

Thus the operator A2 is a symmetric extension of the operator A2
00. The

adjoint operator is defined by the same formula (2.12) and its domain is a
subset of Dom(A∗

1,20)⊕H12. If an element U = (u1,2, u12) ∈ Dom(A∗
1,20)⊕H12

belongs to the domain of the adjoint operator then the boundary form (1.14)
should be equal to zero for any V ∈ Dom(A2). Consider elements V such

that < v1,2 > |x=0 =
[

dv1,2

dx

]
|x=0 =< v12, θ >= 0. The boundary form for

such V is equal to −[u1,2] < dv1,2

dx
> and it follows that every function u1,2

must be continuous at the origin [u1,2] = 0. Consider now elements V such
that < v12, θ >= 0. Similar calculations show that the boundary values of U
should satisfy the first condition (2.13). It follows that the adjoint operator
A2∗ has the same domain as the operator A2 and thus it is selfadjoint. 2

The operators A2 and A2
0 are in general two different selfadjoint exten-

sions of the symmetric operator A2
00. The set of constructed operators A2

does not coincide with the set of all selfadjoint extensions of the operator
A2

00. The advantage of the method presented is that the operator A2 is de-
fined explicitly. One can use the fact that the operators A2

0 and A2 are two
selfadjoint extensions of the same symmetric operator A2

00 to calculate the
resolvent of A2.

2.3 The resolvent

The resolvent of the perturbed operator for all λ,=λ 6= 0 can be calculated
using the modified Kreins formula and the resolvent of the unperturbed
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operator
RA2

0
(λ) = RA1,2(λ)⊕RA12(λ).

The resolvent of the operator A1,2 is the integral operator with the kernel

rA1,2(λ, x, y) = ei
√

λ|x−y|
2i
√

λ
. The branch of the square root is fixed by the condi-

tion =λ > 0 ⇒ =√λ > 0. The resolvent of the operator A12 coincides with
the following matrix RA12(λ) = (A12 − λ)−1.

The following function will play an important role in the sequel:

(2.16) D(λ) =
b < RA12(λ)θ, θ > +d

a < RA12(λ)θ, θ > +c
.

The function R(λ) =< RA12(λ)θ, θ > is analytic in the upper halfplane
=λ > 0 and has positive imaginary part there. The real constants a, b, c, d
define a conformal map of the upper halfplane onto itself due to the conditions
(2.11). It follows that the function D(λ) is analytic in the upper half plane
and has positive imaginary part there.

Lemma 2.1 The resolvent of the perturbed operator RA2(λ) = (A2 − λ)−1

is the matrix operator of the form

(2.17) RA2(λ) = RA2
0
(λ) +

(
∆R(1,2)(1,2)(λ) ∆R(1,2)(12)(λ)
∆R(12)(1,2)(λ) ∆R(12)(12)(λ)

)
.

The operators ∆R(1,2)(1,2)(λ), ∆R(12)(1,2)(λ) are the integral operators with the
following kernels

(2.18) ∆r(1,2)(1,2)(λ, x, y) = − D(λ)

D(λ) + 2i
√

λ
ei
√

λ|y| ei
√

λ|x|

2i
√

λ
,

(2.19) ∆r(12)(1,2)(λ, y) =
aD(λ)− b

D(λ) + 2i
√

λ
ei
√

λ|y|(A12 − λ)−1θ.

The operators ∆R(1,2)(12)(λ), ∆R(12)(12)(λ) are equal to

(2.20) ∆R(1,2)(12)(λ) = ei
√

λ|x| < (A12 − λ)−1∗, θ >

(2ai
√

λ + b)R(λ) + 2ci
√

λ + d
,

(2.21) ∆R(12)(12)(λ) = −(2ai
√

λ + b)
< (A12 − λ)−1∗, θ > (A12 − λ)−1θ

(2ai
√

λ + b)R(λ) + 2ci
√

λ + d
.
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P r o o f . Consider an arbitrary F ∈ H2. LetRA2(λ)F = G. This implies
that G ∈ Dom(A2) and F = (A2 − λ)G. The last equation can be written
for the components as follows

(− d2

dx2
− λ)g1,2(x) = f1,2(x);

(2.22) A12g12 +

(
a

[
dg1,2

dx

]
+ b < g1,2 >

)
|x=0θ − λg12 = f12.

We apply the operator RA12(λ) to the left and right hand sides of the second
equation

(2.23)g12 = RA12(λ)f12 −
(
a

[
dg1,2

dx

]
+ b < g1,2 >

)
|x=0RA12(λ)θ.

The projection on the element θ gives the following relation
(2.24)

< g12, θ >=< RA12(λ)f12, θ > −
(
a

[
dg1,2

dx

]
+ b < g1,2 >

)
|x=0 < RA12(λ)θ, θ > .

Every solution to (2.22) which is continuous at the origin is given by

g1,2 = RA1,2(λ)f1,2 + qei
√

λ|x|,

where q is a parameter which will be fixed later. The boundary values of the
function g1,2 at the origin are equal to

< g1,2 > |x=0 =
∫∞
−∞

ei
√

λ|y|
2i
√

λ
f1,2(y)dy + q;[

dg1,2

dx

]
|x=0 = 2i

√
λq.

The element G belongs to the domain of the operator A2 and satisfies the
boundary conditions (2.13). It follows from (2.24) that the boundary values
of g1,2 should satisfy the following equation

(c+ < RA12(λ)θ, θ > a)

[
dg1,2

dx

]
|x=0 + (d+ < RA12(λ)θ, θ > b) < g1,2 > |x=0 =

=< RA12(λ)f12, θ > .
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The parameter q can be calculated now

q =
1

2i
√

λ + D(λ)
×

×

 1

c+ < RA12(λ)θ, θ > a
< RA12(λ)f12, θ > −D(λ)

∫ ∞

−∞
ei
√

λ|y|

2i
√

λ
f1,2(y)dy


 .

It follows that

g12 = RA12(λ)f12 +
2i
√

λ(aD(λ)− b)

2i
√

λ + D(λ)

∫ ∞

−∞
ei
√

λ|y|

2i
√

λ
f1,2(y)dyRA12(λ)θ

− a2i
√

λ + b

2i
√

λ(c + R(λ)a) + bR(λ) + d
< RA12(λ)f12, θ > RA12(λ)θ,

g1,2 = RA1,2(λ)f1,2 +
ei
√

λ|x|

2i
√

λ + D(λ)
×

×

 1

c+ < RA12(λ)θ, θ > a
< RA12(λ)f12, θ > −D(λ)

∫ ∞

−∞
ei
√

λ|y|

2i
√

λ
f1,2(y)dy


 .

Formulas (2.18-2.21) follow from the last two equations. 2

2.4 Spectrum, eigenfunctions, scattering matrix

The singularities of the resolvent RA2(λ) are situated at the points which
satisfy the equation D(λ) + 2i

√
λ = 0. They correspond to the eigenvalues

of the operator A2. The absolutely continuous spectrum of the operator is
determined by the discontinuity of the resolvent on the positive part of the
real axis due to the discontinuity of the function

√
λ there.

The discrete spectrum eigenfunctions are solutions of the equation A2Ψs =
λsΨs, where λs > 0, s = 1, 2, ..., N2

bs, are the negative real solutions of the
equation

(2.25) 2i
√

λs = −D(λs).

The eigenfunctions can be explicitly calculated

(2.26) Ψs = cs

(
ψs

1,2(x)
ψs

12

)
,
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ψs
1,2(x) = e−χs|x|, χs = −i

√
λs > 0,

ψs
12 = −(−2aχs + b)(A12 + χ2

s)
−1θ.

The constant cs can be determined from the normalizing condition ‖ Ψs ‖= 1

(2.27) cs =

(
1

χs

+ (−2aχs + b)2 ‖ (A12 + χ2)−1θ ‖2

)−1/2

.

The continuous spectrum eigenfunctions Ψ = (ψ1,2, ψ12) are generalized
solutions of the following equation

(2.28)

( − d2

dx2 ψ1,2

A12ψ12 +
(
a

[
dψ1,2

dx

]
+ b < ψ1,2 >

)
|x=0 θ

)
= λ

(
ψ1,2

ψ12

)
,

satisfying the boundary conditions (2.13). Equation (2.28) can be reduced
to the usual one dimensional Schrödinger equation on the axis with energy
dependent boundary conditions at the origin. This reduction is similar to the
one carried out in the proof of Lemma 2.2. The second of equations (2.28)

(a

[
dψ1,2

dx

]
+ b < ψ1,2 >) |x=0 θ + A12ψ12 = λψ12

can be solved as follows

ψ12 = −
(
a

[
dψ1,2

dx

]
+ b < ψ1,2 >

)
|x=0 (A12 − λ)−1 θ.

Substitution into the boundary conditions (2.13) gives the following energy
dependent boundary conditions for the component ψ1,2

[
dψ1,2

dx

]

< ψ1,2 >
|x=0= −bR(λ) + d

aR(λ) + c
≡ −D(λ),

(2.29) [ψ1,2] |x=0= 0.

The multiplicity of the continuous spectrum is equal to 2. As in (2.4a),
(2.4b) the following representations for the eigenfunctions can be used

Ψ±(λ) =
1

2
√

πk

(
ψ±1,2(x)

ψ±12

)
, λ = k2
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ψ−1,2(λ, x) =
{

eikx + R−(k)e−ikx; x < 0
T−(k)eikx; x > 0

(2.30) ψ+1,2(λ, x) =
{

T+(k)e−ikx; x < 0
e−ikx + R+(k)eikx; x > 0

The left and right reflection and transition coefficients are identical due to
the symmetry of the problem

R−(k) = R+(k) ≡ R(k), T−(k) = T+(k) ≡ T (k).

The transition and reflection coefficients are calculated from the energy de-
pendent boundary conditions (2.29)

(2.31)
T (k) = 2ik

D(λ)+2ik

R(k) = −D(λ)
D(λ)+2ik

.

The components ψ±12(λ) of the eigenfunctions are identical

(2.32) ψ±12(λ) = ψ12(λ) = i
4
√

λ√
π

aD(λ)− b

D(λ) + 2i
√

λ
(A12 − λ)−1θ

The reflection and transition coefficients form the unitary scattering matrix

(2.33) S(k) =
(

T (k) R(k)
R(k) T (k)

)
.

The unitarity of the scattering matrix we calculated can be proven directly
using the fact that the function D(k2) is real for the real values of the pa-
rameter k.

The discrete spectrum eigenfunctions Ψs and continuous spectrum eigen-
functions Ψ±(λ) define the spectral decomposition of the operator A2 :

Theorem 2.2 Let F = (f1,2, f12), G = (g1,2, g12) ∈ H2 have infinitely differ-
entiable outside the origin components f1,2, g1,2 with compact support, then
the following formula is valid
(2.34)

< F, G >H2 =
∑N2

bs
s=1 < F, Ψs >H2< Ψs, G >H2

+
∑

α=±
∫∞
0 dλ

(∫ +∞
−∞ f1,2(x)ψα1,2(x)dx+ < f12, ψα12 >

)

×
(∫ +∞
−∞ ψα1,2(x)g1,2(x)dx+ < ψα12, g12 >

)
.
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Moreover if F ∈ Dom (A2) then
(2.35)

< A2F, G >H2 =
∑N2

bs
s=1 λs < F, Ψs >H2< Ψs, G >H2

+
∑

α=±
∫∞
0 λdλ

(∫ +∞
−∞ f1,2(x)ψα1,2(x)dx+ < f12, ψα12 >

)

×
(∫ +∞
−∞ ψα1,2(x)g1,2(x)dx+ < ψα12, g12 >

)
.

The theorem can be proven integrating the resolvent of the operator A2

over the contour surrounding the discrete and continuous spectra.

2.5 Restrictions on the model

Only the model operators with the standard behavior of the scattering matrix
(2.4) will be considered in what follows. The function D(λ) is a rational
function. It is analytic in the upper halfplane and has positive imaginary
part there. It is real on the real axis. Every such function has the following
asymptotics at infinity D(λ) = c1λ + c0 + O( 1

λ
), c1, c0 ∈ R, c1 ≥ 0. The

transition coefficient T (k) tends to one at infinity only if the linear term
in the asymptotics is absent ( c1 = 0). Only the model operators with the
perturbation determined by the zero parameter d possess such property. The
reflection coefficient tends to zero at infinity in this case and the scattering
matrix has the standard behavior at infinity (2.6). The scattering matrix
(2.7) has standard zero energy behavior if no zero energy bound state is
present

(2.36) D(0) 6= 0.

In the sequel we are going to consider only the model operators with standard
behavior of the scattering matrix.

The singularities of the scattering matrix are situated on the positive
part of the imaginary axis on the k - plane and in the lower half-plane (
k =

√
λ). These singularities correspond to the bound states and resonances

respectively. We are going to consider the case a = d = 0. 1 The number of
the eigenvalues of the perturbed and unperturbed operators coincide in this
case.

1We shall present formulas generally for nonzero a and d, but the final result will be
proven for a and d equal to zero.
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Lemma 2.2 Let a = d = 0 and all the eigenvalues of A12 be negative. The
equation

(2.37) D(k2) + 2ik = 0

has exactly N12 = dimH12 solutions in the upper halfplane =k > 0. All these
solutions are situated on the imaginary axis.

P r o o f. The solutions of the equation on the physical sheet are situated
on the imaginary axis because the functions D(λ) and 2i

√
λ have imaginary

parts with the same sign on the λ-plane outside the real axis, where these
functions are real. The function D(λ) = b2R(λ) considered on the real
axis is a continuous increasing function on each interval not containing the
singularities which coincide with the eigenvalues of the operator A12. The
number of the singularities on the negative halfaxis coincides with N12, since
all the eigenvalues of the operator A12 are negative. The function 2i

√
λ is a

negative increasing function. It follows that the equation has exactly dimH12

solutions in the upper halfplane =k > 0 and all these solutions are situated
on the imaginary axis. 2

The constant b can be considered as a perturbation parameter. The
eigenvalues of the operator A2 tend to the eigenvalues of the operator A12 in
the limit b → 0.

Equation (2.37) has exactly 2N12+1 solutions since all these solutions are
roots of a polynomial in k of degree 2N12 +1. The number of the solutions on
the nonphysical sheet =k < 0 is equal to N12 + 1. We suppose that all these
solutions are situated on the imaginary axis. This is true if the parameter b
is small. In the general situation only N12 − 1 solutions are situated on the
imaginary axis in the lower halfplane and two solutions can have nontrivial
real part.

The discrete part of the operator A2 will be denoted by A2
d = A2Pd, where

Pd is the discrete spectrum projection for the operator A2. The discrete
spectrum eigenfunctions Ψs, s = 1, 2, ..., N12, form an orthogonal basis in
the finite dimensional subspace H2

d = PdH
2. The operator A2

d is a diagonal
operator in this basis

A2
d

∑
gsΨs =

∑
(−χ2

s)gsΨs.

We note that the operator A2
d is unitary equivalent to an operator in H12

since the spaces H12 and H2
d have the same dimension.
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The constructed model two-body problem is exactly solvable in the follow-
ing sense: the eigenfunctions and scattering data can be expressed in terms of
elementary functions. Different scattering channels are orthogonal as in the
usual two-body scattering problem. The channel Hamiltonians which were
used in the construction of the problem are not the channel Hamiltonians for
the perturbed operator because the two-body discrete spectrum changes dur-
ing the perturbation. The channel Hamiltonian corresponding to the cluster
decomposition (two particles in a bound state) can be defined in the space
L2(R, H12) by the following expression

Ã12 = − d2

dy2
12

+ A2
d.

The space L2(R, H12) can be embedded into the spaceH2 with the help of the
discrete spectrum eigenfunctions of the operator A2 as it has been described
in [44].

3 Three-body Hamiltonian

This section is devoted to the construction of the three-body symmetric op-
erator with nontrivial two-body interactions. A rich symmetry group of the
operator will be described. Selfadjoint extensions of the symmetric operator
will be constructed using the von Neumann theory in Section 6. Sommerfeld-
Maluzhinetz integral transformation will be used in this section to transform
the differential equation on the deficiency elements into the difference func-
tional equation. We restrict our consideration later on to the case of indis-
tinguishable particles. The corresponding simplified functional equation will
also be derived.

3.1 Symmetric three-body operator

The model three-body operator will be defined as a perturbation of the or-
thogonal sum of operators describing possible asymptotic channels for the
system of three particles. These asymptotic channels are

three noninteracting particles ( operator A1,2,3 );
two particles in a bound state and the third particle free (operators

A12,3,A23,1,A31,2);
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three particles in a bound state (operator A123).
We restrict our consideration to the case of particles with equal masses.

Let (α, β, γ) be a cyclic permutation of the numbers (1, 2, 3) then the three-
body Jacobi coordinates can be written as follows

(3.1)

y123 = 1
3
(r1 + r2 + r3),

xαβ = (rα − rβ),

xαβ,γ =
√

4
3

(
1
2
(rα + rβ)− rγ

)
.

Then we define the channel Hamiltonians as follows

(3.2)

A1,2,3 = −1
2

(
∂2

∂r2
1

+ ∂2

∂r2
2

+ ∂2

∂r2
3

)
in H1,2,3 = L2(R

3),

Aαβ,γ = −
(

1
6

∂2

∂y2
123

+ ∂2

∂x2
αβ,γ

)
+ Aαβ in Hαβ,γ = L2(R

2, Hαβ),

A123 = −1
6

∂2

∂y2
123

+ A123 in H123 = L2(R, H123).

Here the operators Aαβ, A123 are certain selfadjoint matrices in the finite
dimensional Hilbert spaces Hαβ, H123 respectively. The unperturbed operator
A3

0 is the orthogonal sum of the asymptotic channel Hamiltonians:

(3.3) A3
0 = A1,2,3 ⊕A12,3 ⊕A23,1 ⊕A31,2 ⊕A123

acting in the Hilbert space

(3.4) H3 = H1,2,3 ⊕H12,3 ⊕H23,1 ⊕H31,2 ⊕H123.

The operator A3
0 can be decomposed into the tensor sum

A3
0 = −1

6

∂2

∂y2
123

× I + I × A3
0,

which corresponds to the separation of the center of mass motion. The three
body operator with the separated center of mass motion will be investigated.
The corresponding unperturbed operator is equal to the orthogonal sum of
the channel operators

(3.5) A3
0 = A1,2,3 ⊕ A12,3 ⊕ A23,1 ⊕ A31,2 ⊕ A123.

It acts in the orthogonal sum of the Hilbert spaces

(3.6) H3 = H1,2,3 ⊕H12,3 ⊕H23,1 ⊕H31,2 ⊕H123.
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The operators used in the decomposition of the operator A3
0 are equal to

(3.7)

A1,2,3 = −
(

∂2

∂x2
12

+ ∂2

∂x2
12,3

)
= −

(
∂2

∂x2
23

+ ∂2

∂x2
23,1

)

= −
(

∂2

∂x2
31

+ ∂2

∂x2
31,2

)
in H1,2,3 = L2(R

2);

Aαβ,γ = − ∂2

∂x2
αβ,γ

+ Aαβ in Hαβ,γ = L2(R, Hαβ).

The scalar product in the Hilbert space H2 will be denoted by ¿ ·, · À . We
are going to restrict our consideration to the case of the trivial space H123

for simplicity.
The interaction between the channels will be introduced by restricting

first the operator A3
0 to a certain symmetric operator A3

00 and constructing its
different selfadjoint extension. The operator A1,2,3 describes the free motion
of particles on the plane Λ = {r ∈ R3 | r1+r2+r3 = 0}. In analogy to Section
2 the interaction with the cluster operator Aαβ,γ should be introduced on the
line `γ, where the coordinates of the particles α and β coincide rα = rβ.
These lines `1, `2, `3 divide the plane Λ onto six equal sectors. The point of
the intersection of these lines needs very careful consideration. Thus on the
first step only the functions with the support separated from the origin will
be considered. The operator defined on such functions will be symmetric only
but not selfadjoint. In order to introduce the two-body interaction we restrict
the operator A1,2,3 → A1,2,30 to the set of the smooth functions, vanishing in
a neighborhood of the lines `γ, γ = 1, 2, 3. The adjoint operator is defined on
the domain W 2

2 (Λ \ {`γ}). Functions from this domain can have singularities
on the lines `γ. Let us denote by Λ1, Λ2, ..., Λ6 the six sectors on the Λ-plane.
Thus we introduce the following subspace of bounded functions

Definition 3.1 The subspace C∞
0 ⊂ W 2

2 (Λ \ {`γ}) consists of all infinitely
differentiable outside the lines `γ bounded functions with compact support
separated from the origin.

The support of a function from the defined subspace is not necessarily
separated from the screens `γ. The functions from C∞

0 can be discontinuous
on the lines `γ but the boundary values of the functions and their normal
derivatives from the both sides of the lines exist and are absolutely continuous
functions with compact support.
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Lemma 3.1 Let u1,2,3, v1,2,3 ∈ C∞
0 . Then the boundary form of the operator

A3∗
00 is equal to

(3.8) ¿ A∗
1,2,30u1,2,3, v1,2,3 À −¿ u1,2,3, A

∗
1,2,30v1,2,3 À=

=
3∑

γ=1

∫
dxαβ,γ

{[
∂u1,2,3

∂xαβ

]
< v1,2,3 >+ <

∂u1,2,3

∂xαβ

> [v1,2,3]−

− < u1,2,3 >

[
∂v1,2,3

∂xαβ

]
− [u1,2,3]<

∂v1,2,3

∂nγ

>



 |xαβ=0 .

where the sum is taken over all cyclic permutations (α, β, γ) of the numbers
(1, 2, 3) parameterized by the number γ.

P r o o f. The lemma can be proven by integrating by parts in the
domain Λ \ {`γ} which is possible because the functions u1,2,3, v1,2,3 are
twice continuously differentiable outside the lines `γ. The boundary values
∂u1,2,3

∂xα,β
, u1,2,3,

∂v1,2,3

∂xα,β
, v1,2,3 exist and they are continuous functions with com-

pact support on every line `γ. Thus all integrals in formula (3.8) converge.
2

Theorem 3.1 The operator
(3.9)

A3U3 = A3

(
u1,2,3

uαβ,γ

)

=

(
A∗

1,2,30u1,2,3

Aαβ,γuαβ,γ +
(
aαβ,γ

[
∂u1,2,3

∂xαβ

]
+ bαβ,γ < u1,2,3 >

)
|`γ θαβ,γ

)

defined on the domain of functions from C∞
0 = C∞

0 ⊕
∑3

γ=1 C∞
0 (R\{0}, Hα,β)

satisfying the boundary conditions

(3.10)

(
cαβ,γ

[
∂u1,2,3

∂xαβ

]
+ dαβ,γ < u1,2,3 >

)
|`γ = < uαβ,γ, θαβ,γ >,

[u1,2,3]|`γ = 0

is symmetric if the real parameters a, b, c, d satisfy the following condition

det

∣∣∣∣
a b
c d

∣∣∣∣ = −1

and θαβ,γ ∈ Hαβ.
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P r o o f . Consider two arbitrary elements U, V ∈ C∞
0 . The boundary

form of the operator A3 is equal to

< A3U, V >H3 − < U,A3V >H3=
=¿ A∗

1,2,30u1,2,3, v1,2,3 À −¿ u1,2,3, A
∗
1,2,30v1,2,3 À

+
∑3

γ=1

∫
dxαβ,γ

{(
aαβ,γ

[
∂u1,2,3

∂xαβ

]
+ bαβ,γ < u1,2,3 >

)
|xαβ=0< θαβ,γ, vαβ,γ >

− < uαβ,γ, θαβ,γ >
(
aαβ,γ

[
∂v1,2,3

∂xαβ

]
+ bαβ,γ < v1,2,3 >

)
|xαβ=0

}
=

=
∑3

γ=1

∫
dxαβ,γ

{[
∂u1,2,3

∂xαβ

]
< v1,2,3 > |xαβ=0 + < ∂u1,2,3

∂xαβ
> [v1,2,3] |xαβ=0

− < u1,2,3 >
[

∂v1,2,3

∂xαβ

]
|xαβ=0 −[u1,2,3]<

∂v1,2,3

∂nγ
> |xαβ=0

+
(
aαβ,γ

[
∂u1,2,3

∂xαβ

]
+ bαβ,γ < u1,2,3 >

)
|xαβ=0< θαβ,γ, vαβ,γ >

− < uαβ,γ, θαβ,γ >
(
aαβ,γ

[
∂v1,2,3

∂xαβ

]
+ bαβ,γ < v1,2,3 >

)
|xαβ=0

}
.

The integrated expression vanishes at every point on the lines `γ due to the
conditions (3.10). It follows that the operator A3 on C∞

0 is symmetric. 2

The operator A3 with the domain C∞
0 is not selfadjoint and its selfad-

joint extensions can be described in terms of the deficiency elements. The
deficiency elements will be calculated in the following sections. We discuss
first the symmetries of the constructed operator.

3.2 The symmetry group

We consider in the sequel the system of identical particles. In terms of
the constructed model it means that the operators Aαβ,γ, the constants
aαβ,γ, bαβ,γ, cαβ,γ, dαβ,γ and the vectors θαβ,γ are equal. The function u1,2,3

can be considered in three different coordinate systems related to the three
cluster decompositions of the three particles. We denote the corresponding
functions by the index 1, 2 or 3 in such a way that

u3
1,2,3(x12, x12,3) = u1

1,2,3(x23, x23,1) = u2
1,2,3(x31, x31,2).

The symmetries of the system of three identical particles interacting via
even potential are described by the dihedral group D12 [16] generated by two
elements s and t such that

s6 = 1, t2 = 1, tst = s−1.
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The constructed model symmetric operator has the same symmetry group.
The element s of order 6 corresponds to the rotation of the plane Λ on the
angle π/3

(3.11) sU = V ⇒




vγ
1,2,3(xαβ, xαβ,γ)
vαβ,γ(xαβ,γ)
vβγ,α(xβγ,α)
vγα,β(xγα,β)


 =




uα
1,2,3(−xαβ,−xαβ,γ)

uβγ,α(−xαβ,γ)
uγα,β(−xβγ,α)
uαβ,γ(−xγα,β)


 .

The element t can be chosen equal to the operator Zγ of the transposition
of the particles α and β

(3.12) tU = ZγU = V ⇒




vγ
1,2,3(xαβ, xαβ,γ)
vαβ,γ(xαβ,γ)
vβγ,α(xβγ,α)
vγα,β(xγα,β)


 =




uγ
1,2,3(−xαβ, xαβ,γ)

uαβ,γ(xαβ,γ)
uγα,β(xβγ,α)
uβγ,α(xγ,α,β)


 .

The transpositions Zγ generate the subgroup of permutations P3, which
consists of 6 elements [16].

The element s generates important cyclic subgroup, namely the group of
the central rotations on the plane Λ by the angles nπ/3. As if the operator
A3 commutes with the rotations sn: A3sn = snA3 the Hilbert space is de-
composable into the orthogonal sum of Hilbert spaces of functions, which are
quasi invariant with respect to the rotations s:

(3.13) sU = e−imπ/3U, m = 0, 1, 2, 3, 4, 5.

Let us denote by Pm the projector on these quasi invariant elements. Every
such element is defined by its values in one of the sectors Λ′ = {x12 < 0, x31 <
0} on the plane Λ and values of the functions u12,3 on the positive halfaxis.
The transformation

Tm : U → (um
o , um

1 ) ∈ L2(Λ
′)⊕ L2(R+, H12)

TmU = ((Pmu1,2,3)|Λ′ , (Pmu12,3)|R+)

is invertible on such functions. The operator 6Tm is norm preserving. The
Hilbert space H3 and the operator A3 can be decomposed as follows

H3 = ⊕
5∑

m=0

T−1
m Hm, Hm = L2(Λ

′)⊕ L2(R+, H12);
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A3 = ⊕
5∑

m=0

T−1
m AmTm.

Let us introduce the polar coordinates in such a way that Λ′ = {(r, ϕ)|0 ≤
r ≤ ∞, 0 ≤ ϕ ≤ π/3}.

Lemma 3.2 The operator Am is defined by the following formula

Am

(
um

0 (r, ϕ)
um

1 (r)

)
=

( −∆r,ϕum
0(

− ∂2

∂r2 + A12

)
um

1 + `(um
0 )θ

)
,

(3.14)

`(um
0 ) =

a

r
(
∂um

0

∂ϕ
|ϕ=0 −e−imπ/3∂um

0

∂ϕ
|ϕ=π/3) +

b

2
(um

0 |ϕ=0 +e−imπ/3um
0 |ϕ=π/3)

on the domain of functions from TmC∞
0 satisfying the boundary conditions

(3.15)

< um
1 , θ >=

c

r
(
∂um

0

∂ϕ
|ϕ=0 −e−imπ/3∂um

0

∂ϕ
|ϕ=π/3)+

d

2
(um

0 |ϕ=0 +e−imπ/3um
0 |ϕ=π/3),

(3.16) um
0 |ϕ=0= e−imπ/3um

0 |ϕ=π/3 .

P r o o f . Consider any U ∈ TmC∞
0 . Then Am = TmA3T−1

m . The domain
of the operator coincides with the set TmDom(A3). The boundary conditions
(3.15),(3.16) follow from the boundary conditions (3.10) and the fact that
every element T−1

m U satisfies (3.13). Similarly formula (3.14) for the operator
Am follows from (3.9) and (3.13). 2

3.3 Deficiency elements and Sommerfeld-Maluzhinetz
transformation

The deficiency elements for the operator Am are solutions of the equation

(3.17) A∗
mGm = λGm, =λ > 0,

k =
√

λ, =k ≥ 0,

Gm = (gm
0 , gm

1 ).
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The operator A∗
m is defined by the same differential expression (3.14) on the

set of functions from W 2
2 (Λ′) ⊕ W 2

2 (R+, H12) satisfying the boundary con-
ditions (3.15),(3.16). We consider first only bounded functions continuously
differentiable outside the lines `γ which are from the domain of A∗

m. These
functions are not necessarily equal to zero at the origin. The set of deficiency
elements from this class is not trivial. The Sommerfeld-Maluzhinetz integral
representation [38, 31, 32] will be used to solve the system of equations (3.17).
We consider here the limit case where k is real and positive. This limit of
the deficiency element will be used to calculate the eigenfunctions of the
extended three-body operator.

We suppose that the components of the function Gm can be presented by
the following integrals over the plane waves

(3.18) gm
0 (k) =

1

2πi

∫

Γ
eikr cos α

{
g̃m
+ (α + ϕ) + g̃m

− (α + π/3− ϕ)
}

dα,

gm
1 (k) =

1

2πi

∫

Γ
eikr cos αg̃m

1 (α)dα,

where Γ is a contour in the complex plane α. The contour goes to infinity
for real positive k in the upper half-plane in the strips

(2m− 1)π < <α < 2πm, m = 0, 1.

The contour Γ is not closed and has two infinite branches. We chose first the
contour Γ in such a way, that no singularity of the density function is situated
inside the contour. It is possible because the singularities are situated at a
finite distance from the real axis. This assumption will be justified later when
the integral density will be calculated. The integral densities are supposed
to be analytic functions in α in the region of deformation of the contour
Γ. Moreover we are going to carry out integration by parts during these
calculations. We assume that the contribution of the boundary terms is
equal to zero. These calculations will be justified later for the calculated
solution only. The contour Γ will be chosen in a special way later, but at
this time we fix some contour Γ1 , which is situated in the upper half-plane
=α > Q, Q > 0. The positive real number Q will be determined after the
calculation of the solution.

The component gm
0 satisfies the first equation (3.17) due to the special

dependence of the integral density on the angle ϕ. The proof of this fact can
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be carried out by integration by parts which is possible due to our assump-
tion. Integration by parts in the second equation (3.17) for the component
gm
1 gives the following equations for the integral densities g̃m

1

(3.19) (A12 − λ sin2 α)g̃m
1 =

= −
{
aik sin α

[
g̃m
+ (α)− g̃m

− (α + π/3)− e−imπ/3(g̃m
+ (α + π/3)− g̃m

− (α))
]

+ b/2
[
g̃m
+ (α) + g̃m

− (α + π/3) + e−imπ/3(g̃m
+ (α + π/3) + g̃m

− (α))
]}

θ.

Solving the matrix equation (3.19) we get one of the solutions of the equation.
But the general solution contains an additional decreasing exponent which
belongs to the kernel of the Sommerfeld-Maluzhinetz transformation

(3.20) exp
(
i
√

λ− A12r
)

h.

Here h is a vector from H12. It parametrizes the solution. The matrix
exponential function can be presented by the Sommerfeld integral with the
following integral density (see [31, 32])

(3.21) − k sin α

k cos α−√λ− A12

h.

The general solution of the second equation (3.17) in the Sommerfeld repre-
sentation is equal to

(3.22)

g̃m
1 (α) = − k sin α

k cos α−√λ−A12
h

−
{
aik sin α

[
g̃m
+ (α)− g̃m

− (α + π/3)− e−imπ/3(g̃m
+ (α + π/3)− g̃m

− (α))
]

+ b/2
[
g̃m
+ (α) + g̃m

− (α + π/3) + e−imπ/3(g̃m
+ (α + π/3) + g̃m

− (α))
]}

×(A12 − λ sin2 α)−1θ.

We exclude the component g1 by projecting the solution onto the element θ.
The following difference equation on the integral densities g̃m

± (α) is obtained
(3.23)

e−imπ/3g̃m
+ (α + π/3) + g̃m

− (α + π/3) = Π(α)
(
g̃m
+ (α) + e−imπ/3g̃m

− (α)
)

+ 2f(α),

where the following notations are used

(3.24) Π(α) =
2ik sin α + D(λ sin2 α)

2ik sin α−D(λ sin2 α)
= (T (k sin α) + R(k sin α))−1 ,
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f(h, α) =
< k sin α

k cos α−√λ−A12
h, θ >

(2aik sin α− b)R(λ sin2 α) + 2cik sin α− d
.

The two-body transition and reflection coefficients appear in the latter for-
mula. 2 We get the second difference equation from the second boundary
condition

(3.25) e−imπ/3g̃m
+ (α + π/3)− g̃m

− (α + π/3) = g̃m
+ (α)− e−imπ/3g̃m

− (α).

These equations can be written in the vector form for the two component
functions g̃m(α) = (g̃m

+ (α), g̃m
− (α))

(3.26)

g̃m(α + π/3) = 1
2

(
eimπ/3(Π(α) + 1) Π(α)− 1

Π(α)− 1 e−imπ/3(Π(α) + 1)

)
g̃m(α)

+f(α)
(

eimπ/3

1

)
.

We are able to obtain the solution for these difference equations in terms
of elementary functions only for m = 0, 3. The solution to the difference
equation for general m will be presented in one of the future publications.
The cases m = 0, 3 correspond to the system of particles with the wave
function symmetric or antisymmetric with respect to the transpositions of
the particles (boson or fermion systems correspondingly). The eigenbasis of
the matrix

1

2

(
eimπ/3(Π(α) + 1) Π(α)− 1

Π(α)− 1 e−imπ/3(Π(α) + 1)

)

is independent of α in this case and the matrix system of the difference
equations can be reduced to two independent ordinary difference equations.

3.4 Functional equation for identical particles

We consider in the sequel the case where the wave function of three particles
has boson symmetry. The case of fermions leads to the trivial interaction
between the particles because every continuous antisymmetric function is
equal to zero at the origin. As a result of this the three-body and two-
body channels for the fermion problem would be separated in our model.

2The vector h can be considered as a parameter in the latter formula. We are going to
use the simplified notation f(α) in the following sections except Section 7.
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Thus we restrict our consideration to the system of bosons. To obtain the
three-body boson Hamiltonian we restrict the operator A3 to the set H3

b

of functions invariant with respect to the subgroup of transpositions P3.
The corresponding subset of C∞

0 will be denoted by C∞
0b . Every element U

symmetric with respect to the permutation of the particles is determined by
its values in the sector Λ′ and values of the function u12,3 and u23,1 on the
positive and negative halfaxes respectively. Thus the transformation

P : H3
b → L2(Λ

′)⊕ (R+, H12)⊕ (R+, H12)

PU =




u1,2,3(x12, x12,3)|Λ′
1
2
u12,3(x12,3)|R+

1
2
u23,1(−x23,1)|R+




is invertible on bosonic elements. The operator 6P preserves the norm of the
element.

Lemma 3.3 The operator Ab = PA3P−1 is defined by the following differ-
ential expression
(3.27)

Ab




u0(r, ϕ)
u1(r)
u2(r)


 =




−∆r,ϕu0(
− ∂2

∂r2 + A12

)
u1 +

(
2a
r

∂u0

∂ϕ
|ϕ=0 +bu0 |ϕ=0

)
θ(

− ∂2

∂r2 + A12

)
u2 +

(
−2a

r
∂u0

∂ϕ
|ϕ=π/3 +bu0 |ϕ=π/3

)
θ




on the domain of functions from PC∞
0b satisfying the boundary conditions

< u1, θ >=
c

r

∂u0

∂ϕ
|ϕ=0 +

d

2
u0 |ϕ=0,

(3.28) < u2, θ >= −c

r

∂u0

∂ϕ
|ϕ=π/3 +

d

2
u0 |ϕ=π/3 .

P r o o f . The proof of the lemma is quite similar to the proof of Lemma
3.4. The domain of Ab consists of all U such that P−1U ∈ Dom(A3). The
boundary conditions (3.28) follow from this inclusion. 2

The operator Ab is symmetric and it commutes with the reflection oper-
ator with respect to the bisector:

Y




u0(r, ϕ)
u1(r)
u2(r)


 =




u0(r, π/3− ϕ)
u2(r)
u1(r)


 .
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Consider the transformations Ps(Pa) of all symmetric (antisymmetric)
elements from PC∞

0b to L2(Λ
′′)⊕L2(R+, H12) ( Λ′′ denotes the sector on the

plane Λ with the angle π/6 : Λ′′ = {(r, ϕ) | 0 ≤ r < ∞, 0 ≤ ϕ ≤ π/6} ).
These transformations are invertible and the operator Ab can be decomposed
as follows

Ab = P−1
s AsPs ⊕ P−1

a AaPa.

Lemma 3.4 The operators As and Aa are defined by the following formula

(3.29) As,a

(
u0(r, ϕ)
u1(r)

)
=

( −∆r,ϕu0(
− ∂2

∂r2 + A12

)
u1 +

(
2a
r

∂u0

∂ϕ
|ϕ=0 +bu0 |ϕ=0

)
θ

)
.

on the domain of functions from PsC
∞
0b and PaC

∞
0b satisfying the following

boundary conditions

As : < u1, θ >= c
r

∂u0

∂ϕ
|ϕ=0 +d

2
u0 |ϕ=0

∂u0

∂ϕ
|ϕ=π/6= 0;

(3.30)
Aa < u1, θ >= c

r
∂u0

∂ϕ
|ϕ=0 +d

2
u0 |ϕ=0

u0 |ϕ=π/6= 0.

The proof is quite similar to the proof of Lemmas 3.4 and 3.5.
The boundary conditions on the line ϕ = 0 for the functions from the

domain of the operators As and Aa coincide.
The operators Aa and As are symmetric but not selfadjoint. The bounded

deficiency elements for the operators As and Aa can be presented using the
Sommerfeld-Maluzhinetz transformation by the following integrals

(3.31)
gs
0 = 1

2πi

∫
Γ eikr cos α {g̃s

0(α + ϕ) + g̃s
0(α + π/3− ϕ)} dα

ga
0 = 1

2πi

∫
Γ eikr cos α {g̃a

0(α + ϕ)− g̃a
0(α + π/3− ϕ)} dα

gs,a
1 = 1

2πi

∫
Γ eikr cos αg̃s,a

1 dα

The functions gs
0 ( ga

0) satisfy the Helmholtz equation and Neumann (Dirich-
let) boundary condition on the line ϕ = π/6 respectively. Functional equa-
tions for the meromorphic functions g̃s

0, g̃
a
0 can be derived from the difference

equations (3.23) by the following substitution

As : m = 6,
g̃6
+ = g̃6

− = g̃s
0;

Aa : m = 3,
g̃3
+ = −g̃3

− = g̃a
0 .
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We get the following functional difference equations

g̃s
0(α + π/3) = Π(α)g̃s

0(α) + f(α)

(3.32) g̃a
0(α + π/3) = −Π(α)g̃a

0(α)− f(α)

Here the function Π(α) is defined in (3.24). The solutions of these equations
will be derived in the next section.

4 Solution of the Functional Equations

The difference equations (3.32) are investigated in the present section. These
two equations have similar structure and can be solved using the same
method. The solution of the first equation will be discussed in detail. The
final formula for the solution of the second equation will be presented.

4.1 Method of iterations for the functional equation

The coefficients of the functional equation

(4.1) g̃s
0(α + π/3) = Π(α)g̃s

0(α) + f(α)

possess the following properties

(4.2) Π(α + π) = Π(−α) = Π−1(α),

(4.3) Π(α + 2π) = Π(α),

(4.4) f(α + 2π) = f(α).

The singularities and zeroes of the equation coefficients are situated at finite
distance from the real axis. The function Π(α) = (T (k sin α) + R(k sin α))−1

is an unimodular rational function of k sin α. The singularities of the function

T (k)+R(k) = ik−D(k2)
ik+D(k2)

coincide with the two-body bound states and the reso-
nances. We made assumption in section 2.5 that all the two-body resonances
are pure imaginary. The zeroes and singularities of Π(α) are symmetric with
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respect to each other in accordance with the property (4.2). Then the sin-
gularities and zeroes of Π(α) are situated on the lines <α = πs, s ∈ Z in the
complex plane α. The zeroes of the function Π(α) on the line <α = 0 will be
denoted by iγm,m = −N12 − 1, ...,−2,−1, 0, 1, 2, ..., N12 in such a way that
positive m correspond to the two-body bound states. Then the zeroes of the
function Π(α) are situated at the points

(−1)s+1iγm + sπ, s ∈ Z, m = −N12 − 1, ...,−2,−1, 0, 1, ..., N12.

The function Π(α) possesses a remarkable Blaschke representation. Let
us denote by iχn the two-body resonances and bound states on the k-plane
in such a way, that positive m correspond to the bound states. Then the
following representation holds:

Π(α) = Πn
ik sin α + χn

ik sin α− χn

.

We are going to use this representation in the next section during the calcu-
lation of the residues of the functions Π(α) at the singular points.

We are going to look for the solutions of the equation which are analytic
functions in a neighborhood of infinity, i.e. in the region =α ≥ max |γm|. The
parameter Q introduced in the previous section can now be chosen equal to
Q = max|γm|. The solution of the functional equation can be expressed in
terms of the elementary functions using the properties of the coefficients
outlined above. The solution has to be a meromorphic function on the plane
α.

The general solution of the functional equation is formed as a sum of
particular solution of the inhomogeneous equation and general solution of the
homogeneous equation. The general solution of the homogeneous equation

(4.5) y(α + π/3) = Π(α)y(α)

is represented by the product of one particular solution and arbitrary π/3
periodic function.

To derive the particular solution of the inhomogeneous equation we iterate
this equation 5 times. All solutions of the inhomogeneous equation satisfy
this new equation

(4.6) y(α + 2π) = y(α) + σ(α),
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where

σ(α) = f(α + 5π/3)
+Π(α + 5π/3)f(α + 4π/3)
+Π(α + 5π/3)Π(α + 4π/3)f(α + π)
+Π(α + 5π/3)Π(α + 4π/3)Π(α + π)f(α + 2π/3)
+Π(α + 4π/3)Π(α + π)f(α + π/3)
+Π(α + π)f(α).

The function σ(α) is a 2π periodic function. Consequently one of the solu-
tions y∗(α) of the equation (4.6) is equal to

(4.7) y∗(α) =
α

2π
σ(α).

The general solution of the homogeneous equation (4.6) is a 2π periodic
function. Hence we arrive to the following Ansatz for the solution of the
functional equation (4.1)

(4.8) g̃s
0(α) = y∗(α) + y0(α),

where y0(α) is a 2π periodic function. Substitution of this Ansatz (4.8) into
the equation (4.1) gives the following equation for the periodic function y0(α)

(4.9) y0(α + π/3) = Π(α)y0(α) + f(α)− 1

6
σ(α + π/3).

Here we have used the fact that the function σ(α) satisfies the homogeneous
equation

(4.10) σ(α + π/3) = Π(α)σ(α).

The solution of (4.9) can be calculated using the following Ansatz

y0(α) = a1f(α + 5π/3)
+a2Π(α + 5π/3)f(α + 4π/3)
+a3Π(α + 5π/3)Π(α + 4π/3)f(α + π)
+a4Π(α + 5π/3)Π(α + 4π/3)Π(α + π)f(α + 2π/3)
+a5Π(α + 4π/3)Π(α + π)f(α + π/3)
+a6Π(α + π)f(α).
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Substitution of this representation into (4.9) gives the following relations for
the constants {aj}6

j=1

a1 = a6 + 5/6,

aj = aj+1 + 1/6.

So we have got a one parameter set of solutions of the functional equation.
Thus the following Theorem has been proven.

Theorem 4.1 The function
(4.11)
g̃s
0(α) = ( α

2π
+ t)f(α + 5π/3)

+( α
2π

+ t− 1/6)Π(α + 5π/3)f(α + 4π/3)
+( α

2π
+ t− 2/6)Π(α + 5π/3)Π(α + 4π/3)f(α + π)

+( α
2π

+ t− 3/6)Π(α + 5π/3)Π(α + 4π/3)Π(α + π)f(α + 2π/3)
+( α

2π
+ t− 4/6)Π(α + 4π/3)Π(α + π)f(α + π/3)

+( α
2π

+ t− 5/6)Π(α + π)f(α).

for every value of the parameter t is a solution of the difference functional
equation (4.1), in the region =α > max |γm|.

The set of functions g̃s
0(α) does not coincide with the set of all solutions

of the functional equation. One can easily write down the complete set of
meromorphic solutions of the equation but we are not going to do that here.
The one parameter family derived contains the solution we are searching for.

It is necessary to calculate the density g̃s
1(α) in order to reconstruct all

components of the deficiency element.

Lemma 4.1 Let Gs = (gs
0, g

s
1) be a solution of the differential equation for

the deficiency elements satisfying the boundary conditions (3.30). Let Gs

be presented by the Sommerfeld integrals (3.31) with the density g̃s
0 given by

(4.11). Then the integral density g̃s
1 is equal to

(4.12)

g̃s
1(α) = − k sin α

k cos α−√λ−A12

h
2

+1
2

{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}

×(A12 − λ sin2 α)−1θ.
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P r o o f . The integral density can be reconstructed with the help
of the equation (3.22) if we put m = 0 and g̃s

+(α) = g̃s
−(α) = g̃s

0(α) and
g̃s
1(α) = 1

2
g̃m
1 (α)

g̃s
1(α) = − k sin α

k cos α−√λ−A12

h
2

−1
2
{2aik sin α (g̃s

0(α)− g̃s
0(α + π/3)) + b (g̃s

0(α) + g̃s
0(α + π/3))}

×(A12 − λ sin2 α)−1θ.

The latter formula can be modified using the fact that g̃s
0(α) is a solution of

the equation (4.1)

g̃s
1(α) = − k sin α

k cos α−√λ−A12
h/2

−1
2
{2aik sin α ((1− Π(α))g̃s

0(α)− f(α)) + b ((1 + Π(α))g̃s
0(α) + f(α))}

×(A12 − λ sin2 α)−1θ.

Formula (4.12) follows now from (3.14). 2

4.2 Analytical properties of the solution

The analytical properties of the solution derived are described by the follow-
ing:

Theorem 4.2 The integral densities g̃s
0(α + ϕ) + g̃s

0(α + π/3−ϕ), g̃s
1(α) are

meromorphic on the whole complex α-plane. The singularities of the function
g̃s
0(α + ϕ) + g̃s

0(α + π/3 − ϕ) are poles of finite multiplicity at the lattice of
points

−ϕ + (−1)s+1iγm − nπ/3 + sπ, s = 0,±1,±2, ...; n = 0, 1, 2,

−π/3 + ϕ + (−1)s+1iγm − nπ/3 + sπ, s = 0,±1,±2, ...; n = 0, 1, 2.

The same is true for the density g̃s
1 with the lattice of points

(−1)s+1iγm − nπ/3 + sπ, s = 0,±1,±2, ...; n = 0, 1, 2,

π/3 + (−1)s+1iγm − nπ/3 + sπ, s = 0,±1,±2, ...; n = 0, 1, 2.
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P r o o f. The singularities of the function g̃s
0(α) are caused by the

singularities of the functions Π(α) and f(α). The singularities of the function
f(α) are situated at the points, where the denominator is equal to zero

(2aik sin α− b)R(λ sin2 α) + 2cik sin α− d = 0 ⇒ 2ik sin α = D(λ sin2 α).

These singularities coincide with the singularities of the function Π(α). Some
additional singularities can be caused by the singularities of the numerator <

k sin α
k cos α−√λ−A12

h, θ > but these singularities cancel with the singularities of the

denominator. As the result the function f(α) is analytic in a neighborhood
of these points. Hence the function g̃s

0(α) has singularities at the points

..., iγm − 2π/3, iγm − π/3, iγm,−iγm + π/3,−iγm + 2π/3...

The integral density of the Sommerfeld integral for the component gs
0(r, ϕ)

has singularities at the points

iγm− 2π/3−ϕ, iγm−π/3−ϕ, iγm−ϕ,−iγm +π/3−ϕ,−iγm + 2π/3−ϕ, ...

iγm − π + ϕ, iγm − 2π/3 + ϕ, iγm − π/3 + ϕ,−iγm + ϕ,−iγm + π/3 + ϕ, ....

The singularities of the function g̃s
1(α) are situated at the same points as

the singularities of the functions g̃s
0(α), g̃s

0(α + π/3). Additional singularities
can appear at the points corresponding to the eigenvalues λj of the operator
A12 : λ sin2 αj = λj. The function D(λ sin2 α) is equal to b/a at these points

D(λ sin2 αj) =
b

a
,

if a 6= 0 and it has pole of the second order there if a = d = 0. The first term
in (4.12) has the following singularity near the point αj

− k sin α

k cos α−√λ− A12

h

2
∼α→αj

− k sin α

k cos α−
√

λ− λj

hj

2
ej + O(1),

where ej is the eigenvector of A12 corresponding to the eigenvalue λj. The
first term in the square brackets in (4.12) has second order zero at the points
α = αj. Thus the second term of (4.12) possesses the following representation

1

2

{
g̃s
0(α)

4ik sin α(aD(λ sin2 α)− b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
(A12−λ sin2 α)−1θ ∼α→αj
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∼α→αj

1

2

k sin α

k cos α−
√

λ− λj

hj θ̄j
λj − λ sin2 α

|θj|2
1

λj − λ sin2 α
θjej + O(1).

Thus the function g̃s
1(α) is bounded in the neighborhood of the point αj. 2

Thus the singularities of all integral densities are situated on finite dis-
tance from the real axis. The assumption formulated in Section 3.3 holds for
the densities we calculated. The integral densities are analytic everywhere in
the region =α > max |γm|, thus the corresponding integrals are solutions of
the system of the differential equations for the deficiency elements. However
the functions are exponentially increasing ones for large r and consequently
do not belong to the Hilbert space even for =λ > 0. The asymptotic behav-
ior of the integrals for r → ∞ will be discussed in the next section. The
integration contour should be changed in order to make the functions square
integrable.

The solution of the second equation (64) can be derived in the same way
(4.13)
g̃a
0(α) = −( α

2π
+ t)f(α + 5π/3)

+( α
2π

+ t− 1/6)Π(α + 5π/3)f(α + 4π/3)
−( α

2π
+ t− 2/6)Π(α + 5π/3)Π(α + 4π/3)f(α + π)

+( α
2π

+ t− 3/6)Π(α + 5π/3)Π(α + 4π/3)Π(α + π)f(α + 2π/3)
−( α

2π
+ t− 4/6)Π(α + 4π/3)Π(α + π)f(α + π/3)

+( α
2π

+ t− 5/6)Π(α + π)f(α).

It contains also arbitrary parameter t. The zeroes and the singularities of
the function g̃a

0 are situated at the same points as those of g̃s
0.

5 Properties of the Deficiency Elements

We discuss here the properties of the solutions of the difference equation de-
rived in the previous section. It will be shown that the Sommerfeld integrals
with such densities over the contour Γ1 are not square integrable functions.
Another contour of integration will be chosen. The corresponding integrals
will be elements of the Hilbert space for λ : =λ > 0. The asymptotic behavior
for large r →∞ and for small r → 0 will be investigated.
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5.1 Asymptotics for large r

The asymptotic behavior at infinity will be studied with the help of the
steepest descent method. The saddle points for the Sommerfeld integral are
α = 0 and α = π. These two critical points define outgoing and incoming
spherical waves in the asymptotics of the component gs

0

(5.1)
α = 0 : 1

2πi

√
2π
kr

e−iπ/4eikr (g̃s
0(ϕ) + g̃s

0(π/3− ϕ)) ;

α = π : 1
2πi

√
2π
kr

eiπ/4e−ikr (g̃s
0(π + ϕ) + g̃s

0(4π/3− ϕ)) .

The second point defines an exponentially increasing function for k with
positive imaginary part. The solution of the difference equation contains free
parameter t. This parameter can be chosen in a special way to make the
amplitude of the incoming spherical wave equal to zero. Let the parameter
t be equal to −1/6. Then the amplitude of the incoming spherical wave
vanishes.

Lemma 5.1 If t = −1/6 then the solution g̃s
0 of the difference equation (4.1)

satisfies the equation

g̃s
0(π + ϕ) + g̃s

0(4π/3− ϕ) = 0

for every ϕ.

P r o o f. The coefficients of the difference equation possess the following
properties

f(−α) = Π(α + π)f(α),
Π(−α) = Π(α + π).

Then the following calculations can be performed

g̃s
0(π + ϕ) = ( ϕ

2π
+ 2/6)f(ϕ + 2π/3)

+( ϕ
2π

+ 1/6)Π(ϕ + 2π/3)f(ϕ + π/3)
+( ϕ

2π
)Π(ϕ + 2π/3)Π(ϕ + π/3)f(ϕ)

+( ϕ
2π
− 1/6)Π(ϕ + 2π/3)Π(ϕ + π/3)Π(ϕ)f(ϕ− π/3)

+( ϕ
2π
− 2/6)Π(α + π/3)Π(ϕ)f(ϕ− 2π/3)

+( ϕ
2π
− 3/6)Π(ϕ)f(ϕ− π) =
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(5.2)

= ( ϕ
2π

+ 2/6)Π(−ϕ + π/3)f(−ϕ− 2π/3)
+( ϕ

2π
+ 1/6)Π(−ϕ + 2π/3)Π(−ϕ + π/3)f(−ϕ− π/3)

+( ϕ
2π

)Π(−ϕ + 3π/3)Π(−ϕ + 2π/3)Π(−ϕ + π/3)f(−ϕ)
+( ϕ

2π
− 1/6)Π(−ϕ + π/3)Π(−ϕ + 2π/3)f(−ϕ + π/3)

+( ϕ
2π
− 2/6)Π(−α + π)f(−ϕ + 2π/3)

+( ϕ
2π
− 3/6)f(−ϕ + π) =

= −g̃s
0(−ϕ + 4π/3).

The proof of the lemma is accomplished. 2

The amplitude of the incoming spherical wave for t = −1/6 is equal to
zero. However the contour Γ1 can not be deformed to the steepest descent one
in the region of the analyticity of the solution g̃s

0(α + ϕ) + g̃s
0(α + π/3− ϕ).

The residues at the poles of the integral density would add exponentially
increasing terms into the asymptotics. It means that the Sommerfeld integral
over the contour Γ1 is not an element of the Hilbert space. Hence a new
contour of the integration must be chosen.

The new contour Γ2 goes to infinity in the same strips as contour Γ1 and
passes the saddle points α = 0 and α = π. It surrounds all corresponding
to the resonances singularities in the region =α > 0, π ≥ <α ≥ 0 and all
corresponding to the bound states singularities in the region =α > 0, 2π ≥
<α ≥ π. No other singularities are situated inside the contour.

Lemma 5.2 The asymptotics of the integral

g0(r, ϕ) =
1

2πi

∫

Γ2

eikr cos α(g̃s
0(α + ϕ) + g̃s

0(α + π/3− ϕ))dα

is given by

(5.3)

g0(r, ϕ) ∼r→∞ 1
2πi

√
2π
kr

e−iπ/4eikr (g̃s
0(α + ϕ) + g̃s

0(α + π/3− ϕ))

+
∑

m>0

{
eikr cos(iγm−ϕ) + eikr cos(iγm+ϕ−π/3)

}

× (f(α) + Π(α + 4π/3)f(α + π/3)
+Π(α + 5π/3)Π(α + 4π/3)f(α + 2π/3)
+Π(α)Π(α + 4π/3)Π(α + 5π/3)f(α + π)) |α=iγm 2 tan iγmΠm,

where Πm = Πn 6=m
χm+χn

χm−χn
.

P r o o f . If ϕ 6= 0, π/3 then the asymptotics of the integral is given
by the steepest descent method in accordance with Lemma 5.1 and formulas

39



(5.1). If ϕ = 0 or ϕ = π/3 then the contour Γ2 cannot be transformed to the
steepest descent one without passing through the singularities of the integral
density. The asymptotics of the integral for ϕ = 0 contains in addition
to the spherical outgoing wave (5.1) the outgoing surface waves which are
determined by the residues at the points iγm, iγm + 2π,m > 0 for ϕ = 0,

(5.4)

(
∑

m>0 Res (g̃s
0(α + ϕ) + g̃s

0(α + π/3− ϕ)) |α=iγm+2π−ϕ

−∑
m>0 Res (g̃s

0(α + ϕ) + g̃s
0(α + π/3− ϕ)) |α=iγm−ϕ) eikr cos(iγm−ϕ)

= (
∑

m>0 Res (g̃s
0(α)) |α=iγm+2π −∑

m>0 Res (g̃s
0(α)) |α=iγm) eikr cos(iγm−ϕ)

=
∑

m>0 (f(α) + Π(α + 4π/3)f(α + π/3) + Π(α + 5π/3)Π(α + 4π/3)f(α + 2π/3)
+ Π(α)Π(α + 4π/3)Π(α + 5π/3)f(α + π)) |α=iγm

Res (Π(α + π)) |α=iγm eikr cos(iγm−ϕ).

The residue of the function Π(α) can be calculated using the Blaschke rep-
resentation

Res Π(α + π) |α=iγm =
∏

n 6=m
ik sin α−χn

ik sin α+χn
|α=iγm Res

(
ik sin α−χm

ik sin α+χm

)
|α=iγm

= 2 tan iγm
∏

n 6=m
χm+χn

χm−χn
= 2 tan iγmΠm.

The calculated residues determine the surface waves in the asymptotics.
These functions decrease exponentially inside the sector. Really

| eikr cos(iγm−ϕ) |∼ e−kr(exp(−γm)−exp(γm)) sin(ϕ)/2

is an exponentially decreasing function for γm > 0, π/3 > ϕ > 0. But this
function does not decrease exponentially for ϕ = 0 and real λ. The residues
at the points iγm − π/3, iγm + 5π/3 can be analyzed in the same way. Thus
the asymptotics of the integral is given by (5.3). 2

A similar method can be applied to investigate the properties of the el-
ement gs

1(r). The difference is that the saddle points do not give the main
contribution to the asymptotics in this case.

Lemma 5.3 The asymptotics of the integral

gs
1(r) =

1

2πi

∫

Γ2

g̃s
1(α)eikr cos αdα

is given by the formula
(5.5)
gs
1(r) ∼r→∞

∑
m>0 eikr cos(iγm)ψs

12

× [f(α) + Π(α + 4π/3)f(α + π/3) + Π(α + 5π/3)Π(α + 4π/3)f(α + 2π/3)+
+Π(α)Π(α + 4π/3)Π(α + 5π/3)f(α + π)] |α=iγm tan iγmΠm,
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where the element ψs
12 is defined by (2.26).

P r o o f . The proof of this Lemma is quite similar to the proof of Lemma
5.2.

Theorem 5.1 The Sommerfeld integrals gs
0(r, ϕ), gs

1(r) of the densities g̃s
0(α+

ϕ) + g̃s
0(α + π/3− ϕ) and g̃s

1(α) over the contour Γ2 form the deficiency ele-
ments for the operator As corresponding for λ = k2,=λ > 0.

P r o o f. The Sommerfeld integrals over the contour Γ2 are bounded
functions on every compact subset of Λ′′ and R+ respectively. These func-
tions decrease exponentially at infinity for λ with positive imaginary part. It
follows that the corresponding functions are elements from the Hilbert space
L2(Λ

′′)⊕ L2(R+, H12).
The integrals over the contour Γ1 are solutions of the differential equations

and satisfy the boundary conditions (3.30). This is true because the integra-
tion by parts gives no boundary terms, since the function eik cos α decreases
exponentially in the strips where the contour Γ1 tends to ∞. The integral
over the contour Γ2 differs from the integral over the original contour Γ1 by
the residues at the points

(5.6)

iγm + 2π − ϕ, iγm + 5π/3− ϕ, iγm + 4π/3− ϕ, m > 0;
iγm + 5π/3 + ϕ, iγm + 4π/3 + ϕ, iγm + π + ϕ,

−iγm + π − ϕ,−iγm + 2π/3− ϕ,−iγm + π/3− ϕ, m ≤ 0.
−iγm + 2π/3 + ϕ,−iγm + π/3 + ϕ,−iγm + ϕ,

The residues at the points corresponding to m > 0 give the set of the
surface waves coming along the boundary of the sector from infinity and
going away after two reflections. This set of functions is similar to the set of
surface waves which will be obtained in Section 7. The residues for m ≤ 0
correspond to the analogous set of the resonance functions. Both sets of
functions satisfy the differential equations and the boundary conditions. The
corresponding residues for the component gs

1 must be taken into account also.
It follows that the integrals over the contour Γ2 form the deficiency elements
for the operator As. 2

The calculated deficiency elements depend on the parameter h ∈ H12. It
will be shown in the next section that there exist N12 linearly independent
deficiency elements. Thus we are going to use the following notation for the
deficiency element we constructed Gs

λ(h) ∈ L2(Λ
′′)⊕ (R+, H12).

41



5.2 Boundary values of the deficiency elements

We are going to study the behavior of the calculated functions in a neigh-
borhood of the point zero. The zero and the first components are bounded
continuous function there. The boundary values of the first component at
the origin will be calculated.

Lemma 5.4 The boundary values of the component gs
1 at the origin are given

by the following formulas

(5.7)

gs
1(0) = h

2

+1
2

∑
m>0

∑3
n=0

(
A12 − λ sin2(iγm + π + nπ/3)

)−1
θ

×Res
{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
|α=iγm+π+nπ/3

+1
2

∑
m≤0

∑3
n=0

(
A12 − λ sin2(−iγm + nπ/3)

)−1
θ

×Res
{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
|α=−iγm+nπ/3

(5.8)

∂gs
1

∂r
(0) = i

√
λ− A12

h
2

+1
2

∑
m>0

∑3
n=0 ik cos(iγm + π + nπ/3)

(
A12 − λ sin2(iγm + π + nπ/3)

)−1
θ

×Res
{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
|α=iγm2+π+nπ/3

+1
2

∑
m≤0

∑3
n=0 ik cos(−iγm + nπ/3)

(
A12 − λ sin2(−iγm + nπ/3)

)−1
θ

×Res
{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
|α=−iγm+nπ/3 .

P r o o f . The value u(0) of a Sommerfeld integral at the point zero is
determined by behavior of the integral density ũ(α) at infinity. Particularly,
the following equation is valid for every even function analytic inside the
contour of the integration [31, 32]

(5.9) u(0) =
1

i
lim

α→i∞
ũ(α)

Thus the boundary values of the integral over the initial contour Γ1 with the
density

g̃s
1(α) = − k sin α

k cos α−√λ−A12

h
2

+1
2

{
g̃s
0(α)4ik sin α(aD(λ sin2 α)−b)

2ik sin α−D(λ sin2 α)
+ f(α)(2aik sin α− b)

}
(A12 − λ sin2 α)−1θ
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are equal to h
2

and i
√

λ− A12
h
2

correspondingly. To calculate the boundary
values of the first component of the deficiency element gs

1 it is necessary to
add the residues at the singular points situated between the contour Γ1 and
Γ2. We get formulas (5.7) and (5.8). 2

All the residues which appeared in (5.7) and (5.8) can be calculated ex-
plicitly. The corresponding calculations are presented in the Appendix A.

The boundary values of the first component are linear functions of the
vector h. Therefore the following matrices Bs and B̃s can be introduced

(5.10)

{
gs
1(0) = (1 + Bs(k))h

2
∂gs

1

∂r
(0) = (i

√
λ− A12 + B̃s(k))h

2
.

Lemma 5.5 The matrix 1 + Bs(k) is invertible.

P r o o f . The deficiency elements Gs
λ(h) corresponding to different

h ∈ H12 have different asymptotics at infinity. Suppose that there exists
h ∈ H12, h 6= 0 such that

(5.11) gs
1(0) = 0.

Consider the following expression

< A∗
sG

s(h), Gs(h) >= k2 < Gs(h), Gs(h) > .

Integrating by parts two times both components we get the following formula

(5.12) < A∗
sG

s(h), Gs(h) >=< Gs(h), A∗
sG

s(h) >= k̄2 < Gs(h), Gs(h) > .

The boundary terms from the second component vanish due to the condition
(5.11). Similar terms produced by the boundary of Λ′′ vanish due to the
conditions (3.10). The proof is similar to the proof of the symmetry of the
operator A3 (Theorem 3.3). It follows from (5.12) that Gs

λ(h) = 0 and
therefore h = 0. We got the contradiction which proves the Lemma. 2

Corollary 5.1 The boundary values gs
1(0) span the finite dimensional space

H12.
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The matrix Cs(λ) connecting the boundary values of the first component
can be introduced

(5.13)
∂g1

∂r
(0) = Cs(λ)g1(0) ⇒

Cs(λ) =
(
i
√

λ− A + B̃s

)
(1 + Bs)

−1 .

A similar procedure can be also carried out for the antisymmetric deficiency
element. The corresponding matrices will be denoted by Ba, B̃a and Ca(λ).

6 Selfadjoint Three-body Operator

Two N12-dimensional families of deficiency elements for the operators As

and Aa define 2N12 × 2N12 family of symmetric extensions of the operator
As ⊕ Aa. We describe this family by the boundary conditions at the origin.
We prove that the extended symmetric operator is bounded from below. The
selfadjoint operator will be defined by the Friedrichs procedure.

Consider the operator A∗
b = A∗

s ⊕ A∗
a restricted to the domain

D = C∞
0b + L{Gs

λ(h), Ga
λ(h), Gs

λ̄(h), Ga
λ̄(h)}h∈H12 .

Every symmetric extension of the operator Ab to a subset of D coincides with
the restriction of the operator A∗

b to this subset.

Lemma 6.1 The boundary form of the operator A∗
b for every two elements

U, V ∈ D is equal to

(6.1)
< A∗

bU, V > − < U,A∗
bV > = < ∂

∂r
us

1(0), vs
1(0) > − < us

1(0), ∂
∂r

vs
1(0) >

+ < ∂
∂r

ua
1(0), va

1(0) > − < ua
1(0), ∂

∂r
va

1(0) > .

P r o o f . The Lemma can be proven by integrations by parts if one
takes into account that the functions u0, u1 and v0, v1 are bounded and twice
differentiable. 2

Lemma 6.2 Let =λ > 0. The boundary values (us
1(0), ua

1(0), ∂
∂r

us
1(0), ∂

∂r
ua

1(0))
of the deficiency elements U ∈ L{Gs

λ(h), Ga
λ(h), Gs

λ̄(h), Ga
λ̄(h)}h∈H12 span the

finite dimensional vector space H12 ⊕H12 ⊕H12 ⊕H12.
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P r o o f . The subspace L{Gs
λ(h), Ga

λ(h), Gs
λ̄(h), Ga

λ̄(h)}h∈H12 has dimen-
sion 4(dim H12) which coincides with the dimension of the orthogonal sum
H12 ⊕ H12 ⊕ H12 ⊕ H12. Thus it is sufficient to show that the linear map
between the two vector spaces of equal dimension :

η : L{Gs
λ(h), Ga

λ(h), Gs
λ̄(h), Ga

λ̄(h)}h∈H12 → H12 ⊕H12 ⊕H12 ⊕H12,

η(U) = (us
1(0), ua

1(0),
∂

∂r
us

1(0),
∂

∂r
ua

1(0))

has zero kernel. Let U be an element from the kernel of the map η. Then it
has the following representation

U = Uλ + Uλ̄, Uλ ∈ L{Gs
λ(h), Ga

λ(h)}h∈H12 , Uλ̄ ∈ L{Gs
λ̄(h), Ga

λ̄(h)}h∈H12 .

Consider the following scalar product

< A∗
b(Uλ + Uλ̄), Uλ >= λ < Uλ, Uλ > +λ̄ < Uλ̄, Uλ > .

Integrating by parts in the first scalar product we get the following equation

< A∗
b(Uλ + Uλ̄), Uλ >=< Uλ + Uλ̄,A∗

bUλ >= λ̄ < Uλ, Uλ > +λ̄ < Uλ̄, Uλ > .

It follows that < Uλ, Uλ >= 0 because λ has nontrivial imaginary part. 2

Lemma 6.3 The restriction AbL of the operator A∗
b to the subspace of func-

tions from D which boundary values span Lagrangian subspace L of H12 ⊕
H12 ⊕ H12 ⊕ H12 with respect to the boundary form (6.1) is a symmetric
extension of the operator Ab.

P r o o f. The domain of the operator Ab is in D and their boundary values
are trivial. It follows that every restriction of A∗

b to the domain defined by
the Lagrangian subspace is an extension of the operator Ab. This restriction
defines symmetric operator because the boundary form vanishes on every
domain determined by the Lagrangian subspace. 2

Lemma 6.4 The operator AbL is bounded from below .
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P r o o f . The operator AbL is a finite dimensional extension of the
operator Ab. Hence it is enough to prove that both operators As and Aa are
bounded from below. We consider the case where a = d = 0 for simplicity.
Let U ∈ PsC

∞
0b . Then

< AsU,U > =∫
Λ′′(−∆u0(r, ϕ))ū0(r, ϕ)rdrdϕ

+
∫∞
0 < (− ∂2

∂r2 + A12)u1(r), u1(r) > dr +
∫∞
0 bu0(r, 0) < θ, u1(r) > dr

=
∫
Λ′′ |∇u0|2rdrdϕ +

∫∞
0

1
r

∂
∂ϕ

u0(r, 0)ū(r, 0)dr

+
∫∞
0 | ∂

∂r
u1(r)|2dr +

∫∞
0 < A12u1(r), u1(r) > dr +

∫∞
0 bu0(r, 0) < θ, u1(r) > dr

=
∫
Λ′′ |∇u0|2rdrdϕ +

∫∞
0 < A12u1(r), u1(r) > dr +

∫∞
0 | ∂

∂r
u1(r)|2dr

+b
∫∞
0 2<(< u1, θ > ū0(r, 0))dr.

The latter integral can be estimated as follows

|2b
∫ ∞

0
<(< u1(r), θ > u0(r, 0)dr| ≤ |b|

(
‖ u1 ‖2 +

1

ε
‖ u0 ‖2

L2
+ε ‖ ∇u0 ‖2

L2

)

with arbitrary positive ε.
The following estimate is valid for the quadratic form of the operator

< AsU,U >≥
∫ ∞

0
< A12u1(r), u1(r) > dr − |b| ‖ u1 ‖2 −|b|

ε
‖ u0 ‖2

L2
,

provided ε|b| < 1. The operator As is bounded from below since every term
in the latter formula can be estimated by the norm of the element U. 2

Now the selfadjoint operator describing the system of three one dimen-
sional particles can be defined as follows. First consider the symmetric ex-
tension AbL of the operator Ab to the set of functions from D satisfying the
boundary conditions

(6.2)
(

u′s,1(0)
u′a,1(0)

)
= Q

(
us,1(0)
ua,1(0)

)
,

where Q is a selfadjoint matrix. These boundary conditions determine some
Lagrangian subspace in the space of boundary values. Hence the operator
LbL is a symmetric and bounded from below operator (Lemmas 6.3 and 6.4).
The operator AbL commutes with the symmetry operator with respect to the
bisector if the boundary conditions have the following form

(6.3)
u′s,1(0) = Qsus,1(0),
u′a,1(0) = Qaua,1(0).
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The boundary conditions (6.3) will be used in the sequel. These boundary
conditions describe the symmetric extensions AaL and AsL of the operators
Aa and As and AbL = AaL⊕AbL. Every symmetric operator which is bounded
from below can be extended to a selfadjoint operator using Friedrichs proce-
dure. We are going to keep the same notation Ab for the selfadjoint operator
describing the system of three one dimensional particles. The spectral prop-
erties and scattering matrix of this operator will be discussed in the next
section.

7 Spectrum, Scattering Matrix

The spectral properties of the operators As and Aa are quite similar. We
are going to study the spectrum and scattering matrix for the operator As.
The spectrum of the operator As consists of the continuous spectrum [0,∞)
corresponding to the processes with three free particles, branches of the con-
tinuous spectrum [−χ2

m,∞),m = 1, 2, ..., N12, corresponding to the two-body
bound states, and probably some eigenvalues. The scattering matrix will be
calculated from the asymptotics of the continuous spectrum eigenfunctions
of the operator As.

7.1 Definition of the scattering matrix

We are going to calculate the continuous spectrum eigenfunctions of the op-
erator As. These functions are generalized solutions of the following equation

(7.1)

( −∆r,ϕu0(r, ϕ)

−∂2u1(r)
∂r2 + A12u1(r) + bu0(r, 0)θ

)
= λ

(
u0(r, ϕ)
u1(r)

)

satisfying the boundary conditions

(7.2)

< u1(r), θ > = c
r

∂u0(r,0)
∂ϕ

;
∂u0(r,π/6)

∂ϕ
= 0;

∂u1(0)
∂r

= Qsu1(0).

The function u0(r, ϕ) is defined in the sector 0 ≤ r < ∞, 0 ≤ ϕ ≤ π/6. The
function u1(r) is a vector valued function on R+ taking values in H12. Both
functions u0(r, ϕ) and u1(r) are continuous and bounded. The asymptotics
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for large r of the zero component of every solution of the problem (7.1),
(7.2) are equal to the sum of incoming and outgoing plane waves, spherical
wave, and surface waves. The continuous spectrum eigenfunctions can be
separated onto two classes in accordance to the type of the incoming channel.
The eigenfunctions of the first type correspond to the three-body incoming
channel. Such eigenfunctions contain only one incoming plane wave in the
asymptotics of the zero component. The eigenfunctions of the second type
contain only incoming surface wave in the asymptotics of the zero component.
In addition to these incoming waves the asymptotics of the zero component
contains a set of outgoing waves: plane, spherical and surface ones. This
set of eigenfunctions will be called incoming. The second complete set of the
eigenfunctions, so called outgoing set, is determined by the different outgoing
waves. The eigenfunctions contain in their asymptotics only one outgoing
wave and a set of incoming waves. The scattering matrix can be defined as
an operator connecting the spectral representations with respect to these two
sets of the eigenfunctions. We are going to define the scattering matrix from
the asymptotics of the incoming set of eigenfunctions. The scattering matrix
is an integral operator of the form

(7.3) S(λ) =
{

S33 S32

S23 S22

}
,

acting in the space L2(0, π/6) ⊕ K12, dim K12 = N12. The operator S33 is
an integral operator with the kernel s33(λ, ϕ, ϕ0). The operator S23 is a
matrix integral operator with the kernel s23(λ,m, ϕ0), m = 1, 2, ..., N12.
The operators S32 and S22 are operators of multiplication by the matrices
s32(λ, ϕ, m), s22(λ,m, n).

Consider first the incoming eigenfunction determined by the incoming
plane wave

(7.4) uin
0 (λ, ϕ0, r, ϕ) =

exp(−ikr cos(ϕ− ϕ0))

2π
√

2k
, k2 = λ, 0 < ϕ0 < π/6.

Then the asymptotics at infinity r → ∞ of the zero component of this
function contains the following outgoing waves

(7.5)
R33(λ, ϕ0)

exp(−ikr cos(ϕ−ϕ0−π))

2π
√

2k
+ a33(λ, ϕ, ϕ0)

1
2k

e−iπ/4√
πr

eikr

+
∑N12

m=1 s23(λ,m, ϕ0)
cm√

2π 4
√

λ+χ2
m

eikr cos(ϕ−iγm).
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The normalizing constant for the surface wave is determined by the equation
(2.27), −χ2

m is the energy of the two-body bound state. The real number γm

is given by the formula iγm = arctan iχm√
λ+χ2

m

. The scattering amplitude a33

and three-body reflection coefficient R33 form the kernel s33 of the scattering
matrix

(7.6) s33(λ, ϕ, ϕ0) = R33(λ, ϕ0)δ(ϕ− ϕ0) + a33(λ, ϕ0, ϕ).

The scattering amplitude s23 coincides with the kernel of the operator S23.
Similarly the eigenfunction determined by incoming surface wave

(7.7)

uin
0 (λ, n, r, ϕ) =

cn√
2π 4

√
λ + χ2

n

e−ikr cos(ϕ−iγn), n = 1, 2, ..., N12, λ > −χ2
n

has asymptotics at infinity, which contains the following outgoing waves

(7.8)
s32(λ, ϕ, n) 1

2k
e−iπ/4√

πr
eikr

+
∑N12

m=1 s22(λ,m, n) cm√
2π 4
√

λ+χ2
m

eikr cos(ϕ−iγm).

The scattering amplitudes s32, s22 are equal to the coefficients of the matrix
operators S32, S22.

7.2 Calculation of the scattering matrix

The incoming eigenfunctions defined by the three-body plane wave can be
presented by the sum of plane waves and the limit of the deficiency element
on the real axis

(7.9) u(λ, ϕ0) = uplane(λ, ϕ0) + Gs
λ(h(λ, ϕ0)),

where uplane denotes the set of plane waves and Gs
λ(h(λ, ϕ0)) is the limit of

the deficiency element on the real axis. The set of plane waves is the result
of multiple reflections of the incoming plane wave from the boundaries of
the sector in accordance to the laws of the geometrical optics. The total
number of the reflected waves is equal to 11. The reflection coefficient from
the boundary ϕ = π/6 is equal to 1 for the symmetric functions (to −1 for
Aa ). The reflection coefficients from the boundary ϕ = 0 are determined
by the two-body scattering matrix only P (k⊥) = T (k⊥) + R(k⊥). Here k⊥
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denotes the perpendicular component of the wave vector. We note that the
reflection coefficient P (k) is related to the coefficient Π(α) in the difference
functional equation as follows Π(α) = P (k sin α)−1.

The incoming eigenfunctions determined by the three-body incoming
plane wave can be parameterized by the energy λ = k2, 0 ≤ λ < ∞ and
the angle ϕ0, 0 ≤ ϕ0 ≤ π/6 of the incoming wave (7.4). The set of the
induced plane waves consists of the twelve waves with the following zero
component
(7.10)
up

0(λ, ϕ0, r, ϕ) = 1
2π
√

2k
{exp (−ikr cos(ϕ− ϕ0)) +

+Π−1(ϕ0) exp (−ikr cos(ϕ + ϕ0))
+Π−1(ϕ0) exp (−ikr cos(ϕ− ϕ0 − π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0) exp (−ikr cos(ϕ + ϕ0 + π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0) exp (−ikr cos(ϕ− ϕ0 − 2π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0)Π
−1(2π/3 + ϕ0) exp (−ikr cos(ϕ + ϕ0 + 2π/3))

+ exp (−ikr cos(ϕ + ϕ0 − π/3))
+Π−1(π/3− ϕ0) exp (−ikr cos(ϕ− ϕ0 + π/3))
+Π−1(π/3− ϕ0) exp (−ikr cos(ϕ + ϕ0 − 2π/3))
+Π−1(π/3− ϕ0)Π

−1(2π/3− ϕ0) exp (−ikr cos(ϕ− ϕ0 + 2π/3))
+Π−1(π/3− ϕ0)Π

−1(2π/3− ϕ0) exp (−ikr cos(ϕ + ϕ0 + π))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0)Π
−1(2π/3 + ϕ0) exp (−ikr cos(ϕ− ϕ0 − π))}

The first component for the set of plane waves is given by
(7.11)
up

1(λ, ϕ0, r) = 1
2π
√

2k
{exp (−ikr cos(ϕ0)) ψ12(λ sin2(ϕ0))

+Π−1(ϕ0) exp (−ikr cos(ϕ0 + π/3)) ψ12(λ sin2(ϕ0 + π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0) exp (−ikr cos(ϕ0 + 2π/3)) ψ12(λ sin2(ϕ0 + 2π/3))
+ exp (−ikr cos(ϕ0 − π/3)) ψ12(λ sin2(−ϕ0 + π/3))
+Π−1(π/3− ϕ0) exp (−ikr cos(ϕ0 − 2π/3)) ψ12(λ sin2(−ϕ0 + 2π/3))

+Π−1(π/3− ϕ0)Π
−1(2π/3− ϕ0) exp (−ikr cos(ϕ0 + π)) ψ12(λ sin2(ϕ0))

}

,

where the function ψ12(λ) is defined in (2.32). Thus the boundary values of
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the first component at the point zero are equal to
(7.12)

up
1(λ, ϕ0, 0) = 1

2π
√

2k
{ ψ12(λ sin2(ϕ0))

+Π−1(ϕ0)ψ12(λ sin2(ϕ0 + π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0)ψ12(λ sin2(ϕ0 + 2π/3))+
+ψ12(λ sin2(−ϕ0 + π/3))
+Π−1(π/3− ϕ0)ψ12(λ sin2(−ϕ0 + 2π/3))

+Π−1(π/3− ϕ0)Π
−1(2π/3− ϕ0) ψ12(λ sin2(ϕ0))

}
,

(7.13)
∂up

1(λ,ϕ0,r)

∂r
|r=0 = −ik

2π
√

2k
{cos(ϕ0) ψ12(λ sin2(ϕ0))

+Π−1(ϕ0) cos(ϕ0 + π/3)ψ12(λ sin2(ϕ0 + π/3))
+Π−1(ϕ0)Π

−1(π/3 + ϕ0) cos(ϕ0 + 2π/3)ψ12(λ sin2(ϕ0 + 2π/3))+
+ cos(ϕ0 − π/3)ψ12(λ sin2(−ϕ0 + π/3))
+Π−1(π/3− ϕ0) cos(ϕ0 − 2π/3)ψ12(λ sin2(−ϕ0 + 2π/3))

+Π−1(π/3− ϕ0)Π
−1(2π/3− ϕ0) cos(ϕ0 + π) ψ12(λ sin2(ϕ0))

}
.

The boundary values of the first component of the set of plane waves do
not satisfy in general the boundary conditions (7.2) at the origin. Hence it
is necessary to add some outgoing wave, which can be presented as a limit
of the deficiency element on the real axis. Every deficiency element can be
parameterized by the vector h(λ, ϕ0). Substitution of the representation (7.9)
into the boundary conditions (7.2) gives the following inhomogeneous linear
equation on the vector h(λ, ϕ0)

∂up
1(λ, ϕ0, r)

∂r
|r=0 +

(
i
√

λ− A12 + B̃s

)
h(λ, ϕ0)

2
=

(7.14) = Qs

(
up

1(e, ϕ0, 0) + (1 + Bs)
h(λ, ϕ0)

2

)
.

The vector h(λ, ϕ0) can be calculated as
(7.15)

h(λ, ϕ0) = 2
(
i
√

λ− A12 + B̃s −Qs (1 + Bs)
)−1

(
−∂up

1

∂r
+ Qsu

p
1

)
|r=0 .
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The first two components of the scattering matrix can be calculated now
from the asymptotics of the solution
(7.16)

ss
33(λ, ϕ, ϕ0) = δ(ϕ− ϕ0)Π

−1(ϕ0)Π
−1(π/3 + ϕ0)Π

−1(2π/3 + ϕ0)

+(−i
√

2k) (g̃s
0(h(λ, ϕ0), ϕ) + g̃s

0(h(λ, ϕ0), π/3− ϕ)) ;

(7.17)

ss
23(λ,m, ϕ0) =

√
2π 4
√

λ+χ2
m

cm
(f(h(λ, ϕ0), α) + Π(α + 4π/3)f(h(λ, ϕ0), α + π/3)

+Π(α + 5π/3)Π(α + 4π/3)f(h(λ, ϕ0), α + 2π/3)
+Π(α)Π(α + 5π/3)Π(α + 4π/3)f(h(λ, ϕ0), α + π)) |α=iγm 2 tan iγmΠm.

The eigenfunctions corresponding to the surface waves can be considered
in the same way. These eigenfunction can be presented by the following sum

(7.18) u(λ,m) = usurf (λ,m) + G(λ, h(λ,m)).

The eigenfunctions are parameterized by the energy of the incoming surface
wave (7.4) λ ∈ [−χ2

m,∞) and the two-body bound state m, which can be
represented formally as a plane wave with the complex wave vector

uin
0 (λ, n, r, ϕ) =

cn√
2π 4

√
λ + χ2

n

e−ikr cos(ϕ−iγn).

The set of surface waves can be constructed using the two-body scattering
data
(7.19)

usurf
0 (λ,m, r, ϕ) = cn√

2π 4
√

λ+χ2
n

{
e−ikr cos(ϕ−iγm)+ e−ikr cos(ϕ−π/3+iγm)

+Π−1(π/3− iγm)e−ikr cos(ϕ+π/3−iγm)

+Π−1(π/3− iγm)e−ikr cos(ϕ−2π/3+iγm)

+Π−1(2π/3− iγm)Π−1(π/3− iγm)e−ikr cos(ϕ+2π/3−iγm)

+Π−1(2π/3− iγm)Π−1(π/3− iγm)e−ikr cos(ϕ−π+iγm)
}

.

The first component of the set of plane waves can also be calculated
(7.20)

usurf
1 (λ,m, r) = cn√

2π 4
√

λ+χ2
n

{
e−ikr cos(iγm) ψs

12

2

+e−ikr cos(−π/3+iγm)ψ12(λ sin2(π/3− iγm))
+Π−1(π/3− iγm)e−ikr cos(−2π/3+iγm)ψ12(λ sin2(2π/3− iγm))

+Π−1(2π/3− iγm)Π−1(π/3− iγm)e−ikr cos(ϕ−π+iγm)) ψs
12

2

}
,
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where ψs
12 is defined by (2.26). The boundary values of the first component

at the origin are given by

(7.21)

usurf
1 (λ,m, 0) = cn√

2π 4
√

λ+χ2
n

{
ψs

12

2
+ ψ12(λ sin2(π/3− iγm))

+Π−1(π/3− iγm)ψ12(λ sin2(2π/3− iγm))

+Π−1(2π/3− iγm)Π−1(π/3− iγm)
ψs

12

2

}
,

(7.22)
∂usurf

1 (λ,m,r)

∂r
|r=0 = −ikcn

2
√

2π 4
√

λ+χ2
n

{cos(−iγm) ψs
12

+ cos(−π/3 + iγm)ψ12(λ sin2(π/3− iγm))
+Π−1(π/3− iγm) cos(−2π/3 + iγm)ψ12(λ sin2(2π/3− iγm))
+Π−1(2π/3− iγm)Π−1(π/3− iγm) cos(−π + iγm) ψs

12} .

The vector h(λ,m) can be calculated from the boundary conditions
(7.23)

∂usurf
1

∂r
|r=0 +

(
i
√

λ− A12 + B̃s

)
h(λ,m)

2
= Qs

(
usurf

1 |r=0 + (1 + Bs)
h(λ,m)

2

)
⇒

(7.24)

h(λ,m) = 2
(
i
√

λ− A12 + B̃s −Qs (1 + Bs)
)−1

(
−∂usurf

1

∂r
+ Qsu

surf
1

)
|r=0 .

The components S22, S32 of the scattering matrix can be calculated from the
asymptotics of the constructed eigenfunction
(7.25)
ss
22(λ,m, n) = δnmΠ−1(2π/3− iγm)Π−1(π/3− iγm)

+
√

2π 4
√

λ+χ2
m

cm
(f(h(λ, m), α) + Π(α + 4π/3)f(h(λ,m), α + π/3)

+Π(α + 5π/3)Π(α + 4π/3)f(h(λ,m), α + 2π/3)
+Π(α)Π(α + 5π/3)Π(α + 4π/3)f(h(λ,m), α + π)) |α=iγn

×2 tan iγnΠn(−iγn)Θ(λ + χ2
m),

(7.26) ss
32(λ, ϕ, m) = −i

√
2k {g̃s

0(h(λ,m), ϕ) + g̃s
0(h(λ,m), π/3− ϕ)}Θ(λ).

Here Θ(λ) is the Heaviside function. We succeeded in precise analytical
calculation of the whole three-body scattering matrix for the case of identical
particles. The following theorem has been proven
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Theorem 7.1 The matrix integral operators Ss
33, S

s
23, S

s
32, S

s
22 with the ker-

nels

ss
33(λ, ϕ, ϕ0) = δ(ϕ− ϕ0)Π

−1(ϕ0)Π
−1(π/3 + ϕ0)Π

−1(2π/3 + ϕ0)

+(−i
√

2k) (g̃s
0(h(λ, ϕ0), ϕ) + g̃s

0(h(λ, ϕ0), π/3− ϕ)) ;

ss
23(λ,m, ϕ0) =

√
2π 4
√

λ+χ2
m

cm
(f(h(λ, ϕ0), α) + Π(α + 4π/3)f(h(λ, ϕ0), α + π/3)

+Π(α + 5π/3)Π(α + 4π/3)f(h(λ, ϕ0), α + 2π/3)
+Π(α)Π(α + 5π/3)Π(α + 4π/3)f(h(λ, ϕ0), α + π)) |α=iγm 2 tan iγmΠm;

ss
32(λ, ϕ, m) = −i

√
2k {g̃s

0(h(λ,m), ϕ) + g̃s
0(h(λ,m), π/3− ϕ)}Θ(λ);

ss
22(λ,m, n) = δnmΠ−1(2π/3− iγm)Π−1(π/3− iγm)

+
√

2π 4
√

λ+χ2
m

cm
(f(h(λ,m), α) + Π(α + 4π/3)f(h(λ,m), α + π/3)

+Π(α + 5π/3)Π(α + 4π/3)f(h(λ,m), α + 2π/3)
+Π(α)Π(α + 5π/3)Π(α + 4π/3)f(h(λ,m), α + π)) |α=iγn

×2 tan iγnΠn(−iγn)Θ(λ + χ2
m);

form the scattering matrix

Ss =

(
Ss

33 Ss
32

Ss
23 Ss

22

)

for the operator As.

The energies of the three-body bound states can be calculated as follows.
The wave function of the three-body bound state is equal to the limit of some
deficiency element on the real axis. Substitution of the boundary values of
the deficiency element into the boundary conditions (7.2) gives the dispersion
equation for the energy of the three particles bound state

(7.27) det
(
i
√

λ− A12 + B̃s −Qs(I + Bs)
)

= 0.

The solutions of the dispersion equation are situated on the negative real axis
λ. The solutions define the singularities of scattering amplitudes. Equations
(7.14) and (7.23) for the vector h cannot be solved at these points.

It should be underlined that additional singularities in the scattering
amplitudes are produced by the two-body bound states and resonances. A
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more rich structure of the three-body bound states can be obtained by adding
the three-body space of interaction. The bound state eigenfunctions are
orthogonal to the continuous spectrum eigenfunctions.

Thus the investigation of the three-body model scattering problem is
accomplished. All eigenfunctions were presented by Sommerfeld integrals,
however the scattering matrix was calculated in terms of elementary func-
tions. This was possible due to the simple geometry of the problem. But
the scattering matrix for nonidentical particles should contain some special
functions. The components s23, s32 of the scattering matrix are continuous
functions of the angles for all ϕ. The component s33 contains a singularity
corresponding to the back scattering. In the case of the two-body zero en-
ergy resonance the function g̃s

0(α) has a singularity at the origin. As the
result, the asymptotics of the Sommerfeld integral can not be calculated by
the saddle point method directly for ϕ = 0. Hence the scattering amplitude
is discontinuous at ϕ = 0 in this case. The analytical continuation of the
scattering matrix has singularities at the points of discrete spectrum. All
these properties of the scattering amplitudes are similar to the properties
of amplitudes for the standard three body Hamiltonians with the two-body
potentials. Our model can be used for the investigation of the influence of
the presence of zero energy eigenstate or resonance on the analytical prop-
erties of the corresponding scattering amplitudes [45, 17]. It is important
to discuss the propagator estimates for the model constructed [46]. These
questions will be studied in one of the future publications.
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Appendix A.
Analytical formulas for the boundary values of the deficiency

elements.

We introduce the following linear operators ρm : H12 → C

m > 0 : ρm : h → Resg̃s
0(α) |α=iγm+2π=

= 2 tan iγmΠm
{(

iγm

2π
+ 1

2

)
Π(iγm + 5π/3)Π(iγm + 4π/3)Π(iγm)

×
(−1)< k sin iγm

k cos iγm+
√

λ−A12
∗,θ>

(2aik sin iγm+b)R(λ sin2 iγm)+2cik sin iγm+d

+
(

iγm

2π
+ 1

3

)
Π(iγm + 5π/3)Π(iγm + 4π/3)

×
<

k sin(iγm+2π/3)

k cos(iγm+2π/3)+
√

λ−A12
∗,θ>

(2aik sin(iγm+2π/3)−b)R(λ sin2(iγm+2π/3))+2cik sin(iγm+2π/3)−d

+
(

iγm

2π
+ 1

6

)
Π(iγm + 4π/3)

×
<

k sin(iγm+π/3)

k cos(iγm+π/3)+
√

λ−A12
∗,θ>

(2aik sin(iγm+π/3)−b)R(λ sin2(iγm+π/3))+2cik sin(iγm+π/3)−d

+
(

iγm

2π

) <
k sin(iγm)

k cos(iγm)+
√

λ−A12
∗,θ>

(2aik sin(iγm)−b)R(λ sin2(iγm))+2cik sin(iγm)−d

}
,

m ≤ 0 : ρm : h → Resg̃s
0(α) |α=−iγm+π .
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Then the boundary values of the deficiency element at the origin are
(A.1)

gs
1(0) = h

2
+ 1

2

∑
m>0

{
(−2aik sin(iγm) + b)

(
A12 − λ sin2(iγm)

)−1
θ

+(−2aik sin(iγm + 5π/3) + b)Π(iγm + 2π/3)
(
A12 − λ sin2(iγm + 5π/3)

)−1
θ

+(−2aik sin(iγm + 4π/3) + b)Π(iγm + π/3)

×Π(iγm + 2π/3)
(
A12 − λ sin2(iγm + 4π/3)

)−1
θ

+(2aik sin(iγm + 5π/3) + b)
(
A12 − λ sin2(iγm + 5π/3)

)−1
θ

+(2aik sin(iγm + 4π/3) + b)Π(iγm + 2π/3)
(
A12 − λ sin2(iγm + 4π/3)

)−1
θ

+(2aik sin(iγm + π) + b)Π(iγm + π/3)

×Π(iγm + 2π/3)
(
A12 − λ sin2(iγm + π)

)−1
θ
}

ρmh

+1
2

∑
m≤0

{
(−2aik sin(iγm) + b)

(
A12 − λ sin2(iγm)

)−1
θ

+(−2aik sin(−iγm + 2π/3) + b)Π(−iγm + 5π/3)
(
A12 − λ sin2(−iγm + 2π/3)

)−1
θ

+(−2aik sin(−iγm + π/3) + b)Π(−iγm + 4π/3)

×Π(−iγm + 5π/3)
(
A12 − λ sin2(−iγm + π/3)

)−1
θ

+(2aik sin(−iγm + 2π/3) + b)
(
A12 − λ sin2(−iγm + 2π/3)

)−1
θ

+(2aik sin(−iγm + π/3) + b)Π(−iγm + 5π/3)
(
A12 − λ sin2(−iγm + π/3)

)−1
θ

+(2aik sin(−iγm) + b)Π(−iγm + 4π/3)

×Π(−iγm + 5π/3)
(
A12 − λ sin2(iγm)

)−1
θ
}

ρmh.
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(A.2)
∂gs

1(r)

∂r
|r=0 = i

√
λ− A12

h
2

+1
2

∑
m>0

{
ik cos(iγm)(−2aik sin(iγm) + b)

(
A12 − λ sin2(iγm)

)−1
θ

+(−2aik sin(iγm + 5π/3) + b)Π(iγm + 2π/3)

×ik cos(iγm + 5π/3)
(
A12 − λ sin2(iγm + 5π/3)

)−1
θ

+(−2aik sin(iγm + 4π/3) + b)Π(iγm + π/3)Π(iγm + 2π/3)

×ik cos(iγm + 4π/3)
(
A12 − λ sin2(iγm + 4π/3)

)−1
θ

+(2aik sin(iγm + 5π/3) + b)

×ik cos(iγm + 5π/3)
(
A12 − λ sin2(iγm + 5π/3)

)−1
θ

+(2aik sin(iγm + 4π/3) + b)Π(iγm + 2π/3)

×ik cos(iγm + 4π/3)
(
A12 − λ sin2(iγm + 4π/3)

)−1
θ

+(2aik sin(iγm + π) + b)Π(iγm + π/3)Π(iγm + 2π/3)

×ik cos(iγm + π)
(
A12 − λ sin2(iγm + π)

)−1
θ
}

ρmh

+1
2

∑
m≤0

{
(−2aik sin(iγm) + b)ik cos(−iγm + π)

(
A12 − λ sin2(iγm)

)−1
θ

+(−2aik sin(−iγm + 2π/3) + b)Π(−iγm + 5π/3)

×ik cos(−iγm + 2π/3)
(
A12 − λ sin2(−iγm + 2π/3)

)−1
θ

+(−2aik sin(−iγm + π/3) + b)Π(−iγm + 4π/3)Π(−iγm + 5π/3)

×ik cos(−iγm + π/3)
(
A12 − λ sin2(−iγm + π/3)

)−1
θ

+(2aik sin(−iγm + 2π/3) + b)

×ik cos(−iγm + 2π/3)
(
A12 − λ sin2(−iγm + 2π/3)

)−1
θ

+(2aik sin(−iγm + π/3) + b)Π(−iγm + 5π/3)

×ik cos(−iγm + π/3)
(
A12 − λ sin2(−iγm + π/3)

)−1
θ

+(2aik sin(−iγm) + b)Π(−iγm + 4π/3)Π(−iγm + 5π/3)

×ik cos(iγm)
(
A12 − λ sin2(iγm)

)−1
θ
}

ρmh.
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